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Abstract—This paper presents a new approach to forecast the behavior of time series based on similarity of pattern sequences. First, 
clustering techniques are used with the aim of grouping and labeling the samples from a data set. Thus, the prediction of a data point is 
provided as follows: first, the pattern sequence prior to the day to be predicted is extracted. Then, this sequence is searched in the 
historical data and the prediction is calculated by averaging all the samples immediately after the matched sequence. The main novelty 
is that only the labels associated with each pattern are considered to forecast the future behavior of the time series, avoiding the use of 
real values of the time series until the last step of the prediction process. Results from several energy time series are reported and the 
performance of the proposed method is compared to that of recently published techniques showing a remarkable improvement in the 
prediction.

Index Terms—Time series, forecasting, patterns.

1 INTRODUCTION

T HE analysis of temporal data and the prediction of future
values of time series are among the most important

problems that data analysts face in many fields, ranging
from finance and economics, to production operations
management or telecommunications.

A forecast is a prediction of some future event(s).
Forecasting problems are often classified as short-term,
medium-term, and long-term. Short-term forecasting pro-
blems involve predicting events only a few time periods
(days, weeks, months) into the future. Medium-term fore-
casts extend from one to two years and long-term forecasting
problems can extend beyond that by many years.

Time series data can be defined as a chronological
sequence of observations on a variable of interest. Most
forecasting problems imply the use of such data whose
analysis has traditionally been done by means of classical
statistical tools. Nowadays, data mining techniques are
acquiring a great relevance due to the large number of
samples forming the time series in multiple areas.

A new approach, called Pattern Sequence-based Forecast-
ing (PSF), is here presented in order to forecast time series.
This work can be considered a generalization of the algorithm
introduced in [33], which is based on nearest neighbors
techniques. Nevertheless, the new approach makes predic-
tions using only labels generated by means of clustering
techniques. This fact discretizes and simplifies the process of
prediction, since during the whole process, the PSF algorithm

deals with sequences of labels instead of with sets of real
values. Despite that a naive use of labels to predict time series
was presented in [21], the PSF includes a new methodology to
automatize the obtaining of the labels providing rules to
assign them to the samples of real values. The sensitivity of
the key parameter involved in the selection of the number of
underlying patterns is also analyzed in order to study the
robustness of the method. The number of labels comprising
the pattern sequence, used in each prediction process, is
systematically determined in this work.

The PSF algorithm aims to be a general-purpose
forecasting procedure. However, electricity-related pro-
blems are addressed in this work. To be precise, two major
groups of time series are forecasted: electricity prices and
electricity demand. These groups belong to three different
markets: the Spanish Electricity Market Operator (OMEL),
the New York Independent System Operator (NYISO), and
the Australia’s National Electricity Market (ANEM). There-
fore, the overall experimentation consists of six indepen-
dent time series showing thus the adaptability of the PSF to
miscellaneous time series. Moreover, in order to facilitate
the comparison of the obtained results, all the data sets
analyzed are available online [19], [25], [26].

The rest of the paper is organized as follows: Section 2
presents an exhaustive revision of the state of the art on
electricity prices and demand time series forecasting.
Section 3 introduces the proposed methodology and the
description of the PSF algorithm, which can be applied to
time series of any nature. Section 4 shows the results
obtained by the PSF approach in electric energy markets of
Spain, Australia, and New York for the whole year 2006,
including measures of the quality of them. In Section 5,
comparisons between the proposed method and other
techniques are provided. Finally, Section 6 summarizes the
main conclusions achieved and gives clues for future work.

2 RELATED WORK

The forecasting of energy time series has been widely studied
in literature, as it is described in Sections 2.1 and 2.2.



2.1 Electricity Prices Time Series Forecasting

The electric power markets have become competitive
markets due to the deregulation carried out in the last
years, allowing the participation of all producers, investors,
traders, or qualified buyers. Thus, the price of the electricity
is determined on the basis of this buying/selling system.
Consequently, a will of obtaining optimized bidding
strategies has arisen in the electricity-producer companies
[29], needing both insight into future electricity prices and
assessment of the risk of trusting in predicted prices.

Electricity prices time series presents some peculiarities
such as nonconstant mean and variance as well as the
presence of outliers that turns the forecasting into a
specially difficult task. Due to this fact, the accomplishment
of accurate forecasting has motivated research works by
many authors nowadays [2], [37].

The authors in [7] used the wavelet transform and
autoregressive integrated moving average (ARIMA) models
to predict the day-ahead electricity price. Indeed, they first
used the wavelet transform to split the available historical
data into constitutive series. Then, specific ARIMA models
were applied to these series and the forecasts were obtained
by applying the inverse wavelet transform to the forecasts
of these constitutive series. In [15], ARIMA models, selected
by means of Bayesian Information Criteria, were proposed
to obtain the forecasts of the prices. In addition, the work
analyzed the optimal number of samples used to build the
prediction models. Aggarwal et al. [3] divided each day
into segments and they applied a multiple linear regression
to the original series or the constitutive series obtained by
the wavelet transform depending on the segment. More-
over, the regression model used different input variables
for each segment.

Equally noticeable was the approach proposed by Garcı́a
et al. [14] in which a forecasting technique based on a
generalized autoregressive conditional heteroskedasticity
(GARCH) model was presented. Hence, this paper focused
on day-ahead forecast of electricity prices with high
volatility periods.

Transfer functions models based on past electricity prices
and demand were proposed to forecast day-ahead electri-
city prices by Nogales and Conejo [24], but the prices of all
24 hours of the previous day were not known. They used
the median as measure due to the presence of outliers and
they stated that the model in which the demand was
considered presented better forecasts.

Weron and Misiorek [38] presented 12 parametric and
semiparametric time series models to predict electricity
prices for the next day. Moreover, in this work, forecasting
intervals were provided and evaluated taking into account
the conditional and unconditional coverage. They con-
cluded that the intervals obtained by semiparametric
models are better than that of parametric models.

A hybrid model that combined artificial neural networks
(ANN) and fuzzy logic was introduced in [4]. As regards
the neural network presented, it had a feed-forward
architecture and three layers, where the hidden nodes of
the proposed fuzzy neural network performed the fuzzifi-
cation process. Following with this technique, another
neural network-based approach was introduced in [5] in
which multiple combinations were considered. These
combinations consisted of networks with different number
of hidden layers, different number of units in each layer,

and several types of transfer functions. Recently, Pindoria
et al. [28] proposed an artificial neural network in which the
output of the hidden layer neurons was based on wavelets
that adapted their shape to training data.

A modification of the weighted nearest neighbors
(WNN) methodology is proposed in [33]. To be precise,
the approach weighted the nearest neighbors in order to
improve the prediction accuracy.

The occurrence of outliers (also called spike prices) or
prices significantly higher than the expected values is a
usual feature found in these time series. With the aim of
dealing with this feature, the authors in [41] proposed a
data mining framework based on both support vector
machines (SVM) and a probability classifier.

Recently, a fuzzy inference system—adopted due to its
transparency and interpretability—combined with traditional
time series methods was proposed for day-ahead electricity
price forecasting [18].

2.2 Electricity Demand Time Series Forecasting

The process of forecasting the quantity of electricity
required for a specific geographical area during a time
period is called load forecasting or demand forecasting.
This process is key since current technology allows to store
only little amount of electricity in batteries. Therefore, the
demand forecasting plays an important role for electricity
power suppliers because both excess and insufficient
energy production may lead to large costs and significative
reduction of benefits.

Load forecasting has been widely studied [31], [37]. The
existing procedures are usually divided into two main
groups [13]. The first one gathers traditional approaches
such as regression, data smoothing techniques, or Box and
Jenkin’s models. Thus, the authors in [27] focused on the
one year-ahead prediction for winter seasons by defining a
new Bayesian hierarchical model. They provide the margin-
al posterior distributions of demand peaks. Also in [8],
Bayesian models are used to forecast electricity demand.
Moreover, a multiple linear regression model to forecast
electricity consumption using some input variables such as
the gross domestic product, the price of electricity, and the
population was proposed in [23].

Taylor et al. [32] compared six univariate time series
methods to forecast electricity load for Rio de Janeiro and
England and Wales markets. These methods were an
ARIMA model and an exponential smoothing (both for
double seasonality), an artificial neural network, a regres-
sion model with a previous principal component analysis,
and two naive approaches as reference methods. The best
method was the proposed exponential smoothing and the
regression model showed a good performance for the
England and Wales demand.

With reference to the second main group, it gathers
artificial intelligence techniques among which expert
systems, neural networks, and fuzzy theory are the most
popular [22]. In [11], the authors discussed and presented
results by using an ANN to forecast the Jordanian electricity
demand, which is trained by a particle swarm optimization
technique. They also showed the performance obtained by
using a back-propagation algorithm and autoregressive
moving average (ARMA) models. An ANN-based forecast-
ing technique can also be found in [30]. Another proposal
can be found in [36], where a forecasting algorithm based



on Gray Models was introduced to predict the load of
Shanghai. In the Gray model, the original data series was
transformed to reduce the noise of the data series and the
accuracy was improved by using Markov chains techni-
ques. Fan et al. [12] proposed a hybrid machine learning
model based on Bayesian classifiers and SVM. First,
Bayesian clustering techniques were used to split the input
data into 24 subsets. Then, SVM methods were applied to
each subset to obtain the forecasts of the hourly electricity
load. In [34], the authors proposed a methodology based on
WNN techniques. The proposed approach was applied to
the 24-hour load forecasting problem and they built an
alternative model by means of a conventional dynamic
regression (DR) technique to perform a comparative
analysis. In [1], the performance of ANN, fuzzy networks,
and ARIMA models was evaluated to forecast the electricity
demand time series in Victoria and the results showed that
the fuzzy neural network outperformed the plain ANN and
ARIMA models. Finally, Wang and Wang [35] proposed a
new prediction approach based on SVM techniques with a
previous selection of features from data sets by using an
evolutionary method. The creation of hybrid methods that
highlight most of the strengths of each technique is
currently the most popular work among the researchers.
And, from all hybrid methods, the combination of ANN
and fuzzy set theory has become a new tool to be explored.

3 THE PROPOSED METHODOLOGY

The proposed methodology is divided into two phases
clearly differentiated. In a first step, a clustering technique
is performed and, second, the phase of forecasting is
applied by using the information provided by this cluster-
ing. The PSF algorithm is focused on predicting samples
framed in a time series, either one dimensional or multi-
dimensional, previously labeled with clustering techniques.
As soon as the clustering is applied, the algorithm only
processes the number of the cluster—the label associated
with each pattern—assigned to the samples, ignoring if they
had more than one feature.

With the PSF method, the horizon of prediction can be as
long as desired. Hence, more than one sample can be
predicted, making predictions of nonrestricted length. This
fact is possible because it is implemented with a close loop
that feeds the prediction of a sample back in the data set in
order to predict the following sample. As a consequence,
the PSF approach is able to insert the predicted samples in
the data set with the aim of forecasting further samples.
Therefore, in case the horizon of prediction was longer than
one day, every predicted sample would be inserted into the
data set and considered to be a regular sample. This feature
is specially useful when the prediction has to cover various
days or a long-term prediction is required.

Fig. 1 shows the basic idea behind the proposed
methodology. All the steps composing this methodology
are going to be described in subsequent sections.

3.1 Data Normalization

The first task to be completed is the normalization of data
that is only used for the clustering process. It can be
assumed that the prices increase all along the year following
a tendency in accordance with the intra-annual inflation.

That is, the original trend is smoothed from the initial data.
The transformation applied is

xj
xj

1
N

PN
i¼1 xi

; ð1Þ

where xj is the price/demand of the jth hour of a day and N
is equal to 24 since each value represents one hour of the day.

3.2 Clustering Technique

Given the database of hourly prices/demand, the clustering
problem consists of identifying K groups or clusters such
that the prices/demand curves of the days belonging to a
cluster are similar among them and dissimilar to the curves
of those days belonging to other clusters, according to a
distance. Clustering is a difficult task due to the great
number of possible geometric shapes for the clusters and
distances that can be considered.

As a consequence, the dimensionality of the database is
drastically reduced from its initial 24 features (equivalent to
the 24 hours of the day) to only one dimension (the label of
the cluster to which the day belongs).

To achieve this challenge, two questions should be
answered: which clustering technique should be chosen?
And, if appropriate, how many clusters should be created?

These two topics have widely been discussed in the
literature [39]. Nevertheless, it seems that there is not a
unique answer because it depends on sensitive factors.

The crisp and fuzzy clustering are the two main branches
of nonsupervised classification. The discussion of choosing
one technique or another can be found in [20], in which the
well-known K-means algorithm was the optimal method to
classify this kind of data set. For this reason, the K-means
algorithm is the clustering technique used in this work
during the whole process of prediction.

The K-means algorithm requires that the user provides
the number of clusters to be created. However, this number is
a priori unknown and its selection and later evaluations of
the results obtained by the clustering are crucial for most
engineering applications. Thus, the most challenging pro-
blem of the clustering realm has been to select the right
number of clusters for data sets.

Fig. 1. Illustration of the proposed methodology. The clustering and
prediction stages are further detailed.



For all these reasons, three well-known validity indices
have been applied to data in order to decide how many
groups the original data set has to be split into: silhouette
index [16], Davies-Bouldin (DB) index [9], and the Dunn
(DU) index [10]. The three of them share a common feature:
the new data structure obtained by the clustering algorithm
is evaluated to test the validity of the partition.

The procedure to select the number of clusters to be
generated, K, is now discussed. From the application of
these three indices (see Sections 3.2.1, 3.2.2, and 3.2.3),
two possible situations can appear: at least two indices—the
majority—coincide in selecting the same K (the K even-
tually chosen) or none of them coincide. When the second
situation occurs, the second best values of the three indices
are also considered (together with the first best values). The
K selected is, then, the one pointed by the majority of all the
cases. Further, best values will be included and analyzed
until one K had more votes than the others.

3.2.1 The Silhouette Index

The silhouette function provides a quality measure of
separation among the clusters obtained by using a cluster-
ing technique. The average distance of the object i
belonging to the cluster A to all the objects in A is denoted
by aðiÞ and the average distance of i to all objects of the
cluster C 6¼ A is called dði; CÞ. For every cluster C 6¼ A,
dði; CÞ is computed and the smallest one is selected as
follows:

bðiÞ ¼ min
C 6¼A

dði; CÞ with i 2 A: ð2Þ

The value bðiÞ represents the dissimilarity of the object i
to its nearest neighbor cluster. Thus, the silhouette values,
silhðiÞ are given by the following equation:

silhðiÞ ¼ aðiÞ � bðiÞ
maxfaðiÞ; bðiÞg : ð3Þ

The silhðiÞ can range from �1 to þ1, where þ1 and
�1 mean that the object i belongs to an adequate and
inadequate cluster, respectively. If the silhouette value of
the object i belonging to the cluster A is close to zero, it
means that the object i can also be in the nearest neighbor
cluster to A. If cluster A is a set with only one element, the
silhouette value of the object i is not defined and in this
case, it is concerted to be equal to zero. The objective
function is the average of silhðiÞ over the number of objects
to be classified, and the best clustering is reached when this
function is maximized.

3.2.2 The Dunn Index

One of the most cited indices was proposed in [10]. The
Dunn index aims to identify clusters with high intercluster
distance and low intracluster distance. The Dunn index for
K clusters Ci with i ¼ 1; :::;K is defined by

DUK ¼ min
i

min
j6¼i

fi;j; ð4Þ

where

fi;j ¼
dðCi; CjÞ

maxm diamðCmÞ
: ð5Þ

dðCi; CjÞ is the dissimilarity between clusters Ci and Cj
defined by

dðCi; CjÞ ¼ min
x2Ci
y2Cj

kx� yk; ð6Þ

and diamðCÞ is the intracluster function or diameter of the

cluster defined by this equation

diamðCÞ ¼ max
x;y2C
kx� yk; ð7Þ

where k � k represents a norm.
In short, the existence of compact and well separated

clusters is guaranteed if the Dunn index reaches high

values. Therefore, the maximum is observed for the most

probable number of clusters in the data set.

3.2.3 The Davies-Bouldin Index

The Davies-Bouldin index identifies as good clusters those
compact clusters which are far from each other. Davies-
Bouldin index for K clusters Ci with i ¼ 1; . . . ; K is defined
according to

DBK ¼
1

K

XK
i¼1

max
j6¼i

fi;j; ð8Þ

where

fi;j ¼
diamðCiÞ þ diamðCjÞ

dðCi; CjÞ
; ð9Þ

and, in this case, the diameter of a cluster is defined as

diamðCiÞ ¼
1

ni

X
x2Ci
kx� zik2

!1
2

; ð10Þ

with ni the number of points and zi the centroid of clusterCi.
The existence of high-quality clusters is guaranteed if the

Davies-Bouldin index reaches small values. Therefore, the

optimal number of clusters is found when this index is

minimized for the data set.

3.3 The PSF Algorithm

Given the hourly prices/demand recorded in the past, up to

day d� 1, the forecasting problem aims at predicting the 24-

hourly prices/demand corresponding to day d.
Let XðiÞ 2 IR24 be a vector composed of the 24-hourly

energy prices/demand corresponding to a certain day i

XðiÞ ¼ ½x1; x2; . . . ; x24�: ð11Þ

LetLi 2f1; . . . ; Kgbe the label of the prices/demand of the

day i obtained as a previous step to the forecasting by using a

clustering technique, where K is the number of clusters. Let

SiW be the sequence of labels of the prices/demand of the

W consecutive days, from day i backward, as follows:

SiW ¼ ½Li�Wþ1; Li�Wþ2; . . . ; Li�1; Li�; ð12Þ

where the length of the window, W , is a parameter to be

determined (see Section 3.4).
The PSF algorithm for the prediction of the hourly prices/

demand of the day d first searches for the sequences of labels



which are exactly equal to Sd�1
W in the database, providing the

equal subsequences set, ESd, defined by this equation

ESd ¼
�
j such that SjW ¼ Sd�1

W

�
: ð13Þ

In case of finding no sequences in database equal to Sd�1
W ,

the procedure searches for the sequences of labels which are

exactly equal to Sd�1
W�1 and thus successively. That is, the

length of the window composed of the sequence of labels is

decreased in one unit. This strategy guaranties that at least

some sequences will be found when W is equal to 1.
According to the PSF approach, the 24-hourly values of

the time series for the day d are predicted by averaging the

values of the days following those in ESd

bXðdÞ ¼ 1

size ðESdÞ
�
X
j2ESd

Xðjþ 1Þ; ð14Þ

where size(ESd) is the number of elements that belong to

the set ESd.
The full procedure of the PSF algorithm is detailed in Fig. 2

and a general scheme is presented in Fig. 3. The symbol .

stands for “append” (insert at the end).
In case of a medium- or long-term prediction, in which the

forecasting of more than one sample is required, the following

tasks have to be carried out. First of all, the values of the

predicted sample are linked to the whole data set. Second, the

clustering process is repeated with the enlarged data set and,

finally, the prediction step is performed (see Fig. 1).

3.4 Determining the Size of the Window

The previous clustering generates a sequence of labels

associated with every day (in Fig. 2, the sequence of

numbers are these labels). Now, a sequence of labels is

taken into consideration for further steps; concretely, if the

day d has to be predicted, the sequence of labels Sd�1
W ¼

½Ld�W;Ld�Wþ1; . . . ; Ld�2; Ld�1� is extracted from the data set

and is used as a pattern of search, where W is the length of
this sequence (or window).

The selection of W depends on the case under study but
it can be systematically tuned. Thus, it is compulsory to
perform a training phase to find an adequate value of W
before applying the PSF approach.

The optimal number of labels comprising the window
(parameter W )—that will be used as a pattern of search to
find all equal sequences of labels in data set—is determined
by minimizing the forecasting error when the PSF method is
applied to a training set.

Mathematically, that means to find the value of W that
minimizes the following function:X

d2TS
k bXðdÞ �XðdÞk; ð15Þ

where bXðdÞ are forecasted prices/demand for day d,
according to the PSF method, XðdÞ are actual recorded
prices/demand, and TS refers to the training set. Notice
that, according to (14), bXðdÞ is an implicit function of the
discrete variable W . Hence, the application of standard
mathematical programming methods is not possible when
searching for W .

In practice, W is calculated by means of cross validation.
The cross validation was originally defined as: “the
statistical practice of partitioning a sample of data into
subsets such that the analysis is initially performed on
a single subset, while the other subsets are retained for
subsequent use in confirming and validating the initial
analysis” [17].

In this work, the n-fold cross validation is used to obtain
the optimal value ofW . Inn-fold cross validation, the original
data set is split into n subsets. From all the n subsets, one
subset is used to validate the model, which is generated by
the remaining n� 1 subsets. Thus, this process is repeated
n times, using each of the n subsets exactly once to validate.
The n results are then combined—usually averaged—in

Fig. 2. PSF algorithm.



order to generate the final estimation. The advantage of this
method lies on the use of all samples for both training and
validation.

For the training phase, 12 folds have been used in this work
(n ¼ 12), where each fold represents a month of the year
under study. The 12-fold cross validation is then evaluated.
The forecasting errors are calculated in every fold by varying
the length of W . These monthly errors are denoted by
emonthfW ¼ jg for j ¼ 1 . . .Wmax, where Wmax ¼ 10—as em-
pirically is shown in Section 4.2.2. Then, the average errors
are calculated for each window size as follows:

ej ¼
1

n

Xn
i¼1

emonthfW ¼ jg; ð16Þ

where n ¼ 12 and month ¼ fJan; . . . ; Decg.
The W selected is the one that minimizes the average

error corresponding to the 12 folds (months) evaluated.

W ¼ arg minfejg withj ¼ 1; . . . ;Wmax: ð17Þ

4 RESULTS

The above described methodology has been applied to the
electricity prices and demand of Spanish [25], Australian
[19], and New York [26] markets. These six data sets have
been selected due to the great amount of forecasting results
published in the literature. These results will be used to
establish a comparison with that of the proposed method in
this work.

This section is structured as follows: first, the accuracy of
the predictions is validated. Thus, the usual quality
parameters are presented. Second, the PSF approach is
trained in order to produce accurate predictions and, for
this reason, the election of both W and K is discussed here.
Third, the prediction of the year 2006 is provided. Finally, a
sensitivity analysis of the proposed method with regard to
the number of clusters is presented.

4.1 Parameters of Quality

In order to assess the performance of the PSF approach,
several measures have been considered:

. Mean error relative to �x (MER).

MER ¼ 100 � 1

N

XN
h¼1

j x̂h � xh j
�x

; ð18Þ

where x̂h and xh are the predicted and current
prices/demand at hour h, respectively, �x is the mean
price/demand for the period of interest (a day or a
week in this work), and N is the number of
predicted hours. Note that, the mean price/demand
is used in the denominator of (18) to avoid the effect
of prices close to zero.

. Mean absolute error (MAE).

MAE ¼ 1

N

XN
h¼1

j x̂h � xh j : ð19Þ

. Standard deviation of MER/MAE (�).

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
h¼1

ðeh � �eÞ2
vuut ; ð20Þ

where

eh ¼
x̂h � xh

�x
; ð21Þ

and �e is the mean of the hourly errors.

4.2 Training the PSF Algorithm

In this section, the number of clusters to be generated, as well
as the length of the window comprising the sequence of labels
that has to be searched along the time series, are presented.

4.2.1 Selecting the Number of Clusters

First of all, the number of clusters K has to be chosen and,
for this purpose, the 12 months of the year 2005 are
considered for training the algorithm.

In order to validate the quality of the clusters produced
by K-means algorithm, the silhouette, Dunn, and Davies-
Bouldin three indices have been used in the experiments.
Thus, the optimal value of K is selected from a system
based on majority votes.

Table 1 summarizes the results obtained by the three
indices of cluster validity, in which the numbers in brackets
represent the second best values, as described in Section 3.2.
A further study about the influence of the number of
clusters on the results of the prediction is made in the
Section 4.4.

The values of the indices when K varies from 2 to 20 are
depicted in Figs. 4, 5, and 6. Fig. 4a shows the results of all

Fig. 3. A general scheme of the algorithm PSF.

TABLE 1
Number of Clusters Selected for All the Markets



the three indices when varying K in the Spanish electricity
price market. Apparently, all of them have different
optimum values since the silhouette and the Dunn indices
reach the maximum values in K ¼ 4 and K ¼ 6 (0.3536 and
0.0010, respectively), while the Davies-Bouldin index
reaches its optimum value when K ¼ 5 (0.7417). Never-
theless, a thorough analysis of all the values reveals that for
K ¼ 4, both Dunn and Davies-Bouldin indices have the
second best result (0.0010 and 0.7703), with values really
close to the optimum values. For these reasons, the number
of clusters selected for this time series is K ¼ 4. On the other
hand, Fig. 4b illustrates the results of the Spanish demand
market. As can be appreciated, both silhouette and Dunn
indices select K ¼ 8—reaching the maximum values in
0.5872 and 1.964E-06, respectively. On the contrary, the
Davies-Bouldin index reaches its minimum and, conse-
quently, its optimum value when K ¼ 7. However, when
K ¼ 8, this index also presents a low value close to its
global minimum (0.8983 versus 0.8208, respectively).

With reference to the New York electricity prices, the
situation shown in Fig. 5a reveals an easy selection of the
number of clusters. Actually, the three methods select K ¼ 5
since both silhouette and Dunn indices reach the maximum
values (0.5324 and 0.0004, respectively) while the Davies-
Bouldin index reaches its minimum value (0.6602). The
selection of K for the New York electricity demand time
series is shown in Fig. 5b. It can be noticed, both silhouette
and Dunn indices reach the optimum values in K ¼ 4
(0.7895 and 0.0002, respectively), but the Davies-Bouldin
index reaches its minimum when K ¼ 3 (0.8193). Even if the
value in K ¼ 4 is not specially low (0.9739), it can be
considered a globally low value since this index reaches
values such as 1.3125 in K ¼ 6.

Fig. 6a shows the results obtained in the Australian
electricity price market. As it can be noticed, both silhouette

and Davies-Bouldin indices reach the maximum and
minimum values (0.4858 and 0.6931, respectively) in
K ¼ 3. Oppositely, the Dunn index reaches its maximum
and, consequently, its optimum value when K ¼ 4. How-
ever, when K ¼ 3, this index also presents a high value
verging on its global maximum (0.0003 and 0.0002,
respectively). With regard to the Australian electricity
demand, the situation shown in Fig. 6b is conclusive.
Hence, the three methods agree in selecting K ¼ 5 since
both silhouette and Dunn indices reach the maximum
values (0.5673 and 0.0178, respectively) while the Davies-
Bouldin index reaches its minimum value (0.9800).

4.2.2 Selecting the Length of the Window

Once the number of clusters is already decided, the next
step is to select the optimal length of the window W . Thus,
this step is focused on finding the W that obtains the
minimum prediction error in the training set.

Therefore, it is required to evaluate the performance of
the PSF algorithm when W varies according to the
methodology presented in Section 3.4.

Table 2 shows how the prediction error varies in
accordance with the number of patterns considered in the
window. Note that the symbol “-” means that similar
sequences of length W were not found when K clusters
were considered in the training set. Finally, the W that
allows a lower prediction error is the value chosen for
further forecasting on real data. It can be concluded that the
optimal lengths of the windows that have to be used are
W ¼ 5, W ¼ 3, and W ¼ 6 for the OMEL, NYISO, and
ANEM price time series since they reach the lower
prediction errors (2.23, 3.27, and 5.81 percent, respectively)
and W ¼ 2, W ¼ 5, and W ¼ 3 for the OMEL, NYISO, and
ANEM demand time series (2.87, 4.99, and 3.43 percent,
respectively).

Fig. 4. Selecting the optimal number of clusters in OMEL time series. (a) OMEL—price. (b) OMEL—demand.



4.3 Forecasting Results

In this section, the results obtained from the three different

markets are provided. Precisely, Tables 3, 4, and 5 show

the MER and the MAE (and the standard deviations � in

brackets) in the Spanish, Australian, and New York

electricity time series—both for prices and demand—for

the whole year 2006. In spite of the average of the MER for

the year 2006 in the OMEL prices time series is greater

than that corresponding to NYISO (6.15 percent versus

5.53 percent), it can be noticed that the mean of standard

deviation of MER in the Spanish market is lower than that

of the New York market (0.27 percent versus 1.94 percent).

This fact means that the maximum errors in the OMEL

prices time series are closer to the average errors than the

maximum errors obtained when the prices are predicted in

the NYISO market. The standard deviation for the

Australian market is the highest (4.40 percent) due to the

Fig. 5. Selecting the optimal number of clusters in NYISO time series. (a) NYISO—price. (b) NYISO—demand.

Fig. 6. Selecting the optimal number of clusters in ANEM time series. (a) ANEM—price. (b) ANEM—demand.



many peak prices—considered as outliers—that occur in

this prices time series.
Fig. 7 illustrates several prediction curves obtained for

the Spanish market for the year 2006. Concretely, Fig. 7a
shows the best and worst predictions generated by the PSF
algorithm when electricity price curves were considered.
With regard to the prices, the best prediction occurred on
June 23rd in which the MER was 3.10 percent and the MAE
0.12cE/KWHr, while the worst took place on May 8th in
which the MER was 9.39 percent and the MAE 0.80cE/
KWHr. Note that these curves are expressed in cents of
Euro per kilowatts per hour (cE/KWHr). Fig. 7b presents
the best and worst predictions when the electricity demand
was analyzed. The best one took place on May 16th in
which the MER was 1.16 percent and the MAE 253.49 MW.
On the other side, the worst prediction had an MER of
8.67 percent and an MAE equal to 1759.03 MW and it took
place on December 12th. Note that these curves are
expressed in megawatts (MW).

The results obtained for the New York market are
illustrated in Fig. 8. Fig. 8a presents the best and worst
prediction curves obtained for the New York electricity
prices, which took place on July 8th (with an MER of
2.76 percent and an MAE of 1.41$/MWHr) and on May 12th
(its MER was 8.89 percent and the MAE was equal to 6.89$/
MWHr), respectively. Note that these curves are expressed
in dollars per MWHr ($/MWHr). Alternatively, Fig. 8b
references to the best—December 10th with an MER and
MAE equal to 2.67 percent and 28.47 MW, respectively—
and the worst—February 15th with an MER and MAE equal
to 10.56 percent and 97.89 MW, respectively—predictions in
the demand time series.

With respect to the Australian market, it is important to

remark that it shows the information structured in different

areas. Thus, the National Electricity Market in Australia is

comprised of five jurisdictions: Queensland, New South

Wales, Victoria, Tasmania, and South Australia. The results

in Table 5 refer to the Queensland market.
Fig. 9 shows the best and worst prediction curves

obtained for the Australian market in the year 2006 for

both electricity prices and demand markets. Fig. 9a

illustrates the best and worst prediction curves obtained

for the electricity prices, which took place on May 12th

(with associated MER and MAE of 3.66 percent and

0.98$/MWHr, respectively) and on July 20th (with

associated MER and MAE of 65.60 percent and 28.39$/

MWHr, respectively). The Australian electricity price

market is characterized by the existence of many spike

prices during the year. Indeed, many authors have studied

how to perform accurate predictions in that market [41].

The PSF algorithm, even if it is not able to find the real

magnitude of such peaks, it is able to forecast the

existence of them. This fact justifies the higher value of

the MER obtained for that day. It can be observed how

the proposed algorithm captures the trend of the prices

time series in the Australian market detecting a peak—an

outlier—at 7:00 pm. Note that all the curves are expressed

in Australian dollars per MWHr.

TABLE 2
MER Obtained with the PSF Algorithm on All the Markets

TABLE 3
Performance of the PSF Algorithm for the Year 2006

in OMEL Time Series

TABLE 4
Performance of the PSF Algorithm for the Year 2006

in NYISO Time Series

TABLE 5
Performance of the PSF Algorithm for the Year 2006

in ANEM Time Series



Finally, Fig. 9b references to the best—December 8th with

an MER and MAE equal to 2.67 percent and 322.82 MW,

respectively—and the worst—November 19th with an MER

and MAE equal to 10.56 percent and 638.92 MW, respectively

—predictions in the demand time series.

4.4 Sensitivity to the Parameter K

In this section, a posteriori analysis of sensitivity to the

parameter K is carried out in order to show the good

performance of the three indices of cluster validity

presented for these six time series and the robustness of

the proposed method with regard to this parameter.
Fig. 10 shows the MER provided by the PSF algorithm in

2006 for the prices and demand time series when the

number of clusters K ranges from 2 to 15.
From Table 1 and Fig. 10, the following can be stated:

Remark 1. The MER is minimum when five clusters (K ¼ 5)

are considered for both prices and demand in New York

and Australia, respectively. All indices—silhouette, DU,

and DB—coincided in the optimal selection of this

parameter for the aforementioned markets.

Remark 2. The indices silhouette and DU selected the same

number of clusters for the demand time series of the

Spanish and New York markets (K ¼ 8 and K ¼ 4,

respectively) and for the prices time series of the

Australian market (K ¼ 4). Indeed, the global minima

Fig. 7. Best and worst predictions for the Spanish electricity market in

2006. (a) Spanish electricity price market. (b) Spanish electricity

demand.

Fig. 8. Best and worst predictions for the New York electricity market in

2006. (a) New York electricity price market. (b) New York electricity

demand.

Fig. 9. Best and worst predictions for the Australian electricity market in
2006. (a) Australian electricity price market. (b) Australian electricity
demand.

Fig. 10. Sensitivity of the PSF approach to the K parameter.



of the MER for these three time series are reached in
these values.

Remark 3. The three indices of cluster validity provided
different values of the parameter K for the OMEL prices
time series (K ¼ 4, K ¼ 6, and K ¼ 5 for silhouette, DU,
and DB indices, respectively). However, the MER
obtained for these three values does not present
significative differences. Nevertheless, for this time
series, the global minimum is reached in the selected
number of clusters from the proposed system based on
majority votes.

This analysis highlights the validity of the methodology
followed in order to select K, since it reveals that the MER is
minimized when the three indices agreed, that the optim-
ality is guaranteed when two of them—a majority—agreed
and, finally, that the MER does not vary significantly when
all of them are different and K is selected as described in
Section 3.2.

5 COMPARATIVE ANALYSIS OF PSF

A comparison between the results obtained by the PSF
method and the most representative approaches reported in
the literature is provided in this section, showing that the
proposed approach improves the aforementioned techni-
ques. Thus, in order to validate the accuracy of the proposed
algorithm, it has been applied to specific periods of time in
which other authors evaluated their own approaches.

Furthermore, this section is divided into two sections.
The first one gathers the forecasting results related to the
electricity price markets, while the second one points out
the enhancements achieved in the electricity demand
forecasting with the proposed methodology.

5.1 Electricity Prices Time Series

5.1.1 The Spanish Electricity Prices Market

The Spanish electricity prices market has been widely
analyzed. Many authors have evaluated their own ap-
proaches over the time series for the year 2002 and, as a
consequence, the literature offers multiple results for this
year. The PSF algorithm is compared to four published
approaches: ARIMA [7], ANN [5], mixed models [15], and
WNN [33]. Finally, it is also compared to the naive Bayes
classifier as a reference method.

As it can be observed in Table 6, the proposed method
has improved most of the MER rates. However, there are
some exceptions, such as for the week of February
18th�24th, in which the ANN obtained an error of 5.23
and 5.15 percent for the WNN versus the 5.98 percent

provided by the PSF method. The mixed models and the
WNN method also obtained lower errors in the week of
May 20th-26th (4.46 and 4.34 percent versus 4.51 percent,
respectively). Apart from these two weeks, the PSF
algorithm was much more efficient than the others. The
mean errors improved by more than 0.5 percent the best
method compared to (7.42 percent for the PSF versus
8.05 percent for the WNN).

The authors in [15] also forecasted a week of the year 2000.
The comparative of the MER rates is shown in Table 7. The
average of the MER for this week is 5.46 percent when the PSF
method was applied, whereas the mixed models and ARIMA
models yield an average of 7.04 and 8.17 percent, respec-
tively. For this week, the average results are 1.5 percent better
than those obtained by the other methods. Therefore, the
improvement reached by the proposed algorithm is con-
sidered successful.

5.1.2 The New York Electricity Prices Market

As for the New York electricity prices time series, the authors in
[6] compared some forecasting algorithms with their own
approach called STR. They applied manifold-based dimen-
sionality reduction to electricity prices curve modeling.
Hence, they showed that there exists a low-dimensional
manifold representation for the price curve in the New York
electricity market. They compared with an ARIMA model
and a naive Bayes as reference method.

Table 8 presents the MER obtained for the one week-
ahead electricity price forecasting for each second week for
every month of the year 2005. The last row shows the
average errors when the horizon of prediction is 24 hours. It
can be noticed that the PSF approach provides better
predictions in most months. There are just two cases in
which the STR overcomes the PSF algorithm: February 2005
and May 2005 (7.65 and 7.53 percent for STR versus 7.89 and
7.58 percent for PSF, respectively). Note that in these two
cases, the MER obtained by the PSF is not significantly high.
In addition, when the average error is evaluated, all the

TABLE 6
MER for Some Weeks of the Year 2002 (OMEL—Price)

TABLE 7
MER for One Week of the Year 2000 (OMEL—Price)



approaches obtained worse results than those of the PSF
algorithm, which improves 1.5 percent the result of STR. An
increment of 2 percent approximately can be observed when
the horizon of prediction is one week instead of one day.

5.1.3 The Australian Electricity Prices Market

The prices in the Australia’s National Electricity Market have
also been predicted in [41]. It is remarkable that this market
presents an especial behavior since many spike prices are
observed. Despite the authors in [41] have developed
techniques based on SVM in order to deal with this
particular days, the PSF algorithm does not make any
assumption about the nature of the days to be predicted,
insofar it uses unsupervised learning and, consequently, no
a priori information is known about data.

Table 9 shows the MER obtained for, precisely, these
days of the year 2004 with peak prices. It can be observed
that the proposed method outperforms all the predictions
produced by both ARIMA and SVM approaches.

According to [40], four weeks were predicted with
different methods: a discrete wavelet transform (DWT), a
multilayer perceptron (MLP), and an SMV approach. Table 10
presents the MER provided by the PSF method and the
aforementioned techniques when the horizon of prediction is
one week. The PSF algorithm outperforms the average MER
provided by all these methods.

5.2 Electricity Demand Time Series

5.2.1 The Spanish Electricity Demand

In order to compare the performance of the proposed
approach in the Spanish electricity demand time series, the
results provided in [34] are analyzed.

Table 11 shows the comparison between a dynamic
regression, a method based on nearest neighbors techniques
(kNN), and the PSF algorithm for the period from June to

November of the year 2001. As it can be noticed, the
proposed algorithm obtained better predictions—not only
for MER but also for MAE—when it was compared to the
other methods considered in the literature.

Although the kNN had a good performance, the PSF was
able to reduce from 2.30 to 1.89 percent.

5.2.2 The New York Electricity Demand

The authors in [12] used a model of machine learning called
MLF to predict the electricity demand for the next day. The
forecasted period was January of the year 2004. Moreover,
two methods were used in order to validate the forecasting:
an SVM-based model and the prediction itself provided by
the New York Independent System Operator.

Table 12 shows the results of comparing PSF and the
aforementioned methods in the same period. Given the
difficulty of predicting demand time series, an improve-
ment of about 5 percent (2.39 percent for PSF versus
2.51 percent for MLF), it can be considered a remarkable
enhancement.

5.2.3 The Australian Electricity Demand

To compare the results provided by the proposed method
for the Australian market, the work in [1] was considered.
Two days were predicted—October 1st and 2nd of the year
1998—and three methods were used: fuzzy and plain
neural networks, and an ARIMA model.

As it can be observed in Table 13, the PSF algorithm
improves the prediction error with respect to the other
methods, including the very accurate fuzzy neural network.

TABLE 8
MER for the Year 2005 (NYISO—Price)

TABLE 9
MER for Some Days of the Year 2004 (ANEM—Price)

TABLE 10
MER for Some Weeks of the Year 2004 (ANEM—Price)

TABLE 11
MER, MAE, and �MER for Several Months of the Year 2001

(OMEL—Demand)

TABLE 13
MER for Some Days of the Year 1998 (ANEM—Demand)

TABLE 12
MER and MAE for January of the Year 2004 (NYISO—Demand)



6 CONCLUSIONS

In this paper, a new forecasting algorithm has been

proposed to predict real-world time series. As previous

step to the prediction, a clustering technique to label 24-

dimensional time series has been used and the main novelty

lies on the exclusive use of the labels obtained by the

clustering to forecast the future behavior of the time series,

avoiding the use of the real values of the time series until

the last step of the prediction process. Moreover, an

automatization of the selection of the critical para-

meters—K and W—has been proposed.
The algorithm has been successfully applied in electricity

prices and demand time series of Spanish, Australian, and

New York markets providing very competitive results. The

performance was accurate in all of them, showing thus the

robustness and adaptability of the proposed approach for

time series of different nature. This fact is specially

remarkable since the approaches found in literature are

usually focused on only one specific time series.
Future work is focused on adjusting the model with

dynamical lengths of window and on smoothing the

matching sequence criterion.
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Martı́nez, “Time-Series Prediction: Application to the Short Term
Electric Energy Demand,” Lecture Notes in Artificial Intelligence,
vol. 3040, pp. 577-586, 2004.



[35] J. Wang and L. Wang, “A New Method for Short-Term Electricity
Load Forecasting,” Trans. Inst. of Measurement and Control, vol. 30,
no. 3, pp. 331-344, 2008.

[36] X. Wang and M. Meng, “Forecasting Electricity Demand Using
Grey-Markov Model,” Proc. Seventh Int’l Conf. Machine Learning
and Cybernetics, pp. 1244-1248, 2008.

[37] R. Weron, Modeling and Forecasting Electricity Loads and Prices.
Wiley, 2006.

[38] R. Weron and A. Misiorek, “Forecasting Spot Electricity Prices: A
Comparison of Parametric and Semiparametric Time Series
Models,” Int’l J. Forecasting, vol. 24, pp. 744-763, 2008.

[39] R. Xu and D.C. Wunsch II, “Survey of Clustering Algorithms,”
IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 645-678, May 2005.

[40] Z. Xu, Z.Y. Dong, and W. Liu, Neural Networks Applications in
Information Technology and Web Engineering. Borneo Publishing,
2005.

[41] J.H. Zhao, Z.Y. Dong, X. Li, and K.P. Wong, “A Framework for
Electricity Price Spike Analysis with Advanced Data Mining
Methods,” IEEE Trans. Power Systems, vol. 22, no. 1, pp. 376-385,
Feb. 2007.




