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Abstract As a sequel of [4], this paper is devoted to the computation of the
digital fundamental group πd1(O/S;σ) defined by loops in the digital object O
for which the digital object S acts as an “obstacle”. We prove that for arbitrary
digital spaces the group πd1(O/S;σ) maps onto the usual fundamental group of
the difference of continuous analogues |AO∪S | − |AS |. Moreover, we show that
this epimorphism turns to be an isomorphism for a large class of digital spaces
including most of the examples in digital topology.

Introduction

This paper deals with a notion of digital fundamental group for complements of
objects in binary digital pictures. The interest of such a notion is found in the
theory of 3d image thinning algorithms. After applying a 3d thinning algorithm, the
“tunnels” in the input and output digital pictures must agree in number and position,
and this can be correctly specified by saying that the algorithm preserves the digital
fundamental groups of both the object displayed in the picture and its complement
(see Criterion 2.3.2 in [7]).

The first notion of a digital fundamental group was given by Khalimsky [6] for a
particular type of digital spaces, which are based on a topology on the set ZZn for every
integer n > 0. This way, Khalimsky deals with sets of pixels regardless of considering
them as digital objects themselves or as complements of other objects. However,
Khalimsky’s fundamental group is not suitable for other kinds of digital spaces often
used in image processing, as the (α, β)–connected spaces defined on the grid ZZn, where
(α, β) ∈ {(4, 8), (8, 4)} if n = 2 and (α, β) ∈ {(6, 26), (26, 6), (6, 18), (18, 6)} if n = 3.
Later on, Kong [7] gave a different notion of a digital fundamental group for a large
class of graph–based digital spaces, including the (α, β)–connected spaces. As usual
in the graph–theoretical approach to Digital Topology, Kong’s digital fundamental
group involves a different definition for objects and their complements in a given
digital space. Namely, if O ⊆ ZZn is an object in the (α, β)-connected digital space,
Kong defines the digital fundamental group of the complement of O in that space as
the fundamental group of the object ZZn − O in the corresponding (β, α)-connected

?This work has been partially supported by the projects DGES PB96-1374 and DGES TIC2000-
1368-C03-01.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51405987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.nl/inca/publications/store/5/0/5/6/0/9/�
mailto:quintero@cica.es�
mailto:afrances@posta.unizar.es�


2 Digital Homotopy with obstacles

digital space. Nevertheless, this notion is restricted to 2d and 3d digital spaces and
seems not generalize to give higher digital homotopy groups.

Recently, the authors [4] have introduced a fairly general notion of digital funda-
mental group that includes, as particular cases, the corresponding notions for both
objects and their complements in a digital space. More precisely, in [4] we define the
digital fundamental group πd1(O/S, σ) of a set of pixels O regarding to an object S,
which plays the role of an “obstacle” that the loops in O cannot cross; and then, for a
digital object O in a digital space X, the particular cases πd1(O, σ) = πd1(O/∅, σ) and
πd1(X−O/O, σ) correspond to the digital fundamental groups of the object O and its
complement in X, respectively. This approach presents, at least from a theoretical
point of view, several advantages over the notions of Khalimsky and Kong. Firstly, it
can be readily generalized to define higher digital homotopy groups (see [4]), as Khal-
imsky’s notion; and, secondly, this group is available on a larger class of arbitrarily
dimensional digital spaces than both Khalimsky’s and Kong’s digital fundamental
groups.

The group πd1(O/S, σ) was introduced within the framework of the multilevel ar-
chitecture for Digital Topology given in [3]. That architecture provides a link between
the discrete world of digital pictures and Euclidean spaces, where the “continuous per-
ception” that an observer may take on a picture is represented via a polyhedron called
its continuous analogue. In general, this link can be used to obtain new results in
Digital Topology, by translating the corresponding continuous results (for instance,
we use it in [2] to prove a general Digital Index Theorem for all (α, β)-connected
spaces on ZZ3 and also for digital spaces defined on the grid ZZn, for n ≥ 3). Moreover,
this link can be also used to check that a new digital notion is an accurate counterpart
of the usual continuous one. So, we give in [4] an isomorphism from the digital fun-
damental group πd1(O, σ) = πd1(O/∅, σ) of an object O onto the classical fundamental
group of its continuous analogue.

As a sequel, we extend in this paper the results in [4] to the more elaborate case
of the digital fundamental group πd1(X − O/O, σ) of an object’s complement. More
precisely, for an arbitrary obstacle S 6= ∅, we give in Section 3.1 an epimorphism
from the digital fundamental group πd1(O/S, σ) onto the fundamental group of the
complement of the obstacle’s continuous analogue. Although there is strong evidence
that this epimorphism is not injective in general, we show in Section 3.2 that it is
actually an isomorphism for a large class of digital spaces, including those most used
in image processing. This supports also for complements of objects the suitability of
our definition of the digital fundamental group πd1 in [4].

For the convenience of the reader we review the basic notions of the multilevel
architecture quoted above and the definition of the group πd1(O/S, σ) in Sections 1
and 2, respectively.

1 Preliminaries

In this section we briefly summarize the basic notions of the multilevel architecture
for digital topology developed in [3] as well as the notation that will be used through
all the paper.
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In that architecture, the spatial layout of pixels in a digital image is represented
by a device model, which is a homogeneously n-dimensional locally finite polyhedral
complexK. Each n-cell inK is representing a pixel, and so the digital object displayed
in a digital image is a subset of the set celln(K) of n-cells in K; while the other lower
dimensional cells in K are used to describe how the pixels could be linked to each
other. A digital space is a pair (K, f), where K is a device model and f is weak lighting
function defined on K. The function f is used to provide a continuous interpretation,
called continuous analogue, for each digital object O ⊆ celln(K).

By a homegeneously n-dimensional locally finite polyhedral complex we mean a
set K of polytopes, in some Euclidean space IRd, provided with the natural ordering
given by the relationship “to be face of”, that in addition satisfies the four following
properties:

1. If σ ∈ K and τ is a face of σ then τ ∈ K.
2. If σ, τ ∈ K then σ ∩ τ is a face of both σ and τ .
3. For each point x in the underlying polyhedron |K | = ∪{σ;σ ∈ K} of K, there

exists a neigbourhood of x which intersects only a finite number of polytopes in
K; in particular, each polytope of K is face of a finite number of other polytopes
in K.

4. Each polytope σ ∈ K is face of some n-dimensional polytope in K.

Given a device model K and two polytopes γ, σ ∈ K, we shall write γ ≤ σ if
γ is a face of σ, and γ < σ if in addition γ 6= σ. A centroid-map on K is a map
c : K → |K | such that c(σ) belongs to the interior of σ; that is, c(σ) ∈ ◦σ= σ − ∂σ,
where ∂σ = ∪{γ; γ < σ} stands for the boundary of σ.

Remark 1.1 A homegeneously n-dimensional locally finite polyhedral complex K
can be regarded as an abstract cellular complex whose cells are the polytopes in K. So,
for simplicity, K will be called a polyhedral complex, and its polytopes will be simply
referred to as cells in this paper. Moreover, the abstract complex K can be endowed
with the structure of a locally finite topological T0 space with base B = {Uα;α ∈ K},
where Uα = {β ∈ K;α ≤ β}. Actually, this topological space (K,B) is a quotient of
the Euclidean polyhedron |K | by the map q : |K | → K that assigns the cell σ to
each point x ∈ ◦

σ.

Example 1.2 In this paper it will be essential the role played by the archetypical
device model Rn, termed the standard cubical decomposition of the Euclidean n-space
IRn. The device model Rn is the complex determined by the collection of unit n-cubes
in IRn whose edges are parallel to the coordinate axes and whose centers are in the set
ZZn. The centroid-map we will consider in Rn associates to each cube σ its barycenter
c(σ), which is a point in the set Zn. Here, Z = 1

2
ZZ stands for the set of points

{x ∈ IR;x = z/2, z ∈ ZZ}. In particular, if dim σ = n then c(σ) ∈ ZZn, where dim σ
denotes the dimension of σ. So that, every digital object O in Rn can be identified
with a subset of points in ZZn. Henceforth we shall use this identification without
further comment.

Before to proceed with the definition of weak lighting function, we need some
notions, which are illustrated in Fig. 1 for an object O in the device model R2.
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α

O ∪ {α} stn(α; O) st∗n(α; O) supp(O)

Fig. 1. The support of an object O and two types of digital neighbourhoods in O for
a cell α. The cells in O together with the bold edges and dots are the elements in
supp(O).

The first two notions formalize two types of “digital neighbourhoods” of a cell
α ∈ K in a given digital object O ⊆ celln(K). Indeed, we call the star of α in O
to the set stn(α; O) = {σ ∈ O;α ≤ σ} of n-cells (pixels) in O having α as a face.
Similarly, the extended star of α in O is the set st∗n(α; O) = {σ ∈ O;α ∩ σ 6= ∅} of
n-cells (pixels) in O intersecting α.

The third notion is the support of a digital object O which is defined as the
set supp(O) of cells of K (not necessarily pixels) that are the intersection of n-cells
(pixels) in O. Namely, α ∈ supp(O) if and only if α = ∩{σ; σ ∈ stn(α; O)}. In
particular, if α is a pixel in O then α ∈ supp(O). Notice also that, among all the
lower dimensional cells of K, only those in supp(O) are directly joining pixels in O.

To ease the writing, we shall use the following notation: supp(K) = supp(celln(K)),
stn(α; K) = stn(α; celln(K)) and st∗n(α; K) = st∗n(α; celln(K)). Finally, we shall write
P(A) for the family of all subsets of a given set A.

Definition 1.3 Given a device model K, a weak lighting function (w.l.f.) on K
is a map f : P(celln(K)) × K → {0, 1} satisfying the following five axioms for all
O ∈ P(celln(K)) and α ∈ K:

(1) object axiom: if α ∈ O then f(O,α) = 1;
(2) support axiom: if α /∈ supp(O) then f(O,α) = 0;
(3) weak monotone axiom: f(O,α) ≤ f(celln(K), α);
(4) weak local axiom: f(O,α) = f(st∗n(α; O), α); and,
(5) complement connectivity axiom: if O′ ⊆ O ⊆ celln(K) and α ∈ K are such

that stn(α; O) = stn(α; O′), f(O′, α) = 0 and f(O,α) = 1, then: (a) the set
of cells α(O′;O) = {ω < α; f(O′, ω) = 0, f(O,ω) = 1} is not empty; (b) the
set ∪{ ◦ω;ω ∈ α(O′;O)} is connected in ∂α (or, equivalently, the set α(O′;O)
is connected in the topological space (K,B) given in Remark 1.1); and, (c) if
O ⊆ O ⊆ celln(K), then f(O,ω) = 1 for every ω ∈ α(O′;O).

If f(O,α) = 1 we say that f lights the cell α for the object O.
A w.l.f. f is said to be strongly local if f(O,α) = f(stn(α; O), α) for all α ∈ K

and O ⊆ celln(K). Notice that this strong local axiom implies both axioms (4) and
(5) above.

A weak lighting function f on a device model K can be regarded as a mapping that
assigns a subset {α ∈ K; f(O,α) = 1} of cells ofK to each digital object O ⊆ celln(K).
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In this sense, lighting functions are particular examples of “face membership rules”
as introduced by Kovalevsky in [10]. Our contribution in this point are the axioms
(1)–(5) in Def. 1.3. These axioms are intended for limiting the set of Kovalevsky’s
face membership rules to those that do not lead to topological properties which are
contradictory with the natural perception of digital objects (see [5]). Indeed, the
intuitive ideas underlying axioms (1)–(4) above are the following. Axiom (1) says
that to display a digital object O on a computer screen all its pixels must be lighted.
By axiom (2) only the lower dimensional cells in supp(O) can be lighted in order to
connect immediately adjacent pixels of O. And axiom (3) states that a cell which is
lighted for any digital object must be also lighted for the object celln(K) consisting of
all the pixels in the digital space; that is, if a cell α connects some pixels in a given
object, then α is connecting the same pixels in celln(K) too. Axiom (4) as well as the
strong local axiom say that our perception of a digital object O is local, and so the
lighting of a cell α depends on a “digital neighbourhood” of α in O. Finally, the rather
complex axiom (5) is needed to avoid certain problems related to the connectivity of
an object’s complement (see [3, 4, 5] for details).

The following property, which will be used in Section 3.2, is immediate from
Definition 1.3.

Lemma 1.4 Any digital space (K, f) is strongly local at each vertex and at each
top dimensional cell α ∈ K; that is, f(O,α) = f(stn(α; O), α) for any digital object
O ⊆ celln(K) and dimα = 0 or dimα = dimK.

Given an arbitrary digital space (K, f), we shall derive from the lighting function f
a “continuous interpretation” for any digital object O ⊆ celln(K), called its continuous
analogue. For this we use a fixed, but arbitrary, centroid–map c : K → |K | on the
device model K to introduce several other intermediate models for O as follows.

The device level of O is the subcomplex K(O) = {α ∈ K;α ≤ σ ∈ O} induced by
O. Notice that K(O) can be considered as a device model itself.

The logical level of O is an undirected graph, LfO, whose vertices are the centroids
of n-cells in O and two of them c(σ), c(τ) are adjacent if there exists a common face
α ≤ σ ∩ τ such that f(O,α) = 1.

The conceptual level of O is the directed graph CfO whose vertices are the centroids
c(α) of all cells α ∈ K with f(O,α) = 1, and its directed edges are (c(α), c(β)) with
α < β.

The simplicial analogue of O is the order complex AfO associated to the directed
graph CfO. That is, 〈c(α0), c(α1), . . . , c(αm)〉 is anm-simplex ofAfO if c(α0), c(α1), . . . , c(αm)
is a directed path in CfO; or, equivalently, if f(O,αi) = 1, for 0 ≤ i ≤ m, and
α0 < α1 < · · · < αm. That is, AfO is obtained by “filling in” all the triangles,
tetrahedra, etc... in the conceptual level CfO. Finally, the continuous analogue of O is
the underlying polyhedron |AfO | of AfO.

The following result is straightforwardly checked from the definitions.

Lemma 1.5 For any digital object O in a digital space (K, f), the map

fO : P(celln(K(O)))×K(O) = P(O)×K(O)→ {0, 1}
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given by fO(O′, α) = f(O,α)f(O′, α), for O′ ⊆ O and α ∈ K(O), is a w.l.f. on the
device model K(O). So, we call the pair (K(O), fO) the digital subspace of (K, f)
induced by O.

Remark 1.6 (1) Notice that the simplicial analogue AfO of any digital object O ⊆
celln(K) is always a full subcomplex of the first derived subdivision K(1) of K induced
by the chosen centroid–map c. Moreover, axiom (3) in Def. 1.3 yields that AfO ⊆
Afcelln(K), and so AfO is also a full subcomplex of Afcelln(K).

(2) Let (K(O), fO) be the digital subspace induced by a digital object O in a digital
space (K, f). If O′ ⊆ O, one easily checks the equality AfOO′ = AfO ∩ AfO′ , since all
these are full subcomplexes of K(1). In particular AfOO = AfO; that is, the continuous
analogue of an object does not change when it is considered as the ambient digital
space.

(3) Given a locally finite topological T0 space X, Kong and Khalimsky construct
in [9] a polyhedral analogue |K(X) | for X. It can be easily checked that, for any
digital object O in a digital space (K, f), our continuous analogue |AO | coincides
with the polyhedral analogue |K(XO) | of the set XO = {α ∈ K; f(O,α) = 1} of cells
which are lighted for O endowed with the relative topology of the abstract complex
K in Remark 1.1.

For the sake of simplicity, we will usually drop “f” from the notation of the levels
of an object. Moreover, for the whole object celln(K) we will simply write LK , CK
and AK for its levels.

Example 1.7 (1) Every device model K 6= ∅ admits the weak lighting functions fmax

and g given respectively by:

(a) fmax(O,α) = 1 if and only if α ∈ supp(O)
(b) g(O,α) = 1 if and only if α ∈ supp(O) and stn(α; K) ⊆ O

In Fig. 2 are shown two objects, O and cell2(R2), in the device model R2, and
their levels for these lighting functions. More precisely, Figs. 2(a) and 2(b) show
the 2-cells (grey squares) of the object O and the low-dimensional cells (bold edges
and vertices) that the w.l.f.’s fmax and g light, respectively, for O. As these sets,
{α ∈ R2; fmax(O,α) = 1} and {α ∈ R2; g(O,α) = 1}, do not agree, all the levels of O
in the digital spaces (R2, fmax) and (R2, g) are distinct, in particular |Afmax

O | 6= |AgO |.
On the other hand,

{α ∈ R2; fmax(cell2(R2), α) = 1} = {α ∈ R2; g(cell2(R2), α) = 1}

(see Figure 2(c)), and so all the levels of the object cell2(R2) are the same in these
two digital spaces.

(2) Both the w.l.f.’s fmax and g given above satisfy the strong local axiom in
Definition 1.3. Next we give an example of a non strongly local digital space (Rn, h).
For any integer n > 0, the w.l.f. h is defined on the device model Rn by h(O,α) = 1
if and only if: (a) dimα = n and α ∈ O; (b) dimα ≤ n − 2 and stn(α; Rn) ⊆ O;
and, (c) dimα = n − 1, α ∈ supp(O), and either st∗n(α; Rn) ⊆ O or there exist
σ, τ ∈ st∗n(α; Rn)−O such that σ ∩ τ = ∅.
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(a) Lfmax

O Cfmax

O Afmax

O

(b) LgO CgO AgO

(c) Lfmax

R2 = LgR2 Cfmax

R2 = CgR2 Afmax

R2 = AgR2

Fig. 2. Levels of the objects O and cell2(R2) for the w.l.f.’s fmax and g in Exam-
ple 1.7(1).

Actually, the family of digital spaces (Rn, g) with n ≥ 1, for g the w.l.f. in Ex-
ample 1.7, and more precisely a particular class of digital subspaces (called windows)
of these spaces, are the key that allows us to introduce in next Section a notion of
digital fundamental group. At this point, it is worth to point out that g induces in Rn

the (2n, 3n− 1)–connectivity (see [1, Def. 11]); that is, the generalization to arbitrary
dimension of the (4, 8)–connectivity on ZZ2. On the other hand, fmax induces in Rn

the (3n − 1, 2n)-connectivity (see Fig. 2).

2 A digital fundamental group

The fundamental group of a topological space X, π1(X, x0), is usually defined to
be the set of homotopy classes of loops based at fixed point x0 (i.e., maps ξ : I =
[0, 1] → X with ξ(0) = ξ(1) = x0), where an homotopy between two loops ξ1, ξ2 is
a continuous map H : I × I → X such that H(x, 0) = ξ1(x), H(x, 1) = ξ2(x) and
H(0, t) = H(1, t) = x0.

In this section we collect the definitions and basic facts involved in the notion
of digital fundamental group as introduced in [4]. These definitions provide suitable
digital analogues for the notions of continuous loop and continuous homotopy, which
are in fact particular examples of digital maps (see Def. 2.2). To define them we need
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the following technical notion. We refer to [4] for more details.

Definition 2.1 Let S ⊆ celln(K) be a digital object in a digital space (K, f). The
light body of (K, f) shaded with S is the set of cells Lb(K/S) not lighted for the object
S but lighted for celln(K); that is,

Lb(K/S) = {α ∈ K; f(celln(K), α) = 1, f(S, α) = 0}
= {α ∈ K; c(α) ∈ |AK | − |AS |}.

Actually, the notion of light body plays a key role in defining the digital funda-
mental group of an object O with respect to an arbitrary obstacle S (see Def. 2.10).
Indeed, this group will be defined as the set of homotopy classes of digital loops in
Lb(K(O ∪ S)/S); that is, the light body, shaded by the obstacle S, of the subspace
(K(O ∪ S), fO∪S) that the set of pixels O ∪ S induces in the digital space (K, f).

Definition 2.2 Let (K1, f1), (K2, f2) be two digital spaces, with dimKi = ni (i =
1, 2), and let S1 ⊂ celln1(K1) and S2 ⊂ celln2(K2) be two digital objects. A digital
(S1, S2)-map (or, simply, a d-map) ΦS1,S2 : (K1, f1) → (K2, f2) from (K1, f1) into
(K2, f2) is a map φ : Lb(K1/S1)→ Lb(K2/S2) satisfying the two following properties:

1. φ(celln1(K1)− S1) ⊆ celln2(K2)− S2; and,
2. for α, β ∈ Lb(K1/S1) with α < β then φ(α) ≤ φ(β).

That is, φ carries top dimensional cells in Lb(K1/S1) to top dimensional cells in
Lb(K2/S2) and preserves the face relations (although φ needs not be dimension pre-
serving).

Notice that any d-map is a continuous map if we consider Lb(K1/S1) and Lb(K2/S2)
as subspaces of the abstract complexes K1 and K2 topologized as in Remark 1.1. The
following result also holds.

Proposition 2.3 Any d-map ΦS1,S2 : (K1, f1) → (K2, f2) induces a simplicial map
A(ΦS1,S2) : AK1 \AS1 → AK2 \AS2, which is defined on the vertices c1(α) of AK1 \AS1

by A(ΦS1,S2)(c1(α)) = c2(ΦS1,S2(α)). Here ci is a centroid-map on the device model
Ki, for i = 1, 2.

In the previous proposition L1\L2 = {α ∈ L1;α∩|L2 | = ∅} denotes the simplicial
complement of the subcomplex L2 ⊆ L1.

In order to define digital loops and digital homotopies as particular types of digital
maps, next definition provides us with a particular class of digital spaces, called
windows, that will play the same role as the unit interval, I, and the unit square, I×I,
in continuous homotopy. For this, we will use the following notation. Given two points
x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ IRm, we write x ¹ y if xi ≤ yi for all 1 ≤ i ≤ m,
while x+y will stand for the usual vector addition x+y = (x1+y1, . . . , xm+ym) ∈ IRm.

Definition 2.4 Given two points r, x ∈ ZZm, with ri ≥ 0 for 1 ≤ i ≤ m, we call a
window of size r (or r-window) of Rm based at x to the digital subspace V x

r of (Rm, g)
induced by the digital object Ox

r = {σ ∈ cellm(Rm); x ¹ c(σ) ¹ x + r}, where (Rm, g)
is the digital space defined in Example 1.7. For the sake of simplicity, we shall write
Vr to denote the r-window of Rm based at the point x = (0, . . . , 0) ∈ ZZm.
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Remark 2.5 To ease the writing, given an r-window Vr of Rm, we will identify each
cell α ∈ Lb(Vr/∅) with its centroid c(α) ∈ Zm (see Example 1.2). In particular, if
Vr is an r-window of R1, then Lb(Vr/∅) = {σ0, σ1, . . . , σ2r−1, σ2r} consists of 2r + 1
cells (points and segments) which will be identified with the numbers c(σi) = i/2,
for 0 ≤ i ≤ 2r. And, similarly, for a window V(r1,r2) of R2, we identify each cell
α ∈ Lb(V(r1,r2)/∅) with a pair c(α) = (i/2, j/2), where 0 ≤ i ≤ 2r1 and 0 ≤ j ≤ 2r2.

We are now ready to define digital loops and digital homotopies as follows.

Definition 2.6 Let S,O ⊆ celln(K) be two disjoint digital objects in a digital space
(K, f), and σ, τ two n-cells in O. A S-walk in O of length r ∈ ZZ from σ to τ is a digital
(∅, S)-map φr : Lb(Vr/∅) → Lb(K(O ∪ S)/S) such that φr(0) = σ and φr(r) = τ . A
S-loop in O based at σ is a S-walk φr such that φr(0) = φr(r) = σ.

The juxtaposition of two given S-walks φr, φs in O, with φr(r) = φs(0), is the
S-walk φr ∗ φs : Lb(Vr+s/∅)→ Lb(K(O ∪ S)/S) of length r + s given by

φr ∗ φs(i/2) =

{
φr(i/2) if 0 ≤ i ≤ 2r
φs(i/2− r) if 2r ≤ i ≤ 2(r + s)

Notice that a S–loop φr in O is actually a sequence (φr(i))
r
i=0 of adjacent pixels in

O such that each pair φr(i−1), φr(i) of successive pixels have a common face φr(i− 1
2
)

which is not lighted for the object S. In this sense φr does not cross the obstacle S.
Similarly, a digital homotopy, as defined below, transforms a S-loop φ1 to φ2 using
adjacent pixels but, in the same way, it is not allowed to cross the obstacle S.

Definition 2.7 Let φ1
r, φ

2
r two S-walks in O of the same length r ∈ ZZ from σ to τ . We

say that φ1
r, φ

2
r are digitally homotopic (or, simply, d-homotopic) relative {σ, τ}, and

we write φ1
r 'd φ2

r rel. {σ, τ}, if there exists an (r, s)-window V(r,s) in R2 and a (∅, S)-
map H : Lb(V(r,s)/∅)→ Lb(K(O∪ S)/S), called a d-homotopy, such that H(i/2, 0) =
φ1
r(i/2) and H(i/2, s) = φ2

r(i/2), for 0 ≤ i ≤ 2r, and moreover H(0, j/2) = σ and
H(r, j/2) = τ , for 0 ≤ j ≤ 2s. Here we use the identification H(a1, a2) = H(α),
where c(α) = (a1, a2) ∈ Z2 is the centroid of a cell α ∈ Lb(V(r,s)/∅); see Remark 2.5.

Definition 2.8 Let φr, φs two S-walks in O from σ to τ of lengths r and s respec-
tively. We say that φr is d-homotopic to φs relative {σ, τ}, φr 'd φs rel. {σ, τ}, if
there exist constant S-loops φτr′ and φτs′ such that r + r′ = s + s′ and φr ∗ φτr′ 'd
φs ∗ φτs′ rel. {σ, τ}.

The following result, whose proof can be found in [4], will be needed in the sequel.

Proposition 2.9 Let φr be a S-walk in O from σ to τ , and φσs , φτs two constant
S-loops of the same length s ∈ ZZ. Then, φσs ∗ φr 'd φr ∗ φτs rel. {σ, τ}.

Notice that d-homotopies induce an equivalence relation in the set of S–walks
in O from σ to τ . Moreover, from Proposition 2.9 it is not difficult to check that
the juxtaposition is compatible with d-homotopies between S–walks. Thus, the jux-
taposition of S-loops naturally induces a product operation that endows the set of
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classes of S-loops in O based at an n-cell σ ∈ O with a group structure, for which
the trivial element is the class of constant S-loops at σ, and the inverse of the class
[φr] is represented by the S-loop φ−1

r obtained by traversing φr backwards; that is,
φ−1
r (i/2) = φr(r − i/2) for all 0 ≤ i ≤ 2r. So, we next introduce the notion of digital

fundamental group as follows.

Definition 2.10 Let S,O be two disjoint digital objects in a digital space (K, f),
and σ an n-cell in O. The digital fundamental group of O at σ with obstacle at S is
the set πd1(O/S, σ) of d-homotopy classes of S-loops in O based at σ with the product
operation [φr]·[ψs] = [φr∗ψs]. In case S = ∅, we will simply call πd1(O/∅, σ) = πd1(O, σ)
the digital fundamental group of O at σ.

Remark 2.11 Definition 2.10 provides an entire family of digital fundamental groups
for a given digital object O when the object S is allowed to range over the family of all
subsets of celln(K)−O. Particularly interesting are the groups πd1(O/∅, σ) = πd1(O, σ)
and πd1(O/(celln(K) − O), σ) that, respectively, represents the digital fundamental
group of the object O itself and the digital fundamental group of O as the complement
of the object celln(K)−O.

3 The relationship with the continuous fundamen-

tal group

In [4] we show that the digital fundamental group πd1(O, σ) of a digital object coincides
with the classical fundamental group of its continuous analogue |AO |. In this Section
we tackle the problem of computing the digital fundamental group πd1(O/S, σ) of O
with a disjoint object S acting as an “obstacle” for the loops in O. The Section
is divided into two parts, in 3.1 we deal with the general case and we produce a
epimorphism

h : πd1(O/S, σ)→ π1(|AO∪S | − |AS |, c(σ))

onto the classical fundamental group of the complement of the obstacle’s continuous
analogue. The second part 3.2 provides us with a large class of digital spaces for
which the above homomorphism yields an isomorphism.

We recall that, for a triangulated polyhedron |L |, there is an alternative definition
of the fundamental group π1(|L |, x0) that will be more convenient for our purposes.
So we next explain it briefly. For this, we call an edge–walk in L from a vertex v0 to a
vertex vn to a sequence α of vertices (v0, v1, . . . , vn), such that for each k = 1, 2, . . . , n
the vertices vk−1, vk span a simplex in L (possibly vk−1 = vk). If v0 = vn, α is called
an edge–loop based at v0.

Given another edge–walk β = (vj)
m+n
j=n whose first vertex is the same as the last

vertex of α, the juxtaposition α ∗ β = (vi)
m+n
i=0 is defined in the obvious way. The

inverse of α is α−1 = (vn, vn−1, . . . , v0).
Two edge–walks α and β are said to be equivalent if one can be obtained from

the other by a finite sequence of operations of the form:

(a) if vk−1 = vk, replace . . . , vk−1, vk, . . . by . . . , vk, . . ., or conversely replace . . . , vk, . . .
by . . . , vk−1, vk, . . .; or
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(b) if vk−1, vk, vk+1 span a simplex of L (not necessarily 2-dimensional), replace
. . . , vk−1, vk, vk+1, . . . by . . . , vk−1, vk+1, . . ., or conversely.

This clearly sets up an equivalence relation between edge–walks, and the set
π1(L, v0) of equivalence classes [α] of edge–loops α in L, based at a vertex v0, is
given the structure of group by the operation [α] · [β] = [α ∗ β]. This group is called
the edge–group of L.

Each edge–walk α in L defines in an obvious way a continuous path θ(α) in
the underlying polyhedron |L |; and so, we will identify henceforth the edge–walk α
with the continuous path θ(α). Actually this correspondence yields an isomorphism
π1(|L |, v0) ∼= π1(L, v0). More precisely,

Theorem 3.1 ([12]; 3.3.9) There exists an isomorphism Θ : π1(L, v0) → π1(|L |, v0)
which carries the class [α] to the class [θ(α)].

Corollary 3.2 Let O, S be two disjoint digital objects in a digital space (K, f). Then
π1(AO∪S \ AS, c(σ)) ∼= π1(|AO∪S | − |AS |, c(σ)) for any σ ∈ O.

Proof. By Remark 1.6(1) we know that both AO∪S and AS are full subcomplexes of
AK . Then Lemma 72.2 in [13] yields that |AO∪S \ AS | = |AO∪S \ (AO∪S ∩ AS) | is a
strong deformation retract of |AO∪S |− |AS | = |AO∪S |− |AO∪S ∩ AS | and the result
follows by Theorem 3.1.

Let (K, f) be an arbitrary digital space. Given two disjoint digital objects O, S ⊆
celln(K) and any n-cell σ ∈ O we next define a natural homomorphism,

h : πd1(O/S, σ)→ π1(AO∪S \ AS, c(σ)) , (1)

from the digital fundamental group of O based at σ and with obstacle at the object S
into the edge–group of the simplicial complex AO∪S\AS based at the centroid c(σ), as
follows. Let φr be any S-loop in O. Then, we just observe that the sequence c(φr) =
(c(φr(i/2)))2r

i=0 defines an edge–loop in AO∪S \ AS. So that, we simply set h([φr]) =
[c(φr)]. Notice that h is the generalization to the case S 6= ∅ of the homomorphism
used in [4] to show the isomorphism πd1(O, σ) = πd1(O/∅, σ) ∼= π1(AO, c(σ)).

Remark 3.3 The following properties are easily checked

(1) If φr and φs are two S-loops at σ, then c(φr) ∗ c(φs) = c(φr ∗ φs).
(2) If φr is a constant S-loop at σ then c(φr) is a constant edge–loop at c(σ).

Lemma 3.4 The correspondence h, given in (1) above, is well defined. Moreover h
is a group homomorphism.

Proof. Assume φr 'd φs rel. σ are two equivalent S-loops in O. Then there exist two
constant S-loops φσr′ and φσs′ such that r+r′ = s+s′ and a d-homotopy H : φr ∗φσr′ 'd
φs∗φσs′ rel. σ. That is, H is an (∅, S)-map H : (V(r+r′,t), g)→ (K(O∪S), fO∪S), where
V(r+r′,t) is a window in Def. 2.4 and (K(O∪S), fO∪S) is the digital subspace of (K, f)
induced by O∪S; see Lemma 1.5. Therefore, by Proposition 2.3 and Remark 1.6(2) we
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get a simplicial map A(H) : AV(r+r′,t) → AO∪S \AS. Notice that from the definition of

the w.l.f. g in Example 1.7(1) it readily follows that AV(r+r′,t) is simplicially isomorphic

to a triangulation of the unit square I×I, and henceA(H) yields a homotopy between
the edge–loops c(φr ∗ φσr′) and c(φs ∗ φσs′). Finally, the properties in Remark 3.3 and
suitable equivalence transformations of type (a) yield that c(φr ∗ φσr′) = c(φr) ∗ c(φσr′)
is equivalent to c(φr), and similarly c(φs ∗ φσs′) is also equivalent to c(φs). Notice also
that h is an homomorphism of groups as an immediate consequence of property (1)
in Remark 3.3.

3.1 The general case: epimorphism onto the classical funda-
mental group.

This Section is aimed to show that, for arbitrary disjoint digital objects O, S ⊆
celln(K) in a digital space (K, f), the homomorphism of groups

h : πd1(O/S, σ)→ π1(AO∪S \ AS, c(σ))

is always an epimorphism. For S = ∅, we proved in [4] that the homomorphism h
above is actually an isomorphism of groups πd1(O/∅, σ) ∼= π1(AO, c(σ)). For this we
associate to each edge–loop Γ in AO a family of digital representatives F (Γ) such
that for each digital ∅–loop φr ∈ F (Γ) the edge–loop c(φr) is equivalent to Γ. In this
section we show that this procedure can be generalized to get a non–empty family
D(Γ) of S-loops in O of digital representatives for any edge–loop Γ in AO∪S \AS. This
immediately yields that the homomorphism h is onto with full generality. However,
the construction of the family D(Γ) suggests that the homomorphism h need not to
be injective in general. In any case, Section 3.2 provides a large class of digital spaces,
including those often used in image processing, for which h is in fact an isomorphism.

In order to define the family D(Γ) we start generalizing the notion of irreducible
edge–loop introduced in [4].

Definition 3.5 A vertex c(γi), of and edge–walk Γ = (c(γi))
t
i=0 in AO∪S \AS, is said

to be reducible in Γ if i > 0 and one of the following properties holds

(1) γi−1 = γi
(2) there exits a vertex c(γk) with i < k ≤ t such that γk 6= γi and either γi−1 < γi <

γj or γi−1 > γi > γj, where j = min{k; i < k ≤ t, γi 6= γk}.
An edge–walk is said to be reducible if it contains a reducible vertex; otherwise we
say that Γ is irreducible.

The proof of the next lemma is similar to that of Lemma 4.7 in [4] with the obvious
changes.

Lemma 3.6 Any edge–walk Γ in AO∪S \AS is equivalent to an irreducible edge–walk,
Γ = (c(γi))

k
i=0, obtained by deleting all reducible vertices in Γ.

Remark 3.7 (a) If Γ = (c(γi))
t
i=0 is an irreducible edge–walk in AO∪S \ AS then

either γi−1 < γi > γi+1 or γi−1 > γi < γi+1 for all 0 < i < t. Moreover, in case both
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γ0 and γt are n-cells in O then the length of Γ is an even number, t = 2r, and so
γ2i−2 > γ2i−1 < γ2i, for 1 ≤ i ≤ r. In particular, this property holds for any edge–loop
Γ in AO∪S \ AS which is based at a vertex c(σ) with σ ∈ O.

(b) Notice also that for an arbitrary edge–walk Γ = (c(γi))
t
i=0 in AO∪S \ AS the

vertex c(γ0) is never reducible. And, if Γ = (c(γi))
k
i=0 is the irreducible edge–walk

obtained from Γ by deleting all its reducible vertices, then γt = γk.
(c) Let c(φr) = (c(φr(i/2)))2r

i=0 be the edge–loop defined by a given S-loop φr in
O. It is not difficult to show that the irreducible edge–loop c(φr) is, in fact, c(ψs) for
some S-loop ψs (s ≤ r) d-homotopic to φr.

For arbitrary digital spaces it may happen, for a cell α ∈ K with c(α) ∈ AO∪S\AS,
that the set stn(α; O) = ∅ is empty. This fact makes the search of digital representa-
tives for an arbitrary edge–loop Γ in AO∪S \ AS much more intricate than the case
S = ∅ in [4]. In order to obtain such digital representatives for the edge–loop Γ we
first set the following

Definition 3.8 Let O,S ⊆ celln(K) be two disjoint digital objects in a digital space
(K, f). We say that a cell α ∈ K is a singular cell for the pair (O, S), or simply
an (O, S)-singular cell, if c(α) ∈ AO∪S \ AS but stn(α; O) = ∅ (or, equivalently,
stn(α; S) = stn(α; O ∪ S)). Otherwise, if c(α) ∈ AO∪S \ AS and stn(α; O) 6= ∅, α is
called an (O,S)-regular cell.

We will also call (O, S)-regular to any edge–loop Ω = (c(ωi))
t
i=0 inAO∪S\AS whose

vertices correspond to (O,S)-regular cells; that is, ωi is (O,S)-regular for 0 ≤ i ≤ t.

Remark 3.9 (a) Notice that all cells α ∈ O are (O, S)-regular for any digital object
S such that O ∩ S = ∅. And, similarly, if α is a vertex of K such c(α) ∈ AO∪S \ AS,
then α is (O,S)-regular by Lemma 1.4.

(b) If α is an (O, S)-singular cell then axiom (5) in the definition of w.l.f. applies.
So, the set α(S;O ∪ S) = {β < α; c(β) ∈ AO∪S \ AS} is not empty and connected
in ∂α. Moreover, from Lemma 4.5 in [3] it is derived the existence of (O,S)-regular
cells in the set α(S;O ∪ S).

Despite the difficulties above, it is still not hard to define the digital representatives
for the family of irreducible (O, S)-regular edge–loops in AO∪S \ AS. We proceed as
follows.

Definition 3.10 Let Ω = (c(ωi))
2r
i=0 be an irreducible (O,S)-regular edge–loop in

AO∪S \ AS based at c(σ), with σ ∈ O. The set D(Ω) of digital representatives of Ω
consists of all S-loops φr in O for which φr(0) = φr(r) = σ, φr(i − 1

2
) = ω2i−1, and

φr(i) ∈ stn(ω2i; O), for 1 ≤ i ≤ r.

Remark 3.11 For any S-loop φr in O, the edge–loop c(φr) = (c(φr(i/2)))2r
i=0 is

(O, S)-regular since φr(i) ∈ O for 0 ≤ i ≤ r. In addition, c(φr) is irreducible in case
φr(i− 1

2
) 6= φr(i), for 1 ≤ i ≤ 2r, and thus D(c(φr)) = {φr}.

Next we state the crucial property of the digital representatives of an irreducible
(O, S)-regular edge–loop in relation with the homomorphism h : πd1(O/S, σ) →
π1(AO∪S \ AS, c(σ)) above; compare with Proposition 4.12 in [4].
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Proposition 3.12 Let Ω = (c(ωi))
2t
i=0 be any irreducible (O,S)-regular edge–loop in

AO∪S \ AS based at c(σ), with σ ∈ O. For any S-loop φt ∈ D(Ω) the equality
h([φt]) = [Ω] holds. Moreover, any two S-loops in D(Ω) are d-homotopic.

Proof. First we show that the edge–loop c(φt) = (c(φt(i/2)))2t
i=0 defined by φt is

equivalent to Ω. For this, let D(Ω) be the set of edge–loops Λ = (c(λi))
2t
i=0 at c(σ)

such that λ0 = λ2t = σ, λ2i−1 = ω2i−1 for 1 ≤ i ≤ t, and λ2i ∈ stn(ω2i; O) ∪ {ω2i} for
1 < i < t. Notice that D(Ω) contains the set of edge–loops {c(φt);φt ∈ D(Ω)} ∪ {Ω}.
Moreover, any Λ ∈ D(Ω) is equivalent to Ω. This will be proved by induction on the
number k(Λ) of vertices c(λ2i) in Λ for which λ2i 6= ω2i. For k(Λ) = 0 we get Λ = Ω.
Assume that all Λ ∈ D(Ω) are equivalent to Ω for k(Λ) ≤ k − 1, and let Λ be any
edge–loop with k = k(Λ). Given any vertex c(λ2i) in Λ with λ2i 6= ω2i (notice that
0 6= i 6= t) we get ω2i−1, ω2i+1 < ω2i < λ2i since Ω is irreducible. Therefore we obtain a
new edge–loop Λ̃ ∈ D(Ω), with k(Λ̃) = k− 1, by setting c(λ̃j) = c(λj) for j 6= 2i, and
c(λ̃2i) = c(ω2i). Moreover, Λ̃ is equivalent to Λ (by two equivalence transformations
of type (b)) and hence Λ is equivalent to Ω by the induction hypothesis.

For the second property, we simply observe that the S-loops φ1
t , φ

2
t ∈ D(Ω) are

d-homotopic rel. σ by the (∅, S)-map H : Lb(V(r,1)/∅) → Lb(K(O ∪ S)/S) given
by H(i/2, 0) = φ1

t (i/2), H(i/2, 1) = φ2
t (i/2) and H(i/2, 1/2) = ωi, for 0 ≤ i ≤ 2t.

Here, we are using the identification of a cell α ∈ Lb(V(r,1)/∅) with its centroid
c(α) = (a1, a2) ∈ Z2 (see Remark 2.5).

In order to obtain a family D(Γ) of digital representatives for an arbitrary edge–
loop Γ, we construct an auxiliary family pre2D(Γ) of irreducible (O, S)-regular edge–
loops. For this we shall use of another family of edge–loops preD(Γ). This two–
step process starts at the irreducible edge–loop Γ = (c(γi))

2r
i=0 obtained from Γ by

deleting all its reducible vertices; see Lemma 3.6. Then, the edge–loops in preD(Γ)
are chosen by diverting Γ off the vertices c(γ2i−1), with an odd index, corresponding
to (O, S)-singular cells. And pre2D(Γ) consists of the edge–loops obtained from each
∆ = (c(δ2i))

2t
i=0 ∈ preD(Γ) bypassing each vertex c(δ2i), with δ2i an (O,S)-singular

cell, along a new edge–walk whose vertices correspond to (O, S)-regular cells in ∂δ2i.
Indeed, the elements in preD(Γ) are the family of edge–loops ∆ = (c(δi))

2r
i=0

in AO∪S \ AS with the same length as Γ and such that δ2i = γ2i, for 0 ≤ i ≤ r.
Moreover, δ2i−1 = γ2i−1 whenever γ2i−1 is an (O,S)-regular cell; and, otherwise, we
choose δ2i−1 ∈ {α < γ2i−1;α is an (O, S)-regular cell}, which is a non–empty set by
Remark 3.9(b).

Notice that any ∆ ∈ preD(Γ) is irreducible. Moreover, the following lemma is
immediate

Lemma 3.13 Any ∆ ∈ preD(Γ) is equivalent to Γ, and hence to Γ.

Proof. Just observe that the substitution of any cell γ2i−1 by one of its faces induces
two equivalence transformations of type (b) between Γ and ∆.

If we write preD(Γ) = {∆k}k∈JΓ
, a new family of irreducible edge–loops pre2D(∆k)

is defined for each ∆k = (c(δi))
2r
i=0 as follows. An irreducible edge–loop Ω ∈ pre2D(∆k)

is obtained by removing the reducible vertices from the juxtaposition of edge–walks
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Ω = Ω0 ∗ Ω1 ∗ · · · ∗ Ωr, where Ω0 = (c(δ0), c(δ1)), Ωr = (c(δ2r−1), c(δ2r)) and the
component Ωj, for 1 ≤ j ≤ r − 1, is the constant edge–loop Ωj = (c(δ2j−1)) if
δ2j−1 = δ2j+1. Otherwise, if δ2j is an (O, S)-regular cell, in particular if δ2j ∈ O (see
Remark 3.9(a)), then Ωj = (c(δ2j−1), c(δ2j), c(δ2j+1)). Finally, if δ2j−1 is an (O,S)-
singular cell we pick Ωj out the edge–walks obtained from the following lemma for
the (O,S)-regular cells β1 = δ2j−1 and β2 = δ2j+1.

Lemma 3.14 (cf. Lemma 4.8 in [3]) Let O,S ⊆ celln(K) be two disjoint digital
objects in a digital space (K, f), and let α ∈ K be an (O, S)-singular cell. Then, for
any two distinct (O,S)-regular cells

β1, β2 ∈ α(S;O ∪ S) = {β < α; f(O ∪ S, β) = 1, f(S, β) = 0}

there exist irreducible edge–walks Θ = (c(θi))
m
i=0 in AO∪S \ AS from c(β1) to c(β2)

such that

(1) for 0 ≤ i ≤ m, θi < α and it is an (O,S)-regular cell; and,
(2) Θ is equivalent to the edge–walk (c(β1), c(α), c(β2)).

Proof. By axiom (5) in Def. 1.3 we know that the set α(S;O ∪ S) is connected
and so we can choose an edge–walk Φ = (c(φi))

t
i=0 in α(S;O ∪ S) from c(β1) to

c(β2). By deleting the reducible vertices we can assume that Φ is irreducible (see
Lemma 3.6). Notice that Φ need not have an even length since β1 and β2 may have
arbitrary dimensions. In any case, it is obvious that Φ is equivalent to the edge–walk
(c(β1), c(α), c(β2)).

We derive the walk Θ from Φ as follows. First we observe that dimα ≥ 2 by
Lemma 1.4 and axiom (5) in Def. 1.3. Then we argue inductively on l = dimα.
For l = 2 we have necessarily dimφi ≤ 1. Moreover, if dimφi = 0 then φi is an
(O, S)-regular cell by Remark 3.9(a). If dimφi = 1 with 0 < i < t, the cells φi−1

and φi+1 are necessarily vertices of the edge φi ∈ K. If, in addition, φi−1 6= φi+1 it
follows that φi is also an (O, S)-regular cell by axiom (5) in Def. 1.3. Otherwise, if
φi−1 = φi+1, then we can delete the vertices c(φi) and c(φi+1) from Φ to get a new
irreducible edge–walk from c(β1) to c(β2) which is equivalent to Φ by two equivalence
transformations of type (b). By deleting all the pairs (c(φi), c(φi+1)), for which φi is
an edge in K and φi−1 = φi+1, we obtain the desired edge–walk Θ.

Assume now that Θ can be derived from Φ for any cell α with dimα < l, and
let dimα = l. Following the construction of the family preD(Γ) we define the edge–
walk Φ′ = (c(φ′i))

t
i=0 by φ′2j−1 = φ2j−1 and also φ′2j = φ2j, for 0 ≤ 2j ≤ t, if φ2j is

an (O,S)-regular cell. Otherwise we choose φ′2j ∈ {α < φ2j;α is (O, S)-regular}. It
is easily checked that Φ′ is an irreducible edge–walk equivalent to Φ with its same
length. Moreover, dimφ′2j−1 < dimα, for 0 ≤ 2j − 1 ≤ t, and φ′0 = β1 and φ′t = β2.

We define Θ by the juxtaposition Θ = Θ1 ∗ · · · ∗Θk defined as follows. The index
k is the largest integer with 2k − 1 ≤ t, and the edge–walks Θj, for 1 ≤ j ≤ k, are
given by the next conditions:

1. Θj = (c(φ′2j−2)) if φ′2j−2 = φ′2j;
2. Θj = (c(φ′2j−2), c(φ′2j−1), c(φ′2j)) if φ′2j−2 6= φ′2j and φ′2j−1 is (O,S)-regular;
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3. Θj is any of the edge–walks given by the induction hypothesis applied to φ′2j−1

and its faces φ′2j−2, φ
′
2j whenever φ′2j−2 6= φ′2j and φ′2j−1 is an (O, S)-singular cell.

By construction one readily checks that Θ satisfies properties (1) and (2) in the
lemma. Moreover, after deleting the reducible vertices (if any) in Θ we can assume
that Θ is also an irreducible edge–walk.

Remark 3.15 Observe that, given ∆ ∈ preD(Γ), any edge–loop Ω ∈ pre2D(∆) is,
by construction, equivalent to ∆, and hence to Γ by Lemma 3.13. Moreover, it is
irreducible and (O,S)-regular.

Finally, we define the family D(Γ) of digital representatives of Γ as follows

Definition 3.16 Let Γ be an arbitrary edge–loop in AO∪S \ AS based at c(σ), with
σ ∈ O. We define the set D(Γ) of digital representatives of Γ by

D(Γ) =
⋃

∆∈preD(Γ)


 ⋃

Ω∈pre2D(∆)

D(Ω)


 .

Remark 3.17 (1) Let ∇ be and edge–loop in AO∪S \AS obtained by removing from
Γ any of its reducible vertices. Then ∇ = Γ and hence D(Γ) = D(∇). In particular,
D(Γ) = D(Γ), where Γ is the irreducible edge–loop obtained from Γ by removing all
its reducible vertices.

(2) If Γ is an (O, S)-regular edge–loop in AO∪S \AS then the irreducible edge–loop
Γ is also (O, S)-regular. Thus, pre2D(Γ) = {Γ}, and all the digital representatives in
D(Γ) are d-homotopic by Proposition 3.12.

(3) If φr is a S-loop in O, the family D(c(φr)) of digital representatives of the
(O,S)-regular edge–loop c(φr) = (c(φr(i/2)))2r

i=0 consists of a single element ψs, with
s ≤ r, by Remark 3.11. Moreover, ψs and φr are d-homotopic by Remark 3.7(c).

We are now ready to prove

Theorem 3.18 Let (K, f) be an arbitrary digital space. For any two disjoint digital
objects O, S ⊆ celln(K) the homomorphism

h : πd1(O/S, σ)→ π1(AO∪S \ AS, c(σ))

is onto.

Proof. Given any edge–loop Γ in AO∪S \AS based at c(σ), we consider any edge–loop
Ω ∈ pre2D(Γ) which is equivalent to Γ by Remark 3.15. Then the result follows from
Proposition 3.12.

Remark 3.19 To show that the homomorphism h is injective it is required, as a
necessary condition, that φ1 'd φ2 rel. σ for any pair φ1, φ2 ∈ D(Γ) of digital rep-
resentatives of an arbitrary edge–loop Γ in AO∪S \ AS (see Proposition 3.12). The
construction of the family D(Γ) suggests that this fact may not be true in general.
The main problem is that, from the available data, we cannot derive a d-homotopy
between φ1 ∈ D(Ω1) and φ2 ∈ D(Ω2) whenever Ω1 6= Ω2 in pre2D(Γ). However, we
conjecture that this d-homotopy will be found if, for each (O,S)-singular cell α, the
set ∪{ ◦ω;ω ∈ α(S;O∪S)} is required to be simply connected instead of just connected
as we require in Def. 1.3(5b).
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3.2 A case of isomorphism.

For important cases, the family of digital representatives D(Γ) in Def. 3.16 is dramat-
ically simplified. Recall that, in general, the family D(Γ) is obtained by a three–steps
procedure that involves the definition of two auxiliary families of edge–loops preD(Γ)
and pre2D(Γ). In this Section we will give a large class of digital spaces (K, f) for
which the families preD(Γ) and pre2D(Γ) are reduced to singletons; so that, the dif-
ficulties pointed out in Remark 3.19 vanish. This will allow us to show that the
epimorphism h in Theorem 3.18 is an isomorphism for a large class of digital spaces,
which includes those most used in image processing. Namely, we will prove below

Theorem 3.20 Let (K, f) be any digital space which is strongly local except possibly
in 1-cells; that is, for any digital object O ⊆ celln(K) and any cell α ∈ K with
dimα 6= 1, f(O,α) = f(stn(α; O), α). Then the homomorphism h : πd1(O/S, σ) →
π1(AO∪S\AS, c(σ)) is an isomorphism for any pair of disjoint objects O, S ⊆ celln(K).

Corollary 3.21 Let (K, f) be a strongly local digital space. For disjoint digital objects
O, S ⊆ celln(K) the homomorphism h is an isomorphism.

Recall that a digital space (K, f) is said to be strongly local if f(O,α) = f(stn(α; O), α)
for all α ∈ K and O ⊆ celln(K); see Def. 1.3. For each pair (p, q) 6= (6, 6), with
p, q ∈ {6, 18, 26}, it can be found a strongly local lighting function fp,q on the device
model R3 such that the digital space (R3, fp,q) represents the (p, q)-connectivity on
the grid ZZ3; and, moreover, all the (p, q)-surfaces, as defined by Kong and Roscoe
in [8], are digital surfaces in (R3, fp,q); see Theorem 13 in [1]. Notice also that, for
an arbitrary device model K, the digital spaces (K, fmax) and (K, g) given in Ex-
ample 1.7(1) are strongly local. Hence, for these relevant examples, Corollary 3.21
holds.

Moreover, as an immediate consequence of Lemma 1.4, we have also

Corollary 3.22 The homomorphism h is an isomorphism for digital spaces (K, f)
with dimK ≤ 2.

For non strongly local three–dimensional digital spaces we have the following

Lemma 3.23 Let (R3, f) be any digital space with R3 the standard cubical decom-
position of the Euclidean space IR3. Moreover, assume |AR3 | = IR3. Then the two
following statements are equivalent.

(i) For each O ⊆ cell3(R3) and α ∈ R3 with dimα = 2, f(O,α) = 1 if and only if
α ∈ supp(O).

(ii) (R3, f) is strongly local except possibly for 1-cells.

Proof. (i) implies (ii). It is clear that α ∈ supp(O) if and only if α ∈ supp(st3(α; O)).
Therefore, for dimα = 2 and α ∈ supp(O) we have f(O,α) = f(st3(α; O), α) = 1 by
(i). Otherwise, in case α /∈ supp(O), then f(O,α) = 0 and f(st3(α; O), α) = 0 by
axiom (2) in Def. 1.3. For cells α ∈ R3 with dimα ∈ {0, 3} the result follows from
Lemma 1.4.
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(ii) implies (i). For any objectO ⊆ cell3(R3) and any 2-dimensional cell α ∈ R3 one
easily checks that α ∈ supp(O) if and only if st3(α; O) = st3(α; R3). Hence f(O,α) =
0 whenever α /∈ supp(O) by axiom (2) in Def. 1.3 while f(O,α) = f(st3(α; R3), α) =
f(cell3(R3), α) = 1 if α ∈ supp(O). Here we use that |AR3 | = IR3.

Then, we easily derive from Theorem 3.20 and Lemma 3.23 the following

Theorem 3.24 The homomorphism h is an isomorphism for the non strongly local
digital space (R3, fBM) given in [3].

We point out that the digital surfaces in (R3, fBM) coincide with the strong 26-
surfaces defined by Malgouyres and Bertrand [11].

The rest of this section is devoted to the proof of Theorem 3.20. We start with
the following result, whose proof is immediate from definitions.

Lemma 3.25 Let (K, f) be a digital space which is strongly local at the cell α ∈ K.
Then this cell is (O,S)-regular for any pair of disjoint digital objects O, S ⊆ celln(K)
for which c(α) ∈ AO∪S \ AS.

Lemma 3.26 Let (K, f) be any digital space which is strongly local except possibly in
1-cells, and let O, S be two disjoint digital objects in (K, f). For any edge–loop Γ in
AO∪S \AS based at a vertex c(σ), with σ ∈ O, the set pre2D(Γ) = {ΩΓ} is a singleton.
In particular, all the digital representatives of Γ are d-homotopic by Proposition 3.12.

Proof. Notice that any cell α ∈ K with c(α) ∈ AO∪S \ AS and dimα 6= 1 is (O, S)-
regular by Lemma 3.25. So, the construction of the family D(Γ) is determined by the
vertices c(α) with dimα = 1. More explicitly, if Γ = (c(γi))

2r
i=0 is the irreducible edge–

loop in Lemma 3.6 then the family preD(Γ) = {∆Γ} consists of a unique (irreducible)
edge–loop ∆Γ = (c(δi))

2r
i=0 obtained by setting δ2i = γ2i and replacing each vertex

c(γ2i−1), with γ2i−1 an (O,S)-singular 1-cell, by c(δ2i−1) where δ2i−1 < γ2i−1 is the
unique vertex of γ2i−1 which is a (O,S)-regular cell. Here we use axiom (5) in Def. 1.3.
Moreover, pre2D(Γ) = pre2D(∆Γ) = {ΩΓ} is also a singleton since, for any vertex
c(δ2i) in ∆Γ, with 0 < i < r, such that δ2i = γ2i is an (O, S)-singular 1-cell, axiom (5)
in Def. 1.3 yields δ2i−1 = δ2i+1. Hence ΩΓ is determined by replacing the edge–walk
(c(δ2i−1), c(δ2i), c(δ2i+1)) by the constant edge–walk (c(δ2i−1)).

Lemma 3.27 Let (K, f) be a digital space which is strongly local except possibly in
1-cells, and let O, S be two disjoint digital objects in (K, f). Then any edge–loop
Γ = (c(γi))

k
i=0 in AO∪S \ AS based at a c(σ), with σ ∈ O, is equivalent to an (O, S)-

regular edge–loop Γ∗ = (c(γ∗i ))
k
i=0 called the regularization of Γ. Moreover, if Σ is

another edge–loop obtained from Γ by removing a vertex c(γi0) via an equivalence
transformation of type (a) or (b), then the regularization of Σ, Σ∗, can be derived
from Γ∗ after an equivalence transformation of the same type.

Proof. We construct the edge–loop Γ∗ as follows. If γi is (O, S)-regular we set
γ∗i = γi. Otherwise, dim γi = 1 by Lemma 3.25 and we take γ∗i to be the unique
vertex γ∗i < γi which is (O, S)-regular. Here we use Axiom 5 in Def. 1.3. In order to
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show that Γ∗ = (c(γ∗i ))
k
i=0 is an edge–loop equivalent to Γ we consider the set Reg(Γ)

consisting of finite sequences Λ = (c(λi))
k
i=0 such that λi = γi if γi is (O,S)-regular

and λi ∈ {γi, γ∗i } otherwise. Notice that {Γ,Γ∗} ⊆ Reg(Γ). Next we show inductively
that each Λ ∈ Reg(Γ) is an edge–loop in AO∪S \AS based at c(σ) which is equivalent
to Γ. For this, let t(Λ) be the number of vertices c(λi) with λi 6= γi. If t(Λ) = 0
then Λ = Γ and the result is obvious. Assume the result holds for t(Λ) ≤ t − 1 and
take Λ ∈ Reg(Γ) with t(Λ) = t. Given any vertex c(λi) ∈ Λ with λi = γ∗i < γi
we consider the sequence Λ̃ ∈ Reg(Γ) with λ̃j = λj if j 6= i and λ̃i = γi. Notice
that 0 < i < n since γ0 = γk = σ = λ0 = λk ∈ O is an (O, S)-regular cell by
Remark 3.9(a). By the induction hypothesis Λ̃ is an edge-loop in AO∪S \AS based at
c(σ) which is equivalent to Γ. Moreover, we have the following possible face relations
between λ̃j = λj (j = i − 1, i + 1) and λ̃i = γi: (1) λ̃j < λ̃i, or (2) λ̃j ≥ λ̃i. In the
first case we have that λj = γ∗i = λi, while in the second λj ≥ γi > γ∗i = λi. In any
case, Λ is an edge–loop equivalent to Λ̃, and hence to Γ, via two transformations of
type (b).

Let us now assume that c(γi0) can be removed from Γ by an equivalence transfor-
mation. Then one of the following cases necessarily occurs

1. 0 < i0 < t; γi0−1 < γi0 > γi0+1

2. 0 < i0 < t; γi0−1 > γi0 < γi0+1

3. γi0−1 = γi0
4. γi0−1 < γi0 < γi0+1

5. γi0−1 > γi0 > γi0+1

6. γi0 = γi0+1

Let (1)∗. . . . (6)∗ denote the corresponding statements for the vertices in Γ∗. The
reader can easily check that (i) ⇒ (i)∗ if no (O,S)-singular cell is involved. In case
γi0−1 is singular then both (2) and (5) yield (3)∗, and for the rest of statements we get
(i) ⇒ (i)∗. If γi0 is singular the (1) yields γ∗i0−1 = γ∗i = γ∗i0+1, while (4) ⇒ (3)∗ and
(5) ⇒ (6)∗, and (i) ⇒ (i)∗ for the other cases. Finally if γi0+1 is singular we derive
(6)∗ from both (2) and (4), while for the remaining cases (i)⇒ (i)∗.

Proof of Theorem 3.20. We already know that h is onto by Theorem 3.18. So, it will
suffice to prove that any two S-loops, φ, ψ, in O define the same element in πd1(O/S, σ)
provided h([φ]) = [c(φ)] = [c(ψ)] = h([ψ]).

Since c(φ) and c(ψ) are equivalent edge–loops, there exists a sequence α0, α1, . . . , αk
of edge–loops in AO∪S \AS such that α0 = c(φ), αk = c(ψ) and αi−1, αi are related by
an equivalence transformation of type (a) or (b). Moreover, by Remark 3.11, c(φ) and
c(ψ) are (O,S)-regular, and the regularized edge–loops c(φ) = α∗0, α

∗
1, . . . , α

∗
k = c(ψ)

define also a sequence of equivalent edge–loops by Lemma 3.27. Then, Remark 3.17(3)
and Lemma 3.28 below yields that every S-loop in ∪ki=0D(α∗i ) defines the same element
in πd1(O/S, σ). Hence φ and ψ are d-homotopic by Remark 3.17(3).

This lemma is an extension of Lemma 4.14 in [4] which corresponds to the special
case S = ∅.
Lemma 3.28 Let O,S ⊆ celln(K) be two disjoint digital objects in an arbitrary digital
space (K, f), and let Γ = (c(γi))

t
i=0 be an (O, S)-regular edge–loop in AO∪S \AS based
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at c(σ), with σ ∈ O. Assume that an edge–loop Σ is obtained by removing a vertex
c(γi0) from Γ after an equivalence transformation of type (a) or (b). Then, for each
S-loop φ ∈ D(Γ) there exists a digital representative ψ ∈ D(Σ) and a d-homotopy
φ 'd ψ rel. σ.

Proof. The hypothesis leads to one of the following cases

(1) 0 < i0 < t, the centroids c(γi0−1), c(γi0), c(γi0+1) span a simplex in AO∪S \ AS
and γi0−1 < γi0 > γi0+1.

(2) 0 < i0 < t, the centroids c(γi0−1), c(γi0), c(γi0+1) span a simplex in AO∪S \ AS
and γi0−1 > γi0 < γi0+1.

(3) c(γi0) is a reducible vertex in γ.
(4) γi0 = γi0+1, and hence the vertex c(γi0+1) is reducible.

In cases (3) and (4) the edge–loop Σ is obtained by dropping a reducible ver-
tex from Γ, so D(Γ) = D(Σ) by Remark 3.17(1) and the result follows from Re-
mark 3.17(2). Therefore we concentrate our efforts in proving the lemma for the case
(1) since case (2) is settled in a similar way.

We start by considering the number n(Γ) of reducible vertices of Γ in the set

VΓ = {c(γj); 0 ≤ j ≤ i0 − 2} ∪ {c(γj); i0 + 2 ≤ j ≤ t}.

Since any reducible vertex in VΓ is also a reducible vertex of Σ we can remove all of
them from both Γ and Σ. This way we replace Γ and Σ by two new edge–loops Γ′ and
Σ′ respectively such that n(Γ′) = 0. Moreover, by Remark 3.17(1), D(Γ) = D(Γ′) and
D(Σ) = D(Σ′). Hence, by Remark 3.17(2), there is no loss of generality in assuming
Γ = Γ′ and Σ = Σ′.

Next we consider all possible face relations among the pairs of cells (γi0−2, γi0−1),
(γi0+1, γi0+2) and (γi0−1, γi0+1). Notice that the two elements in each pair may be
equal, and in case (2) it is also possible that i0 = 1 or i0 = t− 1. The proof requires
in general the four steps below whatever are the face relations we consider. For
illustrating the proof we give a detailed account of these steps for the case (1) and
the face relations

γi0−2 > γi0−1 < γi0 > γi0+1 < γi0+2 (2)

and
γi0−1 < γi0+1 . (3)

Step A. Describe the irreducible edge–loops Γ and Σ.

The face relations (II) and (III) yield that Γ has not reducible vertices, so that
Γ = Γ is a edge–loop of even length t = 2r by Remark 3.7(a). In addition, the
irreducible edge–loop Σ associated to Σ is

Σ = (c(γ0), . . . , c(γi0−2), c(γi0−1), c(γi0+2), . . . , c(γ2r))

since c(γi0+1) is reducible in Σ by the face relations (II) and (III); see Figure 3.
Therefore, any digital representative of Γ is an S-loop of length r, while digital rep-
resentatives of Σ have length r − 1.
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Fig. 3.

Notice that under a different set of face relations Γ and Γ may be distinct. In any
case, the length of Γ is always greater than or equal to the length of Σ, and the same
happens for the digital representatives of Γ and Σ.

Step B. Given a digital representative φ ∈ D(Γ) of Γ, derive a digital representative
ψ ∈ D(Σ) of Σ.

Given φ = φr ∈ D(Γ), it is not difficult to check from Step A that the S-loop ψ =
ψr−1, given by ψr−1(j/2) = φr(j/2), for 0 ≤ j ≤ i0 − 1, and ψr−1(j/2) = φr(j/2 + 1),
for i0 ≤ j ≤ 2r − 2, is a digital representative of the edge–loop Σ.

Step C. Obtain a new S-loop ψ d-homotopic to ψ and such that ψ and φ have the
same length.

By Definition 2.8, the S-loops ψ = ψr−1 and ψr−1 ∗ψσ1 are d-homotopic, where ψσ1
is the constant S-loop of length 1 at σ = ψr−1(0) = ψr−1(r−1). Then, Proposition 2.9
yields the following d-homotopy

ψr−1 ∗ ψσ1 'd ψ i0
2
∗ ψτ1 ∗ ψr−1− i0

2
= ψr ,

where ψ i0
2

and ψ
r−1− i0

2
are the S-walks in O given by ψ i0

2
(j/2) = ψr−1(j/2), for

0 ≤ j ≤ i0 and ψ
r−1− i0

2
(j/2) = ψr−1((j + i0)/2), for 0 ≤ j ≤ 2r− i0 − 2, respectively,

and moreover ψτ1 is the constant S-loop of length 1 at τ = ψr−1(i0/2).
In general, different constant S-loops may be required for other sets of face rela-

tions. Notice also that this step could be not necessary in case the original digital
representatives φ and ψ have the same length.

Step D. Describe a d-homotopy between φ and ψ. As a consequence, the lemma fol-
lows .
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From the face relations (II) and (III) it is not difficult to show that the d-map
given by

H(
j

2
,
k

2
) =





φr(j/2) if k = 0 and 0 ≤ j ≤ 2r
φr(j/2) if k = 1 and 0 ≤ j ≤ i0 − 1 or i0 + 1 ≤ j ≤ 2r
γi0−1 if k = 1 and j = i0 − 1
ψr(j/2) if k = 2 and 0 ≤ j ≤ 2r − 2

is a d-homotopy between φr and the S-loop ψr 'd ψr−1.
Any other set of face relations leads to a possibly different d-homotopy, anyway

of the same nature as H above.
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