AMALGAMATED PRODUCTS AND PROPERLY 3-REALIZABLE GROUPS

M. CARDENAS, F. F. LASHERAS, A. QUINTERO AND D. REPOVŠ

Abstract

In this paper, we show that the class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-extensions) over finite groups. We recall that G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with $\pi_{1}(K) \cong G$ and whose universal cover \tilde{K} has the proper homotopy type of a 3 -manifold (with boundary).

1. Introduction

We are concerned about the behavior of the property of being properly 3realizable (for finitely presented groups) with respect to the basic constructions in Combinatorial Group Theory; namely, amalgamated free products and HNNextensions. Recall that a finitely presented group G is said to be properly 3realizable if there exists a compact 2-polyhedron K with $\pi_{1}(K) \cong G$ and whose universal cover \tilde{K} has the proper homotopy type of a 3 -manifold. It is worth mentioning that the property of being properly 3 -realizable has implications in the theory of cohomology of groups, in the sense that if G is properly 3-realizable then for some (equivalently any) compact 2-polyhedron K with $\pi_{1}(K) \cong G$ we have $H_{c}^{2}(\tilde{K} ; \mathbb{Z})$ free abelian (by manifold duality arguments), and hence so is $H^{2}(G ; \mathbb{Z} G)$ (see [9]). It is a long standing conjecture that $H^{2}(G ; \mathbb{Z} G)$ be free abelian for every finitely presented group G. In [1] it was shown that the property of being properly 3 -realizable is preserved under amalgamated free products (HNN-extensions) over finite cyclic groups. See also [3, 4, 7] to learn more about properly 3-realizable groups and related topics. In this paper, we continue in the line of [1]. Our main result is :

Theorem 1.1. The class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-extensions) over finite groups.

This generalizes to show that the fundamental group of a finite graph of groups with properly 3 -realizable vertex groups and finite edge groups is properly 3-realizable, since such a group can be expressed as a combination of amalgamated free products and HNN-extensions of the vertex groups over the edge groups.

Recall that, given a finitely presented group G and a compact 2-polyhedron K with $\pi_{1}(K) \cong G$ and \tilde{K} as universal cover, the number of ends of G is the number of ends of \tilde{K} which equals $0,1,2$ or ∞ [6] (see also [8, 13]). The 0 -ended groups are the finite groups and the 2 -ended groups are those having an infinite cyclic subgroup of finite index, and they are all known to be properly 3-realizable (see [1). Note that Stallings' Structure Theorem [12] characterizes those groups G with more than one end as those which split as an amalgamated free product (or an HNN-extension)

[^0]over a finite group (see also [13, 8]). In addition, Dunwoody [5] showed that this process of further splitting G must terminate after finitely many steps.

Corollary 1.2. In order to show whether or not all finitely presented groups are properly 3-realizable it suffices to look among those groups which are 1-ended.

2. Main Result

The purpose of this section is to prove Theorem 1.1. We will make use of the following result:

Proposition 2.1 (1] , Prop. 3.1). Let M be a manifold of the same proper homotopy type of a locally compact polyhedron K with $\operatorname{dim}(K)<\operatorname{dim}(M)$. Then, any Freudenthal end $\epsilon \in \mathcal{F}(M)$ can be represented by a sequence of points in ∂M.

Proof of Theorem 1.1. Let G_{0}, G_{1} be properly 3 -realizable groups and F be a finite group with presentation $\left\langle a_{1}, \ldots, a_{N} ; r_{1}, \ldots, r_{M}\right\rangle$. Consider monomorphisms φ_{i} : $F \longrightarrow G_{i}(i=0,1)$, and denote by $G_{0} *_{F} G_{1}=\left\langle G_{0}, G_{1} ; \varphi_{0}\left(a_{i}\right)=\varphi_{1}\left(a_{i}\right), 1 \leq i \leq N\right\rangle$ the corresponding amalgamated free product. Let X_{0}, X_{1} be compact 2-polyhedra with $\pi_{1}\left(X_{i}\right) \cong G_{i}$ and such that their universal covers have the proper homotopy type of 3-manifolds M_{0}, M_{1} respectively. Let $L=\vee_{i=1}^{N} S^{1}$ and $f_{i}: L \longrightarrow X_{i}$ ($i=0,1$) be cellular maps such that $\operatorname{Im} f_{i_{*}} \subseteq \pi_{1}\left(X_{i}\right)$ corresponds to the subgroup $\operatorname{Im} \varphi_{i} \subseteq G_{i}$. We take the standard 2-dimensional CW-complex Y^{\prime} associated to the above presentation of F, i.e., Y^{\prime} has one 1-cell e_{i} for each generator $a_{i}(1 \leq i \leq N)$, all of them sharing the only vertex in Y^{\prime}, and one 2 -cell d_{j} for each relation r_{j} $(1 \leq j \leq M)$ attached via a map $S^{1} \longrightarrow \vee_{i=1}^{N} e_{i}$ which "spells" the relation r_{j}. Consider the adjunction spaces $Y=\left(\vee_{i=1}^{N} e_{i}\right) \times I \cup_{\left(\vee_{i=1}^{N} e_{i}\right) \times\left\{\frac{1}{2}\right\}} Y^{\prime}$ (homotopy equivalent to $\left.Y^{\prime}\right)$ and $Z=Y \cup_{f_{0} \times\{0\} \cup f_{1} \times\{1\}}\left(X_{0} \sqcup X_{1}\right)$. By van Kampen's Theorem, Z is a compact 2-polyhedron with $\pi_{1}(Z) \cong G_{0} *_{F} G_{1}$. Let \tilde{Z} be the universal cover of Z with covering map $p: \tilde{Z} \longrightarrow Z$. Then, $p^{-1}\left(X_{i}\right)$ consists of a disjoint union of copies of the universal cover \tilde{X}_{i} of X_{i}, since the inclusion $X_{i} \hookrightarrow Z$ induces a monomorphism $G_{i} \hookrightarrow G_{0} *_{F} G_{1}$ between the fundamental groups, $i=0,1$ (see [10]). On the other hand, let Γ be a connected component of $p^{-1}\left(\vee_{i=1}^{N} e_{i}\right) \subset p^{-1}\left(Y^{\prime}\right)$ and \tilde{Y}^{\prime} be the connected component of $p^{-1}\left(Y^{\prime}\right)$ containing Γ. Observe that \tilde{Y}^{\prime} is a copy of the universal cover of Y^{\prime} (which is compact), as the inclusion $Y^{\prime} \hookrightarrow Z$ induces a monomorphism $F \hookrightarrow G_{0} *_{F} G_{1}$. Then, it is easy to see that $p^{-1}(Y)$ consists of a disjoint union of copies of the compact CW-complex $K=(\Gamma \times I) \cup_{\Gamma \times\left\{\frac{1}{2}\right\}} \tilde{Y}^{\prime}$. Thus, \tilde{Z} comes together with the following data (see [13) :
(a) The disjoint unions $\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}$ and $\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}$ of copies of \tilde{X}_{0} and \tilde{X}_{1} respectively;
(b) a disjoint union $\bigsqcup_{p, q \in \mathbb{N}} K_{p, q}$ of copies of K; and
(c) a bijective function $\varphi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N},(p, q) \mapsto(r, s)$ (given by the group action of $G_{0} *_{F} G_{1}$ on $\left.\tilde{Z}\right)$, so that for each $p, q \in \mathbb{N}, \Gamma \times\{0\} \subset K_{p, q}$ is being glued to $\tilde{X}_{0, p}$ via a lift $\tilde{f}_{p, q}^{0}: \Gamma \times\{0\} \longrightarrow \tilde{X}_{0, p}$ of the map f_{0}, and $\Gamma \times\{1\} \subset K_{p, q}$ is being glued to $\tilde{X}_{1, r}$ via a lift $\tilde{f}_{r, s}^{1}: \Gamma \times\{1\} \longrightarrow \tilde{X}_{1, r}$ of the map f_{1}.

Next, for each copy of $\tilde{X}_{i}, i=0,1$, in \tilde{Z} (written as $\tilde{X}_{0, p}$ or $\tilde{X}_{1, r}$), we take one of the maps $\tilde{f}_{\lambda, \mu}^{i}: \Gamma \times\{i\} \longrightarrow \tilde{X}_{i}$ and observe that this map is nullhomotopic so
we can replace it (up to homotopy) with a constant map $g_{\lambda, \mu}^{i}: \Gamma \times\{i\} \longrightarrow \tilde{X}_{i}$ with $\operatorname{Im} g_{\lambda, \mu}^{i} \subset \operatorname{Im} \tilde{f}_{\lambda, \mu}^{i}$, and we do this equivariantly using the group action of G_{i} on \tilde{X}_{i}. Since this action is properly discontinuous, the collection of all these homotopies gives rise to a proper homotopy equivalence between \tilde{Z} and a new 2-dimensional CW-complex W obtained from a collection of copies of K and a collection of copies of \tilde{X}_{0} and \tilde{X}_{1} by gluing each copy of $\Gamma \times\{i\}$ to the corresponding copy of \tilde{X}_{i} via the bijection φ and the new maps $g_{\lambda, \mu}^{i}, i=0,1$.

We will now manipulate the CW-complex K as follows. First, let K^{\prime} be the CW-complex obtained from K by shrinking to a point $v \times\{i\}$ each copy $T \times\{i\}$ $(i \in I)$ of a maximal tree $T \subset \tilde{Y}^{\prime} \subset K$. Next, we take $K^{\prime \prime}$ to be the CW-complex obtained from K^{\prime} by identifying the subcomplexes $\Gamma \times\{i\} / T \times\{i\}, i=0,1$, to a (different) point which we will denote by $[v \times\{0\}]$ and $[v \times\{1\}]$. Note that $K^{\prime \prime}$ has a copy of \tilde{Y}^{\prime} / T as a subcomplex. Since \tilde{Y}^{\prime} / T is compact and simply connected, it follows from ($\mathbb{1 4}$, Prop. 3.3) that \tilde{Y}^{\prime} / T is homotopy equivalent to a finite bouquet of 2-spheres $\vee_{\alpha \in \mathcal{A}} S^{2}$ (which we may regard as a connected 2-dimensional CW-complex with no 1-cells). Moreover, we may assume that this homotopy equivalence is given by a cellular map $\tilde{Y}^{\prime} / T \longrightarrow \vee_{\alpha \in \mathcal{A}} S^{2}$ so that the 1-skeleton Γ / T of \tilde{Y}^{\prime} / T is mapped to the wedge point. Finally, taking into account this homotopy equivalence, it is not difficult to see that $K^{\prime \prime}$ is homotopy equivalent to the CWcomplex \widehat{K} obtained from the disjoint union of a finite bouquet $\vee_{\alpha \in \mathcal{A} \cup \mathcal{B}} S^{2}$ (where $\operatorname{Card}(\mathcal{B})=2 \operatorname{rank}\left(\pi_{1}(\Gamma)\right)$ and the unit interval I by identifying $\frac{1}{2} \in I$ with the wedge point, so that $I \subset \widehat{K}$ would correspond to the subcomplex $v \times I \subset K^{\prime}$ and $0,1 \in I$ would correspond to $[v \times\{0\}],[v \times\{1\}] \in K^{\prime \prime}$. Notice that \widehat{K} thickens to a 3-manifold $P \searrow \widehat{K}$ containing 3-dimensional 1-handles H and H^{\prime} (with a free end face each of them) corresponding to the edges $\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right] \subset I \subset \widehat{K}$ respectively.

According to the above, one can see that the CW-complex W (proper homotopy equivalent to \tilde{Z}) is in turn proper homotopy equivalent to the quotient space obtained from the following data :
(a) A disjoint union $\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}$ of copies of \tilde{X}_{0} together with a locally finite sequence
of points $\left\{x_{q}^{p}\right\}_{q \in \mathbb{N}} \subset \tilde{X}_{0, p}$, for each $p \in \mathbb{N}$, corresponding to the images of the constant maps $g_{p, q}^{0}: \Gamma \times\{0\} \longrightarrow \tilde{X}_{0, p}$ considered above in the construction of W;
(b) a disjoint union $\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}$ of copies of \tilde{X}_{1} together with a locally finite sequence of points $\left\{y_{s}^{r}\right\}_{s \in \mathbb{N}} \subset \tilde{X}_{1, r}$, for each $r \in \mathbb{N}$, corresponding to the images of the constant maps $g_{r, s}^{1}: \Gamma \times\{1\} \longrightarrow \tilde{X}_{1, r}$ from the construction of W;
(c) a disjoint union $\bigsqcup_{p, q \in \mathbb{N}} \widehat{K}_{p, q}$ of copies of \widehat{K}; and
(d) the bijective function $\varphi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N},(p, q) \mapsto(r, s)$, so that $0 \in I \subset \widehat{K}_{p, q}$ is being identified with $x_{q}^{p} \in \tilde{X}_{0, p}$ and $1 \in I \subset \widehat{K}_{p, q}$ is being identified with $y_{s}^{r} \in \tilde{X}_{1, r}$ $((r, s)=\varphi(p, q))$, for each $p, q \in \mathbb{N}$.

We now follow an argument similar to the proof of ([1], Lemma 3.2). Fix proper homotopy equivalences $h: \tilde{X}_{0} \longrightarrow M$ and $h^{\prime}: \tilde{X}_{1} \longrightarrow N$, where we now denote M_{0} by M and M_{1} by N. Given the above data, we set $A=\mathbb{N} \times \mathbb{N}$ and consider
maps $i: A \longrightarrow \bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}, i^{\prime}: A \longrightarrow \bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}$ given by $i(p, q)=x_{q}^{p}$ and $i^{\prime}(p, q)=y_{s}^{r}$, where $(r, s)=\varphi(p, q)$. It is easy to check that i and i^{\prime} are proper cofibrations, as the corresponding sequences of points are locally finite. Next, we take exhaustive sequences $\left\{A_{m}^{p}\right\}_{m \in \mathbb{N}}$ and $\left\{B_{n}^{r}\right\}_{n \in \mathbb{N}}$ of copies M_{p} and N_{r} of the 3-manifolds M and N respectively by compact submanifolds, and define proper cofibrations j : $A \longrightarrow \bigsqcup_{p \in \mathbb{N}} M_{p}, j^{\prime}: A \longrightarrow \bigsqcup_{r \in \mathbb{N}} N_{r}$ as follows. Given $(p, q) \in A$ and the proper homotopy equivalences $h_{p}=h: \tilde{X}_{0, p} \longrightarrow M_{p}, h_{r}^{\prime}=h^{\prime}: \tilde{X}_{1, r} \longrightarrow N_{r}$ (with $(r, s)=\varphi(p, q))$, we take $m(q), n(s) \in \mathbb{N}$ to be the least natural numbers such that $h_{p} \circ i(p, q) \notin A_{m(q)}^{p} \subset M_{p}$ and $h_{r}^{\prime} \circ i^{\prime}(p, q) \notin B_{n(s)}^{r} \subset N_{r}$. Then, using Proposition 2.1, we define $j(p, q)$ and $j^{\prime}(p, q)$ to be points $j(p, q)=a_{p, q} \in \partial M_{p}-A_{m(q)}^{p}$ and $j^{\prime}(p, q)=b_{r, s} \in \partial N_{r}-B_{n(s)}^{r}$ so that $(i) j, j^{\prime}$ are one-to-one maps (note that h, h^{\prime} need not be one-to-one); and (ii) $a_{p, q}$ and $h_{p} \circ i(p, q)$ (resp. $b_{r, s}$ and $\left.h_{r}^{\prime} \circ i^{\prime}(p, q)\right)$ are in the same path component of $M_{p}-A_{m(q)}^{p}$ (resp. $N_{r}-B_{n(s)}^{r}$). Notice that j and j^{\prime} are proper maps by construction. Consider now maps

$$
\begin{aligned}
& G:\left(\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}\right) \times\{0\} \cup(i(A) \times I) \longrightarrow \bigsqcup_{p \in \mathbb{N}} M_{p} \\
& H:\left(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}\right) \times\{0\} \cup\left(i^{\prime}(A) \times I\right) \longrightarrow \bigsqcup_{r \in \mathbb{N}} N_{r}
\end{aligned}
$$

with $\left.G\right|_{\tilde{X}_{0, p} \times\{0\}}=h_{p}=h$ and $\left.H\right|_{\tilde{X}_{1, r} \times\{0\}}=h_{r}^{\prime}=h^{\prime}(p, r \in \mathbb{N})$, and so that $\alpha_{p, q}=\left.G\right|_{i(p, q) \times I}\left(\right.$ resp. $\left.\beta_{r, s}=\left.H\right|_{i^{\prime}(p, q) \times I}\right)$ is a path in $M_{p}-A_{m(q)}^{p}$ from $h_{p} \circ i(p, q)$ to $a_{p, q}$ (resp. a path in $N_{r}-B_{n(s)}^{r}$ from $h_{r}^{\prime} \circ i^{\prime}(p, q)$ to $b_{r, s}$). Observe that G and H are proper maps, since h, h^{\prime}, j and j^{\prime} are proper. By the Homotopy Extension Property, the maps G, H extend to proper maps

$$
\widehat{G}:\left(\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}\right) \times I \longrightarrow \bigsqcup_{p \in \mathbb{N}} M_{p}, \widehat{H}:\left(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}\right) \times I \longrightarrow \bigsqcup_{r \in \mathbb{N}} N_{r}
$$

which yield commutative diagrams

where $\hat{h}=\left.\widehat{G}\right|_{\left(\sqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}\right) \times\{1\}}$ and $\hat{h^{\prime}}=\left.\widehat{H}\right|_{\left(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}\right) \times\{1\}}$ are proper homotopy equivalences. Moreover, \hat{h} and \hat{h}^{\prime} are proper homotopy equivalences under A, by ([2], Prop. 4.16) (compare with [11], Chap. 6, §5). Hence, they induce a proper homotopy equivalence between the quotient space described above (proper homotopy equivalent to W) and the following 3-manifold obtained as the quotient space given by the data:
(a) The disjoint unions $\bigsqcup_{p \in \mathbb{N}} M_{p}$ and $\bigsqcup_{r \in \mathbb{N}} N_{r}$ of copies of the 3-manifolds M and N respectively;
(b) a disjoint union $\bigsqcup_{p, q \in \mathbb{N}} P_{p, q}$ of copies of the compact 3-manifold $P \searrow \widehat{K}$; and
(c) the bijective function $\varphi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N},(p, q) \mapsto(r, s)$, so that for each $p, q \in$ \mathbb{N}, the free ends of the corresponding 3-dimensional 1-handles $H_{p, q}, H_{p, q}^{\prime} \subset P_{p, q}$ considered above are being identified homeomorphically with small disks $D_{p, q} \subset \partial M_{p}$ and $D_{r, s}^{\prime} \subset \partial N_{r}$ about the points $a_{p, q}$ and $b_{r, s}$ respectively.

In the case of an HNN-extension $G *_{F}=\left\langle G, t ; t^{-1} \psi_{0}\left(a_{i}\right) t=\psi_{1}\left(a_{i}\right), 1 \leq i \leq N\right\rangle$ (with monomorphisms $\psi_{i}: F \longrightarrow G, i=0,1$), let X be a compact 2-polyhedron with $\pi_{1}(X) \cong G$ and whose universal cover has the proper homotopy type of a 3 -manifold, and let $f_{i}: \vee_{i=1}^{N} S^{1} \longrightarrow X(i=0,1)$ be cellular maps so that Im $f_{i_{*}} \subseteq \pi_{1}(X)$ corresponds to the subgroup $\operatorname{Im} \psi_{i} \subseteq G$. Let Y be the 2dimensional CW-complex constructed as above and consider the adjunction space $Z=Y \cup_{f_{0} \times\{0\} \cup f_{1} \times\{1\}} X$, with $\pi_{1}(Z) \cong G *_{F}$. Then, the proof goes just as the one given above for the amalgamated free product.

Acknowledgements

The first three authors were supported by the project MTM 2004-01865. This research was also supported by Slovenian-Spanish research grant BI-ES/04-05-014.

References

[1] R. Ayala, M. Cárdenas, F.F. Lasheras, A. Quintero. Properly 3-realizable groups. Proc. Amer. Math. Soc. 133(2005), 1527-1535.
[2] H-J. Baues, A. Quintero. Infinite Homotopy Theory. K-monographs in Mathematics, Kluver Academic Publishers, 2001.
[3] M. Cárdenas, F.F. Lasheras. Properly 3-realizable groups : a survey. Proceedings of the Conference on Geometric Group Theory and Geometric Methods in Group Theory (Seville 2003), Contemp. Math., to appear.
[4] M. Cárdenas, F.F. Lasheras, R. Roy. Direct products and properly 3-realizable groups. Bull. Australian Math. Soc. 70(2004), 199-206.
[5] M. J. Dunwoody. The accessibility of finitely presented groups. Invent. Math. 81(1985), 449457.
[6] H. Freudenthal. Über die Enden topologischer Raume und Gruppen. Math. Z. 33(1931), 692713.
[7] D. J. Garity, F. F. Lasheras, D. Repovš. Topology of 2-dimensional complexes. Preprint.
[8] R. Geoghegan. Topological Methods in Group Theory. Book in preparation.
[9] R. Geoghegan, M. Mihalik. Free abelian cohomology of groups and ends of universal covers. J. Pure and Appl. Algebra, 36(1985), 123-137.
[10] R. C. Lyndon, P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, 1977.
[11] P.J. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, 1999.
[12] J. Stallings. Group theory and three dimensional manifolds. Yale Math. Monographs, no. 4, Yale Univ. Press, New Haven, Conn. 1971.
[13] P. Scott, C.T.C. Wall. Topological methods in group theory. Homological Group Theory, London Math. Soc. Lecture Notes, Cambridge Univ. Press, Cambridge (1979), 137-204.
[14] C.T.C. Wall. Finiteness conditions for CW-complexes. Ann. of Math. 81(1965), 56-69.
Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080Sevilla, Spain

E-mail address: mcard@us.es, lasheras@us.es, quintero@us.es
Institute of Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Luubluana 1001, Slovenia

E-mail address: dusan.repovs@fmf.uni-lj.si

[^0]: 2000 Mathematics Subject Classification. Primary 57M07; Secondary 57M10, 57M20.

