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Abstract. This paper deals with the maximal abelian dimension of the Lie algebra h„, of nxn upper-triangular matrices. 
Regarding this, we obtain an algorithm which computes abelian subalgebras of h„ as well as its implementation (and a 
computational study) by using the symbolic computation package MAPLE, where the order n of the matrices in h„ is the 
unique input needed. Let us note that the algorithm also allows us to obtain a maximal abelian subalgebra of h„. 

Keywords: Maximal abelian dimension, solvable Lie algebra, algorithmic procedure, programming 
PACS: 02.20.Sv; 02.10.Hh; 02.10.Ud 

INTRODUCTION 

The maximal abelian dimension of a given finite-dimensional Lie algebra g (i.e., the maximum among the dimensions 
of the abelian subalgebras of g) has been studied in previous papers. However, most of them (e.g. [5, 10]) consider 
abehan ideals instead of abehan subalgebras, being needed more restrictive hypotheses. As well as other papers like 
[4, 6], this does not assume such restrictions, but it considers all the subalgebras of the given Lie algebra g. 

Jacobson [8] computed a classical bound for the dimension of any abelian subalgebra a of the matrix algebra 
[ 2 1 

M„{K), oinxn square matrices over a field K: dim(a) < ^ + 1, where [x] denotes the integer part of x. Therefore 

the maximal abelian dimension ^ ( g ) of any given subalgebra g of M„(K) can be upper bounded by: 

.y, , . r«^l^i / *:̂  + l. if« = 2̂ ; 
•^(&)^[-j\+^ = [ k^ + k+1, ,fn = 2k+l. 

We have already studied the maximal abelian dimension of the Lie algebra g„, of nxn strictly upper-triangular 
matrices, by using an algorithmic method which computed abelian subalgebras in [1, 3]. Besides, the law of g„ was 
computed by means of another algorithmic procedure in [2]. Now we are studying the maximal abelian dimension of 
the Lie algebra h„, of nxn upper-triangular matrices, by applying and adjusting the technics given in [3]. 

The Lie algebra h„ is studied due to the following reasons: First, every finite-dimensional solvable Lie algebra is 
isomorphic to a subalgebra of some h„ [11, Proposition 3.7.3]; and secondly, its apphcations to Physics are many and 
varied (e.g. [7, 9]). 

PRELIMINARIES 

Some preliminary concepts are recalled here, bearing in mind that the reader can consult [11] for a general overview 
on Lie algebras. This paper only considers finite-dimensional Lie algebras over the complex number field C. 

A Lie algebra g is to be said solvable if its commutator central series becomes zero eventually: 

'^A{g) = g, «2(g) = [g,g], •••, %{g) = l%-i{g),%-i{g)], •••, «'M(g) = {0} 
The maximal abelian dimension of a finite-dimensional Lie algebra g is the maximum among the dimensions of its 

abehan subalgebras. This value will be denoted by ^ ( g ) . 
Given « G N, the complex solvable Lie algebra h„ is that whose vectors are thenxn upper-triangular matrices: 

llfi[Xrs) 

/ Xll Xl2 ••• Xl„ \ 

0 X22 ••• X2„ 

V 0 ••• 0 x„„ / 
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where Xij G C, for all /, j G N with I <i < j <n. 
It is easy to prove that a basis of h„ is formed by the vectors Xij = h„ (xr^s) with I <i< j <n and such that: 

1, if {r,s) = {i,j), 
0, ii(r,s)^(i,j). 

So the dimension of h„ is "^"^ • Besides, the nonzero brackets with respect to this basis are the following: 

[Xij,Xj^^\=Xi^^, Vi = l , . . . , « - 2 , V j = i + 1 , . . . , « - 1 , V^ = j + 1,...,«; 
[Xi^i,Xi^j\=Xi^j, Vi = l , . . . , n - 1 , Vj = i + l , . . . ,n; 
[Xk,i,Xi,i]=Xk,i, V^ = l , . . . , « - ! , ^i = k+\,...,n. 

The center Z(h„) of h„ is generated by the vector L"=I^M- This vector has to belong to any abelian subalgebra 
which is not contained in another. 

ALGORITHM TO OBTAIN ABELIAN SUBALGEBRAS 

Next, we show an algorithmic procedure to obtain abehan subalgebras of the Lie algebra h„. Before giving a general 
structure for this algorithm, we study the obtainment for « < 4. 

Lie algebra h„ with n < 4 

Case « = 2: The Lie algebra V\2 is generated by the basis {^i,i,^i,2,-'^2,2} and the nonzero brackets with respect to 
this basis are [Xi_i,Xi_2] =Xi;i and [Xi_2,̂ 2,2] =-̂ 1̂,2- In this case, it is easy to prove that the 2-diniensional subalgebra 
(Xi_i,X2,2) is abehan (i.e. the two vectors coming from the main diagonal). Consequently, ^{V\2) = 2. 

Case « = 3: {^i,i,̂ i,2,-'̂ i,3,-'̂ 2,2,-'̂ 2,3,-'̂ 3,3} is a basis of the Lie algebra hs, whose nonzero brackets are the following: 

[^l,2)X2,3] = ^ 1 , 3 ; [^1,1)^1,2] =^1 ,2 ; [^1,1)^1,3] = ^ 1 , 3 ; [X2,2)X2,3] = ^ 2 , 3 ; [^1,2)X2,2] =^1 ,2 ; [^1,3)^3,3] = ^ 1 , 3 ; [X2,3)^3,3] =^2 ,3 -

Step 1: Take the three vectors coming from the 3''' column and remove the one coming from the 3''' row. The 
abehan subalgebra (Xi_3,X2,3) is obtained. 

Step 2: Add the vectors coming from the 2°'' column and remove the ones coming from the 2°'' row (to avoid 
nonzero brackets). The dimension of the abehan subalgebra obtained here does not increase with respect to Step 1. 
Step 3: Add the vector Xii +^2,2 +^3,3, coming from the main diagonal and the only generator of Z(h3). Hence, 
the 3-dimensional abelian subalgebra(Xi_2,^i,3,^i,i +^2,2 + -̂ 3̂,3) is obtained. 

A general structure for the algorithm 

Now we explain the algorithm to obtain abelian subalgebras. This depends on the parity of n, as it can be seen next. 
Hence, two possible cases have to be considered: 

Case 1: « is even and « > 4 (i.e., n = 2k, with fe G N \ {!}). The general reasoning consists on considering the 
vectors in the basis of h„. When a vector coming from the fl^ column is chosen, only the vectors coming from 
the fl^ row lead to nonzero brackets. To avoid nonzero brackets, the vectors coming from the ;* row have to be 
removed. 

Step 1: (2^)"^ column. Add the 2k vectors coming from the (2^)"^ column and remove the unique vector 
coming from the (2^)"^ row. In this way, the abehan subalgebra (Xî yt, • • • ,^2A:-I,2A:) is obtained. 

Step 2fe - / + 1: i* column, with 2k > i > k+l. Add the / vectors coming from the ;* column to the 
generators of the previous step and remove the 2fe - (/ - 1) vectors coming from the fl^ row. In this way, 
we obtain an abelian subalgebra whose dimension increases 2/ - 2fe - 1 with respect to the already obtained 
in the previous step. The dimension really increases if and only if 2/ - 2fe - 1 > 0. Since this inequality is 
equivalent to / > fe + 1/2, fe is the last step in which the dimension of the abehan subalgebra increases. 
Step k: {k+lf^ column. Add the fe+ 1 vectors coming from the (fe+ 1)"̂  column and remove the k ones 
coming from the (fe+ 1)"̂  row. 
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Step k+l: Add the vector Ĵ "̂ jX;_;, obtaining the (fê  + 1)-dimensional abelian subalgebra generated by: 

^2,k+l ••• ^2,2k n 

• . • E^M 
: '• : i=i 

^k,k+l • • • ^k,2k 

Case 2: n is odd and « > 3 (i.e., n = 2k+l, with k G N \ {1}). With a reasoning analogous to Case 1, we can 
settle the following algorithm to obtain abelian subalgebras up to a dimension as large as possible. 

Step 1: (2fe+1)"^ column. Add the 2fe+1 vectors coming from the (2fe+1)"^ column and remove the unique 
vector coming from the (2fe+ 1)"̂  row, obtaining the abelian subalgebra (XI_2A:+I, • • • ,^2A:,2A:+I)-

Step 2k-i + 2: fl^ column, with 2fe + 1 > i> k + 2. Add the / vectors coming from the ;* column to the 
generators in the previous step and remove the 2fe - (/ - 1) vectors coming from the ;* row. In this way, 
we obtain an abehan subalgebra whose dimension increases 2/ - 2fe - 2 with respect to the obtained in the 
previous step. The dimension increases in each step if and only if 2i — 2k — 2> 0; which is equivalent to 
/ > fe+ 1. Hence, Step k is the last step in this adding-and-removing procedure. 
Step k: (^ + 2)"^ column. Add the fe + 2 vectors coming from the (^ + 2)"^ column and remove the k ones 
coming from the (^ + 2)"^ row, obtaining a (fê  + fe)-dimensional abelian subalgebra. 
Step fe+1: Add the vector Ĵ " ĵ X^, obtaining the (fê  + fe+1)-dimensional abelian subalgebra generated by: 

^l,k+2 ••• ^l,2k+l 

^2,k+2 ••• ^2,2k+l n 

: '• : i=i 

^k+l,k+2 ••• ^k+l,2k+l 

Summarizing the whole section, abehan subalgebras of h„ can be computed for all « G N. Besides, the maximal 
dimension of these subalgebras can be expressed depending on n as follows: 

t' + l, iin = 2k; 
k^ + k+l, ifn = 2k+l. 

Hence, B„ is a lower bound of the maximal abelian dimension .^{h„) and is equal to Jacobson's upper bound (see [8]). 
So the algorithm computes abelian subalgebras, whose dimensions are increasing up to the value of ^ ( h „ ) . 

IMPLEMENTING THE ALGORITHM WITH MAPLE 

Next, we explain a step-by-step implementation of the algorithm. The order n of the matrices in h„ is the unique input, 
whereas the outputs are both the maximal abelian dimension and a maximal abehan subalgebra of h„. The isomorphism 
classes of abelian subalgebras of h„ can be also obtained by removing vectors from the maximal abelian subalgebra. 

To implement the algorithm, a routine with two subroutines has been programmed. Two libraries are loaded to 
activate additional commands: L i s t T o o l s and numtheory. The routine mas (from maximal abehan subalgebra) 
receives the order n of the matrices in h„ and it returns a basis of a maximal abehan subalgebra. Moreover, an implicit 
list with all the isomorphism classes of abehan subalgebras can be obtained from this second output of the routine. 

The first subroutine, add_mas, determines the vectors to be added in each step to the basis. The input is a natural 
number j which corresponds to the column considered by the routine mas. A list L is also defined as a local variable 
and its elements are the vectors to be added. This list is the output of the subroutine. 

> add_mas:=proc(j) > end do; 

> local L; > return op(L[1..nops(L)]); 

> L:=[]; > end proc: 

> f o r k f r o m 1 t o j do L : = [op (L) , X [ k , j ] ] ; 

The second subroutine, remove_mas, computes the vectors which have to be removed in each step of the 
computation. By inputting two natural numbers, / and n, the subroutine removes the vectors coming from the fl^ 
row in the matrices in h„. To program this subroutine, a local variable M is defined to store a hst with the vectors to be 
removed. The hst M is the output of this subroutine. 

> remove_mas:=proc (1,n) > M: = [op(M),X[1,k]]; 

> local M; > end do; 

> M: = []; > return op(M[1. .nops (M)] ); 

> for k from 1 to n do > end proc: 
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The routine mas computes both the basis of a maximal abehan subalgebra of h„ and the dimension of this subalgebra 
(i.e. the maximal abelian dimension). Its unique input is the natural number n, corresponding to the order of the 
matrices in h„. We have defined the local variables L, M, P, Q and /, where L, M, P and Q are sets and / is a natural 
number. L and M store the vectors to be added and removed, respectively. P stores the set difference L\M. Finally, Q 
has a unique element: the generator of Z(h„). Hence, the routine computes these sets in each step, returning the union 
PU g (i.e. a maximal abehan subalgebra) and its cardinal (i.e. the maximal abehan dimension). 
> mas:=proc(n) 
> local L,M,P,i,Q; 
> L: = {};M: = {};P: = {};1:=n;Q: = {X[1, 1] }; 
> while i>iquo(n,2) do 
> L:={op(L),add_mas(1)};M:={op(M),remove_mas(1,n)};1:=1-1;P:=L minus M; 
> end do; 
> for j from 2 to n do Q:={op(Q)+X[j,j]}; 
> end do; 
> Q:=P union Q; 
> return {Q,nops(Q)}; 
> end proc; 

COMPUTATIONAL STUDY 

The algorithm was implemented by using MAPLE 9.5 and was run in an Intel Core 2 Duo T 5600 with a 1.83 GHz 
processor and 2.00 GB of RAM. Table 1 shows some computational data about this implementation for n < 2000. 
Starting from « = 2, the computational time is apparently double when the order n is increased fifty units. In this way, 
for n = 1000, the routine runs about 1 minute to compute a maximal abelian subalgebra of hiooo- For orders closer to 
2000, some problems arise in relation to an insufficient computational capacity. These problems are motivated by the 
need of a very high capacity of memory (almost 2 GB). In any case, it does not suppose a serious problem because for 
this order the dimension of the Lie algebra would be about 2 • 10^, which is not usually needed in practical situations. 

TABLE 1. Computational time and used memory. 
Input 

(order n) 
2 
50 
100 
150 
200 
250 
300 
350 

Dimension 
of h„ 

3 
1275 
5050 
11325 
20100 
31375 
45150 
61425 

Computational 
time 
Os 
Os 

0.046 s 
0.109 s 
0.266 s 
0.562 s 
0.969 s 
1.609 s 

Used 
memory 

0 MB 
0 MB 

3.31 MB 
5.69 MB 
7.56 MB 
11.88 MB 
15.19 MB 
16.31 MB 

Input 
(order n) 

400 
500 
600 
800 
1000 
1250 
1500 
1750 

Dimension 
of h„ 
80200 
125250 
180300 
320400 
500500 
781875 
1125750 
1532125 

Computational 
time 

2.453 s 
5.468 s 
9.796 s 

27 s 
59.266 s 
156.641 s 
303.499 s 
522.061 s 

Used 
memory 
18.75 MB 
40.99 MB 
63.55 MB 
157.04 MB 
353.81 MB 
645.26 MB 
1071.24 MB 
1701.19 MB 

After carrying out a brief statistical study about the relation between the computational time and the memory used 
to compute the maximal abelian dimension of h„, we can assert that the memory used depends on the computational 
time and viceversa. Indeed, this dependence is expressed by a very strong positive linear correlation. Besides, both the 
memory used and the computational time seem to be exponentially related to the order n. 
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