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Abstract

Various realizations of variational multiscale (VMS) methods for simulating turbulent
incompressible flows have been proposed in the past fifteen years. All of these realizations
obey the basic principles of VMS methods: They are based on the variational formulation
of the incompressible Navier–Stokes equations and the scale separation is defined by
projections. However, apart from these common basic features, the various VMS methods
look quite different. In this review, the derivation of the different VMS methods is presented
in some detail and their relation among each other and also to other discretizations is
discussed. Another emphasis consists in giving an overview about known results from the
numerical analysis of the VMS methods. A few results are presented in detail to highlight
the used mathematical tools. Furthermore, the literature presenting numerical studies with
the VMS methods is surveyed and the obtained results are summarized.
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1 Introduction

The accurate numerical simulation of turbulence is one of the more challeng-
ing scientific problems, with wide classical applications such as engineering,
weather, and climate forecasting, for instance, besides more recent applications
in medicine, astrophysics, or oceanography, among others. Fluid mechanics es-
tablishes that the motion of a viscous fluid is governed by the Navier–Stokes
equations, which constitute the basic model to perform numerical simulations
of turbulent flows: Let Ω ∈ Rd, d ∈ {2, 3}, be a bounded domain with Lip-
schitz boundary Γ and (0, T ) be a bounded time interval, then these equations
are given by: Find a velocity field u : (0, T ) × Ω → Rd and a pressure field
p : (0, T )×Ω → R such that

∂tu− 2ν∇ · D (u) + (u · ∇)u+∇p = f in (0, T ]×Ω,
∇ · u = 0 in [0, T ]×Ω. (1)

These equations have to be equipped with an initial condition u0 at t = 0 and
with boundary conditions on the boundary Γ of Ω. The velocity deformation
tensor is the symmetric part of the velocity gradient D (u) = (∇u+∇uT )/2.
Given data are the dimensionless kinematic viscosity ν and the body forces
f . The first equation in (1) models the conservation of momentum and the
second equation, the so-called continuity equation, models the conservation of
mass.

Flows at Reynolds number beyond the turbulence threshold develop a wide
range of space and time scales with nonlinear interactions and a seemingly
random behavior. Large eddies generate smaller and smaller eddies by iner-
tial effects, until these reach the viscous length scale, below which they are
destroyed by molecular friction. The computational complexity associated to
the accurate numerical simulation of such a wide range of space-time scales
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makes direct numerical simulations (DNS) of the Navier–Stokes equations for
flows at large Reynolds numbers nowadays impossible. It is estimated that if
the improvement of the computational resources continues at the same rate,
an accurate computation of all scales of a turbulent flow will be possible only
by the end of the XXIth century.

Meanwhile, “turbulence” models aim to simulate statistical means of tur-
bulent flows (RANS –Reynolds Averaged Navier–Stokes– models), or rather
their larger scales (LES –Large Eddy Simulation– models). The traditional
models are based upon statistical theories of equilibrium turbulence at large
Reynolds numbers: The generation of small eddies draws energy from the large
eddies, and the total energy drawn may be estimated by statistical similarity
properties, basically the Kolmogorov theory that applies to eddies located in
the inertial range, in which only the convection effects are relevant. The ef-
fect of the creation of small eddies on the large ones is modeled by means of
an equivalent diffusion, named the “eddy diffusion” or “eddy viscosity”. The
actual mathematical structure of this eddy diffusion is built by similarity ar-
guments in such a way that the dissipated deformation energy of the resolved
scales equals the estimated energy drawn by the unresolved scales. In RANS
models the eddy diffusion affects all the flow scales, leading to an excessive
damping of large scales. However, RANS models (in particular the most popu-
lar one, the k−ε model) are widely used in engineering due to their robustness
and economy of computational time (see [38, Chapter 4]).

Classical (explicit) LES models are formally obtained by convolution of
the Navier–Stokes equations with a smoothing kernel. The large scales are
determined by a cutoff length, that should be placed within the inertial range,
and the eddy viscosity acts usually directly on all resolved scales. LES models
provide more accurate results than RANS models, in particular for unsteady
flows, although they are much more costly and thus much less used in industrial
applications. LES models (as RANS models) are systems of partial differential
equations, that need to be endowed with initial and boundary conditions, and
solved numerically. The convolution with the smoothing kernel destroys the
no-slip boundary conditions, generating a source of errors, e.g., see [51]. The
numerical discretization leads to an additional numerical diffusion, needed to
reach stability. The accurate numerical simulation of LES models thus needs
high-order discretizations to prevent that the numerical diffusion masks the
eddy diffusion.

Variational multiscale (VMS) models propose an alternative to the “stan-
dard” turbulence modeling. VMS models are increasingly used as a promising
and successful approach that seeks to simulate large scale structures in turbu-
lent flows. However, there are fundamental differences between VMS methods
and LES methods. In contrast to LES methods, VMS methods consider large
scales which are defined by projection into appropriate function spaces. More-
over, VMS methods are based on the variational formulation of the model
problem, while the LES methods consider the strong form of the model prob-
lem. One of the promising features of the derived variational formulation and
the use of the projection for defining the scales is that the boundary condi-
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tions are incorporated into the mathematical analysis in a natural way. Thus,
compared to classical LES based on filtering, the VMS approach does not
face difficulties associated to inhomogeneous non-commutative filters in wall-
bounded flows, and as consequence is mathematically consistent also in the
presence of boundaries.

VMS models were introduced in the seminal papers [80,83] as a general
technique to model the subgrid scales in the numerical solution of partial dif-
ferential equations. In parallel, in [71] was introduced an alternative technique
for multiscale subgrid modeling. The application of VMS modeling to the sim-
ulation of turbulent flows was proposed in [85].

VMS methods have experienced a fast development, in particular their
application to the simulation of turbulent flows that has led to well-established
models. A relevant achievement of some of these models (the residual-based
VMS models) is that they do not need any modeling of the subgrid scales
by statistical theories of turbulence, in particular they do not include eddy
viscosity. The numerical diffusion inherent to those models plays the role of
the eddy diffusion.

There essentially exist two classes of VMS turbulence models, depending
on the resolution levels number of the scales:

– Two-scale VMS models: The large and small scales are respectively ap-
proximated by discrete spaces. A coupled set of equations for large and
small scales is derived, where each of them is driven by the residual associ-
ated to the other. The small scales are either modeled or resolved, leading
to
– Residual-Based VMS models: The unresolved scales themselves are

modeled in terms of the large scales, and their modeled expression is
inserted in the resolved scale equations, leading to a single set of equa-
tions for the resolved scales, with additional stabilizing terms modeling
the action of the unresolved scales. In particular, for the orthogonal sub-
scales (OSS) model, if all inertial interactions are kept in the modeled
terms, the numerical diffusion generated by this residual-based VMS
model is asymptotically equivalent, as the Reynolds number increases
to infinity, to the eddy diffusion dissipated by the unresolved scales.
Thus, the residual-based procedure does not make use of the statistical
theory of equilibrium turbulence, and no ad-hoc eddy viscosity model-
ing is required. Further, it retains numerical consistency in the finite
element equations. This approach, which hence rely on purely numeri-
cal artifacts without any modification of the continuous problem, was
seldom followed, the MILES (Monotone Integrated LES) approach [21]
being the main exception, until the (residual-based) VMS models were
introduced in the seminal papers [80,83] and subsequently proposed as
implicit LES techniques (ILES) for turbulent flows in [44,10]. It is worth
emphasizing that, while ILES techniques are usually considered to be
based on the addition of purely dissipative numerical terms, see [126,
Sections 5.3.4], this is not the case for instance of the OSS model with
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dynamic subscales that allow to model backscatter similar to dynamic
LES closures, as shown in [118] and discussed in Section 5.1.

– Three-scale VMS models: The flow is decomposed into large resolved,
small resolved, and unresolved scales. A coupled set of equations for large
and small resolved scales is derived. The effect of the unresolved scales on
the resolved ones is modeled by means of an eddy viscosity term that only
acts directly on the small resolved scales.
– Residual-free bubble VMS models: The small scales are approxi-

mated by “bubble” finite elements which are residual-free to take into
account the effect of the unresolved scales. The final model consists of
a coupled system of partial differential equations for large and small
resolved scales of the flow.

– Projection-based VMS models: The large and small resolved scales
are jointly discretized in a single discrete space. A projection operator
into an underlying large resolved scale space is used to construct the
small resolved scales that appear in the eddy viscosity term.

– Algebraic VMS models: These models are similar to the projection-
based models, but the projection operator is built at the algebraic level
of the model, once the model is written as a set of nonlinear equations
in Rn.

This classification of VMS methods also creates a division in the family of
turbulence models separating those that use eddy diffusion (in a more or less
sophisticated manner) to model the effect of subgrid scales, and those (residual-
based) that use a direct modeling of the subgrid scale flow by approximating
the related equations.

The aim of this review consists in presenting the different VMS methods
in a structured manner, comparing their derivation, numerical analysis (when
available), and their ability to solve turbulent flow problems. There are already
reviews of VMS methods available in [89,62,92]. It is intended to update these
reviews, thereby putting special emphasis on the comparisons of formulations
of the methods and on aspects from numerical analysis.

1.1 Nomenclature

Standard symbols will be used for Lebesgue and Sobolev spaces. To simplify
notations, the domain is omitted if the space is with respect to Ω and vector-
valued spaces are denoted by bold symbols, e.g., L2 = [L2(Ω)]d.

a(·, ·) weak form of the viscous term
A (·; ·, ·) trilinear form for the left-hand side of Navier–Stokes

equations
b(·, ·, ·) weak form of the convective term
bs(·, ·, ·) skew-symmetric form of the convective term
c(·; ·, ·) trilinear form defining a turbulence model
f right-hand side of Navier–Stokes equations
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f(·) linear form for the right-hand side of Navier–Stokes equations
h mesh width
hK local mesh width for mesh cell K
K mesh cell
M macro element
n outward pointing unit normal on Γ
p continuous pressure
p large scale pressure
p̂ small resolved scale pressure
ph resolved scale pressure
p′ unresolved scale pressure
Pk finite element space of degree k on simplices
Qk finite element space of degree k on quadrilaterals or

hexahedra
T final time
Th triangulation
u continuous velocity
u large scale velocity
û small resolved scale velocity
uh resolved scale velocity
u′ unresolved scale velocity
U (u, p)T

V lh(Ω) Pl on simplices, Ql on quadrilaterals or hexahedra
X space for continuous velocity
X∗ dual space of X
X, Y resolved scales (two-scale VMS) or large scales (three-scale

VMS)

X̂, Ŷ small resolved scales (three-scale VMS)
X ′, Y ′ unresolved scales
Xdiv space of weakly divergence-free functions
Xh finite element velocity space
Xh,div finite element velocity space with discretely divergence-free

functions
Y space for continuous pressure
Yh finite element pressure space
Z X × Y
Γ boundary of Ω
δ filter width
ν dimensionless viscosity
νT turbulent viscosity
I identity operator
πh, Π projection operators
τm stabilization parameter for velocity
τc stabilization parameter for pressure, grad-div parameter
Ω bounded domain
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(·, ·) inner product in L2(Ω) or L2(Ω)
(·, ·)ω inner product in L2(ω) or L2(ω)
‖ · ‖k norm in Hk(Ω)
‖ · ‖k,ω norm in Hk(ω)
‖ · ‖k,p norm in W k,p(Ω)
| · |k seminorm in Hk(Ω)
| · |k,ω seminorm in Hk(ω)
| · |k,p,ω seminorm in W k,p(ω)
‖ · ‖F Frobenius norm of a tensor

2 Finite Element Methods for the Incompressible Navier–Stokes
Equations

As already mentioned, VMS methods are based on the variational formulation
of the Navier–Stokes equations (1). This section introduces this formulation
and some properties are summarized. Then, the basic finite element discretiza-
tion, the so-called Galerkin method, is given and important properties are
stated.

2.1 The Incompressible Navier–Stokes Equations

For simplicity of presentation, the case of homogeneous Dirichlet boundary
conditions

u = 0 in (0, T )× Γ

will be considered. Then the appropriate function spaces for velocity and pres-
sure are given by

X =
[
H1

0 (Ω)
]d

=
{
v ∈

[
H1(Ω)

]d
: v = 0 on Γ

}
,

Y = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The variational formulation of (1) is derived by multiplying the momentum
equation with test functions v ∈X, the continuity equation with test functions
q ∈ Y , and with integration by parts of the viscous term and the pressure term.
The resulting variational formulation reads as follows: Find (u, p) : (0, T )→
X × Y such that for all (v, q) ∈X × Y

d

dt
(u,v) + a(u,v) + b(u,u,v)− (∇ · v, p) = 〈f ,v〉 in D∗(0, T ),

(∇ · u, q) = 0 in D∗(0, T ),
u(0,x) = u0(x) in Ω.

(2)

Here, 〈·, ·〉 denotes the duality pairing betweenX and its dualX∗ =
[
H−1(Ω)

]d
and D∗(0, T ) is the space of distributions on (0, T ). The forms a and b are given
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by

a(u,v) = 2ν(D (u) ,D (v)), b(u,v,w) = ((u · ∇)v,w), u,v,w ∈X.

Using that u is divergence-free, one finds that

2ν(D (u) ,D (v)) = ν(∇u,∇v).

Applying Hölder’s inequality, Sobolev imbeddings, interpolation theorems
in Sobolev spaces, Poincaré’s and Korn’s inequality one gets the estimate

b(u,v,w) ≤ C‖u‖1/20 ‖D (u) ‖1/20 ‖D (v) ‖0‖D (w) ‖0 ∀ u,v,w ∈X. (3)

For studying the existence of a velocity solution of (2), this system is
usually considered in the subspace of divergence-free functions

Xdiv = {v ∈X : (∇ · v, q) = 0 for all q ∈ Y } .
The second equation of (2) states that u ∈Xdiv for almost every time. For test
functions from Xdiv, the pressure term in the first equation vanishes such that
only the velocity is left. Then, the velocity solution of (2) can be computed
by solving the following problem: Find u : (0, T ) → Xdiv such that for all
v ∈Xdiv

〈∂tu,v〉+ a(u,v) + b(u,u,v) = 〈f ,v〉 in (0, T ),
u(0,x) = u0(x) in Ω.

(4)

An appropriately defined variational velocity solution satisfies [58,134]

u ∈ L2 (0, T ;Xdiv) ∩ L∞
(
0, T ; L2

div(Ω)
)

(5)

with
L2
div(Ω) =

{
v : v ∈ L2(Ω),∇ · v = 0,v · n|Γ = 0

}
In this space, the divergence has to be understood in the sense of distributions
and the boundary condition in the sense of traces. The initial condition also
makes sense in L2(Ω) as from (5) u is weakly continuous from [0, T ] into
L2(Ω).

The existence of a variational velocity solution can be proved in several
ways, e.g., by considering a sequence of regularized problems [107], with the
Galerkin method [78], or with the semi-group method [133]. However, the
uniqueness of the weak solution is an open problem for the practical relevant
three-dimensional case. Uniqueness can be proved with stronger regularity
assumptions than (5), e.g., with the assumption [130]

u ∈ Ls (0, T ; Lq(Ω)) with
3

q
+

2

s
≤ 1.

The unresolved question of the uniqueness of a variational solution pos-
sesses some impact on the numerical analysis of discretizations of turbulence
models. Topics like error estimates are studied usually with the assumption
of a unique solution of the variational problem. To ensure this property for
the three-dimensional situation, one has to require a regularity of the solu-
tion which is stronger than in the formulation of the variational problem. But
in particular for turbulent flows, it is counterintuitive to assume additional
regularity of the solution.
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2.2 The Galerkin Finite Element Method

The basic idea of finite element methods consists in replacing the infinite-
dimensional spaces (X, Y ) in the definition of the weak problem (2) with finite-
dimensional spaces (Xh, Yh). Here, only the case of conforming finite element
methods will be considered, i.e., the finite-dimensional spaces are subspaces of
the infinite-dimensional spaces Xh ⊂X and Yh ⊂ Y .

This section will describe the basic finite element discretization, the so-
called Galerkin discretization. Analytical tools which will be needed in the
finite element error analysis will be introduced.

The continuous-in-time Galerkin finite element discretization of the Navier–
Stokes equations (2) reads as follows: Find (uh, ph) : (0, T )→Xh × Yh such
that for all (vh, qh) ∈Xh × Yh

(∂tuh,vh) + a(uh,vh) + bs(uh,uh,vh)− (∇ · vh, ph) = 〈fh,vh〉 in (0, T )
(∇ · uh, qh) = 0 in (0, T ),
uh(0,x) = u0,h(x) in Ω,

(6)
where u0,h(x) is an approximation of the initial condition in the finite element
space and bs(uh,uh,vh) is a skew-symmetric form of the convective term, e.g.,

bs(u,v,w) =
1

2
(b(u,v,w)− b(u,w,v)) . (7)

Note that in the case u ∈Xdiv it holds b(u,v,w) = bs(u,v,w). From (3) one
obtains directly

bs(u,v,w) ≤ C‖u‖1/20 ‖D (u) ‖1/20 ‖D (v) ‖0‖D (w) ‖0 ∀ u,v,w ∈X. (8)

For problem (6) to be well posed, the finite element spaces have to satisfy
the so-called discrete inf-sup condition

inf
qh∈Yh,qh 6=0

sup
vh∈Xh,vh 6=0

(∇ · vh, qh)

‖∇vh‖0‖qh‖0
≥ β > 0, (9)

with β constant independent of the triangulation, [8,24].
Given a regular triangulation Th of Ω into a set {K} of simplices, or quadri-

laterals (2D)/hexahedra (3D), the diameter of a mesh cell K is denoted by
hK and h = maxK∈Th hK . The space of continuous functions whose restriction
to each mesh cell of Th is a polynomial of degree less than or equal to k is
denoted by Pk. The space Qk consists of continuous functions whose restric-
tion to each mesh cell is in each variable is a polynomial of degree less than
or equal to k. Popular pairs of spaces that satisfy (9) on simplicial meshes
are the pairs from the Taylor–Hood family Pk/Pk−1, k ≥ 2 from [77] and the
MINI element P bub

1 /P1 from [6]. In P bub
1 , the space P1 is enriched with local

bubble functions (i.e., functions that vanish at the boundaries of all elements
of Th). On hexahedral meshes, again the Taylor–Hood pairs Qk/Qk−1, k ≥ 2,
are popular, but also pairs with discontinuous pressure Qk/P

disc
k−1, k ≥ 2.
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Let Xh,div be the space of discretely divergence-free functions

Xh,div = {vh ∈Xh : (∇ · vh, qh) = 0 for all qh ∈ Yh} .

Note that for all pairs of finite element spaces introduced above it holds
Xh,div 6⊂Xdiv, i.e., the discretely divergence-free finite element functions are
generally not divergence-free. This issue and possible remedies are discussed
comprehensively in the survey [102].

With the discrete inf-sup condition (9), the velocity finite element solution
of (6) can be computed equivalently by solving: Find uh ∈ Xh,div such that
for all vh ∈Xh,div

(∂tuh,vh) + a(uh,vh) + bs(uh,uh,vh) = 〈fh,vh〉 in (0, T ) (10)

and uh(0,x) = u0,h(x). This formulation of the problem will be used in the
finite element analysis.

Analytical tools which are often applied in the finite element error analysis
comprise Young’s inequality

ab ≤ t

p
ap +

t−q/p

q
bq, a, b, p, q, t ∈ R,

1

p
+

1

q
= 1, p, q ∈ (1,∞), (11)

for t > 0, Poincaré’s inequality in X

‖v‖0 ≤ C‖∇v‖0 ∀ v ∈X, (12)

and Korn’s inequality in X

‖∇v‖0 ≤ C‖D (v) ‖0 ∀ v ∈X. (13)

Since the triangulations are assumed to be regular, the following inverse in-
equality holds for each vh ∈ Xh and each mesh cell K ∈ Th, e.g., see [40,
Theorem 3.2.6],

‖vh‖m,K ≤ cinvhl−mK ‖vh‖l,K , 0 ≤ l ≤ m. (14)

The Stokes projection is the solution of the following problem: Find ũh ∈
Xh,div such that

(2ν∇(u(t, ·)− ũh),∇vh) = (p(t, ·),∇ · vh) ∀ vh ∈Xh,div. (15)

Let u(t, ·) ∈ (Hk(Ω))d, p(t, ·) ∈ Hk−1(Ω), k ≥ 1, and Xh possess a (k − 1)th
order approximation property, e.g., Xh is the finite element space Pk−1 on
simplicial meshes or Qk−1 on quadrilateral/hexahedral meshes. Then a scaling
argument of [75, Lemma 5.3] gives the approximation properties of the Stokes
projection

‖u− ũh‖0 + h‖∇(u− ũh)‖0 ≤ Chk
(
‖u(t, ·)‖k +

1

ν
‖p(t, ·)‖k−1

)
, (16)
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and

‖∂t(u−ũh)‖0+h‖∂t(∇(u−ũh))‖0 ≤ Chk
(
‖u(t, ·)‖k +

1

ν
‖p(t, ·)‖k−1

)
, (17)

where the constants depend only on Ω. Even for t = 0, the pressure can be
well defined, e.g., see [74].

Finally, a stability estimate and an error estimate for the finite element
velocity solution will be given. The presentation of the proofs will be omitted
for the sake of brevity. However, the principal approach for deriving results of
this kind is the same as for VMS methods, e.g., see Section 8.4 for a detailed
presentation.

Lemma 1 Let u0,h ∈ Xh,div and f ∈ L2(0, t;X ′), then the finite element
problem (10) has a unique solution uh ∈ Xh and it holds for all t ∈ (0, T )
that

‖uh(t)‖20 + ν‖∇uh‖2L2(0,t;L2)
≤ ‖u0,h‖20 +

1

ν
‖f‖2L2(0,t;X′). (18)

The stability bound (18) depends on the inverse of ν.

Theorem 1 Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with polyhedral
and Lipschitz continuous boundary, let f ∈ L2

(
0, T ;X ′

)
, u0 ∈ L2

div(Ω), and
u0,h ∈ Xh,div. In addition, the following regularities are assumed for the so-
lution of (2)

∂tu ∈ L2
(
0, T ;X ′

)
, ∇u ∈ L4

(
0, T ;L2

)
, p ∈ L2

(
0, T ;L2

)
. (19)

Then the following error estimate holds for the solution uh of (10) and for all
t ∈ (0, T )

‖ (u− uh) (t)‖20 + ν‖∇ (u− uh) ‖2
L2(0,t;L2)

≤ C

{
‖ (u− Ihu) (t)‖20 + ν‖∇ (u− Ihu) ‖2

L2(0,t;L2)

+ exp

(
C

ν3
‖∇u‖4

L4(0,t;L2)

)[
‖u0,h − Ihu(0)‖20

+ν‖∇ (u− Ihu) ‖2
L2(0,t;L2)

+ ν−1
(
‖∂t (u− Ihu) ‖2L2(0,t;X′)

+‖∇ (u− Ihu) ‖2
L4(0,t;L2)

‖∇u‖2
L4(0,t;L2)

+ inf
qh∈L2(0,t;Qh)

‖p− qh‖2L2(0,t;L2)

)
(20)

+
1

ν3/2

(
‖u0,h‖20 +

1

ν
‖f‖2L2(0,t;X′)

)
‖∇ (u− Ihu) ‖2

L4(0,t;L2)

]}
,

where Ihu(t) is a projection of optimal order at time t, e.g., the Stokes pro-
jection, ∂tIhu ∈ L2

(
0, T ;X ′

)
is assumed.

It can be seen that the error bound (20) scales like the exponential of ν−3.
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3 Basic Concepts of VMS Methods

This section discusses basic concepts of VMS methods. Starting point of all
VMS methods is the separation of the flow field into resolved and unresolved
scales. It should be emphasized once more that although this approach is in
principle the same as in LES, the definition of the scales is different. VMS
methods which use just resolved and unresolved scales belong to the class
of two-scale VMS methods. However, the VMS methodology allows further
decompositions of the resolved scales. The most common approach of this
kind is a decomposition of these scales into large resolved scales (or large
scales) and small resolved scales, leading finally to a so-called three-scale VMS
method.

The principal ideas behind two-scale and three-scale VMS methods will
be discussed below. For clearness of presentation, the weak formulation (2) of
the Navier–Stokes equations will be expressed in a short form as follows: Find
(u, p) : (0, T )→X × Y satisfying

A (u; (u, p), (v, q)) = f(v) ∀ (v, q) ∈X × Y (21)

with u(0,x) = u0(x), where A (·; ·, ·) stands for the left-hand side of (2) and
f(·) for the right-hand side of (2).

3.1 Two-Scale VMS Methods

A two-scale VMS method uses a decomposition of the scales in resolved scales
(u, p) and unresolved scales (u′, p′) such that

u = u+ u′, p = p+ p′ (22)

with the underlying direct sum decomposition

X = X ⊕X ′, Y = Y ⊕ Y ′. (23)

It should be emphasized once more that the decomposition of the scales and
the spaces is performed with variational projections.

Inserting decomposition (22) in (21), using the same decomposition for the
test functions, and the linearity of the variational formulation with respect to
the test functions gives

– an equation for the resolved scales

A (u; (u, p) , (v, q)) +A (u; (u′, p′) , (v, q)) = f (v) , (24)

– and an equation for the unresolved scales

A (u; (u, p) , (v′, q′)) +A (u; (u′, p′) , (v′, q′)) = f (v′) . (25)
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To simplify notations, define

U =

(
u
p

)
, V =

(
v
q

)
, and so on.

Now, the form A (·; ·, ·) is decomposed into its linear part and the trilinear
convective term

A (u;U ,V ) = Alin (U ,V ) + b(u,u,v).

Then, (25) can be written in the form

AU
(
U ′,V ′

)
+ b (u′,u′,v′) =

〈
Res

(
U
)
,V ′

〉
(26)

with

AU
(
U ′,V ′

)
= Alin

(
U ′,V ′

)
+ b (u′,u,v′) + b (u,u′,v′) ,〈

Res
(
U
)
,V ′

〉
= f(v′)−Alin

(
U ,V ′

)
− b (u,u,v′) .

Using the linearity of Alin (·, ·) and the trilinearity of b(·, ·, ·), a straightfor-
ward calculation gives that the operator AU

(
U ′,V ′

)
is the Gâteaux derivative

of A(·; ·, ·) at U in the direction of U ′

lim
ε→0

A
(
u+ εu′;U + εU ′,V ′

)
−A

(
u;U ,V ′

)
ε

= lim
ε→0

Alin

(
U + εU ′,V ′

)
+ b (u+ εu′,u+ εu′,v′)−Alin

(
U ,V ′

)
− b (u,u,v′)

ε

= Alin

(
U ′,V ′

)
+ b (u′,u,v′) + b (u,u′,v′) .

Equation (26) provides an interpretation of the unresolved scales in terms
of the resolved scales: The unresolved scales are a function of the residual of
the resolved scales. Hence, there is a representation of the form

U ′ = FU
(
Res

(
U
))
. (27)

Inserting this representation in (24) gives an equation for the resolved scales.

The operator FU is generally not known. However, its knowledge is even
not necessary since if the unresolved scales are modeled with this operator,
then equation (24) has the same complexity as the Navier–Stokes equations.
In this case there is no turbulence modeling. Two-scale VMS methods aim
to approximate FU . Note that the model for FU does not need to rely on
considerations from the physics of turbulent flows, it might be derived just
with mathematical arguments. In Sections 4, 5, and 6 concrete approaches
will be presented.
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3.2 Three-Scale VMS Methods

In a three-scale VMS method, the flow field is decomposed into large (resolved)
scales, small resolved scales, and unresolved scales. Applying this scale sepa-
ration to the underlying solution and test spaces and specifying a direct sum
decomposition yields

X = X ⊕ X̂ ⊕X ′, Y = Y ⊕ Ŷ ⊕ Y ′,

where the three scales are denoted by, respectively, (), (̂) and ()
′
. Accordingly,

one performs the scale decomposition of the solution

u = u+ û+ u′, p = p+ p̂+ p′

and likewise for the test functions v = v + v̂ + v′, and q = q + q̂ + q′.
In the same way as for the two-scale VMS methods, the derivation of a

three-scale VMS method starts by considering the variational form (21) of
the Navier–Stokes equations for the different scales of the test function, using
again that the variational form is linear with respect to the test functions.
This approach results in a coupled system of three equations with respect to
the large scales, small resolved scales, and unresolved scales, which are defined
as follows: Find (u, p) : (0, T )→X × Y satisfying for all (v, q) ∈X × Y
– the large-scale problem

A (u; (u, p), (v, q)) +A (u; (û, p̂), (v, q)) +A (u; (u′, p′), (v, q)) = f(v),
(28)

– the small resolved scale problem

A (u; (u, p), (v̂, q̂)) +A (u; (û, p̂), (v̂, q̂)) +A (u; (u′, p′), (v̂, q̂)) = f(v̂),
(29)

– and the problem for the unresolved scales

A (u; (u, p), (v′, q′)) +A (u; (û, p̂), (v′, q′)) +A (u; (u′, p′), (v′, q′)) = f(v′).
(30)

In the modeling step of a three-scale VMS method, the following assump-
tions are taken into account:

– First, it is not intended to explicitly resolve any quantities which are termed
“unresolved”. Hence, equation (30) for the unresolved scales is neglected.

– It is further assumed that the direct influence of the unresolved scales on
the large scales is negligible, i.e., in (28) it is set

A (u; (u′, p′), (v, q)) = 0.

– Finally, the influence of the unresolved scales onto the small resolved scales
is modeled, i.e., in (29) it is used

A (u; (u′, p′), (v̂, q̂)) ≈ c (u; (u, p), (û, p̂), (v̂, q̂)) . (31)

The turbulence model c(·; ·, ·) will be discussed below.
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The above assumptions lead to an abstract three-scale VMS method that

reads as a coupled system of the form: Find (u, p)× (û, p̂) ∈ (X, Y )× (X̂, Ŷ )
satisfying

A
(
u+ û; (u, p),(v, q)

)
+A

(
u+ û; (û, p̂), (v, q)

)
= f(v) (32)

A
(
u+ û; (u, p),(v̂, q̂)

)
+A

(
u+ û; (û, p̂), (v̂, q̂)

)
+ c
(
u+ û; (u, p), (û, p̂), (v̂, q̂)

)
= f(v̂) (33)

for all (v, q)× (v̂, q̂) ∈ (X, Y )× (X̂, Ŷ ).
This problem may be reduced to a monolithic equations system for the

unknowns uh = u + û, ph = p + p̂ by introducing the spaces Xh = X ⊕ X̂
and Yh = Y ⊕ Ŷ , and the restriction operators

Πm : Xh 7→X and Πc : Yh 7→ Y

by
Πmuh = u, Πcph = p whenever uh = u+ û, and ph = p+ p̂.

Summing up (32) and (33) one obtains the equivalent problem: Find (uh, ph) ∈
(Xh, Yh) satisfying

A
(
uh; (uh, ph), (vh, qh)

)
+ c
(
uh;Π(uh, ph), (I −Π)(uh, ph),(I −Π)(vh, qh)

)
= f(vh) (34)

for all (vh, qh) ∈ (Xh, Yh), where for brevity the notation Π = (Πm, Πc) is
used, and I denote the component-wise extension of the identity operator to
vector-valued functions.

A characteristic feature of a three-scale VMS method is that the turbulence
model c(·; ·, ·) acts directly only on the small resolved scales. However, due to
the coupling of the small resolved and the large scales in (32) and (33), the
model c(·; ·, ·) influences the large scales indirectly. In contrast to this situation,
the turbulence model in a classical LES method acts directly on all resolved
scales.

To specify a concrete three-scale VMS method, one has to define the spaces
for the large and small resolved scales and a model c(·; ·, ·).

For a finite element discretization of (32)–(33), there are two principal
approaches for choosing appropriate spaces:

– In the first approach, standard finite element spaces are used for the large
scales (X × Y ). The finite element spaces for the small resolved scales

(X̂ × Ŷ ) require a higher resolution than the spaces for the large scales
since they should represent smaller scales. A proposal consists in using
bubble functions on the mesh cells for the small resolved scales. A detailed
description of this approach is discussed in Section 7.

– The second way for choosing the spaces consists in using a common stan-
dard finite element space for all resolved scales and an additional large
scale space. Methods of this type will be addressed in Sections 8 and 9.
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In its turn, the discretization of (34) requires a common space Xh × Yh for
the resolved scales and a restriction operator on the large resolved scales. This
operator may be defined by interpolation or projection on a coarser grid. The
explicit space of large resolved scales is not needed, it is implicitly considered
by means of the restriction operator. This kind of methods will be addressed
in Sections 6 and 10 .

The choice of the turbulence model c(·; ·, ·) in (31) may be guided by phys-
ical ideas in turbulence modeling. For VMS methods, widely used turbulence
models are eddy viscosity models of Smagorinsky type. Writing c(·; ·, ·) in the
form

c (u; (u, p), (û, p̂), (v̂, q̂)) := (νTD (û) ,D (v̂)), (35)

three different versions of the Smagorinsky model within VMS methods can
be distinguished, where the second part of the name refers to D (û) in (35):

– the ‘small-small’ model

νT = CSδ
2‖D (û) ‖F, (36)

– the ‘large-small’ model

νT = CSδ
2‖D (u) ‖F, (37)

– the ‘all-small’ model

νT = CSδ
2‖D (û+ u) ‖F. (38)

Here CS denotes a user-chosen constant, δ a scaling factor related to the mesh
width, and ‖ · ‖F the Frobenius tensor norm.

The Smagorinsky model is also a widely used model in LES. Its advantages
and drawbacks are well known. The most severe drawback is that it intro-
duces too much viscosity. To reduce this drawback, in [60,108] the so-called
dynamic Smagorinsky model was proposed, which computes CS a posteriori
as a function in time and space, i.e., CS = CS(t,x). The use of the dynamic
Smagorinsky model is very popular in LES. Also a three-scale VMS method
with Smagorinsky model (with constant CS) can be interpreted as an approach
to reduce the viscosity introduced with this model. Here, the reduction comes
from the feature that the turbulence model is applied directly only to the small
resolved scales and not to all resolved scales.

4 Two-Scale Residual-Based VMS Method

A two-scale VMS method which is based on modeling residuals was proposed
in [10]. The resulting method can be considered as a generalization of classical
stabilization methods for the Navier–Stokes equations.
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4.1 Derivation

Starting point of the derivation of this method is a decomposition of the spaces
of form (23). The resolved scales are defined either by the L2 projection or the
elliptic projection. Note that the decomposition ofX into a direct sum induces
that both the resolved and the unresolved velocity scales have homogeneous
Dirichlet boundary data as the functions in X.

Next, a perturbation series for a potentially small quantity is considered.
This quantity is ε =

∥∥Res
(
U
)∥∥

(X×Y )′
. For this quantity to be small, X × Y

has to be sufficiently large. In fact, it is assumed that the larger X × Y , the
better U approximates U and the smaller is Res

(
U
)
. The perturbation series

is of the form

U ′ = εU ′1 + ε2U ′2 + . . . =
∞∑
i=1

εiU ′i. (39)

In particular, if ε = 0, i.e., Res
(
U
)

= 0, then U ′ = FU
(
Res

(
U
))

= 0.
Inserting the perturbation series (39) in the terms of equation (26) for the

unresolved scales leads to

AU

( ∞∑
i=1

εiU ′i,V
′

)
=
∞∑
i=1

εiAU
(
U ′i,V

′)
and

b

( ∞∑
i=1

εiu′i,
∞∑
i=1

εiu′i,v
′

)
= ε2b (u′1,u

′
1,v
′) + ε3[b (u′1,u

′
2,v
′) + b (u′2,u

′
1,v
′)] + . . .

=
∞∑
i=2

εi

i−1∑
j=1

b
(
u′j ,u

′
i−j ,v

′) .

These terms can be inserted in (26) giving

∞∑
i=1

εiAU
(
U ′i,V

′)+ ∞∑
i=2

εi

i−1∑
j=1

b
(
u′j ,u

′
i−j ,v

′) = ε

〈
Res

(
U
)∥∥Res

(
U
)∥∥

(X×Y )′

,V ′

〉
.

Collecting terms with respect to ε yields

AU
(
U ′1,V

′) =

〈
Res

(
U
)∥∥Res

(
U
)∥∥

(X×Y )′

,V ′

〉
, (40)

AU
(
U ′i,V

′) = −
i−1∑
j=1

b
(
u′j ,u

′
i−j ,v

′) i ≥ 2.

Hence, one obtains a system of variational problems where the computation
of U ′i requires the knowledge of all U ′j with j < i. All equation of this system
have the same linear operator on the left-hand side.
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In [10] it is proposed to truncate the series (39) after the first term, i.e.,

U ′ ≈ εU ′1 =
∥∥Res

(
U
)∥∥

(X×Y )′
U ′1. (41)

The function U ′1 can be obtained formally by solving the linear partial dif-
ferential equation (40) with the operator AU

(
U ′1,V

′). However, solving (40)
analytically is generally not possible and the unresolved scale test functions
are in practice not available. From the mathematical point of view, there is a
formal representation of the solution of (40) with a so-called fine-scale Green’s
operator

U ′1 = G′
U

(
Res

(
U
)∥∥Res

(
U
)∥∥

(X×Y )′

)
. (42)

In [10] it is proposed to use a linear approximation of this operator

U ′1 ≈ τ
Res

(
U
)∥∥Res

(
U
)∥∥

(X×Y )′

,

where τ is a 4× 4 tensor-valued function. Thus, the model of the unresolved

scales, denoted by Ũ
′
, becomes

Ũ
′

= εŨ
′
1 = τRes

(
U
)
.

Now, this approach will be applied to the Navier–Stokes equations (2).
There, the approximation of the resolved scales (uh, ph) is computed in a
standard finite element space. It is proposed in [10] that the parameter τ is a
diagonal tensor-valued functions, i.e.,

τ =

(
τm 0
0T τc

)
=


τm 0 0 0
0 τm 0 0
0 0 τm 0
0 0 0 τc

 . (43)

The model of the unresolved scales has the form

Ũ
′

= τRes

((
uh
ph

))
=

(
τm (f − ∂tuh + ν∆uh − (uh · ∇)uh −∇ph)

−τc (∇ · uh)

)
=

(
resm,h
resc,h

)
. (44)

This model can be inserted in the large scale equation (24).
In [10] it is proposed to neglect the models of the terms

(∂tu
′,vh) and 2ν (D (u′) ,D (vh)) .

Defining the large scales with one of the projections mentioned at the beginning
of this section, then one of these terms will vanish already in the derivation
of the method, the first term if the L2(Ω) projection is used and the second
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term in case of the elliptic projection. Additionally, the term of the continuity
equation with respect to the unresolved scales in (24) is integrated by parts.

Inserting (44) in (24) and using the described modifications gives the re-
solved scale equation: Find uh : (0, T )→Xh, ph : (0, T )→ Yh satisfying

(∂tuh,vh) + (2νD (uh) ,D (vh)) + b (uh,uh,vh) + (∇ · uh, qh)

− (∇ · vh, ph)− (resm,h,∇qh)− (resc,h,∇ · vh) + b (resm,h,uh,vh)

+b (uh, resm,h,vh) + b (resm,h, resm,h,vh) = 〈f ,vh〉 (45)

for all (vh, qh) ∈Xh × Yh.
Concerning the actual choice of the convective term, it is advisable from

the practical point of view that one does not need to compute a derivative of
the residual of the momentum equation. For this reason, it is proposed in [10]
to use the following form of the convective term, which is obtained from the
divergence form with integration by parts

b(u,v,w) =
(
∇ ·
(
uvT

)
,w
)

= −
(
uvT ,∇w

)
. (46)

Direct calculations show that

(∇v)u = (u · ∇)v (47)

and

(uvT ,∇w) =

∫
Ω

(uvT ) : ∇w dx =

∫
Ω

v · (∇wTu) dx = (v,∇wTu). (48)

In the convective term of the resolved scales b (uh,uh,vh) there is no resid-
ual and one can use in practice any other form of the convective term proposed
in the literature.

In analogy to LES models, the terms b (resm,h,uh,vh) and b (uh, resm,h,vh)
are called cross-stress terms. For the first cross-stress term, one obtains from
(46), (48), and (47)

b (resm,h,uh,vh) = −
(
resm,h (uh)

T
,∇vh

)
= −

(
(∇vh)

T
resm,h,uh

)
= −

∫
Ω

(resm,h)
T

(∇vh)uh dx = − (resm,h, (∇vh)uh)

= − (resm,h, (uh · ∇)vh) (49)

and for the second cross-stress term with (46) and (48)

b (uh, resm,h,vh) = −
(
uh (resm,h)

T
,∇vh

)
= −

(
resm,h, (∇vh)

T
uh

)
.

(50)
The last convective term is called subgrid (or Reynolds-stress) term, again in
analogy to LES, and from (46) it is given by

b (resm,h, resm,h,vh) = −
(

(resm,h ((resm,h)
T
,∇vh

)
. (51)
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As already mentioned, a diagonal tensor is used for τ with the compo-
nents τm and τc, see (43). The proposal for choosing τm and τc in [10] is based
on dimensional arguments and not on numerical analysis. A derivation of the
stabilization parameter τm for compressible flow equations based on such ar-
guments can be found in [131]. In this paper, a product of a Jacobian matrix,
τ , and the transposed of the Jacobian is considered. The dimensional argu-
ments lead to the conclusion that the blocks of this product are dimensionally
equivalent to some other matrix. Based on this conclusion, an ansatz for the
product is proposed, which contains the other matrix, and then the stabiliza-
tion parameter is derived. Since the whole derivation is somewhat involved,
its details will not be presented here but only the results.

Consider parametric finite elements with the bijective map FK : K̂ → K
and the inverse map F−1K : K → K̂ with x 7→ x̂. Differentiating F−1K leads
to the definition of the symmetric tensor G with

Gij =
3∑
k=1

∂x̂k
∂xi

∂x̂k
∂xj

, i, j = 1, 2, 3.

Then, the stabilization parameter proposed in [10] is given by

τm =

(
4

∆t2
+ (uh)

T G (uh) + cinvν
2‖G‖2F

)−1/2
, (52)

where cinv is the constant in the inverse estimate (14).

For the stabilization parameter τc, the vector g with gi =
∑3
j=1 ∂x̂j/∂xi

is defined and the proposal in [10] consists in setting

τc =
(
τmg

Tg
)−1

. (53)

The stabilization parameters (52) and (53) will be discussed in detail for a
special case in Example 1.

Example 1 Consider the reference cube K̂ = [−1, 1]3 and let K be a cube with
edges of length h which are parallel to the coordinate axes. Then the reference
map has the form

FK : K̂ → K, x̂ 7→ 1

2

h 0 0
0 h 0
0 0 h

 x̂+ b = x.

Considering the inverse map, one finds that

∂x̂i
∂xj

=
2

h
τij , Gij =

4

h2
τij , ‖G‖2F =

48

h4
, (uh)

T G (uh) =
4

h2
‖uh||22.

Then, the stabilization parameter τm becomes

τm =

(
4

∆t2
+

4‖uh‖22
h2

+
48cinvν

2

h4

)−1/2
. (54)
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For the parameter τc, one obtains gi = 2/h for i = 1, 2, 3, such that gTg =
12/h2 and

τc =
h2

12τm
. (55)

Now, the parameters (54) and (55) will be discussed for the different cases
in which one of the terms in (54) dominates:

• The term 4/∆t2 dominates in (54), i.e., ∆t is very small. Then one obtains
τm = O(∆t) and τc = O(h2/∆t).
• The term 4‖uh‖22/h2 dominates in (54), i.e., there is a strong convection

and ∆t % h. In this case, one gets τm = O(h) and τc = O(h).
• The term 48cinvν

2/h4 is dominating in (54), i.e., the viscosity dominates
or the mesh is very fine and ∆t % h2. This situation leads to τm = O(h2)
and τc = O(1).

Thus, the parameter choice in the second and third case is the same as for
equal-order discretizations of the Oseen equations, see [124, Part IV, Sec-
tion 3.1] or [22]. In fact, in [10] the two-scale residual-based VMS method was
applied with equal-order non-uniform rational B-splines (NURBS). �

Considering the physical units of the stabilization parameters, one finds
that

τm :
[(

1/s2 + m2
/(s2m2) + m4

/(s2m4)
)−1/2]

= [s]

and
τc :

[
(s/m2)

−1
]

=
[
m2
/s
]
.

Thus, τm is a time scale and τc is a viscosity scale, and they are respectively
the time and viscous scales of the subgrid flow.

For ∆t→ 0 it holds that τm → 0 and τc →∞. An alternative definition of
the stabilization parameters for small time steps, which avoids this behavior,
was proposed in [79].

It can be expected that the parameter in the case of using velocity and
pressure finite element spaces that satisfy the discrete inf-sup condition (9) has
to be chosen in a different way than proposed in [10]. This expectation is based
on the different choices for the Oseen equations, see [124, Part IV, Section 3.1].
In addition, numerical analysis for the transient Oseen equations with grad-div
stabilization in [50] shows that τc = O(1) is the asymptotic optimal choice in
the convection-dominated regime, in contrast to τc = O(h) as it was found in
Example 1. Since to the best of our knowledge, the two-scale residual-based
VMS method was not used so far with inf-sup stable pairs of finite element
spaces, the asymptotic correct choice of the stabilization parameter seems to
be an open problem in this case.

In [59] it is proposed to model the unresolved velocity scales or the subgrid
scale velocity with

∂tũ
′ +

1

τ̃m
ũ′ = f − [∂tuh − ν∆uh + (uh · ∇)uh +∇ph] , (56)
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instead of (44). A time-dependent evolution of the unresolved velocity scales
of this form was proposed in [48], see also Section 5 for a VMS method based
on time-dependent orthogonal subgrid scales.

4.2 Relations to Other Methods

From (45) and (49) it follows that

b (resm,h,uh,vh)− (resm,h,∇qh) = − (resm,h, (uh · ∇)vh +∇qh) . (57)

This term has just the form of the stabilization term of the Streamline-Upwind
Petrov–Galerkin (SUPG) method for the convection field uh.

Inserting the concrete formula of the residual of the continuity equation
gives the term

(τc∇ · uh,∇ · vh) , (58)

which is just a so-called grad-div stabilization term.
Both terms (57) and (58) are classical stabilization terms for the incom-

pressible Navier–Stokes equations.
There are similarities, but also differences, to the two-scale VMS method

with orthogonal subgrid scales presented in Section 5. A discussion of these
issues is postponed to Section 5.2.

4.3 Numerical Analysis

Numerical analysis for the two-scale residual-based VMS method (45) is not
available. However, the grad-div stabilization and the SUPG method are ana-
lyzed for the Stokes, the Oseen, and the stationary Navier–Stokes equations.

The grad-div stabilization (58) arises from adding −τc∇(∇ · u) = 0 to
the momentum equation in (1). Deriving the discrete weak form and applying
integration by parts leads to the term (τc∇ · uh,∇ · vh). Since in finite element
methods the velocity is generally not weakly divergence-free, i.e., ∇ · uh 6= 0,
the discretization (58) of this term has an effect on the finite element solution.
Altogether, the grad-div stabilization can be considered as a penalization of
the violation of the continuity equation for finite element velocities.

The grad-div stabilization was introduced in [54]. It is well understood for
the Stokes equations

−ν∆u+∇p = f in Ω,
∇ · u = 0 in Ω

(59)

and for finite element methods which satisfy the discrete inf-sup condition (9).
Numerical analysis, e.g., in [90,117] shows that for finite element discretiza-
tions satisfying (9) the choice of the stabilization parameter τc = O(1) with
respect to the mesh width leads to optimal error estimates. However, a good
choice of τc depends usually on (unknown) norms of the solution (u, p) of
(59) and on whether or not the sequence of weakly divergence-free subspaces
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contained in the discretely divergence-free spaces Xh,div has an optimal ap-
proximation property.

The SUPG method was introduced in [81,28] for stabilizing scalar convection-
dominated convection-diffusion equations. Stabilizations of the Oseen equa-
tions and the stationary Navier–Stokes equations which contain the SUPG
term were analyzed in [72,111,136,53], and extensions of the analysis can be
found in [137,110,114]. Surveys of the results are provided in [22,124].

The SUPG stabilization (57) was studied in particular for the Oseen equa-
tions

−ν∆u+ (b · ∇)u+ cu+∇p = f in Ω,
∇ · u = 0 in Ω,

(60)

where b is a given weakly divergence-free convection field and c(x) ≥ 0 in
Ω. In the numerical analysis, the SUPG method was often considered with
the grad-div stabilization (58) and the so-called pressure stabilization Petrov–
Galerkin (PSPG) method. The PSPG method, introduced in [84], stabilizes
pairs of finite element spaces that violate the discrete inf-sup condition (9).

Altogether, the SUPG/PSPG/grad-div finite element problem has the form:
Given f ∈ L2(Ω), find (uh, ph) ∈Xh × Yh such that

A ((uh, ph) , (vh, qh)) = L ((vh, qh)) ∀ (vh, qh) ∈Xh × Yh, (61)

with

A ((u, p) , (v, q))

= ν (∇u,∇v) + ((b · ∇)u+ cu,v)− (∇ · v, p) + (∇ · u, q)
+
∑
K∈Th

τc,K (∇ · u,∇ · v)K +
∑
E∈Eh

γE ([|p|]E , [|q|]E)E (62)

+
∑
K∈Th

(−ν∆u+ (b · ∇)u+ cu+∇p, τvK (b · ∇)v + τpK∇q)K

and
L ((v, q)) = (f ,v) +

∑
K∈Th

(f , τvK (b · ∇)v + τpK∇q)K . (63)

Here, τc,K , γE , τ
v
K , τ

p
K are local stabilization parameters and [|·|]E denotes the

jump across the face E of a mesh cell K.
Main goals of the numerical analysis are to show the existence and unique-

ness of a solution of (61) and to prove finite element error estimates. These
estimates allow to derive information on asymptotic optimal choices of the
stabilization parameters in (62), (63).

In the available analysis, the stabilization parameters for stabilizing veloc-
ity and pressure were set to be equal τm,K = τvK = τpK . For all K ∈ Th, it is
set

τm = max
K∈Th

τm,K , τc = max
K∈Th

τc,K , γ = max
E∈Eh

γE .

The well-posedness of problem (61) can be proved by deriving an inf-sup con-
dition for the bilinear form A from (62) with respect to an appropriate norm.
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The proof of this inf-sup condition poses some restrictions on the stabilization
parameters. Then a finite element error analysis can be performed. Equili-
brating terms in the error bound gives for the convection-dominated case the
following optimal choices of the stabilization parameters:

– for pairs of finite element spaces satisfying the discrete inf-sup condition
(9) and the polynomial degree of the velocity space is higher by one than
polynomial degree of pressure space: τm = O(h2), τc = O(1), and if Yh 6⊂
H1(Ω) then γ = O(h),

– for pairs of finite element spaces that does not satisfy the discrete inf-sup
condition and the polynomial degree of velocity and pressure space is the
same: τm = O(h), τc = O(h), and if Yh 6⊂ H1(Ω) then γ = O(1).

In simulations of turbulent flows, the use of anisotropic grids, in partic-
ular near the boundary, is often of great advantage. A numerical analysis of
residual-based stabilized finite element methods (SUPG/PSPG/grad-div sta-
bilization) of the Oseen equations on anisotropic meshes was performed in
[2].

A numerical analysis of the SUPG stabilization for time-dependent prob-
lems is available so far only for scalar convection-diffusion equations in [103].
Optimal error estimates for the backward Euler scheme and for rather general
assumptions on the data were derived for a stabilization parameter τm ≤ ∆t/4.
Thus, the stabilization parameter depends on the length of the time step as
in (52) and (54).

In [88], an explicit formula for the fine-scale Green’s function (42) was de-
rived. This function can be expressed in terms of the classical Green’s function
and the projection that defines the scale decomposition, see the beginning of
Section 4.1 for possible approaches. A detailed analytical study of the fine-
scale Green’s function was performed for convection-diffusion equations in one
dimension. It was shown that in the convection-dominated case the form of
this function depends strongly on the projection. If the elliptic projection is
used, then the fine-scale Green’s function possesses the desirable properties to
be localized and attenuated, in contrast to the situation for the L2 projection.

4.4 Experience in Numerical Simulations

In [10] the two-scale residual-based VMS method was studied at an example
for isotropic turbulence and at a benchmark problem of a turbulent channel
flow with Reynolds number Reτ = 395 based on the friction velocity and the
channel half width. For the turbulent channel flow it was observed that the
results for first and second order statistics obtained with quadratic NURBS
are almost identical to DNS results. A significant increase in accuracy was
observed when using second order NURBS instead of first order NURBS (Q1

finite elements). The authors consider the results with second order NURBS
to be more accurate than those obtained with a spectral Fourier method from
[87].
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The two-scale residual-based VMS method from [10] and the algebraic
VMS method AVM3 described in Section 9, both applied with Q1/Q1 finite
elements, were compared in [63] for a turbulent channel flow problem and
a turbulent flow in a lid driven cavity. With respect to several quantities of
interest, the two-scale residual-based VMS method showed less accurate re-
sults. In these studies, the simulations with the two-scale residual-based VMS
method were also somewhat less efficient. Computational studies in [65] for
a turbulent flow around a cylinder showed only small differences between the
residual-based VMS method and AVM3. From the point of view of efficiency,
both VMS methods proved to be clearly superior to the popular dynamic
Smagorinsky model.

In [59], equation (56) was discretized in a space consisting of bubble func-
tions. The stabilization parameter τ̃m which was proposed in [59] possesses the
asymptotic behavior τ̃m = O(h) in the convection-dominated regime. Equal-
order pairs of finite element spaces, e.g., Q1/Q1, were used in the numerical
studies. These studies were performed at the turbulent channel flow bench-
mark problems. It turned out that in the case of a length of the time step that
was not too small, the differences of the results obtained with the steady-state
model of the unresolved scales (44) and the time-dependent model (56) were
small. However, for the time-dependent model (56), the results were more ro-
bust in the sense that the length of the time step did not possess much impact
on the results. For the steady-state model, the length of the time step enters
the definition of the stabilization parameters (52) and (53). In particular, τm
becomes small, see the discussion of the stabilization parameters at the end
of Section 4.1, and a notable impact of the length of the time step on second
order statistics was observed.

A rotating turbulent flow, the so-called Taylor–Couette flow, was success-
fully simulated in [9] with the two-scale residual-based VMS method using C1

NURBS, weak imposition of Dirichlet boundary conditions, and adaptive grid
refinement.

A direct calculation shows that the nonlinear term can be split in the form

(u · ∇)u = (Du)u+
1

2
(∇× u)× u,

where ∇×u is the vorticity. A VMS method that uses a residual-based model-
ing for the unresolved scales of the terms on the right-hand side of this equation
was proposed and studied numerically in [15,14].

A residual-based VMS method with time-dependent subgrid scales for
variable-density flows at low Mach number was proposed in [67].

5 Two-Scale VMS Method with Orthogonal Subscales

A residual-based VMS method that uses orthogonal subscales was developed
in [44] for the Navier–Stokes problem. This model is referred as orthogonal
subscales (OSS) method.
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5.1 Derivation

As for the two-scale residual-based VMS method derived in Section 4.1, start-
ing point of the OSS method is a decomposition of the spaces of form (23).
The resolved scales are represented in a standard finite element space. The
space of continuous solutions Z = X × Y is decomposed into Z = Zh ⊕ Z ′,
where Zh = Xh × Yh represents the resolved scales, and Z ′ = X ′ × Y ′ rep-
resents the unresolved scales. In this context, the space Z ′ is called the space
of subgrid scales or subscales. Correspondingly, the solution is decomposed as
U = Uh + U ′ and the test functions in the form V = V h + V ′. With the
notations of Section 3, this corresponds to X = Xh, Y = Yh.

The OSS method is derived as in [44] by considering first the transient
Oseen equations, so that the convection velocity is a given solenoidal velocity
field b. To present this method, let

M = diag(Id, 0),

where Id is the d× d identity matrix, and consider an approximation of prob-
lem (24)–(25) in time by the trapezoidal rule, to analyze how does the time
discretization affect the OSS method when using finite differences. Consider a
uniform partition of the time interval [0, T ] with time step ∆t. The time step
level at which the algorithmic solution is computed is denoted by a super-
script. For θ ∈ [0, 1] and U ′,n known, the trapezoidal rule applied to equation
(26) for the unresolved scales (with the convection velocity u = b) consists of
finding U ′,n+θ as the solution of the problem

(MδtU
′,n,V ′) + 〈Lb(U ′,n+θ),V ′〉 = 〈Res(Un+θ

h ),V ′〉 ∀V ′ ∈ Z ′, (64)

where δtU
′,n =

1

∆t
(U ′,n+1 −U ′,n), Lb is the linear operator defined as

Lb(U) =

(
−ν∆u+ (b · ∇)u+∇p

∇ · u

)
,

and Res(Un+θ
h ) is the residual associated to Un+θ

h

Res(Un+θ
h ) = F −

[
MδtU

n
h + Lb(Un+θ

h )
]
, F =

(
f
0

)
.

The following notation is used throughout this section

fn+θ := θfn+1 + (1− θ)fn, δtf
n :=

1

∆t
(fn+1 − fn),

for any function f . For the sake of simplicity, it is considered throughout
this section that F is time-independent and that the force vector belongs to
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the finite element space, or it is approximated by an element of this space.
Equation (64) may be equivalently rewritten as(

M
1

θ∆t
U ′,n+θ,V ′

)
+ 〈Lb(U ′,n+θ),V ′〉

=

(
M

1

θ∆t
U ′,n,V ′

)
+ 〈Res(Un+θ

h ),V ′〉, (65)

from where a closed-form expression for U ′ has to be proposed.
The residual-based OSS strategy consists in setting the unresolved space

as
Z ′ = Z⊥h ∩Z,

where Z⊥h is the L2(Ω)-orthogonal complement of Zh, and in further approx-
imating

Z ′ ≈ Z ′h =

[ ∑
K∈Th

H1
0(K)

]
∩Z⊥h ,

being thus Z ′h a bubble finite element space. The goals is now to properly
approximate U ′ ≈ U ′h ∈ Z

′
h.

Denote U ′K = U ′h|K and assume that Lb(U ′,n+θK ) and Res(Un+θ
h ) have

L2(K) regularity. The operator Lb restricted to functions of H1
0(K) is approx-

imated by a diagonal operator, so that

M
1

θ∆t
U ′,n+θK + Lb(U ′,n+θK ) ≈

(
M

1

θ∆t
+ λK

)
U ′,n+θK , (66)

with λK being a d × d non-singular diagonal matrix. Then, equation (65) is
discretized by(

U ′,n+θK − τ t,K
(
M

1

θ∆t
U ′,nK + Res(Un+θ

h )|K
)
,V ′K

)
K

= 0 ∀ K ∈ Th,

for any V ′h ∈ Z
′
h, V ′K = V ′h|K , τ t,K =

(
M

1

θ∆t
+ τ−1K

)−1
, and τK = λ−1K .

Thus, one obtains(
U ′,n+θh − τ t

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)
,V ′h

)
= 0 ∀ V ′h ∈ Z

′
h,

where τ t denotes the time-dependent piecewise constant matrix function that
takes the value τ t,K on K. One can prove that space Z ′h is dense in Z⊥h in
the L2 norm, thus deducing(

U ′,n+θh − τ t
(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)
,V ′h

)
= 0 ∀ V ′h ∈ Z

⊥
h ,

and, as a consequence

ΠZ⊥h

(
U ′,n+θh − τ t

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

))
= 0,
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where ΠZ⊥h denotes the L2(Ω)-orthogonal projection on Z⊥h . Since U ′,n+θh ∈
Z ′h ⊂ Z

⊥
h , then ΠZ⊥h (U ′,n+θh ) = U ′,n+θh , and

U ′,n+θh = ΠZ⊥h

[
τ t

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)]
.

To simplify the computations, a further approximations may be considered

U ′,n+θh ≈ τ tΠZ⊥h

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)
. (67)

Indeed, for all V ′h ∈ Z
′
h one could write(

ΠZ⊥h

(
τ t

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

))
,Z ′h

)
=

(
τ t

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)
,Z ′h

)
=
∑
K∈Th

τ t,K

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h ),Z ′h

)
K

≈
∑
K∈Th

τ t,K

(
ΠZ⊥h

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)
,Z ′h

)
K

=

(
τ tΠZ⊥h

(
M

1

θ∆t
U ′,nh + Res(Un+θ

h )

)
,Z ′h

)
.

Again, from (67), since U ′,nh ∈ Z
′
h ⊂ Z

⊥
h , then ΠZ⊥h (U ′,nh ) = U ′,nh , and

U ′,n+θh ≈ τ t
[
M

1

θ∆t
U ′,nh +ΠZ⊥h

(
Res(Un+θ

h )
)]
. (68)

Next, to introduce this approximation of U ′,n+θh in the equation for the re-
solved scale (24) discretized in time (with convection velocity u = b), denote
by L∗b the adjoint operator of Lb, given by

L∗b(V ) =

(
−ν∆v − (b · ∇)v −∇q

−∇ · v

)
.

Observe that if L∗b(V h|K) has L2(K) regularity, then using U ′h|∂K = 0 for all
K ∈ Th one has(

MδtU
′,n,V h

)
+ 〈Lb(U ′,n+θ),V h〉 ≈ 〈Lb(U ′,n+θh ),V h〉

= 〈L∗b(V h),U ′,n+θh 〉

=
∑
K∈Th

(
L∗b(V h),U ′,n+θh

)
K
,

where
(
MδtU

′,n,V h

)
= 0, since MδtU

′,n is orthogonal to Zh. Also, ob-
serve that ΠZ⊥h (MδtU

n
h) = 0, since MδtU

n
h is a finite element function, and

ΠZ⊥h (F ) = 0, because of the hypotheses on F .
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These modeling steps lead to the discretized equations for Uh: Given Un
h,

find Un+1
h ∈ Zh such that

(MδtU
n
h,V h) + 〈Lb(Un+θ

h ),V h〉 −
(
L∗b(V h), ΠZ⊥h

(
Lb(Un+θ

h )
))
τ t

= 〈F ,V h〉 −
(
L∗b(V h),M

1

θ∆t
U ′,nh

)
τ t

, (69)

for all V h ∈ Zh, where (·, ·)τ t stands for the inner product defined by

(U ,V )τ t
= (τ tU ,V )Ω =

∑
K∈Th

τ t,K(U ,V )K .

In practice, as performed in Section 4.1, the stabilizations of velocity and
pressure are decoupled. Hence, one considers a structure for the stabilization
matrices as

τ t,K =

(
τ tm,KId 0

0T τc,K

)
,

where τ tm,K , τc,K ∈ R respectively are stabilization coefficients for velocity and

pressure, and τ tm,K =

(
1

θ∆t
+ τ−1m,K

)−1
. Then, the (·, ·)τ t inner product has

the structure

(U ,V )τ t
=
∑
K∈Th

τ tm,K(u,v)K +
∑
K∈Th

τ c,K(p, q)K . (70)

Inserting (70) in (69) leads to the discretized resolved scale equations

(δtu
n
h,vh) + a

(
un+θh ,vh

)
+ b

(
b,un+θh ,vh

)
+
(
∇ · un+θh , qh

)
−
(
∇ · vh, pn+θh

)
+
(
ΠX⊥h (b · ∇un+θh +∇pn+θh ), b · ∇vh +∇qh

)
τt
m

(71)

+
(
ΠY ⊥h

(∇ · un+θh ),∇ · vh
)
τc

= 〈f ,vh〉+
1

θδt
(u′,nh , b · ∇vh +∇qh)τt

m

for all (vh, qh) ∈Xh × Yh, with obvious notation. Second order derivatives of
finite element functions within element interiors have been neglected in (71).
They are exactly zero for linear elements, and for higher order interpolations,
disregarding them leads to a method which is still consistent, in a sense pointed
out in [44, Remark 4].

Problem (71) is the effective OSS method used as VMS discretization of
the transient Oseen equations, where ΠX⊥h = I − ΠXh

, ΠY ⊥h
= I − ΠYh

,

being ΠXh
(resp., ΠYh

) the orthogonal projection on space Xh (resp., Yh)
with respect to the inner product (·, ·)τt

m
(resp., (·, ·)τc). A possible alternative

is to assume that the subscales do not change in time, and thus

U ′,n+θh = U ′,nh = −τΠZ⊥h
[
Lb(Un+θ

h )
]
,
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with

τ =

(
τmId 0
0T τc

)
.

This approach would lead to the same stabilization terms as for the station-
ary problem. Since this basic assumption consists of neglecting the temporal
variation of the subscales, these latter are called quasi-static subscales in this
context. For quasi-static subscales, the second term in the right-hand side of
(71) disappears and there is no need to store u′,nh . However, when the quasi-
static assumption is not used (cf. [48]), subscales need to be tracked by the
formula derived from (68)

u′,n+θh = τ tm
1

θ∆t
u′,nh − τ

t
m(I −ΠXh

)(b · ∇un+θh +∇pn+θh ).

As for dynamic LES closures, the OSS approach with dynamic subscales allows
to model backscatter, as shown in [118,47].

The extension to the Navier–Stokes problem follows by considering b =
un+θ in (71). A fixed point (or Picard) algorithm could be considered for
linearization (i.e., the advection velocity is given by b = un+θ,i−1), which leads

to a transient Oseen problem for the velocity un+θ,ih within each iteration step
to which applies the previous formulation. However, there is an important
remark to be made. When the unknown velocity is split into its finite element
component and the subscale, this decomposition also affects the advection
velocity b, that is to say, one will have b = un+θ,i−1h +u′,n+θ,i−1h . This splitting
implies that the velocity subscale not only need to be tracked in time, but also
along the iterative process.

In the literature, the stabilization coefficients τm,K , τc,K are computed by

(a) dimensional or convergence (a priori error) analysis (cf. [41,42,43]), or by
(b) Fourier analysis (cf. [44,46]),

being the dimensional analysis approach the simplest way to recover the ex-
pressions for τm,K , τc,K , by taking τK = F (ν, hK , ‖b‖∞,K), where F is a ma-
trix function whose structure aims at equalizing the dimensions of all terms of
the method (applied in a first stage to simplified equations, such as convection-
diffusion equations). In the case (a), one obtains for τm,K the expression

τm,K =

(
c1

ν

h2K
+ c2

‖b‖∞,K
hK

)−1
, (72)

while in the case (b), one obtains for τm,K the expression

τm,K =

[(
c1

ν

h2K

)2

+

(
c2
‖b‖∞,K
hK

)2
]−1/2

, (73)

where (72) and (73) yield a similar structure that takes into account the local
balance between convection and diffusion, and are asymptotically equivalent
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in ν, hK , ‖b‖∞,K . In both case, one has

τc,K =
h2K

c1τm,K
. (74)

In expressions (72)–(74), c1, c2 are positive algorithmic constants properly
tuned (usually by an a priori error analysis). In most papers on OSS, it is
recommended to take the values c1 = 4, c2 =

√
c1 = 2 for linear elements (a

choice justified from the analysis of the one-dimensional convection-diffusion
equation and from many numerical experiments), and use the same values of
the algorithmic constants for quadratic elements, but taking hK half the ele-
ment size (roughly the distance between locations of the degrees of freedom of
the element).

Remark 1 The above derivation of expression (68) for U ′h is based upon the
assumption that the operator Lb restricted to Zh|K is approximated by a diag-
onal operator. This assumption has been justified for the convection-diffusion
equation in [39].

5.2 Relations to Other Methods

The OSS method is strongly related to the two-scale residual-based VMS
method developed in [10] and described in Section 4.1. Indeed, both are two-
scale VMS methods which are residual-based (see [38, Sections 11.1, 11.7.2]),
that is the basic procedure is to keep all terms in the residual-driven struc-
ture of the resolved flow equations and to perform an approximated analytical
element-wise solution of the small-scale flow. Thus, both methods are con-
sistent methods, in the sense that the continuous solution exactly satisfies
the discrete equations, whenever it is smooth enough. The two methods con-
tain models for the Reynolds-stress and both cross-stress terms, in contrast to
classical stabilization procedures such as SUPG for instance, that accounts for
only one of the cross-stress terms (see Section 4.2), thus making both methods
powerful and efficient tools for the challenging computation of turbulent flows,
specially in transient and non-equilibrium regimes. Moreover, these procedures
do not make use of the statistical theory of equilibrium turbulence, and no ad-
hoc eddy viscosity modeling is required for both methods. At this respect,
it has been analyzed that one of the relevant features of the OSS method is
that it introduces the right amount of numerical diffusion on the large scales
which is asymptotically equivalent, as the Reynolds number increases, to the
eddy viscosity dissipated by the unresolved scales (cf. [118,47,70]), given a
sufficiently fine computational mesh with characteristic mesh cell size h in the
inertial subrange of the studied (isotropic) turbulent flow.

One may note that the main difference between the two methods consists
in the approximation of the unresolved scales. In the OSS method, only the
orthogonal projection of the residual on the mean scales space is included.
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Indeed, if one considers the quasi-static version of the OSS method, the unre-
solved scales are approximated as

U ′ ≈ τΠh(Res(Uh)), (75)

where Πh = ΠZ⊥h , while for the two-scale residual-based VMS method this
approximation holds but with the essential difference Πh = I, and thus

U ′ ≈ τ (Res(Uh)). (76)

5.3 Numerical Analysis

A numerical analysis for the OSS method applied to the Navier–Stokes prob-
lem, with convection velocity split into its finite element component and the
subscale, is not available. The subgrid terms have a complex structure that in-
cludes convective interactions between large and small scales, thus setting seri-
ous technical problems just to prove stability. However, several results from the
numerical analysis of the OSS method have been obtained for the convection-
diffusion-reaction equations in [42], for the Oseen equations in [48,45], and
also for its extension to the steady linearized primitive equations of the ocean
in [37], always in the context of uniformly regular grids.

In [42], the stability and error analysis of the OSS method for the advection-
diffusion-reaction equations is performed, proving optimal error estimates.
This analysis have been further extended to the (stationary) Oseen equations.
In [45], it is shown that the OSS formulation adapted to the Oseen equations
is stable and optimally convergent to smooth solutions under proper regularity
assumptions on the advection velocity, and an adequate choice of the algorith-
mic parameters on which the method depends. Also a simple modification of
the OSS method that introduces less coupling in the discrete velocity-pressure
equations and possesses slightly better stability properties has been analyzed:
the idea is to control separately the components of b · ∇uh and ∇ph τm-
orthogonal to Xh, that is to use a sort of “term-by-term” stabilization, which
would lead to the stabilizing term(
ΠX⊥h (b · ∇uh), b · ∇vh

)
τm

+
(
ΠX⊥h (∇ph),∇qh

)
τ ′m

+
(
ΠY ⊥h

(∇ · uh),∇ · vh
)
τc

to be added to the standard Galerkin formulation, where the parameters τm
and τ ′m could even be taken different. Dropping the orthogonal projections, this
method reduces to a general version of the method analyzed in [32], which has
a consistency error that makes it only applicable with P1 finite elements. In
any case, the numerical analysis is based upon specific discrete inf-sup condi-
tions for the stabilized approximations, which allow the use of equal velocity-
pressure interpolations and are essential for the stability of the methods. Also,
optimal control on the streamline derivative of the velocity field is guaranteed.
In [48], the stability analysis is extended to the transient Oseen equations with
tracking in time of the subscales.
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In [37], the extension of the analysis to the steady linearized primitive
equations is performed, by also adding a convergence analysis. Optimal error
estimates are obtained for smooth flows, again under proper regularity as-
sumptions on the advection velocity. The performed analysis is an extension
of the unified analysis of stabilized and mixed methods carried out for Stokes
equations in [33]. The main contribution from the analytical point of view is
the proof of a specific discrete inf-sup condition for the surface pressure, that
allows to estimate its L2 norm in terms of the subgrid scales of the surface
pressure gradient, that are specifically bounded by the OSS discretization.

5.4 Experience in Numerical Simulations

Numerical studies with OSS method applied to incompressible flows may be
found in numerous publications. On the one hand, the numerical simulations
were performed to test the optimal convergence rate of the method for smooth
flows. On the other hand, the goal was to test the performance of the method
in simulating turbulent flows. Different variants of the method were tested,
depending on the following factors: Quasi-static or transient subscales, time-
step dependency or not of the stabilization parameter, linear or nonlinear
splitting of the convective velocity with respect to the subscales. Most of the
comparisons were performed with respect to the algebraic subgrid scale method
(ASGS), which consists in taking the subscales in the space of the residuals,
and thus is equivalent to the two-scale residual based VMS method described
in Section 4.1 when quasi-static subscales are used, the time-step dependency
is included in the stabilization parameter, and the nonlinear scale splitting is
applied in the finite element equation only, and not in the subscale equation.
The numerical results highlighted the excellent accuracy of the OSS method
in the simulation of turbulent incompressible flows.

In [44], the numerical examples presented, the classical cavity flow problem
in two dimensions at Reynolds number Re = 5000 and the two-dimensional
flow around a cylinder at Re = 100, aimed to demonstrate that the OSS
method introduces less numerical diffusion than the ASGS method, while be-
ing equally stable. In particular, peaks were better captured. Likewise, in spite
of the smaller amount of numerical diffusion, the evolution to the steady state
was similar using the OSS and the ASGS method. Thus, the OSS can be con-
sidered as an alternative to reach steady states in a flow calculation. In general,
considering transient subscales led to better results, both in terms of accuracy
(with higher amplitudes and frequencies, that is, less numerical dissipation),
and of stability, eliminating some pressure oscillations in time encountered
when the subscales are considered quasi-static. However, if ∆t is much larger
than τm, it seemed to be not necessary to track the subscales in time, since
considering them as quasi-static gave very similar results. It is also stated
that, concerning the computational cost for transient calculations, the OSS
formulation was very competitive with respect to the ASGS method, some-
times even cheaper, since less stabilizing terms appear. Moreover, these terms
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do not depend on the whole residual of the Navier–Stokes equations, which in
some situations may be expensive or very difficult to evaluate. Examples for
such situations are the presence of thermal or electromagnetic couplings, Cori-
olis forces, and, above all, nonlinear viscosities, coming either from nonlinear
constitutive models or from turbulence modeling.

The case of a turbulent flow over a cuboid-shaped surface was considered
in [118]. A Reynolds number Re = 4500 based on the inflow velocity and ob-
stacle height was considered. In this work, the OSS approach with transient
subscales was implemented, and it was shown capable to predict backscatter,
as just for dynamic LES models, mainly close to boundary and shear lay-
ers, where it is known it could appear. Also, the possibility to add a simple
Smagorinsky model to the OSS formulation was considered. In this case, the
numerical results showed that the numerical dissipation is of the same order
as the subgrid dissipation introduced by adding the Smagorinsky model, ex-
cept in the zone of strong anisotropy (boundary and shear layers), where the
dissipation coming from adding the Smagorinsky model was higher than the
numerical one. The numerical evidences obtained here have been also experi-
enced and summarized in [47], where a more comprehensive comparison be-
tween the performance of the OSS discretization for fully developed turbulent
flows with and without the Smagorinsky model was analyzed. In particular,
two long term three-dimensional simulations, namely a flow over a plate and
a telescope, were reported. The first example considers a flow over a circular
plate supported on a column and inclined. It showed how the −7/3 slope of the
Kolmogorov pressure spectrum was well approximated by the OSS method.
The second example, the flow around a telescope, was intended to demonstrate
that the OSS method is also applicable to real flow problems. This problem
consists in the aerodynamic analysis around a building enclosing a large tele-
scope, where modeling turbulence is crucial to determine the optical quality
of the site where the telescope is placed. Again, the scientifically relevant issue
is whether or not the OSS model is able to capture the inertial range of the
Kolmogorov spectrum: it was observed that the pressure spectrum computed
by using the OSS method displays the correct −7/3 slope without using the
Smagorinsky model. The computation of some other relevant punctual statis-
tics revealed, as expected, that results are more dissipative with the addition
of the Smagorinsky model than without it.

Finally, an assessment of the OSS formulation modeling turbulent flows was
performed in [49]. The OSS formulation was tested for the decay of homoge-
neous isotropic turbulence (DHIT), the Taylor–Green vortex (TGV) problem,
and the turbulent channel flow (TCF). Thus, both bounded and unbounded
flows are considered.

The DHIT problem consists in analyzing the statistics of the turbulent
flow in a 3D box of size Ω = (0, 2π)3 with periodic boundary conditions
in all directions, which is started with a field having a predetermined energy
spectrum. Structured meshed with N3 linear, quadratic, and cubic hexahedral
elements (Q1, Q2, Q3, respectively) were used, taking the mesh width h =
1/32, 1/64, 1/128, so that the h-p refinement analysis is also performed, as in
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[10]. The viscosity value was set such that the associated Taylor-microscale
Reynolds number is Reλ = 952, which results in ν ≈ 3.5 · 10−4.

The TGV problem aimed to show, in a relatively simple flow, the basic tur-
bulence decay mechanisms like the turbulent energy cascade, the production
of small eddies, and the enhancement of dissipation by the stretching of vortex
lines. The computational domain is the unit cube with periodical boundary
conditions. The initial flow generates 8 vortices with the same vortex scale. The
problem is solved using Re = 1600. The same structured meshes and elements
as in the DHIT problem were used. The TGV test is characterized by its lam-
inar evolution at the initial time steps, when the flow is strongly anisotropic
due to the structured large-scale vortices directly related to the initial condi-
tion. If the Reynolds number is large enough, the vortex-stretching process,
which activates the energy cascade effect, transfers energy from large to small
scales and the flow becomes unstable and turbulent. According to [23], the
flow becomes nearly isotropic for Re ≥ 1000.

The TCF problem consists of a fluid that flows between two parallel walls
driven by an imposed pressure gradient which is defined by the Reynolds
number based on the wall shear velocity, Reτ . The attention was restricted to
the cases Reτ ∈ {180, 395}. The problem was solved using the coarsest mesh
from previous test, 323 linear hexahedral (Q1) mesh cells, with refinement in
the wall-normal direction following a hyperbolic function.

Overall, OSS and ASGS yielded similar results, all displaying the features
of turbulent flows when reproducing global outputs such as energy spectra.
These methods were stable and converged to reference solutions, both when
the mesh was refined and when the polynomial order was increased. Further,
the effect of small time steps when the stabilization parameters depend on
them has been analyzed. Apart from the quality of the results, the OSS method
with dynamic subscales was convenient in terms of numerical performance. It
required more nonlinear iterations than ASGS, but less iterations of the linear
solver, altogether leading to lower computational cost. This fact has been
explained by plotting the number of solver iterations required to converge
as the time step size is reduced, for a fixed mesh in space. The number of
iterations (and as a result the condition number of the system matrix) blew
up exponentially for ASGS whereas it remained bounded for OSS. In both
formulations, ASGS and OSS, the use of dynamic subscales has been found
to be crucial for nonlinear convergence. In fact, in some cases quasi-static
subscales failed to converge.

All these numerical experiments suggest that the dynamic nonlinear OSS
model turns out to be really high-performing in terms of efficiency and ro-
bustness, showing enormous potential in simulating turbulent flows, also with
respect to purely classical LES model, such as the dynamic Smagorinsky model
[52] or the adaptive local deconvolution model [76] specifically designed as an
implicit LES model, when using a similar number of degrees of freedom. In
particular, an excellent agreement with respect to DNS data was recovered
on coarser meshes, in terms of total kinetic energy evolution, computation of
energy spectra (−5/3 law), dissipation rate evolution, and specific statistics
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of first and second order (such as mean streamwise velocity, root mean square
velocity fluctuations, Reynolds shear stress). The results also showed that the
dynamic nonlinear OSS formulation results to be unconditionally stable when
the skew-symmetric form of the convective term is used for the resolved scale
equation.

To conclude this section, the high capability of the OSS method in mod-
eling turbulence without any additional eddy viscosity term was pointed out,
which is due to its intrinsic dissipative structure, which furnishes an additional
argument in favor of the position to consider turbulence modeling a numerical
issue.

6 Local Projection Stabilization (LPS) Methods as Two-Scale
VMS Methods

Local Projection Stabilization (LPS) methods are stabilization methods that
provide specific stabilization of any single operator term that could be a source
of instability for the numerical discretization. They were introduced in [12] and
they could be viewed as simplifications of the methods described in Sections 4
and 5. LPS methods are not fully consistent, but are of optimal order with
respect to the finite element interpolation. Moreover they are simpler to im-
plement than residual-based methods.

6.1 Basic Ideas and Derivation

As a single rule, the structure of LPS method is achieved by retaining in the
OSS method (69) the specific interactions that stabilize convection or pressure
gradient, and by changing the global L2 projection by local L2 projections.
This leads to a family of methods, associated to the choice of the actual local
L2 projection. The main derivation of LPS methods will be introduced for
the Oseen equations (60). The stabilization effect is achieved by adding least-
squares terms that give a weighted control on the fluctuations of the quantity of
interest. This control is based upon a projection operation πh : L2(Ω) 7→ Dh

into a discontinuous finite element space Dh (the “projection”space). This
space is built on a gridMh formed by macro-elements built from the grid Th.
The component-wise extension of πh to vector functions is denoted by πh. The
LPS approximation of the Oseen equations reads: Find (uh, ph) ∈ Xh × Yh
such that for any (vh, qh) ∈Xh × Yh,

A((uh, ph), (vh, qh)) + Sh((uh, ph), (vh, qh)) = 〈f ,vh〉, (77)

where

A((uh, ph), (vh, qh)) = ν(∇uh,∇vh) + (b · ∇uh + cuh, vh)− (∇ · vh, ph)

+(∇ · uh, qh),
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and

Sh((uh, ph), (vh, qh)) =
∑

M∈Mh

τM (κh(b · ∇uh),κh(b · ∇vh))K

+
∑

M∈Mh

µM (κh(∇ph),κh(∇qh))K . (78)

Here, κh = I−πh is the “fluctuation”operator, while τM and µM are stabiliza-
tion coefficients. Additional terms stabilizing (for instance) the discretization
of the divergence (grad-div term) can be added.

The stability of LPS methods is based upon local inf-sup conditions (see
Section 6.2 below): The local restriction Xh(M) of the velocity space Xh (the
“approximation”space) to any macro-element M ∈ Mh must be rich enough
in degrees of freedom with respect to Dh(M), much as in mixed methods the
global velocity space Xh must be rich enough with respect to the pressure
space Yh to achieve the discrete inf-sup condition (9). With this purpose, two
main approaches of LPS methods have been proposed (see [73]): In the one-
level approach, the approximation space is enriched such that the local inf-sup
condition holds and both Xh and Dh are built on the same mesh. In the two-
level approach, the projection space is built on a coarser mesh level to satisfy
the local inf-sup condition. It is possible to consider overlapping sets of macro
elements (see [13]).

6.2 Numerical Analysis

In [115], a general stability and convergence theory of LPS schemes for the
Oseen equations is given, see also [124, Part IV, Sections 4 and 5] for a
comprehensive presentation. A priori error estimates were obtained, with the
same optimal order of convergence as for the SUPG/PSPG method. The key
idea in the error analysis of the local projection scheme is the construction
of an interpolant into Xh which exhibits an additional orthogonality prop-
erty with respect to the discontinuous space Dh. To describe this analysis to
some extent, assume that the discrete velocity and pressure spaces are built as

Xh =
[
H1

0 (Ω)
]d∩Zdh, Yh = L2

0(Ω)∩Zh, where Zh is a standard finite element
space of polynomial order r without containing essential boundary conditions.
The following assumptions are assumed to hold:

Assumption A1. There exists an interpolation operator ih : H1(Ω) 7→ Zh
such that ih : H1

0 (Ω) 7→ Zh ∩H1
0 (Ω), and for all w ∈ H l(M), M ∈Mh

‖w − ihw‖0,M + hM |w − ihw|1,M ≤ C hlM |w|l,ω(M), 1 ≤ l ≤ r + 1, (79)

on a suitable patch ω(M) ⊃M .
Assumption A2. The fluctuation operator κh = I − πh satisfies

‖κhq‖0,M ≤ C hlM |q|l,M ∀ q ∈ H l(M), ∀ M ∈Mh, 0 ≤ l ≤ r.
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Assumption A3. There is a positive constant β such that the local inf-sup
condition

inf
qh∈Dh(M)

sup
vh∈Zh(M)

(vh, qh)M
‖vh‖0,M ‖qh‖0,M

≥ β ∀ M ∈Mh, h > 0

holds, where Dh(M) := {dh|M : dh ∈ Dh} and Zh(M) := {wh|M : wh ∈ Zh}.
Assumptions A1 and A3 ensure stability of the LPS discretization (77), in

the sense that if max{ν, c, τM , h2M/µM} ≤ C for all M ∈Mh, then, there is a
constant γ > 0 independent of ν and h such that

inf
(vh,qh)∈Xh×Yh

sup
(wh,rh)∈Xh×Yh

(A+ Sh)((vh, qh)(wh, rh))

||(vh, qh)||h ||(wh, rh)||h
≥ γ,

where the || · ||h denotes the grid-dependent norm

||(v, q)||h :=
[
ν |v|1 + c ‖v‖0 + (ν + c) ‖q‖0 + Sh((v, q), (v, q))

]1/2
.

Optimal error estimates are obtained under assumptions A1, A2 and A3:
Assuming that the solution (u, p) of the Oseen equations (60) belongs to
[H1

0 (Ω)∩Hr+1(Ω)]d×L2
0(Ω)∩Hr+1(Ω), the choice of stabilization parameters

τM ' hM/‖b‖r,∞,M and µM ' hM is asymptotically optimal and leads to

||(u, p)−(uh, ph)||h ≤ C

( ∑
M∈Mh

(ν + hM )h2rM

(
‖u‖2r+1,ω(M) + ‖p‖2r+1,ω(M)

))1/2

.

The key for the proof of this result is the existence of an interpolation operator
jh : H1(Ω) 7→ Zh satisfying the following orthogonality and approximation
properties:

(w − jhw, qh) = 0 ∀ qh ∈ Dh, w ∈ H1(Ω),

‖w − jhw‖0,M + hM |w − jhw|1,M ≤ C hlM ‖w‖l,ω(M) ∀ w ∈ H l(Ω),

with 1 ≤ l ≤ r + 1, for all M ∈ Mh, where ω(M) is the union of all elements
ofMh that intersect M . The existence of such an interpolation operator turns
out to be a consequence of Assumptions 1 and 3.

Assumptions A1 and A2 are standard in finite element approximations,
and are satisfied by well-known families of them. However, the local inf-sup
condition required by A3 is less standard. Several families of finite element
spaces satisfying this assumption may be found in references [12,13,73,115],
among others.

Recently, extensions of the analysis of LPS methods to the instationary
Navier–Stokes equations have been developed. In [4], the case of inf-sup sta-
ble pairs of finite element spaces was considered, where the second term in
Sh from (78) can be neglected. In addition, a grad-div stabilization term (58)
was introduced in the discrete problem. For the continuous-in-time case, error
estimates were proved with constants that do not depend on inverse powers
of ν. To obtain this property, the grad-div term played an essential role. The
analysis was extended in [3,5] to fully discrete problems with BDF2 as tempo-
ral discretization and a decoupling of velocity and pressure computation via a
pressure projection scheme.
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6.3 LPS by Interpolation

A further simplification of LPS schemes is achieved when the local L2 pro-
jection operator πh is replaced by an interpolation operator from [L2(Ω)]d

onto a projection space Dh formed by continuous finite elements (see [34]). To
describe this approach, assume that the discrete velocity and pressure spaces
Xh and Yh are formed by piecewise polynomial functions of degree l at most

Xh = (V lh(Ω) ∩H1
0 (Ω))d, Yh = V lh(Ω) ∩ L2

0(Ω), (80)

where V lh = Pl on simplices and V lh = Ql on quadrilaterals or hexahedra. It
is assumed that πh is some stable approximation operator from [L2(Ω)]d into

Dh =
[
V l−1h (Ω)

]d
. This interpolant may be defined as

∀ x ∈ Ω , πh(v)(x) =
∑
a∈N

Πh(v)(a)ϕa(x), (81)

where N is the set of Lagrange interpolation nodes of V lh(Ω), ϕa are the La-
grange basis functions associated to N and Πh is some interpolation operator
by local averaging of Scott–Zhang or Clément kind. Πh(v)(a) may be reduced
to a single nodal value if v is piecewise smooth. The fluctuation operator
κh = I − πh satisfies also the following extension of Assumption 2: There
exists a constant Cp, independent of h, such that

∀ vh ∈ [W l,p(Ω)]d , ∀ K ∈ Th , |κh(vh)|r,p,K ≤ Cp hl−rK |vh|l,p,ω(K), (82)

for r = {0, 1}, 1 ≤ p ≤ +∞, r ≤ l. These two assumptions are verified by
quasi-local approximation operators such as the Girault–Lions [61], Bernardi–
Maday–Rapetti [16], or Scott–Zhang [129] type operators and local L2 inter-
polation operators such as those considered in standard LPS methods [115].
The LPS method by interpolation is still stated by (77), but assuming that
the grids Th and Mh coincide.

The stability of this LPS method by interpolation follows from a specific
inf-sup condition, that will be stated, for simplicity, for uniformly regular grids.
That is, there exist two positive constants C1 and C2 such that

C1 h ≤ hK ≤ C2 h, ∀K ∈ Th, ∀ h > 0.

Lemma 2 Assume that the family of grids is uniformly regular. Then, the
following inf-sup condition holds

∀ qh ∈ Yh , ‖qh‖0 ≤ C
(

sup
vh∈Xh

(∇ · vh, qh)

|vh|1
+ h‖κh(∇qh)‖0

)
. (83)
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Proof The proof is based upon an inf-sup condition, which is the global equiv-
alent of the local inf-sup conditions of LPS methods (Assumption 3), that is
stated without proof

∀ gh ∈ V l−1h (Ω) , ‖gh‖0 ≤ C sup
vh∈V l

h(Ω)∩H1
0 (Ω)

(vh, gh)

‖vh‖0
. (84)

As πh(∇qh) ∈
[
V l−1h

]d
, the inf-sup condition (84) yields

‖πh(∇qh)‖0 ≤ C sup
vh∈Xh

(πh(∇qh),vh)

‖vh‖0
. (85)

As κh = I− πh, it follows that

|(πh(∇qh),vh)| ≤ |(∇qh,vh)|+ ‖κh(∇qh)‖0‖vh‖0.

With the inverse estimate (14), one finds

h sup
vh∈Xh

(πh(∇qh),vh)

‖vh‖0
≤ C

(
sup

vh∈Xh

(∇qh,vh)

|vh|1
+ h ‖κh(∇qh)‖0

)
.

Substituting this inequality in (85) yields

h ‖πh(∇qh)‖0 ≤ C
(

sup
vh∈Xh

(∇ · vh, qh)

|vh|1
+ h ‖κh(∇qh)‖0

)
. (86)

By [139], there exist two positive constants C1 and C2 independent of h such
that

∀ qh ∈ Yh, C1‖qh‖0 ≤ sup
vh∈Xh

(∇ · vh, qh)

|vh|1
+ C2h ‖∇qh‖0. (87)

Since ‖∇qh‖0 ≤ ‖κh(∇qh)‖0+‖πh(∇qh)‖0, combining (86) and (87) completes
the proof. ut

The inf-sup condition (83) is the basis for the stability of the method as
stated in the following theorem.

Theorem 2 Assume that the grids are uniformly regular, f ∈ [L2(Ω)]d, b ∈
[Lr(Ω)]d for some r > d and the stabilized coefficients τK and µK are of order
h2K . Then the discrete problem (77) has a unique solution. Moreover, there
exists a constant C > 0, independent of h and ν, such that

ν|uh|1 +
√
ν Sh((uh, ph), (uh, ph))1/2 ≤ ‖f‖−1, (88)

‖ph‖0 ≤ C
(

1 +
1√
ν

+
‖b‖0,r√

ν
+
‖b‖0,r
ν

+ c

)
‖f‖0. (89)
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Proof Problem (77) is equivalent to a square linear system of dim Xh + dim
Yh equations. Hence uniqueness of the solution is equivalent to its existence.
So one can proceed assuming that there exists a solution and prove that it is
unique. And to prove this, it is enough to prove estimates (88) and (89). It is
assumed for brevity that c = constant > 0.
1) Setting vh = uh and qh = ph in (77) gives

ν |uh|21 + c ‖uh‖20 + Sh((uh, ph), (uh, ph)) = 〈f ,uh〉.

Then, it follows that

|uh|1 ≤
1

ν
‖f‖−1, ‖uh‖0 ≤

1

c
‖f‖0, Sh((uh, ph), (uh, ph)) ≤ 1

4ν
‖f‖2−1. (90)

2) To obtain the pressure estimate, the inf-sup condition (83) is used

C‖ph‖0 ≤ sup
vh∈Xh

(∇ · vh, ph)

|vh|1
+ h ‖κh(∇ph)‖0 := I + II.

As µK ' h2, the second term is bounded by

|II| ≤ Sh((uh, ph), (uh, ph))1/2 ≤ C√
ν
‖f‖−1.

To bound the first term, take qh = 0 in (77), leading to

(∇ · vh, ph) =(b · ∇uh,vh) + ν (∇uh,∇vh) + c (uh,vh)

+
∑
K∈Th

τK(κh(b · ∇uh),κh(b · ∇vh))K − 〈f ,vh〉. (91)

Due to the third estimate in (90), the stabilizing term has the bound∣∣∣∣∣ ∑
K∈Th

τK(κh(b · ∇uh),κh(b · ∇vh))K

∣∣∣∣∣ ≤ C√
ν
‖f‖−1‖κh(b · ∇vh)‖τ , (92)

where for r ∈ L2(Ω), ‖r‖τ =

( ∑
K∈Th

τK‖r‖20,K

)1/2

. The support of the P1

basis functions associated to the grid Th is denoted by Oi, i = 1, · · · , R. Then,

Ω =

R⋃
i=1

Oi, and any mesh cell K ∈ Th belongs to at most m macroelements

Oi, for some m independent of h. This property follows from the regularity of
the family of grids. Then, one gets

‖κh(b · ∇vh)‖2τ ≤ C h2
R∑
i=1

‖κh(b · ∇vh)‖20,Oi
. (93)
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As πh is locally stable and b ∈ [Lr(Ω)]d, r > d, it follows that

‖κh(b · ∇vh)‖2τ ≤ C h2
R∑
i=1

∑
K⊂Oi

‖b · ∇vh‖20,ω(K)

≤ C h2
R∑
i=1

∑
K⊂Oi

‖b‖20,r,ω(K)‖∇vh‖
2
0,r∗,ω(K),

with 1/r+ 1/r∗ = 1/2. Due to the uniform regularity of the grids, the inverse
estimate

∀ K ∈ Th,∀ p ∈ Pl(K) , ‖p‖0,r∗,K ≤ Ĉ hd/r
∗−d/2 ‖p‖0,K

holds. Then, ‖∇vh‖20,r∗,ω(K) ≤ Ĉ h
2d/r∗−d

∑
T⊂ω(K)

‖∇vh‖20,T and therefore one

obtains the following estimate

‖κh(b · ∇vh)‖2τ ≤ C h2(1−d/r)
R∑
i=1

∑
K⊂Oi

‖b‖20,r,ω(K)‖∇vh‖
2
0,ω(K)

≤ Ch2(1−d/r)‖b‖20,r‖∇vh‖20,

where it was used that a mesh cell belongs to at most m macroelements.
Combining the last inequality with (92) gives∣∣∣∣∣ ∑

K∈Th

τK(κh(b · ∇uh),κh(b · ∇vh))K

∣∣∣∣∣ ≤ C√
ν
h1−d/r‖f‖−1 ‖b‖0,r ‖∇vh‖0.

To bound the remaining terms in (91), one uses (90)

|(b · ∇uh,vh) + ν (∇uh,∇vh) + c (uh,vh)− 〈f ,vh〉|

≤ C
(

(ν + ‖b‖0,r)|uh|1 + c ‖f‖0 + ‖f‖−1
)
|vh|1

≤ C

(
1 +
‖b‖0,r
ν

+ c

)
‖f‖0|vh|1.

Finally, by substituting the two last inequalities into (91) one obtains

|I| ≤ C
(

1 +
‖b‖0,r√

ν
+
‖b‖0,r
ν

+ c

)
‖f‖0. (94)

Combining the estimates for I and II with the inf-sup condition (84) one
deduces (89). ut

The error estimates are based upon this stability result, and the approxi-
mation properties of operator πh. The proof will be omitted for brevity.
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Theorem 3 Assume that the hypotheses of Theorem 2 hold, that the operator
πh satisfies (82), that b ∈ [Hs(Ω)]d with s > l− 1 and that the solution of the
Oseen problem (60) verifies (u, p) ∈ [H l+1(Ω)]d ×H l(Ω). Then the following
error estimates hold:

|u− uh|1 ≤ C(‖b‖s, ‖f‖0, ν)hl, (95)

‖p− ph‖0 ≤ C(‖b‖s, ‖f‖0, ν)hl, (96)

where C(‖b‖s, ‖f‖0, ν) is a constant depending on ‖b‖s, ‖f‖0 and ν that grows
as 1/

√
ν.

These stability and error estimates also hold for general regular grids (not
uniformly regular), although the proof is much more involved (see [34]). More-
over, in [1], a finite element error analysis of the LPS method by interpolation
for the time-dependent Navier–Stokes equations is presented.

6.4 Application to the Simulation of Turbulent Flows

A finite element three-scales projection-based VMS-LPS steady turbulence
model that includes general non-linear wall laws is presented in [125,36]. Good
accuracy is obtained with benchmark turbulent flow problems on coarse grids.
This is a model with the structure (34) that includes a multi-scale Smagorinsky
modeling of the eddy viscosity, which contains the restriction to the sub-filter
scales through a projection/interpolation operator (introduced in Section 3.2),
and a LPS by interpolation stabilization of convection and pressure gradient,
in order to use the same interpolation for velocity and pressure. In addition,
it includes wall-laws modeling of the turbulent boundary layer. This provides
a discretization with a reduced computational cost, but that keeps the same
high-order accuracy with respect to standard projection-stabilized methods.
This model is presented here without wall-laws for brevity. The numerical
experiences with this model are presented in Section 10.5.

Consider the steady version of the Navier-Stokes equations (2): Find (u, p) ∈
X × Y such that for all (v, q) ∈ X × Y

a(u,v) + b(u,u,v)− (∇ · v, p) = 〈f ,v〉,
(∇ · u, q) = 0.

(97)

These equations are discretized by approximating the spaces X and Y by the
spaces Xh and Yh defined by (80), and the variational formulation by: Find
(uh, ph) ∈Xh × Yh such that:

a(uh,vh) + bs(uh,uh,vh)− (ph,∇ · vh)
+c(uh;uh,vh) + sconv(uh;uh,vh) = 〈f ,vh〉,

(∇ · uh, qh) + spres(ph, qh) = 0,
(98)

for any (vh, qh) ∈Xh × Yh.
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The trilinear form bs is the skew-symmetric one of the convection form b
given in (7). The use of bs instead of b is needed to keep a correct energy
balance at the discrete level, that follows as bs(uh,vh,vh) = 0.

The form c is associated to the VMS-Smagorinsky modeling of the eddy
viscosity (35)

c(uh;uh,vh) = 2(νT(ûh)D(ûh),D(v̂h)), (99)

where the eddy viscosity νT is defined by (36)

νT(v)(x) = (CShK)2‖D(v|K)(x)‖F for x ∈ K,

and

ûh = ρ∗huh, v̂h = ρ∗hvh, ρ∗h = I − ρh,

Here, ρh is a uniformly stable (in H1(Ω)-norm) interpolation operator (the

“restriction”operator) on X̂h, where

X̂h = [V l−1h (Ω)]d, (100)

or

X̂h = [V lH(Ω)]d, (101)

and V lH(Ω) in (101) is a sub-space of V lh(Ω) with larger grid size H > h
(typically, H = 2h or H = 3h). The restriction operator ρh must be uniformly
bounded with respect to h, satisfy optimal error estimates (79), and preserve
the slip boundary conditions. In the framework of Section 3.2, the large scales
space is given by

Xh = (I − ρh)Xh,

However neither the space Xh nor X̂h appears in the discretization, only the
restriction operator ρh is needed.

In this way, this VMS method appears as a LES method where the cutoff
length δ is of the same order as the grid size h. This size of the cutoff length
is reasonable as setting δ � h then the numerical solution would solve scales
much smaller than the modeled ones, while setting δ � h would generate a
large error in the computation of the modeled scales.

The forms sconv and spres in (98) correspond to a LPS method, given by

sconv(uh;uh,vh) =
∑
K∈Th

τm,K(σ∗h(uh · ∇uh),σ∗h(uh · ∇vh))K ,

spres(ph, qh) =
∑
K∈Th

τc,K(σ∗h(∇ph),σ∗h(∇qh))K .

Here, σ∗h = I−σh, where σh is some locally stable (in the L2 norm) projection

or interpolation operator on the projection space Dh =
[
V l−1h (Ω)

]d
, satisfying

optimal error estimates, similarly to operator πh given by (81). Also, τm,K
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and τc,K are stabilization coefficients for convection and pressure gradient,
respectively, given by

τc,K = τm,K =

{[
c1
ν + νT|K
(hK/l)2

]
+

[
c2

UK
(hK/l)

]}−1
, (102)

by adapting the expressions (72), where νT|K is the local mean value for the
eddy viscosity on the mesh cell K, and UK is the mean speed on K.

Model (98) includes the main features and assumptions of a three-scale
VMS method. The method is based on a variational formulation and the de-
composition of the scales is defined by projection in the large-scales space Xh.
The turbulence model is applied only to the small resolved scales.

Here, the steady version will be considered while the unsteady one will be
studied in Section 10. This model has a relatively simple structure as a turbu-
lence model. It may be programmed with ease from an existing finite element
solver for Navier–Stokes equations. The main difficulty is the computation of
the interpolation operators that appear in the stabilizing and eddy diffusion
terms, but it may simply be computed from point wise values of the functions
to interpolate, as was mentioned in Section 6.3.

The existence of solutions of model (98) is based upon a linearization of
the model equations: Given wh ∈Xh, find (zh, rh) ∈Xh × Yh such that

a(zh,vh) + bs(wh, zh,vh)− (rh,∇ · vh)
+c(wh; zh,vh) + sconv(wh; zh,vh) = 〈f ,vh〉,

(∇ · zh, qh) + spres(rh, qh) = 0,
(103)

for any (vh, qh) ∈ Xh × Yh. The mapping wh ∈ Xh 7→ zh ∈ Xh admits a
fixed point by Brouwer’s Fixed Point Theorem which is the solution of model
(98). This follows from the stability estimates (that are stated here just for
the solution of (98)):

ν ‖D(uh)‖0 + c(uh;uh,uh)

+sconv(uh;uh,uh) + spres(ph, ph) ≤ C ‖f‖−1, (104)

‖ph‖0 ≤ C

(
1 +

1√
ν

+
|uh|1√
ν

+
|uh|1
ν

)
‖f‖0,

where the second estimate is obtained from the first one and the inf-sup con-
dition (84), similarly to (94). A convergence result of solutions of (98) to a
solution of the steady-state Navier–Stokes equations (97) can be proved.

Theorem 4 The sequence {(uh, ph)}h>0 of solutions of the VMS-LPS model
(98) contains a sub-sequence which is weakly convergent in [H1(Ω)]d ×L2(Ω)
to a solution of the steady Navier–Stokes equations (97).

Proof (Sketch) The eddy viscosity and convection-stabilization terms vanish
in the limit due to the estimates

|c(uh;uh,vh)| ≤ C h2−d/2 ‖D(uh)‖20‖D(vh)‖0, (105)

|sconv(uh;uh,vh)| ≤ Ch2−d/2 ‖D(uh)‖30 ‖D(vh)‖0.



46

The pressure stabilizing term also vanishes in the limit. To prove this, one
uses a representation formula. By [33], there exists a family of vectorial bubble
finite element spaces Zh (formed by functions that vanish on the edges of all
elements), a family of bilinear uniformly continuous and uniformly coercive
forms on [H1

0 (Ω)]d, Sh(·, ·) such that

spres(rh, qh) = Sh(Rh(σ∗h(∇rh)),Rh(σ∗h(∇qh))) ∀ rh, qh ∈ Yh.

Here, Rh : [H−1(Ω)]d → Zh is the static condensation operator associated to
Sh, defined as: Given ϕ ∈ [H−1(Ω)]d, Rh(ϕ) is the only element of Zh that
satisfies: Sh(Rh(ϕ), zh) = 〈ϕ, zh〉, ∀ zh ∈ Zh. Then

spres(ph, ph) = Sh(Rh(σ∗h(∇ph)),Rh(σ∗h(∇ph))),

and by estimate (104), one deduces that the sequence {Rh(σ∗h(∇ph))}h>0 is
uniformly bounded in [H1

0 (Ω)]d. Then, this sequence is weakly convergent to
zero in [H1

0 (Ω)]d, see [32, Lemma 4.1]. Assume that q ∈ D(Ω)∩L2
0(Ω). Then,

σ∗h(∇qh) strongly converges to zero in L2(Ω). As

spres(ph, qh) = Sh(Rh(σ∗h(∇ph)),Rh(σ∗h(∇qh))) = 〈σ∗h(∇qh),Rh(σ∗h(∇ph))〉,

one concludes that
lim
h→0

spres(ph, qh) = 0.

The remaining terms in (98) pass to the limit in a standard way. One then
concludes that the limit (u, p) satisfies formulation (97) for all v ∈ X and
q ∈ D(Ω) ∩ L2

0(Ω). By density it also holds for q ∈ Y = L2
0(Ω). ut

For smooth velocity and pressure (u, p) and small data, method (98) sat-
isfies error estimates of optimal order. It also satisfies an asymptotic energy
balance: Indeed, define the deformation energy ED, the subgrid eddy dissipa-
tion energy ES, and the energy ESC and ESP, respectively, corresponding to
the convection and the pressure stabilizing terms by:

ED(u) = a(u,u) = 2ν ‖D(u)‖22,

ES(uh) = c(uh;uh,uh) = 2
∑
K∈Th

(CShK)2
∫
K

|D(ûh)|3 dx,

ESC(uh) = sconv(uh;uh,uh) =
∑
K∈Th

τv,K ‖σ∗h(uh · ∇uh)‖22,K ,

ESP(ph) = spres(ph, ph) =
∑
K∈Th

τc,K ‖σ∗h(∇ph)‖22,K .

(106)

Then, if the sequence {(uh, ph)}h>0 is strongly convergent in [H1(Ω)]d ×
L2(Ω) to a solution (u, p) of the Navier-Stokes equations (2) with regular-
ity [H2(Ω)]d ×H1(Ω), it holds

lim
h→0

ED(uh) = ED(u), lim
h→0

ES(uh) = lim
h→0

ESC(uh) = lim
h→0

ESP(ph) = 0,
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and then

lim
h→0

[ED(uh) + ES(uh) + ESC(uh) + ESP(ph)] = ED(u),

Thus, the total energy balance is asymptotically maintained in such a way
that the deformation energy passes to the limit. In addition, the dissipated
eddy energy and the subgrid energy due to stabilizing terms asymptotically
vanish.

If the the sequence {(uh, ph)}h>0 is only weakly convergent in [H1(Ω)]d×
L2(Ω) to (u, p), one cannot ensure that lim

h→0
ESP(ph) = 0. Thus, it is only

possible to prove an asymptotic energy inequality of the form

ED(u) ≤ lim inf
h→0

[ED(uh) + ES(uh) + ESC(uh) + ESP(ph)].

7 Three-Scale Bubble VMS Method

This section presents the bubble VMS methodology with a three-scale decom-
position of the flow field using bubble functions for the small resolved velocity
scales. Bubble VMS methods can be considered as a direct realization of a
three-scale VMS method for finite elements by discretizing both equations
(32) and (33) with a finite element method. Earlier direct realizations used
Fourier spectral methods, at least in the direction of homogeneous isotropic
turbulence, and a separation into large and small resolved scales was performed
via the norm of the wave number vector, e.g., see [86,87].

7.1 Derivation

There are several realizations of bubble VMS methods which differ in some
details, e.g., see [62,68,69,98,112,113,31]. Here, exemplary the derivation of
one of these realizations is presented.

Consider the decomposition of the resolved scales (uh, ph) into large scales
(u, p) and small resolved scales (û, p̂). Equation (32) for the large scale test
function, after having neglected the coupling terms of the large and the unre-
solved scales, takes the form

(∂tuh,v) + (2νD (uh) ,D (v)) + b (uh,uh,v)− (∇ · v, ph)

+ (∇ · uh, q) = (f ,v).

Applying the splitting of the resolved scales yields

(∂tu,v) + (2νD (u) ,D (v)) + b (u,u,v)− (∇ · v, p) + (∇ · u, q)
= (f ,v)−

{
(∂tû,v) + (2νD (û) ,D (v)) (107)

+ b (uh, û,v) + b (û,u,v)− (∇ · v, p̂) + (∇ · û, q)
}
.
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Similarly, one derives an equation for the small resolved scale test function

(∂tû, v̂) + (2(ν + νT )D (û) ,D (v̂)) + b (uh, û, v̂)− (∇ · v̂, p̂) + (∇ · û, q̂)
= (f , v̂)−

{
(∂tu, v̂) + (2νD (u) ,D (v̂)) (108)

+ b (uh,u, v̂)− (∇ · v̂, p) + (∇ · u, q̂)
}
.

Here, the eddy viscosity term is already included, which models the effect of
the unresolved scales onto the small resolved scales with νT being the subgrid
turbulent viscosity.

In bubble finite element VMS methods, standard finite element spaces are
used for the large scales, X × Y = Xh × Yh. As pointed out in Section 3.2,
the main goal of the bubble finite element VMS method is to use a higher
resolution spaces for the approximation of the resolved scales compared with
the spaces used for the large scale. This goal can be achieved either by using
higher order finite elements, or by refining the mesh, or by the combination
of both approaches. However, a practical problem that arises with all these
approaches is the computational cost of the solution process for the small
resolved scale problem (108) which is much higher than for solving the large
scale problem (107). In order to obtain an efficient method, a bubble VMS
method can be used, in the sense that the small resolved scale problem (108) is
considered in a space of bubble functions for the velocity. Recall that a function
v ∈ H1(Ω) is called a bubble function with respect to a mesh triangulation Th
if v|K ∈ H1

0 (K) for all mesh cells K ∈ Th.
With respect to the model for the small resolved scale pressure, it was

proposed in [62,68,69] to model the small resolved scale pressure in the form

p̂ = −
∑
K∈Th

τc (∇ · u) , (109)

which is the same model as proposed in [10] for the two-scale residual-based
VMS, see Section 4.1. In (109), {τc}K∈Th is a family of stabilization parame-
ters which are usually defined to be piecewise constant. Using this proposal,
the small resolved pressure does not appear any longer in the large scale equa-
tion but its influence on the large scales is modeled. The contribution of the
small resolved pressure (109) into the large scale equation leads to a so-called
grad-div stabilization term. Since the small resolved pressure p̂ disappeared,
a divergence constraint for the small resolved velocity û is no longer required.
And, since there is no longer a divergence constraint for û, it does not make
sense to have a term with this contribution in the divergence constraint for
the large scale equation (107). Hence, all terms in the model (107) and (108)
coming from the divergence constraint which includes small resolved scales
will be neglected by setting

(∇ · û, q) = (∇ · u, q̂) = (∇ · û, q̂) = 0.

Inserting these modifications in the small resolved scale problem (108), one
obtains a simplified vector-valued equation for û. Motivated by the desire
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to construct an efficient method, the small resolved velocity is searched in a

bubble space. Note that the space of these bubble functions X̂bub is infinite-
dimensional. However, from the practical point of view, this space has to be a
finite-dimensional space.

Usually, some further simplifying assumptions are made for the terms with
the small resolved velocity scales. The equation for the small resolved velocity
scales is only solved once for each time step, i.e., at the beginning, which yields

the solution û(1). Consequently, this equation is linearized and all terms with
u are treated explicitly. Therefore, the temporal derivatives in (107) and (108)
have to be modified. Denoting quantities at time level n with a subscript n,
one can use for the large scale equation (107)

∂tû ≈
ûn+1 − ûn

∆tn+1
≈ û

(1) − ûn

∆tn+1
, (110)

where ∆tn+1 = tn+1 − tn is the current time step. In the small resolved scale
equation, one assumes that the temporal change in the large scales can be
neglected, i.e., ∂tu = 0. Moreover, for reasons of efficiency, the gradient form
of the viscous term is used in the small resolved scale equation and some right-
hand side terms in the large scale equation. With the gradient form, the small
resolved scale equation decouples into three scalar equations since the system
matrix becomes a block diagonal matrix.

Inserting the models and the simplifying assumptions for the small resolved
scales into (107) and (108) leads to the following system of equations: Find
u : [0, T ]→X, p : (0, T ]→ Y satisfying

(∂tu,v) + (2νD (u) ,D (v)) + b (u,u,v)− (∇ · v, p) + (∇ · u, q)

+
∑
K∈Th

τc(∇ · u,∇ · v)K

= (f ,v)−
{(

û(1) − ûn

∆tn+1
,v

)
+
(
ν∇û(1),∇v

)
(111)

+ b
(
un + û(1), û(1),v

)
+ b

(
û(1),un,v

)}
for all (v, q) ∈ X × Y . The equation for computing the small resolved scales

û(1) : [0, T ]→ X̂bub reads as(
û(1) − ûn

∆tn+1
, v̂

)
+
(

(ν + νT )∇û(1),∇v̂
)

+ b
(
unh, û

(1), v̂
)

= (f , v̂)−
{(
ν∇un,∇v̂

)
+ b (unh,u

n, v̂)− (∇ · v̂, pn) (112)

+
∑
K∈Th

τc(∇ · un,∇ · v̂)K

}
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for all v̂ ∈ X̂bub.
Note that both models for the small resolved scale (109) and (112) can

be interpreted in the way that the small resolved scales are driven from the
residual of the large scales. The small resolved pressure is driven from the
residual of the continuity equation and the small resolved velocity from the
residual of the momentum equation.

In all bubble VMS methods, a principal question arises concerning an un-
physical property introduced by using bubble functions for modeling the small
resolved scales. These scales are represented by the bubble functions and are
allowed to move within a mesh cell but, due to the homogeneous Dirichlet
boundary conditions on the faces of the mesh cells, they cannot move directly
from one mesh cell to their neighbors. Hence, the small resolved scales are
bound to the mesh cells and there will be no direct interaction between these
scales across the mesh cell boundaries. However, by the coupling of the small
resolved scales to the large scales in (111), the information contained in the
small resolved scales is distributed indirectly to the other mesh cells.

7.2 Relations to Other Methods

The use of bubble functions for stabilizing dominant convection was already
proposed independently of VMS methods. These bubble functions solve equa-
tions with the residual obtained with a standard finite element method. For
this reason, this approach is called residual-free bubble (RFB) method. This
idea was first proposed for scalar convection-diffusion equations in [27] and
applications to laminar incompressible flows can be found, e.g., in [57]. Thus,
the bubble VMS method can be considered as a generalization of the RFB
method in the sense that a turbulence model is introduced in the equation for
the small resolved velocity scales.

7.3 Numerical Analysis

A numerical analysis for the bubble VMS method as presented in Section 7.1
does not seem to be available. However, error estimates for the closely related
RFB method were derived for convection-diffusion equations and the Oseen
equations.

Concerning scalar convection-diffusion equations, a priori error estimates
for finite elements on simplicial meshes were proved in [7,25,26]. The case of
bilinear elements was studied in [122].

In [55], an approximate RFB method for the Oseen equations is analyzed
for the non-conforming Crouzeix–Raviart pair of finite element spaces. It was
shown that the exact RFB method is identical to some SUPG-type stabiliza-
tion in the case of constant coefficients. This SUPG-type stabilization was used
as approximation for the RFB method. An optimal estimate for the error in a
norm including the stabilization could be proved with a constant independent
of inverse powers of ν.
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7.4 Experience in Numerical Simulations

The use of a bubble VMS method requires to approximate the solution in the
infinite-dimensional bubble space. In [68,69,62,98] each mesh cell was triangu-
lated with a local grid and an approximation of the small resolved velocity with
Q1 finite elements was computed. In contrast, bubbles with a fixed polynomial
degree were used in [112,113,31]. The methods from [112,113,31] do not use
an eddy viscosity model in the bubble equations but a stabilization is obtained
by applying an upwind-type method to the convective term. Another option
that was studied in [98,113,31] was to use quasi-static small resolved scales,
i.e., to neglect the temporal derivative for the bubble functions. This approach
saves to store the values for the small resolved scales from the previous discrete
time.

A comparison of a bubble VMS method with the unusual stabilized finite
element method (USFEM) from [56] and the Smagorinsky LES model (with
dynamic CS or fixed CS = 0.1) was presented in [69]. To stabilize the used
equal-order pairs of finite element spaces, the Pressure Stabilization Petrov–
Galerkin (PSPG) method was applied. As already mentioned, the local systems
in the bubble VMS method were solved on local grids in each hexahedral mesh
with Q1 elements. For the use of the dynamic Smagorinsky model in the bubble
VMS, a second local grid was applied that was somewhat finer than the first
local grid. The numerical studies included turbulent circulating flow in a lid-
driven cavity at various Reynolds numbers and a plane mixing layer example
in two dimensions. For lid-driven cavity flow, the bubble VMS method led, in
comparison with the USFEM and the other methods, to a remarkable good
results.

Numerical studies in [98] compared the bubble VMS method with the
projection-based VMS method presented in Section 8. Benchmark problems of
turbulent channel flows were considered with the inf-sup stable finite element
pair Q2/P

disc
1 on hexahedral grids. For the bubble VMS method inf-sup stable

pairs of finite elements on anisotropic grids were used. The static Smagorin-
sky models (38) with CS = 1 and (37) with CS ∈ {0.5, 1} were used for the
bubble VMS method. For quantities of interest, numerical studies for the flow
at Reτ = 195 showed slightly better results for the quasi-static bubble VMS
method compared with the projection-based VMS method. On the other hand,
the projection-based VMS method gave superior results at Reτ = 395. It is
mentioned that the implementation of the bubble VMS was rather compli-
cated. In addition, it turned out that the dominating term of the model is the
grad-div term which evolves from modeling the small resolved pressure. Incor-
porating only this term, without modeling the small resolved velocity, led to
stable simulations. However, applying in addition to the grad-div stabilization
also the bubble model for the small resolved velocity improved the accuracy
of the results. It is also mentioned that the large values of CS were needed
for the solution of the problem (112) on the coarse grids (5× 5× 5 sub cells)
for the local problems. Altogether, the use of the bubble VMS method is not
recommended in [98].
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In summary, bubble VMS methods which approximate the solution for
the small resolved velocity on local grids were implemented and studied from
two groups. None of these groups seems to use this type of VMS method any
longer.

The bubble VMS method from [112,113] was studied in [113] at an isotropic
turbulence problem, a turbulent channel flow, and a turbulent flow around a
cylinder. It was shown that similar results can be obtained as, e.g., with the
two-scale residual-based VMS method presented in Section 4 and the AVM3

method described in Section 9. It was observed that with quasi-static small
resolved scales the method loses stability for small time steps. The method
from [112,113] was improved in [31]. The improved method can be applied also
on tetrahedral grids and in the case of quasi-static small resolved scales there
is no instability for small time steps. For a turbulent channel flow problem,
simulated with the P1/P1 finite element method, similar results were obtained
as with the residual-based VMS method from Section 4 with Q1/Q1 finite
elements. Results computed with P2/P2 finite elements were considerably more
accurate than results with P1/P1 for the same number of degrees of freedom.

8 Three-Scale Velocity Deformation Tensor Projection-Based VMS
Method

This section presents a method where the scale separation into large and small
resolved scales is defined with the velocity deformation tensor. Having defined
in this way small resolved velocity scales, an additional viscous term is intro-
duced where the turbulence model is acting directly only on the small resolved
scales. To shorten notation, this method is called in this section just “three-
scale projection-based VMS method”.

8.1 Definition of the Method

First, the projection-based VMS method will be defined. It will be shown
in Section 8.2 that a special case fits perfectly into the general concept of a
three-scale VMS method described in Section 3.2.

LetXh×Yh be finite element spaces for the velocity and pressure which sat-
isfy the discrete inf-sup stability condition (9), let LH be a finite-dimensional
space of symmetric d × d tensor-valued functions defined on Ω and let νT
be a non-negative function that might depend on the finite element velocity
and pressure and on the mesh width. Then, the semidiscrete projection-based
VMS method (continuous-in-time) is defined as follows: Find uh : [0, T ] →
Xh, ph : (0, T ]→ Yh, and GH : [0, T ]→ LH satisfying

(∂tuh,vh) + (2νD (uh) ,D (vh)) + b(uh,uh,vh)

− (∇ · vh, ph) + (2νT (uh, h) (D (uh)−GH) ,D (vh)) = 〈f ,vh〉
(∇ · uh, qh) = 0

(D (uh)−GH ,LH) = 0, (113)
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for all (vh, qh) ∈Xh × Yh and LH ∈ LH .

The main features and assumptions of a three-scale VMS method can be
observed quite well already in (113). The method is based on a variational
formulation and the decomposition of the scales is defined by projection in the
last equation of (113). The large scales are represented by GH and the small
resolved scales by D (uh)−GH . Thus D (uh) represents all resolved scales. In
the last term on the left-hand side of the first equation in (113) it can be seen
that the turbulence model is applied directly only to the small resolved scales.

The method (113) was proposed in [93] based on ideas from [105]. To
apply this method, one has to choose two parameters: the additional viscosity
νT (uh, h) and the space LH .

Concerning νT (uh, h), numerical studies with method (113) presented in
[93,98,99,104,123] used a Smagorinsky models of the form

νT = CSδ
2‖D (uh) ‖F, (114)

νT = CSδ
2‖D (uh)−GH‖F, (115)

νT = CS
δ2

|K|1/2
‖D (uh)−GH‖L2(K). (116)

The other parameter in (113) is the space of symmetric tensors LH . The
last equation in (113) states that the tensor GH is just the L2 (Ω) projection
of D (uh) into LH : PLH

: L→ LH , D (v)→ PLH
D (v) = GH

(PLH
D (v)− D (v) ,LH) = 0 ∀ LH ∈ LH . (117)

With this notation and using the short form (21), one can reformulate (113)
as follows: Find uh : [0, T ]→Xh, ph : (0, T ]→ Yh satisfying

A (uh; (uh, ph) , (vh, qh)) (118)

+ (2νT (uh, h) (I − PLH
)D (uh) ,D (vh)) = f(vh)

for all (vh, qh) ∈Xh × Yh.

The space LH plays the role of a large scale space such that (I − PLH
)D (uh)

represents small resolved scales of D (uh). Of course, only scales should be sub-
tracted from D (uh) that are contained in this tensor. Hence, it is required that
LH ⊂ {D (vh) : vh ∈Xh}.

Since LH represents large scales, it has to be in some sense a coarse finite
element space. Similarly to LPS methods, there are essentially two possibilities:

– If Xh is a higher order finite element space, LH can be defined as low order
finite element space on the same grid as Xh. This approach is studied in
[93] and it will be discussed below.

– The second possibility, in particular ifXh is a low order discretization, con-
sists in defining LH on a coarser grid, see [96] for a study of this approach
in the case of convection-dominated convection-diffusion equations.
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Since D (uh) is a discontinuous piecewise polynomial tensor, choosing its
L2(Ω) projection in the same way seems to be natural. Thus, LH should consist
of discontinuous piecewise polynomial tensors as well. It was elaborated in [93]
that for the sake of an efficient implementation of the one-grid method, the
use of discontinuous tensors for LH is mandatory.

A projection-based VMS method which computes the projection in a post-
processing step was proposed and studied in [106]. That means, in the first
step of this approach, one can use the Galerkin finite element discretization
of the Navier–Stokes equations. Using the solution obtained in this step, one
computes in a second step the final solution by applying a projection. In [106]
the projection is constructed in such a way that it has the form of the eddy
viscosity term in (113). This approach can be considered as an operator split-
ting. Its advantage is that it is not intrusive, i.e., one can use for the first step
an existing code and needs to implement the projection only as an add-on.

8.2 Imbedding of the Method into the Basic Concept of a Three-Scale VMS
Method

In the case νT being a positive constant, method (113) can be transformed
to the abstract form (32)–(33) of a three-scale VMS method. To this end, the
three-scale partitioning given in Section 3.2 has to be described by appropri-
ately chosen function spaces and projections.

Clearly, the continuous pair of spaces (X, Y ) contains all scales. The finite
element spaces (Xh, Yh) contain the large and the small resolved scales.

Let XH ⊂
[
H1 (Ω)

]d
be a discrete space such that LH = D (XH). The

spaceXH should be coarser thanXh. But in the definition ofXH , no essential
boundary conditions, like no-slip conditions, are incorporated. Thus, in general
XH 6⊂Xh. The pair of spaces for the large scales is given by (XH , YH) where
YH is chosen such that a discrete inf-sup condition of type (9) is fulfilled
for (XH , YH). Then, the large scales PHu of the velocity are defined by an
elliptic projection into XH and the large scales PHp of the pressure by the
L2(Ω) projection into YH ; PH : (X, Y )→ (XH , YH)

(D (u− PHu) ,D (vH)) = 0 ∀ vH ∈XH ,

(u− PHu, 1) = 0, (119)

(p− PHp, qH) = 0 ∀ qH ∈ YH .

Lemma 3 Commutation of the definition of the large scales and dif-
ferentiation. Let v ∈ X, LH = D (XH) and denote by PLH

D (v) the L2(Ω)
projection of D (v) into LH defined in the last equation of (113). Then

PLH
D (v) = D (PHv) ∀ v ∈X. (120)

Proof From LH = D (VH) and PLH
D (v) ∈ LH it follows that there is a wH ∈

XH such that PLH
D (v) = D (wH). Using the last equation of (113) gives

(D (v −wH) ,LH) = 0 ∀ LH ∈ LH . (121)
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On the other hand, since LH = D (XH), (119) is equivalent to

(D (v − PHv) ,LH) = 0 ∀ LH ∈ LH . (122)

The statement of the lemma follows now directly from (121) and (122) since
the elliptic projection is unique. ut

Let νT be a positive constant. A straightforward calculation, using that
PLH

is a L2(Ω) projection and (I − PLH
) is in the orthogonal complement,

shows that

(νT (I − PLH
)D (uh) ,D (vh)) = (νT (I − PLH

)D (uh) , (I − PLH
)D (vh)) .

Thus, (118) can be reformulated as follows: Find uh : [0, T ] → Xh, ph :
(0, T ]→ Yh satisfying

A (uh; (uh, ph) , (vh, qh))

+ (2νT (I − PLH
)D (uh) , (I − PLH

)D (vh)) = f(vh) (123)

for all (vh, qh) ∈Xh × Yh. Decomposing Xh = XH + X̂h and Yh = YH + Ŷh
with X̂h = (I − PH)Xh, Ŷh = (I − PH)Yh, one obtains with (120)

(I − PLH
)D (vh) = D (vh − PHvh) = D ((I − PH)vh) = D (v̂h) .

The decompositions uh = uH + ûh, ph = pH + p̂H , vh = vH + v̂h, and
qh = qH + q̂H are inserted into (123). Using the linearity of A (·; ·, ·) with
respect to the second and third component and writing the arising equation
formally as a coupled system gives

A (uH + ûh; (uH , pH) , (vH , qH))

+A (uH + ûh; (ûh, p̂h) , (vH , qH)) = f (vH) (124)

for all test functions (vH , qH) ∈XH × YH and

A (uH + ûh; (uH , pH) , (v̂h, q̂h)) (125)

+A (uH + ûh; (ûh, p̂h) , (v̂h, q̂h)) + (2νTD (ûh) ,D (v̂h)) = f (v̂h)

for all test functions from X̂h× Ŷh. The coupled system (124)–(125) possesses
exactly the form (32)–(33). The unresolved scales are modeled only in the
equation for the small resolved scales (125) with the model

c (uh; (uH , pH) , (ûh, p̂h) , (v̂h, q̂h)) = (2νTD (ûh) ,D (v̂h))

and this model influences the large scales solely indirectly by the coupling of
(124) and (125).
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8.3 Relations to Other Methods

Let LH ⊂ {D (vh) : vh ∈Xh}. The limit cases of LH lead to two well known
discrete models. In the case that LH = {D (vh) : vh ∈ Xh}, the second
term on the left-hand side of (118) vanishes and the Galerkin finite element
discretization of the Navier–Stokes equations is recovered. If LH = {O}, one
obtains an artificial viscosity stabilization of the Navier–Stokes equations with
a possible nonlinear artificial viscosity. If, e.g., νT is the Smagorinsky eddy
viscosity model, the Smagorinsky LES model is recovered. In this sense one
can say that the three-scale projection-based VMS method is in between the
Galerkin discretization and an LES model of eddy viscosity type.

Comparing representation (113) with (144) shows that, apart from the
PSPG-type stabilization, the coarse space projection-based VMS method and
AVM3 have principally the same form.

8.4 Numerical Analysis

A numerical analysis for projection-based VMS methods was presented in
several papers. In all cases, the principal way of performing the analysis was
the same as for the Galerkin discretization of the Navier–Stokes equations.
The main goal was to show that the inclusion of the VMS model leads to error
bounds where certain constants depend on a reduced Reynolds number (and
not on the Reynolds number as for the Galerkin discretization). These results
show in some sense that the projection-based VMS method possesses a smaller
complexity than the Galerkin finite element method.

The first analysis was presented in [94] for method (113) and the case of a
constant turbulent viscosity νT. Two error estimates with constants depending
on a reduced Reynolds number were derived. In [95], the case of νT being
a Smagorinsky-type eddy viscosity including the small resolved scales was
studied. In this paper, the additional viscous term is defined differently than in
(113), namely as deformation tensor of small resolved scales ûh and not as the
small resolved scales of the deformation tensor D (uh)−GH , i.e., differentiation
and projection are interchanged in these definitions. The analysis for νT being
a Smagorinsky-type viscosity required the use of different function spaces than
for a constant viscosity. Finally, the results of [94] were generalized in [123]
to the case of νT being a piecewise constant viscosity. The analysis from [123]
was extended in [109] to the case of thermally coupled incompressible flows.

For the sake of keeping the presentation as simple as possible and of con-
centrating on the main issue, namely the reduced Reynolds number in the
error bound, an error estimate for the case of νT being a constant will be
presented here.

For the finite element error analysis it will be assumed that Ω is a bounded
domain with polyhedral Lipschitz boundary, no-slip boundary conditions are
prescribed, (Xh, Yh) are assumed to satisfy the discrete inf-sup condition (9),
and the continuous-in-time case is considered. Concerning the parameters of
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the VMS method it is assumed that νT is a positive constant and that LH ⊆
D (Xh).

If νT is a positive constant, the projection-based VMS method can be
rewritten in the form (123), i.e., it reads as: Find uh : [0, T ] → Xh, ph :
(0, T ]→ Yh satisfying

(∂tuh,vh) + (2νD (uh) ,D (vh))
+bs(uh,uh,vh)− (∇ · vh, ph)

+(2νT(I − PLH
)D (uh) , (I − PLH

)D (vh)) = (f ,vh) ∀ vh ∈Xh

(∇ · uh, qh) = 0 ∀ qh ∈ Yh,

(126)

where the projection PLH
was defined in (117).

The error analysis will be performed in the space Xh,div. For simplicity
let f = fh. Then the velocity from (126) can be computed equivalently by
solving the following problem: Find uh : [0, T ]→Xh,div such that

(∂tuh,vh) + (2νD (uh) ,D (vh)) + bs(uh,uh,vh) (127)

+ (2νT(I − PLH
)D (uh) , (I − PLH

)D (vh)) = (f ,vh)

for all vh ∈Xh,div.
In the finite element error analysis, the error of the solution of (126) to the

solution of the Navier–Stokes equations (2) will be studied. The goal consists
in deriving an error bound which depends in the most terms on a reduced
Reynolds number or equivalently on an increased effective viscosity, in contrast
to the error bound (20) for the Galerkin finite element method. In the limit
case LH = {O}, method (126) becomes the Smagorinsky LES model. Finite
element error estimates to the solution of the continuous Smagorinsky LES
model with constants independent of ν were derived in [101,91].

Next, an additional viscosity will be defined. Since PLH
is an L2(Ω) pro-

jection, it follows for v ∈X and ‖D (v) ‖0 > 0 that

νT‖(I − PLH
)D (v) ‖20 = νT

(
‖D (v) ‖20 − ‖PLH

D (v) ‖20
)

= νT

(
1− ‖PLH

D (v) ‖20
‖D (v) ‖20

)
‖D (v) ‖20

=: νadd(v)‖D (v) ‖20. (128)

In addition, from 0 ≤ ‖PLH
D (v) ‖0 ≤ ‖D (v) ‖0 one obtains

0 ≤ νadd(v) ≤ νT. (129)

Note that if v depends on t then νadd(v), too. From (129) it follows that
νadd(v(t, ·)) ∈ L∞(0, T ) if νT is bounded almost everywhere in the time inter-
val. If ‖D (v) ‖0 = 0 then v = 0 since v ∈X. In this case, one sets νadd(v) = 0.

The finite element error analysis requires some assumptions on the regu-
larity of the solution and the data of the Navier–Stokes equations. It will be
assumed that

f ∈ (L2(0, T ;X∗)), u0 ∈X, (130)
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and that (2) possesses a solution (u, p) with

∇u ∈ (L4(0, T ;L2))d×d, ∂tu ∈ (L2(0, T ;X∗))d, p ∈ L2(0, T ;L2). (131)

Note, these assumptions imply that Serrin’s condition is fulfilled from what
follows that the solution of (2) is unique, see Section 2.1.

Before presenting the error analysis, an outline of the proof, following the
approach in [74,75], will be given.

1. The stability of u and uh is proved, i.e., it is shown that certain norms of
u and uh are bounded a priori by the data of the problem: f ,u0, ν, see
Lemma 4.

2. An error equation is derived by subtracting (127) from (2) for test functions
from Xh,div. The error is split into an approximation term η and a (finite
element) remainder φh

e = u− uh = (u− ũh)− (uh − ũh) =: η − φh, (132)

where ũh ∈Xh,div is a projection of u which satisfies certain interpolation
properties. An example for such a projection is the Stokes projection, see
(15)–(17). Then, φh is taken as test function in the error equation.

3. The right-hand side of the error equation is estimated such that one obtains
an inequality of the form

d

dt
‖φh‖20 + g1(t,φh) ≤ g2(t,η,u) + g3(t,u)‖φh‖20, (133)

where all functions are non-negative for almost all t ∈ [0, T ].
4. It has to be checked that Gronwall’s lemma can be applied to (133), i.e., one

has to show that all functions in (133) belong to L1(0, T ). The application
of Gronwall’s lemma yields an estimate for φh.

5. The error estimate for e is proved by applying the triangle inequality
to (132).

Lemma 4 The solution uh of the finite element problem (127) satisfies

‖uh(t)‖20 +

∫ t

0

(2ν + 2νadd(uh(τ)))‖D (uh) (τ)‖20 dτ

≤ ‖u0,h‖20 +

∫ t

0

C

2ν + 2νadd(uh(τ))
‖f‖2X∗ dτ. (134)

Consequently, it is uh ∈ (L∞(0, T ;L2))d and D (uh) ∈ (L2(0, T ;L2))d×d. The
velocity solution of the continuous problem (2) fulfills u ∈ (L∞(0, T ;L2))d and
D (u) ∈ (L2(0, T ;L2))d×d.

Proof Setting vh = uh in (127), using

(∂tuh,uh) =
1

2

d

dt
‖uh‖20,
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and the skew symmetry of bs(·, ·, ·), the definition of νadd, (128), the standard
estimate of the dual pairing, Korn’s inequality (13), and integrating over (0, t)
with t ≤ T gives

1

2
‖uh(t)‖20 +

∫ t

0

(2ν + 2νadd(uh(τ)))‖D (uh) (τ)‖20 dτ

≤ 1

2
‖u0,h‖20 +

∫ t

0

‖f(τ)‖X∗‖∇uh(τ)‖0 dτ

≤ 1

2
‖u0,h‖20 +

∫ t

0

C

2ν + 2νadd(uh(τ))
‖f(τ)‖2X∗ dτ

+

∫ t

0

2ν + 2νadd(uh(τ))

2
‖D (uh) (τ)‖20 dτ.

Subtraction of the last term gives (134). D (uh) ∈ (L2(0, T ;L2))d×d. Taking
then the supremum of t ∈ (0, T ) gives the statement uh ∈ (L∞(0, T ;L2)).

The proof for the solution of the continuous problem uses the same tech-
niques, compare also (5) for the regularity of an appropriately defined varia-
tional velocity solution. ut

The stability estimate (134) shows that the bound for uh does not depend
on ν−1 as for the Galerkin discretization, see (18), but on the inverse of a
presumably larger viscosity term.

Theorem 5 Let (u, p) ∈X×Y be the solution of (2) and let uh ∈Xh,div be
the solution of (127) where νT ≥ 0 is a constant. Let the regularity assumptions
(131) be fulfilled and let ũh be a projection of u into Xh,div such that η =
u − ũh ∈ Xh,div satisfies optimal interpolation estimates of form (16) and
(17). Let the reduced Reynolds number Rered(vh) defined by

Rered(vh) =

(
2ν + inf

t∈(0,T ]
2νadd(vh(t))

)−1
≤ 2ν−1. (135)
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Then, the error u− uh satisfies for T ≥ 0

‖(u− uh)(T )‖20 + (Rered(uh − ũh))
−1 ‖D (u− uh) ‖2

L2(0,T ;L2)

≤ C inf
λh∈L2(0,T ;Yh)

{
‖(u− ũh)(T )‖20

+ (Rered(uh − ũh))
−1 ‖D (u− ũh) ‖2

L2(0,T ;L2)

+ exp
(
C (Rered(uh − ũh))

3 ‖D (u) ‖4
L4(0,T ;L2)

)[
‖u0,h − ũh(0)‖20

+(ν + νT)‖D (u− ũh) ‖2
L2(0,T ;L2)

+ (Rered(uh − ũh))
[
‖∂t(u− ũh)‖2L2(0,T ;X∗) + ‖p− λh‖2L2(0,T ;L2)(136)

+‖D (u− ũh) ‖2
L4(0,t;L2)

‖D (u) ‖2
L4(0,t;L2)

+
(

(Rered(uh))
1/2 ‖u0,h‖20 + (Rered(uh))

3/2 ‖f‖2L2(0,t;X∗)

)
×‖D (u− ũh) ‖2

L4(0,t;L2)

]
+ νT‖(I − PLH

)D (u) ‖2
L2(0,T ;L2)

]}

for arbitrary ũh ∈Xh,div.

Proof The splitting of the error (132) is performed with the help of a projection
ũh ∈Xh,div of u. Let t ∈ [0, T ] be arbitrary. It is required that the projection
fulfills the approximation properties (16) and (17) such that, e.g., the Stokes
projection can be chosen. Korn’s inequality (13), (16) with k = 1, and the
regularity assumptions (131) imply that

∇η ∈ (L4(0, T ;L2))d×d. (137)

Now, Step 2 of the proof is carried out by a straightforward calculation,
yielding

1

2

d

dt
‖φh‖20 + (2ν + 2νadd(φh))‖D (φh) ‖20 (138)

= (∂tη,φh) + (2νD (η) ,D (φh)) + (2νT(I − PLH
)D (η) , (I − PLH

)D (φh))

+bs(u,u,φh)− bs(uh,uh,φh)− (2νT(I − PLH
)D (u) , (I − PLH

)D (φh))

−(p− λh,∇ · φh)

with arbitrary λh ∈ Yh.

In Step 3 of the proof, one has to get an inequality of form (133) by
estimating the terms on the right-hand side of (138). All bilinear terms are
estimated essentially in the same way: using the Cauchy-Schwarz inequality
(or the estimate for the dual pairing), Korn’s inequality (13) and Young’s
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inequality (11). In addition, (128) is used. One obtains

(∂tη,φh) ≤ ‖∂tη‖X∗‖∇φh‖0 ≤ C‖∂tη‖X∗‖D (φh) ‖0

≤ 2ν + 2νadd(φh)

8
‖D (φh) ‖20 +

C

2ν + 2νadd(φh)
‖∂tη‖2X∗ ,

(2νD (η) ,D (φh)) ≤ 2ν‖D (η) ‖0‖D (φh) ‖0
≤ ν

8
‖D (φh) ‖20 + 8ν‖D (η) ‖20,

(∇ · φh, p− λh) ≤ ‖p− λh‖0‖∇ · φh‖0 ≤ C‖p− λh‖0‖D (φh) ‖0

≤ 2ν + 2νadd(φh)

8
‖D (φh) ‖20 +

C

2ν + 2νadd(φh)
‖p− λh‖20,

(νT(I − PLH
)D (η) , (I − PLH

)D (φh))

≤ νT
16
‖(I − PLH

)D (φh) ‖20 + 4νT‖(I − PLH
)D (η) ‖20

=
νadd(φh)

16
‖D (φh) ‖20 + 4νadd(η)‖D (η) ‖20,

(νT(I − PLH
)D (u) , (I − PLH

)D (φh))

≤ νT‖(I − PLH
)D (u) ‖0‖(I − PLH

)D (φh) ‖0

≤ νadd(φh)

16
‖D (φh) ‖20 + 4νT‖(I − PLH

)D (u) ‖20.

The trilinear term is first decomposed into three terms. A direct calculation
gives

bs(u,u,φh)− bs(uh,uh,φh) = bs(η,u,φh)− bs(φh,u,φh) + bs(uh,η,φh).

The terms on the right-hand side are estimated separately using the estimate
(8) of the trilinear term. One obtains by applying (8) and Young’s inequality
(11) for the first term

bs(η,u,φh)

≤ C‖η‖1/20 ‖D (η) ‖1/20 ‖D (u) ‖0‖D (φh) ‖0

≤ 2ν + 2νadd(φh)

8
‖D (φh) ‖20 +

C

2ν + 2νadd(φh)
‖η‖0‖D (η) ‖0‖D (u) ‖20,

for the second term

bs(φh,u,φh)

≤ C‖φh‖
1/2
0 ‖D (u) ‖0‖D (φh) ‖3/20

≤ 2ν + 2νadd(φh)

8
‖D (φh) ‖20 +

C

(2ν + 2νadd(φh))3
‖φh‖20‖D (u) ‖40,

and for the third term

bs(uh,η,φh)

≤ C‖uh‖1/20 ‖D (uh) ‖1/20 ‖D (η) ‖0‖D (φh) ‖0

≤ 2ν + 2νadd(φh)

8
‖D (φh) ‖20 +

C

2ν + 2νadd(φh)
‖uh‖0‖D (uh) ‖0‖D (η) ‖20.
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Collecting terms gives

1

2

d

dt
‖φh‖20 +

2ν + 2νadd(φh)

4
‖D (φh) ‖20

≤

[
C

2ν + 2νadd(φh)
‖∂tη‖2X∗ + (8ν + 8νadd(η))‖D (η) ‖20

+
C

2ν + 2νadd(φh)
‖p− λh‖20 + 8νT‖(I − PLH

)D (u) ‖20

+
C

2ν + 2νadd(φh)

(
‖η‖0‖D (η) ‖0‖D (u) ‖20 + ‖uh‖0‖D (uh) ‖0‖D (η) ‖20

)]

+

[
C

(2ν + 2νadd(φh))3
‖D (u) ‖40

]
‖φh‖20.

Applying the definition of the reduced Reynolds number (135) and using that
νadd(η) ≤ νT, see (129), finishes Step 3 of the proof:

d

dt
‖φh‖20 +

(Rered(φh))
−1

2
‖D (φh) ‖20

≤ C

[
(Rered(φh)) ‖∂tη‖2X∗ + (ν + νT)‖D (η) ‖20 + (Rered(φh)) ‖p− λh‖20

+νT‖(I − PLH
)D (u) ‖20

+ (Rered(φh))
(
‖η‖0‖D (η) ‖0‖D (u) ‖20 + ‖uh‖0‖D (uh) ‖0‖D (η) ‖20

)]
+C (Rered(φh))

3 ‖D (u) ‖40‖φh‖20. (139)

To perform Step 4 of the proof, the L1(0, T )-regularity of the terms ap-
pearing in (139) has to be studied. Let t ∈ (0, T ] be arbitrary. One obtains
with Poincaré’s inequality (12), Korn’s inequality (13), the Cauchy-Schwarz
inequality, (131), and (137)

∫ t

0

‖η(τ)‖0‖D (η) (τ)‖0‖D (u) (τ)‖20 dτ

≤ C

∫ t

0

‖D (η) (τ)‖20‖D (u) (τ)‖20 dτ

≤ C‖D (η) ‖2
L4(0,t;L2)

‖D (u) ‖2
L4(0,t;L2)

<∞.
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Similarly it follows with Hölder’s inequality, Lemma 4, and (137) that∫ t

0

‖uh(τ)‖0‖D (uh) (τ)‖0‖D (η) (τ)‖20 dτ

≤ ‖uh‖L∞(0,t;L2)

∫ t

0

‖D (uh) (τ)‖0‖D (η) (τ)‖20 dτ

≤ ‖uh‖L∞(0,t;L2)‖D (uh) ‖L2(0,t;L2)‖D (η) ‖2
L4(0,t;L2)

≤ C (Rered(uh))
1/2
(
‖u0,h‖20 + Rered(uh)‖f‖2L2(0,t;X∗)

)
‖D (η) ‖2

L4(0,t;L2)

<∞.

The L1(0, T )-regularity of the other terms is a direct consequence of (131),
(16), (17) and (137).

Applying Gronwall’s inequality and performing the last step of the proof
are straightforward. ut

Even if the constants in the error bound (136) do not depend on negative
powers of ν, there is an implicit dependency on such powers via the norms of
u.

For the convergence of the error bound (136), the last term is the crucial
one since in contrast to all other terms it does not possess a factor with the in-
terpolation error u−ũh. As the mesh width h→ 0, the last term tends to zero
if νT → 0 or if LH tends to D (X). In both cases, the Galerkin finite element
discretization (6) of the Navier–Stokes equations is recovered asymptotically.
Otherwise, in particular if νT and LH are fixed and h→ 0, one cannot expect
that the solution of the projection-based VMS system converges to the solu-
tion of the continuous Navier–Stokes equations. For fixed h and νT → 0, the
error bound (136) tends to the estimate (20) for the Galerkin finite element
discretization of the Navier–Stokes equations.

Let (u, p) ∈Hk+1(Ω)×Hk(Ω) for all times, k ≥ 1, and consider the pair
of spaces Pk/Pk−1 or Qk/Qk−1, k ≥ 2. Neglecting in the following discussion
the squares at the terms in (136), then the optimal order of convergence of the
left-hand side of (136) is hk. All interpolation errors on the right-hand side
of (136) converge at least with hk. The last term in the error bound contains
the L2 projection of the deformation tensor into LH . Hence, it is of order Hk,
where H is the mesh parameter connected with LH . Hence, for not spoiling
the convergence of the error bound, the additional viscosity has to be chosen
such that νT = c(h/H)2k. In practice, e.g., if LH is defined on the same grid
as xh, an explicit value for H is not available. But one can think of H being
H = Ch with C > 1. In this case, νT should be just a constant independent
of the mesh width.

There is no improvement in the constant in the exponential, i.e., Rered =
2ν−1, if there is a time t at which νadd(φh(t)) = 0. Using the definition
(128) of νadd, one finds that this situation is equivalent to ‖PLH

D (φh(t)) ‖20 =
‖D (φh(t)) ‖20 or equivalently, since PLH

is the L2 projection, to

(I − PLH
)D (uh) = (I − PLH

)D (ũh) . (140)



64

That means, the small resolved scales of uh and ũh are the same. However, this
situation is unlikely for turbulent flows since these scales of uh are considerably
influenced by the model that is used for the unresolvable small scales whereas
the interpolation ũh does not possess any information about this model, e.g.,
if ũh is defined by the Stokes projection. In this case, (140) is only likely if
there are only large scales in the flow, which is not the case in turbulent flows.

From the mathematical point of view, the difficulty consists in the fact
that the equations for laminar flows and turbulent flows are the same, namely
the Navier–Stokes equations (1). Since the analysis is carried out for (1), it
is not possible to distinguish between the two kinds of flows and the results
must also hold for the case of laminar flows. For such flows, νadd(φh(t)) may
vanish and the error estimate (20) of the Galerkin finite element method is
recovered, in which the constants depend on ν−1.

8.5 Experience in Numerical Simulations

As already mentioned at the end of Section 8.1, the three-scale projection-
based VMS method can be implemented as a one-grid method and as a two-
grid method. For the simulation of turbulent flows, so far only the one-grid
version was used.

The implementation of this version is described in detail in [93]. It turned
out that choosing LH to be a space of discontinuous tensors and using a
basis that is L2 orthogonal are essential for an efficient implementation. Both
requirements can be easily fulfilled by choosing a basis of piecewise Legendre
polynomials. Using a discontinuous space for LH makes also sense from the
point of view that the functions of LH are L2 projections of deformation
tensors of finite element functions, which are usually discontinuous functions,
too.

If LH is the same space during the whole simulation, one has to assemble
four additional matrices at the initial time. Three additional matrices have to
be assembled every time the computed velocity uh changes since these matrices
contain the factor νT and νT is chosen usually to be a Smagorinsky-type
model of form (114)–(116). After having assembled these matrices, one has to
compute few sparse matrix-matrix products. The resulting sparse matrices
have to be added to the matrices obtained in the Galerkin finite element
discretization of the Navier–Stokes equations. Satisfying the two requirements
on LH stated above, it was shown in [93] that the resulting additional matrices
possess the same sparsity pattern as the matrices from the Galerkin method.
Thus, there is no need to change the sparsity structure of the matrices in an
existing code for simulating the incompressible Navier–Stokes equations.

The three-scale projection-based VMS method was studied comprehen-
sively at turbulent channel flow problems in [104,97,98]. Several options for
choosing the projection space (which was always static in time) and the eddy
viscosity model were compared. The simulations were always performed on
quite coarse hexahedral grids with the Q2/P

disc
1 pair of finite element spaces.
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Often, the combination of choosing LH to be the space of piecewise constant
symmetric tensors, the large-small Smagorinsky model (114), δ as twice of the
length of the shortest edge of the mesh cell, and CS = 0.01 gave results which
were among the best ones (and better than for the Smagorinsky LES model).
In [104] it was shown that the projection-based VMS method is less sensitive
to the choice of the parameters in the Smagorinsky model than the Smagorin-
sky LES model. This property is due to the fact that the eddy viscosity model
influences much less scales directly in the VMS approach compared with the
LES method.

In [98] it was concluded that the choice of LH has a much larger impact
on the results compared with the choice of νT. Based on this observation, a
method for choosing the space LH adaptively was proposed in [99]. The basic
idea of this method consists in applying a lot of eddy viscosity in strongly
turbulent regions and to switch off the eddy viscosity in laminar regions. The
local turbulence intensity was estimated with the size of the local small re-
solved scales ‖D (uh) − GH‖L2(K). Based on these local values, four spaces
were assigned to LH(K):

– LH(K) = {O}: the eddy viscosity is applied locally to all resolved scales,
– LH(K) = P0(K),
– LH(K) = P1(K),
– LH(K) = D (Xh(K)): the eddy viscosity is switched off locally.

The proof of concept for this method as well as a number of parameter stud-
ies for choosing the adaptive projection space can be found in [99]. It turned
out that the projection space was chosen in the studied examples (turbulent
channel flow, turbulent flow around a cylinder) as it was expected. With ap-
propriately chosen parameters in the selection process for the local projection
spaces, the results for the channel flow problem were better than with static
spaces for LH . For the turbulent flow around the cylinder, the results were
similar. Every change of the space LH requires a new assembling of all seven
additional matrices.

The use of the three-scale projection-based VMS method with adaptive
choice of the projection space on tetrahedral grids with the Bernardi–Raugel
element [17] is described and studied in [100].

In [123], the three-scale projection-based VMS method was studied in com-
bination with a grad-div stabilization term. Numerical studies for an isotropic
turbulence example showed that the grad-div term dominates the VMS term.

Usually, the computing times of the projection-based VMS method with
static projection space are a few percent longer than for the Smagorinsky LES
model (but the results are more accurate). Applying the adaptive choice of
the projection space leads usually again to somewhat longer computing times.

The three-scale projection-based VMS method with adaptively chosen pro-
jection space was used in the simulation of turbulent flows in population bal-
ance systems, modeling droplets in clouds, in [19,20,128]. In all cases, a good
agreement of the simulated flow fields with experimental wind tunnel data
were obtained.
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For the projection-based VMS method that computes the projection as a
post-processing step, it was observed in [106] that one obtains similar results
for computing isotropic turbulence as for the method of form (113).

9 Three-Scale Algebraic VMS-Multigrid Methods

Algebraic VMS-multigrid methods aim at introducing an additional viscous
term in the discrete momentum equation where the turbulent viscosity is di-
rectly applied to some small resolved scales. This goal is the same as for the
three-scale projection-based VMS method presented in Section 8. However,
the scale separation into large and small resolved scales is performed in a
completely different way in both methods.

The algebraic variational multiscale-multigrid method (AVM3) was pro-
posed and applied to convection-dominated convection-diffusion problems in
[64]. It was further developed and extended for application to turbulent flows
in [63,65]. Finally, the use of a more sophisticated turbulence model was pro-
posed in [121].

9.1 Scale Separation by Plain Aggregation AMG

In AVM3, the construction of the small resolved scales uses an idea from AMG
(Algebraic Multi-Grid) methods. The motivation for this approach comes from
the desire to define the scale separation of the resolved scales without intro-
ducing another finite element space or another grid.

AMG methods are a proposal for transferring the ideas of geometric multi-
grid methods to problems where coarser geometric grids are not available, see
[135]. To this end, a multilevel structure is constructed that is solely based on
the matrix, which represents the problem on the given grid. In AMG methods,
coarser levels, discrete operators on these levels, and transfer operators (re-
striction and prolongation) are constructed. For the scale separation in AVM3,
only the construction of one coarse level and the corresponding transfer op-
erators are needed. In AMG methods, transfer operators play a crucial role
for the efficiency of solving the linear system of equations. There are several
possibilities for constructing coarser levels in AMG methods, e.g., smoothed
aggregation [127] or plain aggregation [138]. It is suggested for AVM3 in [64]
to use the plain aggregation AMG to extract the small resolved scales. The
scale separation based on the plain aggregation AMG will be described next.

The degrees of freedom on the given grid correspond to the rows of the given
matrix A. In [63,64], some root degree of freedom i is chosen and an aggregate
is formed from the union of all degrees of freedom j for which the matrix entry
aij does not vanish. Then, these degrees of freedom are removed from the list,
a next root degree of freedom is chosen and this procedure is continued until
all degrees of freedom belong to an aggregate. The aggregates represent the
degrees of freedom on the next coarser level. Denoting the fine and the coarse
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level in terms of the mesh width h of the geometric grid corresponding to the
fine level, then the aggregates on the coarse level were denoted in [63,64] by
3h.

Operators for the restriction of the residual R3h
h and the prolongation of

functions Ph3h have to be defined. To this end, consider the matrix Ã which
differs from A only in the way the Dirichlet boundary conditions are replaced
with outflow boundary conditions. Let Ã0 be a matrix whose columns span
the kernel of Ã, i.e., it holds

ÃÃ0 = 0. (141)

The matrix on the coarse grid can be defined with the so-called Galerkin
projection

Ã3h = R3h
h ÃP

h
3h.

Denoting the matrix which spans the kernel of Ã3h by Ã3h
0 gives

0 = Ã3hÃ3h
0 = R3h

h ÃP
h
3hÃ

3h
0 . (142)

From (141) it follows that this equation is satisfied if

Ph3hÃ
3h
0 = Ã0.

Based on this relation, the operators Ph3h and Ã3h
0 can be determined simulta-

neously, for details see [64]. Finally, one sets

R3h
h =

(
Ph3h
)T
.

Note that these operators are linear operators between finite-dimensional spaces
and thus they can be represented with matrices. For more details on the con-
struction of the operators and further considerations on AMG methods, it is
referred to [64].

The operator for defining the large scales is given by

S3h
h : Xh →Xh, u3h = Ph3hR

3h
h uh,

that is, in the first step uh is restricted to the aggregates and in the second step,
the representation of the aggregates in the finite element space is obtained.
The small resolved scales are defined by

uh = u3h + ûh ⇐⇒ ûh = uh − u3h. (143)

In AVM3 presented in [63], the definition of the aggregates is based on the ma-
trix that contains the complete discretization of the velocity-velocity coupling
of the Navier–Stokes equations, including terms coming from stabilizations.
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9.2 Derivation

The derivation of Algebraic VMS-multigrid methods starts by considering first
the two-scale decomposition of the velocity and pressure

u = uh + u′, p = ph + p′

where (uh, ph) ∈ Xh × Yh. The same decomposition is applied to the corre-
sponding test functions. After having neglected the equation with the unre-
solved scale test functions, the equation with the test function from the finite
element spaces remains

(∂tuh,vh) + (2νD (uh) ,D (vh)) + b (uh,uh,vh) + (∇ · uh, qh)

−(∇ · vh, ph)

= (f ,vh)−
[
(∂tu

′,vh) + (2νD (u′) ,D (vh)) + b (uh,u
′,vh)

+b (u′,uh,vh) + b (u′u′,vh)− (∇ · vh, p′)
]
− (∇ · u′, qh). (144)

Consider now the terms in the brackets, and the splitting of the test function
vh = v3h + v̂h. Then, the assumptions for three-scale VMS methods from
Section 3.2 are taken into account:

– The direct impact of the unresolved scales and the large scales is negligible,
i.e., all the terms in the brackets with test function v3h are neglected.

– The direct impact of the unresolved scales onto the small resolved scales is
modeled with a turbulence model, i.e., all terms in the brackets with test
function v̂h are modeled. In AVM3, a Smagorinsky eddy viscosity model
of the form

∇ ·
(
CSh

2‖D (ûh) ‖FD (ûh)
)

= ∇ · (νT(ûh)D (u)h) (145)

was used, see [63].

A realization of the AVM3 can be found so far only for the pair of finite
element spaces Q1/Q1 for velocity and pressure on hexahedral grids. Thus,
the introduction of an additional consistent stabilization was suggested in [63]
which includes the PSPG stabilization term as a model of the last term on the
right-hand side of (144)

(∇ · u′, qh) ≈
∑
K∈Th

(∂tuh − ν∆uh + (uh · ∇)uh +∇ph − f , τm,K∇qh)K

where {τm,K}K∈Th denote the stabilization parameters. This additional term
in the AVM3 formulation circumvents the violation of the discrete inf-sup
condition in the case of equal-order pairs of velocity-pressure finite element
spaces.
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Inserting the models described above in (144), the AVM3 reads as follows:
Find uh : [0, T ]→Xh and ph : (0, T ]→ Yh satisfying

(∂tuh,vh) + (2νD (uh) ,D (vh)) + b (uh,uh,vh) + (∇ · uh, qh)

−(∇ · vh, ph) + (2νT(ûh)D (ûh) ,D (vh))

+
∑
K∈Th

(∂tuh − ν∆uh + (uh · ∇)uh +∇ph, τm,K∇qh)K

= (f ,vh) +
∑
K∈Th

(f , τm,K∇qh)K . (146)

The small resolved scales ûh are computed with the help of the AMG approach
sketched in Section 9.1.

In [121] it was proposed to use a more sophisticated turbulence model than
the Smagorinsky model (145), a so-called multifractal model of u′. Multifractal
modeling of unresolved scales is based on physical considerations, see [29,30]
for a detailed derivation. As final result, the unresolved velocity scales can be
represented in the form

u′ = Csgs

(
1− α−4/3

)−1/2
2−2N/3

(
24N/3 − 1

)1/2
ûh, (147)

see [121]. In (147), Csgs is a constant, the parameter α comes from the definition
of the large scales uαh, i.e., α = 3 in (143), and

N = log2

(
hK
λν

)
(148)

is the number of cascades, which depends on the local mesh width hK and the
viscous scale length λν . Model (147) is inserted in (144).

In [121], the value Csgs = 0.25 was used. The viscous scale length is about
six times larger than the Kolmogorov scale, [121]. The following approxima-
tions were proposed in [121] [119, Section 4.2.5]

hK
λν

= Cν

(
RehK

)3/4
with Cν = 1/12.3 or Cν = 1/11.2 and

RehK =
‖D (uh) ‖Fh2K

ν
or RehK =

‖uh‖2hK
ν

.

Thus, the value obtained on the right-hand side of (148) is generally not a
natural number. In practice, the non-natural numbers which are computed
with the right-hand side of (148) are used for N , which can be seen, e.g., in
[121, Figure 11] or [119, Figure 4.7].

The multifractal modeling can be adapted to wall-bounded turbulent flows
and it allows backscatter, see [121,119] for details. To enhance numerical stabil-
ity, it is proposed in [121,119] to extend the multifractal model with residual-
based stabilization terms, namely the SUPG term, the grad-div term, and
the PSPG term. The arising method is called algebraic variational multiscale-
multigrid-multifractal method, AVM4, in [119].
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9.3 Relations to Other Methods

Since the algebraic VMS methods and the three-scale projection-based VMS
method presented in Section 8 have the same principal goal, to apply a tur-
bulent viscosity term directly only to some small resolved scales, their final
equations look similar, compare (146) and (113). The additional PSPG-type
stabilization in (146) was only introduced because an equal-order pair of finite
element spaces was used in [63].

9.4 Experience in Numerical Simulations

The algebraic VMS method AVM3 was compared in [63] with the two-scale
residual-based VMS method from [10] presented in Section 4. A turbulent
channel flow problem and a turbulent lid driven cavity problem were con-
sidered. The simulations were performed for Q1/Q1 finite elements. It was
observed that the results with AVM3 were more accurate in several aspects
and the simulations were somewhat more efficient. Only small differences in
accuracy and efficiency between both VMS methods were observed in [65]
for the simulation of a turbulent flow around a cylinder. Both VMS methods
turned out to be clearly more efficient than the dynamic Smagorinsky model.

AVM4 was compared in [119] also with the two-scale residual-based VMS
method from Section 4 and the dynamic Smagorinsky model. Again, the simu-
lations were performed with the Q1/Q1 pair of finite element spaces. It turned
out that the adaption of the method at the wall which is described in [119]
is of great importance for computing accurate results. For turbulent channel
flows substantial better solutions were obtained with AVM4 compared with
the other methods. Also for the turbulent flow around a cylinder, AVM4 pro-
vided the best results near the cylinder. The computing times of AVM4 and
the residual-based VMS method were similar.

The methods AVM3 and AVM4 were applied successfully also for the sim-
ulation of variable-density flows at low Mach numbers, see [66,120].

10 An Unsteady Three-Scale Projection-Based VMS Method

This section studies the thee-scales projection-based VMS turbulence model
for unsteady flows (34) with the turbulence modeling given by (38). It has a
simplified structure with respect to residual-based VMS models, and equally
applies to laminar and turbulent flows without further adaptation. Globally,
it provides a good compromise between accuracy and computational com-
plexity. Finally, it allows a thorough numerical analysis, parallel to that of
Navier–Stokes equations, parallel to the analysis for the velocity deformation
projection-based VMS model presented in Section 8.

Stability in the natural L2
(
0, T ;H1(Ω)

)
and L∞

(
0, T ;L2(Ω)

)
norms will

be proved, so as weak convergence to a weak solution. The asymptotic energy
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balance only is valid for solutions with some additional regularity to the natural
one, otherwise one only recovers an asymptotic energy inequality. Also, the
error estimates for smooth solutions are of optimal order with respect to the
polynomial interpolation.

The analysis of more complex VMS methods, in particular of residual-
based methods requires further adaptations of the analysis that is presented
here. The subgrid terms have a very complex structure that includes convec-
tive interactions between large and small scales, thus setting serious technical
problems just to prove stability. This field of numerical analysis is nowadays
in progress.

10.1 Model Statement

The model stated in Section 6.4 is considered in its unsteady version. However,
for simplicity of notation, a stable mixed method will be studied (see [35] for
the analysis of the unsteady stabilized approximation with wall-laws), actually
the Taylor–Hood pair of spaces: Xh = [V lh(Ω)]d, Yh = V l−1h (Ω), l ≥ 2, are
considered, where it is assumed that the domain Ω is bounded and polygonal
(when d = 2) or polyhedral (when d = 3). The family of couples of spaces
(Xh, Yh) satisfies the discrete inf-sup condition (9). Two kinds of spaces of

small resolved scales are considered: the space X̂h may be formed either by
polynomials of degree smaller than those of Xh:

X̂h =
[
V kh (Ω)

]d
, with 1 ≤ k < l, (149)

or by polynomials of the same degree constructed on a coarser grid:

X̂h = [V lH(Ω)]d, (150)

where typically H = q h for some q ≥ 2. A stable restriction operator ρh :

X 7→ X̂h satisfying optimal error estimates is associated to the method.
The following projection-based VMS model with Smagorinsky projection-

based eddy viscosity model is considered: Find (uh, ph) ∈Xh × Yh such that

d

dt
(uh,uh) + bs(uh,uh,uh) + a(uh,uh)− (∇ · uh, ph)

+c(uh;uh,uh) = 〈f ,uh〉,
(∇ · uh, qh) = 0,
uh(0) = u0,h,

(151)

for all (uh, qh) ∈Xh×Yh, where u0,h is the Stokes projection of uh(0) on Xh

and the form c is again given by (99)

c(uh;uh,vh) = (2νT(uh)D(ûh),D(v̂h)),

with
ûh = (I − ρh)uh, v̂h = (I − ρh)vh,
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where I is the identity operator, and the eddy diffusion νT is defined by the
small-small (36) VMS-Smagorinsky modeling.

The role of the small scale (or high frequency) components ûh = (I−ρh)uh
that appear in the eddy diffusion term c is to absorb the energy consumed in
the formation of small eddies in the inertial range (the unresolved scales). So
the basic grid to build the space Xh should be fine enough to ensure that this
space covers the large scales and an initial segment of the inertial range. Only
the large scales are expected to be solved accurately.

In practice, a full space-time discretized model should be used. For the
sake of simplicity, as a model problem the semi-implicit Euler discretization
of (151) will be considered:

– Initialization. u0
h = u0,h.

– Iteration. For n = 0, 1, · · · , N − 1: Assume that unh ∈Xh is known.
Compute un+1

h ∈Xh, pn+1
h ∈ Yh such that for all uh ∈Xh, qh ∈ Yh(

un+1
h − unh
∆t

,uh

)
+ bs(u

n
h,u

n+1
h ,uh) + a(un+1

h ,uh)

+c(un+1
h ;un+1

h ,uh)− (pn+1
h ,∇ · uh) = 〈fn+1,uh〉, (152)

(∇ · un+1
h , qh) = 0,

where ∆t = T/N for some integer number N ≥ 1, and fn+1 is the average
value of f in (tn, tn+1).

The main hints for the analysis of model (152), following [38], are stated next.
The main point is to prove the weak convergence of the solution provided by
this model to a weak solution of the Navier–Stokes equations.

10.2 Stability and Convergence Analysis

To perform the numerical analysis of model (152) assume that the family of
triangulations {Th}h>0 is regular.

Important properties of the form c defined by (99) are summarized in the
following lemma.

Lemma 5 i) The form c is non-negative, in the sense that

c(w;u,u) ≥ 0, for all w, u ∈ H1(Ω).

ii) For any uh, wh ∈Xh,

|c(uh;uh,wh)| ≤ C1 h
2−d/2 ‖D(ûh)‖20 ‖D(ŵh)‖0. (153)

iii) For all w, u ∈W 1,3(Ω),

c(w;w,w − u)− c(u;u,w − u) ≥ C2 h
2 ‖D(ŵ − û)‖30,3,Ω . (154)
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iv) For all uh, wh, zh ∈Xh,

|c(wh;wh, zh)− c(uh;uh, zh)| ≤ (155)

C3 h
2−d/2 (‖D(wh)‖0 + ‖D(uh)‖0)‖D(zh)‖0 ‖D(wh − uh)‖0,

where the constants C1, C2 and C3 only depend on d, Ω, and the aspect
ratio of the family of triangulations.

Let B be a Banach space. Consider the following semi-discrete norms,

‖uh‖lp(B) =

(
N∑
n=0

∆t ‖unh‖
p
B

)1/p

, ‖uh‖l∞(B) = max
n=0,··· ,N

‖unh‖B ,

where uh = (u0
h,u

1
h, · · · ,uNh ) ∈ BN+1. Also, consider the piecewise in time

function p̃h : (0, T )→ Yh that takes the value pnh in the time interval (tn, tn+1),
and its primitive in time Ph,

Ph(t) :=

∫ t

0

p̃h(s) ds.

To pass to the limit in the discrete formulation to a solution of the Navier–
Stokes equations, it is sufficient to obtain an estimate of Ph instead of p̃h,
which is much simpler from the analytical point of view. Consider also the
time increment of the velocity, τδuh(t) = uh(t+ δ)− uh(t).

The stability of method (152) is given in the following theorem.

Theorem 6 Assume that the family of grids {Th}h>0 is regular, f ∈ [H−1(Ω)]d,
and u0 ∈ L2(Ω). Then model (152) admits a unique solution, which satisfies
the following estimates:

‖uh‖l∞(L2(Ω)) +
√
ν ‖uh‖l2(H1(Ω)) + h ‖D(ûh)‖3/2

l3(L3(Ω))

≤ C1

(
‖u(0)‖0 +

1√
ν
‖f‖l2(H−1(Ω))

)
, (156)

‖τδuh(t)‖2L2(0,T−δ;L2(Ω)) ≤ C2 δ
1/2, for 0 < δ < T, (157)

and

‖Ph‖l∞(L2(Ω)) ≤ C2, (158)

for some constant C1 > 0 independent of h, ∆t and ν, and some constant
C2 > 0 independent of h and ∆t, where h = min

K∈Th
hK .

Proof The proof is performed in several steps.

Existence and uniqueness of solutions of discrete problem. Problem (152)
can be written as
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Find un+1
h ∈Xh, pn+1

h ∈ Yh such that for all wh ∈Xh, qh ∈ Yh,

ã(un+1
h ,wh) + bs(u

n
h,u

n+1
h ,wh) + c(un+1

h ;un+1
h ,wh)

−(∇ ·wh, p
n+1
h ) = 〈f̃

n+1
,wh〉,

(∇ · un+1
h , qh) = 0,

where ã(u,w) =
1

∆t
(u,w) + a(u,w) and f̃

n+1
= fn+1 +

unh
∆t

. The form ã

is an inner product on the space H1
0(Ω) that generates a norm equivalent to

the H1 norm. The existence of a solution follows from Brouwer’s fixed point
theorem that uses the positiveness of form c and the inf-sup condition (9). The
uniqueness of solutions is a consequence of the well-posedness of the discrete
problem (see [38, Chapter 9]).

Velocity estimates. Setting wh = un+1
h and qh = pn+1

h in (152) yields

1

2
‖un+1

h ‖20 +
1

2
‖un+1

h − unh‖20 +∆t ν‖D(un+1
h )‖20 + C2

S h
2∆t ‖D(ûn+1

h )‖30,3,Ω

≤ 1

2
‖unh‖20 +∆t < fn+1,un+1

h > . (159)

Using Young’s inequality one obtains

‖un+1
h ‖20 + ‖un+1

h − unh‖20 +∆t ν‖D(un+1
h )‖20 + 2C2

S h
2∆t ‖D(ûn+1

h )‖30,3,Ω
≤ ‖unh‖20 + 4∆tν−1‖fn+1‖2H−1 . (160)

Then, if k ≤ N − 1, it follows that

‖uk+1
h ‖20 +

k∑
n=0

‖un+1
h − unh‖20 + ν ∆t

k∑
n=0

‖D(uk+1
h )‖20 + (161)

2C2
S h

2∆t
k∑

n=0

‖D(uk+1
h )‖30,3,Ω ≤ ‖u0

h‖20 + 4∆t ν−1
k∑

n=0

‖fn+1‖2H−1 .

Estimate (156) follows, because ‖u0,h‖0 ≤ ‖u(0)‖0.

Velocity time increment estimates. Problem (152) is restated in the form

(∂tuh(t),wh) + bs(ũh(t−∆t), ũh(t),wh) + a(ũh(t),wh)

+c(ũh(t); ũh,wh)− (p̃h(t),∇ ·wh) = 〈f̃h(t),wh〉 (162)

(∇ · ũh(t), qh) = 0,

a.e.in [0, T ], where uh : [0, T ]→Xh is the piecewise linear-in-time function
that takes the value unh at t = tn = n∆t; ũh : (−∆t, T )→Xh is the piecewise
constant function that takes the value un+1

h on (tn, tn+1), and ũh(t) = u0
h in

(−∆t, 0); and p̃h, f̃h : (0, T )→ Yh respectively are the piecewise constant-in-
time functions that take the value pnh and fn+1 in the time interval (tn, tn+1).
Integrating (162) in (t, t+ δ) for t ∈ [0, T − δ] gives

(τδuh(t),wh) =

∫ t+δ

t

〈Fh(s),wh〉 ds+

∫ t+δ

t

(p̃h(s),∇ ·wh) dt, (163)
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where

〈Fh(s),w〉 = −bs(ũh(s−∆t), ũh(s),w)− a(ũh(s),w)

−c(ũh(s); ũh(s),w) + 〈f̃h(s),w〉, for all w ∈H1
0(Ω).

Using (∇ · τδuh(t), p̃h(s)) = 0 yields∫ T−δ

0

‖τδuh(t)‖20 dt =

∫ T−δ

0

∫ t+δ

t

〈Fh(s), τδuh(t)〉 ds dt, (164)

From estimate (153), it follows that

‖Fh(s)‖H−1 ≤ C
[
1 + ‖ũh(s−∆t)‖21 + (1 + C h2)‖D(ũh(s))‖20

+‖D(ũh(s))‖0 + ‖f̃h(s)‖H−1

]
.

Thanks to the stability estimate (156), one deduces that Fh ∈ L1(H−1), and
‖Fh‖L1(H−1) ≤ C for some constant C > 0 independent of h and ∆t. By
Fubini’s theorem, the right-hand side of (164) is estimated by∫ T−δ

0

‖τδuh(t)‖20 dt =

∣∣∣∣∣
∫ T

0

∫ s

s−δ
〈Fh(s), τ̃δuh(t)〉 dt ds

∣∣∣∣∣
≤ δ1/2 ‖Fh‖L1(H−1) ‖D(τδuh)‖L2(H1) ≤ Cδ1/2‖uh‖L2(H1) ≤ C δ1/2,

where ṽ denotes the extension by zero outside [0, T − δ] of a function v. Then
(157) follows.

Estimate of the primitive of the pressure. Let wh ∈ Xh. Equation (162)
yields

(Ph(t),wh) = (uh(t)− u0
h,wh)−

∫ t

0

〈Fh(s),wh〉 ds

≤ C
(
‖uh‖l∞(L2) + ‖u0

h‖0 + ‖F‖L1(H−1)

)
‖wh‖1 ≤ C ‖wh‖1.

Estimate (158) follows from the inf-sup condition (9). ut

The convergence of model (152) to the Navier–Stokes equations is based
upon the stability estimates from Theorem 6, combined with some compact-
ness properties of injections between parabolic spaces. To state them, let con-
sider the Nikolskii spaces

Nr,p(0, T ;B) = {f ∈ Lp(0, T ;B) such that ‖f‖Ñr,p < +∞},

for r ∈ [0, 1], p ∈ [0,∞] with

‖f‖Ñr,p = sup
δ>0

1

δr
‖τδf‖Lp(0,T−δ;B).

The space Nr,p(0, T ;B) is a Banach space if it is endowed with the norm

‖f‖Nr,p(0,T ;B) = ‖f‖Lp(0,T ;B) + ‖f‖Ñr,p .

The following Simon’s compactness theorem holds (cf. [132]).
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Lemma 6 Let X, B, Y be Banach spaces such that X ↪→ B ↪→ Y where the
injection X ↪→ B is compact. Then the injection

Lp(0, T ;X) ∩Nr,p(0, T ;Y ) ↪→ Lp(0, T ;B) with 0 < r < 1, 1 ≤ p ≤ +∞

is compact.

Observe that by estimates (156) and (157) the functions uh are uniformly
bounded in N1/4,2(L2). Now, the convergence theorem can be stated.

Theorem 7 Assume that the family of triangulations {Th}h>0 is regular,
f ∈ L2(H−1) and u0 ∈ L2(Ω). Then the sequence {(uh, ph)}h>0 provided by
method (152) contains a subsequence that is weakly convergent in L2(H1) ×
H−1(L2) to a weak solution (u, p) of the unsteady Navier–Stokes equations.

Proof The proof is performed in several steps.

Extraction of convergent subsequences. By estimates (156) and (157), the
functions uh are uniformly bounded in L2(0, T ;H1), in L∞(0, T ;L2), and in
N1/4,2(0, T ;L2). As the injection H1(Ω) ↪→ Lr(Ω) is compact for 1 ≤ r <
2d/(d− 2), by Lemma 6 with X = H1(Ω), B = Lr, and Y = L2(Ω), one de-
duces that the sequence {uh}h>0 is compact in L2(0, T ;Lr). Then the sequence
{uh}h>0 contains a subsequence (that is denoted in the same way) which is
strongly convergent in L2(0, T ;Lr), weakly in L2(0, T ;H1), and weakly-* in
L∞(0, T ;L2) to some u. Also, by estimate (158), the sequence {Ph}h>0 is uni-
formly bounded in L∞(0, T ;L2). Then it contains a subsequence (that can be
assumed to be a subsequence of the preceding one) which is weakly-* conver-
gent in L∞(0, T ;L2) to some P . It will be proved in the sequel that the pair
(u, ∂tP ) is a weak solution of Navier–Stokes equations.

Limit of the momentum conservation equation. The momentum conserva-
tion equation in (162) may be re-written as

−
∫ T

0

(uh(t),wh)ϕ′(t) dt− (uh0,wh)ϕ(0) +

∫ T

0

bs(ũ
−
h (t), ũh(t),wh)ϕ(t) dt

+

∫ T

0

a(ũh(t),wh)ϕ(t) dt+

∫ T

0

c(ũh(t); ũh(t),wh)ϕ(t) dt (165)

+

∫ T

0

(Ph(t),∇ ·wh)ϕ′(t) dt =

∫ T

0

〈f̃h(t),wh〉ϕ(t) dt, for all w ∈Xh,

for any function ϕ ∈ D([0, T ]) such that ϕ(T ) = 0, where ũ−h : (0, T )→Xh is
the piecewise constant in time function that takes the value unh on (tn, tn+1).

By estimate (156) the sequences ũh and ũ−h are also uniformly bounded
in L2(0, T ;H1) and in L∞(0, T ;L2). Then, each one of them contains a subse-
quence weakly convergent in L2(0, T ;H1) and weakly-* convergent in
L∞(0, T ;L2) to some limits. But both limits should be equal to u since

max{‖uh − ũh‖2L2(0,T ;L2), ‖uh − ũ
−
h ‖

2
L2(0,T ;L2) }

≤ ∆t ‖u0‖1,2,Ω +
∆t

2ν
‖f‖2L2(0,T ;H−1).
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Time derivative term. Let w ∈ H1
0(Ω). Due to the approximation prop-

erties of Lagrange finite element spaces, there exists a sequence {wh}h>0

such that wh ∈ Xh that converges to w in Xh in H1
0(Ω). Observe that

if z ∈ L∞(0, T ;L2) ∩ L2(0, T ;L4), then by Hölder’s inequality

‖z‖L3(0,T ;L3) ≤ ‖z‖
1/3

L∞(0,T ;L2)
‖z‖2/3

L2(0,T ;L4)
.

Then, the sequences ũ−h and ũh strongly converge to u in L3(0, T ;L3) and

lim
(h,∆t)→0

∫ T

0

(uh(t),wh)ϕ′(t) dt =

∫ T

0

(u(t),w)ϕ′(t) dt.

Convection term. Integration by parts yield

bs(ũ
−
h (t), ũh(t),wh) = (ũ−h (t)·∇ũh(t),wh)−1

2
(∇·ũ−h (t),wh·ũh(t)) a.e. in (0, T ).

As ũ−h and ũh strongly converge to u in L3(0, T ;L3), and weakly in L2(0, T ;H1),
both terms pass to the limit and

lim
(h,∆t)→0

∫ T

0

bs(ũ
−
h (t), ũh(t),wh)ϕ(t) dt =

∫ T

0

bs(u(t),u(t),w)ϕ(t) dt.

Diffusion terms. As ũh(t) is weakly convergent to u in L2(0, T ;H1), it
holds

lim
(h,∆t)→0

∫ T

0

a(ũh(t),wh)ϕ(t) dt =

∫ T

0

a(u(t),w)ϕ(t) dt.

Also, lim
(h,∆t)→0

∫ T

0

c(ũh(t); ũh(t),wh)ϕ(t) dt = 0. This statement follows from

(153), that yields∣∣∣∣∣
∫ T

0

c(ũh(t); ũh(t),wh)ϕ(t) dt

∣∣∣∣∣
≤ C h2−d/2

∫ T

0

‖D(uh(t))‖20 ‖D(wh)‖0 |ϕ(t)| dt

≤ C h2−d/2 ‖D(uh)‖2L2(0,T ;L2) ‖D(wh)‖0 ‖ϕ‖L∞(0,T ).

Pressure term. As ∇ ·wh(x)ϕ′(t) is strongly convergent in L2(0, T ;L2) to
∇ · w(x)ϕ′(t) and (Ph)h>0 is weakly-* convergent in L∞(0, T ;L2) to P , it
follows that

lim
(h,∆t)→0

∫ T

0

(Ph,∇ ·wh(x))ϕ′(t) dt =

∫ T

0

(P,∇ ·w(x))ϕ′(t) dt.
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Limit of the continuity equation. Consider some function q ∈ L2
0(Ω), and

some interpolate qh ∈ Yh, strongly convergent in L2
0(Ω) to q. As uh is weakly

convergent to u in H1(Ω), it follows that∫ T

0

(∇ · u(t), q)ϕ(t) dt = lim
(h,∆t)→0

∫ T

0

(∇ · uh(t), qh)ϕ(t) dt = 0.

Conclusion. As a consequence of the preceding analysis, u belongs to
L2(0, T ;H1

0) ∩ L∞(0, T ;L2), P belongs to L∞(0, T ;L2), and the pair (u, P )
satisfies

−
∫ T

0

(u(t),w)ϕ′(t) dt− (u0,w)ϕ(0)

+

∫ T

0

[bs(u(t),u(t),w) dt+ a(u(t),w)] ϕ(t) dt (166)

+

∫ T

0

(P (t),∇ ·w)ϕ′(t) dt =

∫ T

0

〈f(t),w〉ϕ(t) dt.

for all w ∈ H1
0(Ω), ϕ ∈ D([0, T ]). Thus, the pair (u, ∂tP ) is a weak solution

of the Navier–Stokes equations. As Ph weakly converges to P in L2(0, T ;L2),
then ph = ∂tPh weakly converges to p = ∂tP in H−1(0, T ;L2). ut

The above proof shows that the eddy diffusion terms vanish in the weak
limit, and a standard weak solution of Navier–Stokes equations is recovered.
No eddy diffusion concentration effects take place in the weak limit.

10.3 Error Estimates

Let Bh be a sub-space of a Banach space B. Given u ∈ C0([0, T ], B), denote

dlp(B)(u, Bh) =

[
∆t

N∑
n=0

dB(u(tn), Bh)p

]1/p
,

dl∞(B)(u, Bh) = max
n=0,··· ,N

dB(u(tn), Bh).

Theorem 8 Assume that the family of grids {Th}h>0 is regular, that the
data satisfy f ∈ C0(0, T ;L2), ∂tf ∈ L2(0, T ;H−1), u0 ∈ W 1,3(Ω) and
that the unsteady Navier–Stokes equations (166) admit a solution (u, p) ∈
C0(0, T ; W1,3)×C0(0, T ;L2) such that ∂2tu ∈ L2(0, T ;L2). Then the sequence
{(uh, ph)}h>0 given by the discrete projection-based VMS model (152) satisfies
the error estimates

‖u− uh‖l∞(L2) + ‖u− uh‖l2(H1) ≤ M(h,∆t) + C dl∞(L2)(u,Xh), (167)

‖P − Ph‖l∞(L2) ≤ M(h,∆t) + C dl∞(L2)(P, Yh), (168)
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where

M(h,∆t) = C
[
∆t+ d0(u(0),Xh) +

1

∆t
dl2(L2)(u,Xh) + dl2(H1)(u,Xh)

+ dl2(L2)(p, Yh)

+ h2−d/2 (dl4(H1)(u,Xh)2 + dl4(H1)(u, X̂h)2)
]
, (169)

and C is a constant independent of h and ∆t, increasing with T .

Proof As u(tn) is divergence-free, its Stokes projection, defined by (15), sat-
isfies the estimate ‖D(u(tn)− vnh)‖0 ≤ C dH1(u(tn),Xh). Let pnh also denote
the L2(Ω) orthogonal projection of p(tn) on Yh. Define the errors in velocity
and pressure by enh = unh − vnh, λnh = pnh − pnh. Due to the regularity of data
and solution, the unsteady Navier–Stokes equations (166) yield

(∂tu(t),w) + a(u(t),w) + bs(u(t),u(t),w)− (∇ ·w, p(t)) = 〈f(t),w〉
(∇ · u(t), q) = 0, (170)

u(0) = u0,

for all w ∈ H1
0(Ω), q ∈ L2

0(Ω), for all t ∈ [0, T ]. Subtracting term by term
(152) from (170) at t = tn+1 one obtains the error equation: for all wh ∈Xh,
qh ∈ Yh,(

en+1
h − enh
∆t

,wh

)
+ a(en+1

h ,wh) + bs(u
n
h,u

n+1
h ,wh)− bs(vnh,un+1

h ,wh)

−(∇ ·wh, λ
n+1
h ) + c(un+1

h ;un+1
h ,wh)− c(un+1

h ;un+1
h ,wh) = 〈εn+1

h ,wh〉,
(∇ · en+1

h , qh) = 0, (171)

where εn+1
h ∈H−1 is the consistency error, defined by

〈εn+1
h ,w〉 =

(
∂tu(tn+1)−

un+1
h − vnh
∆t

,w

)
(172)

+bs(u(tn+1),u(tn+1),w)− bs(vnh,un+1
h ,w)

+a(u(tn+1)− un+1
h ,w)− c(un+1

h ;un+1
h ,w)

−(p(tn+1)− pn+1
h ,∇ ·w) + 〈fn+1 − f(tn+1),w〉.

Due to the monotonicity of the form c (Lemma 5 iii)), it holds

c(un+1
h ;un+1

h ,wh)− c(un+1
h ;un+1

h ,wh) ≥ C h2 ‖D(un+1
h − un+1

h )‖30,3,Ω ≥ 0.

Then the stability estimate (156) holds when unh is replaced by the error enh,

f̃
n+1

h is replaced by εn+1
h and u0,h is replaced by e0h. Obtaining error estimates

for the velocity is then reduced to estimate the l2(H−1) norm of the consis-
tency error εn+1

h . In particular, the penalty term ηn+1(w) = c(un+1
h ;un+1

h ,w)
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that appears in the expression of εn+1
h has to be bounded. Denoting ên+1

h =
(I − ρh)en+1

h and û(tn+1) = (I − ρh)u(tn+1) gives

‖D(ûn+1
h )‖0 ≤ ‖D(ên+1

h )‖0 + ‖D(û(tn+1))‖0
≤ C ‖D(en+1

h )‖0 + ‖D(û(tn+1))‖0.

Combining this estimate with (153) one deduces

|ηn+1(w)| ≤ C h2−d/2 ‖D(ûn+1
h )‖20 ‖D(ŵ)‖0

≤ C h2−d/2
(
‖D(en+1

h )‖20 + ‖D(û(tn+1))‖20
)
‖D(ŵ)‖0.

It follows that

N−1∑
n=0

∆t ‖ηn+1‖2H−1 ≤ C h2(2−d/2)
(
‖D(en+1

h )‖40 + ‖D(û(tn+1))‖40
)

≤ C h2(2−d/2)
(
dl4(H1)(u,Xh)4 + dl4(H1)(u, X̂h)4

)
.

This yields the last term in the error estimate (169). The estimates of the
remaining terms in the expression (172) of εn+1

h are obtained by means of a
discrete version of the Gronwall Lemma used in the proof of Theorem 5, to
conclude the error estimates (167) and (168). ut

The error estimates (167) and (168) would be of optimal order in space if

the term h2−d/2
(
dl4(H1)(u,Xh)2 + dl4(H1)(u, X̂h)2

)
is at least of the same

order as the term dl2(H1)(u,Xh) for sufficiently smooth u. If the spaces Xh

and X̂h are given by (149), this happens if k ≥ l/2 + d/4 − 1. If spaces Xh

and X̂h are given by (150), then this property directly holds.

10.4 Asymptotic Energy Balance

In the steady case, the subgrid eddy dissipation energy is given by

ES(uh) = C2
S

∑
K∈Th

h2K

∫
K

|D(ûh)(x)|3 dx,

see (106). Then, ES asymptotically vanishes as h→ 0 and, using the notation
of Section 6.4, it holds

lim
h→0

[ED(uh) + ES(uh)] = ED(u).

In the unsteady case, the inverse estimates

‖D(ûh(t))‖0,3,K ≤ C h
−1−d/r+d/3
K ‖ûh(t)‖0,r,K , for 1 ≤ r ≤ 3,

‖D(ûh(t))‖0,3,K ≤ C h
−d/6
K ‖D(ûh(t))‖0,2,K ,
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yield

h2K ‖D(ûh(t))‖0,3,K ≤ C h1−d/rK ‖ûh(t)‖0,r,K ‖D(ûh(t))‖20,2,K .

Consequently, it follows that

ES(uh) ≤ C h1−d/r‖ûh‖L∞(0,T ;Lr) ‖ûh‖2L2(0,T ;H1).

Then, the subgrid energy ES(uh) asymptotically vanishes if ûh is bounded
in L∞(Lr) for some r > d. However the standard stability estimates yield
uniformly bounds in L∞(L2) and then one cannot ensure that the subgrid
energy asymptotically vanishes.

10.5 Experience in Numerical Simulations

Some experience in numerical simulations of models (98) and (152) with LPS
stabilization will be reported here, respectively for steady and unsteady flows.
In [36] the results of simulations of the steady three-dimensional turbulent
channel flow at Reτ = 180 with several VMS methods on relatively coarse
grids were compared:

– SMA model: The Smagorinsky LES model, given by

c(uh;uh,vh) = 2 (νT(uh)D(uh), D(vh)) ;

– VMS-S model: The small-small VMS-LPS setting, given by (36), i.e.,

c(uh;uh,vh) = 2 (νT(ûh)D(ûh), D(v̂h)) ;

– VMS-B model: The Berselli–Iliescu–Layton setting [18], in which:

c(uh;uh,vh) = 2
(
νT(Π̃∗hD(uh))Π̃∗hD(uh), Π̃∗hD(vh)

)
,

where Π̃∗h = I − Π̃h, and Π̃h is an interpolation operator on a coarser P0

finite element space;
– STAB: The purely stabilized method, i e., (98), with c = 0.

Two versions of the VMS-S and the STAB methods were tested, one with wall
laws and the other with no-slip boundary conditions.

Equal-order interpolation P2 for velocity and pressure were used. Also, a
Crank–Nicolson scheme for the temporal discretization was used, combined
with a linearization of convective and subgrid eddy viscosity terms. This ap-
proach provides a good compromise between accuracy and computational com-
plexity.

Table 2 displays a comparison of the L2 errors in the stream-wise direction,
with respect to the DNS results from [116] with a grid four times finer in each
space direction. One can observe that the errors range between 11 % and
24 %, the best ones correspond to the VMS-S method with no-slip boundary
conditions. The accuracy provided by the methods with wall laws is acceptable
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Table 2

L2 norm of the deviation from the DNS profiles for the stream-wise velocity.

Methods e
〈u1〉
0 (y+ ∈ [0, 180])

VMS-S (NO-SLIP BC) 0.1141

VMS-S (WALL-LAW BC) 0.1734

VMS-B (NO-SLIP BC) 0.1786

SMA (NO-SLIP BC) 0.1260

STAB (NO-SLIP BC) 0.1791

STAB (WALL-LAW BC) 0.2373

for this stream-wise direction, although reaching too high error levels for the
homogeneous (cross-flow) directions. The use of wall laws provides a reduction
of the computing time of about 35 %.

Also, Table 3 displays the normalized (by the computed uτ ) root mean
square (r.m.s.) values of velocity fluctuations

√
〈ũ2i 〉 = ‖〈u2i 〉 − 〈ui〉2‖1/2 (i =

1, 2, 3) in wall coordinates y+ at the upper half-width of the channel, as a
measure of the error in turbulence intensities. Only the no-slip boundary con-
ditions were considered, as the errors with wall-laws were much larger. For
those second-order statistics the errors are larger than for the first order ones,
ranging around 30 %. Again, the VMS-S method is in general in good agree-
ment with the DNS data.

Table 3

L2 norm of the deviation from the DNS profiles for the second-order statistics.

Methods e

√
〈ũ2

1〉
0 e

√
〈ũ2

2〉
0 e

√
〈ũ2

3〉
0 e

〈ũ1ũ2〉
0

VMS-S (NO-SLIP BC) 0.2252 0.1652 0.1108 0.1162

VMS-B (NO-SLIP BC) 0.2281 0.2018 0.1246 0.1706

SMA (NO-SLIP BC) 0.3002 0.2236 0.1597 0.1249

STAB (NO-SLIP BC) 0.3781 0.2536 0.1955 0.1708

Only limited numerical experience with the solution of evolution turbulent
flows with (152) is available. In [1] method (152) with LPS stabilization of
convection, divergence and pressure gradient is applied to the simulation of
a high Reynolds number (Re = 104) plane mixing layer flow, with accurate
results for relatively coarse grids. Equal-order interpolation P2 for velocity and
pressure is used. Space and time accurate simulation of the pairing of primary
and secondary vortex is achieved. Quite accurate time evolution of the vor-
ticity thickness is computed with grids of 160× 160 nodes. Also, model (152)
with LPS stabilization has been extended to buoyant flows. Some recent yet
unpublished results obtained by the authors show that a similar accuracy for
the natural convection of high Rayleigh numbers (Ra) airflows in a differen-
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tially heated plane cavity (up to Ra = 107) is achieved with relatively coarse
grids.

11 Summary and Conclusions

The purpose of this article has been to present a state-of-the-art review of VMS
methods for the simulation of turbulent incompressible flows. These methods
are widely used nowadays as one of the most promising and successful ap-
proaches that seeks to simulate large scale structures in turbulent flows, also
in combination with advanced techniques such as, e.g., isogeometric analysis
[10,11].

The common feature of these methods is the use of multiple scales in model-
ing the turbulence, where the scales are defined by variational projections into
appropriate function spaces. Apart from this common feature, the realization
of VMS methods differs considerably, and a “jungle” of several types of VMS
methods is present in the scientific literature. So, even if there exist much re-
search work published on VMS turbulence models, the different VMS methods
are mainly used in the groups that proposed them, and there is no structured
presentation of them. The present review aimed at giving such a presentation
with the emphasis on derivation, numerical analysis in the framework of the
finite element method, and experience in numerical studies. In this way, the
common features of VMS methods should become clear as well as their main
differences.

Starting point was the presentation of the basic concepts of VMS methods:
The basis of all VMS methods is the separation of the flow field into resolved
and unresolved scales. VMS methods which use just resolved and unresolved
scales belong to the class of two-scale VMS methods.

Within two-scale VMS methods, the residual-based VMS method, the OSS
method, and LPS methods were presented.

The first two methods are residual-based models, since the basic procedure
consists in keeping all terms in the residual-driven structure of the resolved
flow equations and to perform an approximated analytical solution of the small
scale flow through a diagonalization procedure, where a proper definition of
stabilization coefficients is crucial. This procedure does not make use of the
statistical theory of equilibrium turbulence (eddy viscosity models). The main
difference between the two approaches consists in the fact that in the OSS only
the orthogonal projection of the residual on the large scale space is used. One
of its relevant features is that it introduces a numerical diffusion on the large
scales which is asymptotically equivalent, as the Reynolds number increases,
to the eddy viscosity dissipated by the unresolved scales, for sufficiently fine
grids. These methods are consistent.

In contrast, LPS methods can be considered as simplified methods that
provide specific stabilization of any single term that could be a source of in-
stability for the numerical discretization. Their structure could be achieved by
retaining in the OSS method the specific diffusive interactions that stabilize
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convection, divergence, and pressure gradient, and by changing the global L2

projection by local L2 projections. This approach leads to a family of methods,
associated to the choice of the actual local L2 projection. The main difference
with residual-based models is that they are not fully consistent, but of opti-
mal order with respect to the finite element interpolation. The fact that the
stabilization enjoys the right asymptotic behavior without full consistency al-
lows to decouple the stabilization of the pressure and the velocity. This feature
could be considered an important advantage with respect to the more com-
plex residual-based methods in view of practical implementations such as to
perform the numerical analysis, since it leads to a simpler and less expensive
structure.

Nevertheless, the VMS framework allows various other arrangements, go-
ing beyond a two-scale decomposition, so that other classes of VMS methods
can be distinguished. The most common approach allows a further decomposi-
tion of the resolved scales into large resolved scales (or large scales) and small
resolved scales, leading finally to a so-called three-scale VMS method. Within
three-scale VMS methods, a bubble VMS method, velocity deformation tensor
projection-based VMS methods, and algebraic VMS-multigrid methods were
discussed. All these methods include eddy viscosity modeling in the small re-
solved scale equations to model the dissipative effects of the unresolved scales.
The eddy diffusion only affects the small resolved scales, thus reducing or even
avoiding over-diffusive effects.

There are several realizations of bubble VMS methods which differ in some
details: The derivation presented in this work corresponds to the three-level
finite element method based on residual-free bubbles (RFB). The computa-
tion and storage of the RFB functions is computationally quite consuming
and several simplifications to solve the resolved small scale equation can be
performed. The resolved small scale pressure is not solved, but modeled as
in the residual-based VMS methods. On the one hand, the diffusive grad-div
stabilization appears in the large scale equation. On the other hand, this step
allows to eliminate the incompressibility restriction for the resolved small scale
velocity. Thus, the resolved small scale equations are approximated by a sys-
tem of convection-diffusion equations, where a subgrid eddy viscosity term is
added to model the effect of the unresolved scales on the small resolved scales.
However, these equations are strongly convection-dominated, which results in
the necessity to use large values in the coefficient of the eddy viscosity term.
From the computational point of view, the use of RFB-based VMS methods
is quite involved.

A different way of realizing a three-scale VMS method consists in adding
to the standard Galerkin formulation an eddy viscosity term that only affects
directly the small resolved scales. These scales might be defined as the L2

projection of the velocity deformation tensor into an appropriate large scale
space, which leads to the so-called velocity deformation tensor projection-
based VMS method. The large scale space can be defined on the same grid as
the finite element space, enabling an efficient implementation of the method.
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The structure of the method allows a thorough numerical analysis, along the
same lines as that of the Navier–Stokes equations.

Algebraic VMS-multigrid methods apply a different definition of the large
scales. In these methods, the scale separation is performed for the velocity (and
not for the deformation tensor). This separation uses components of an AMG
method thus avoiding to introduce another finite element space or another
grid, just matrix restriction/prolongation operators have to be defined, thus
creating a multilevel structure starting from a coarse level.

The numerical analysis has been developed to a different degree for the
individual VMS methods. Most results are known for LPS methods and the
velocity deformation tensor projection-based VMS method. For some other
VMS methods, at least results are available for simpler equations or for sim-
plifications in the formulation of the method. Analytical results concerning
the well-posedness of the discrete problems to guarantee the existence and
uniqueness of a solution, stability results to obtain a priori bounds on the so-
lution, or energy estimates are certainly of importance for practical purposes.
The situation is somewhat different for error estimates of the form (20) or
(136) because the constants in the error bounds become unrealistic huge even
for small times. However, current mathematical tools do not allow to prove
error estimates of a different kind. In summary, even if there are many results
concerning the numerical analysis of VMS methods, in comparison with other
approaches for turbulence modeling, there are still many open questions.

VMS methods were compared in numerical studies usually with LES meth-
ods, like the Smagorinsky LES method or the dynamic Smagorinsky LES
method. Generally, the results obtained with the VMS methods were not
worse, often even better than those of the LES methods. Excellent results
using for instance residual-based VMS models were first presented in [10], ap-
plying isogeometric analysis for the space approximation [82]. In the recent
years, residual-based VMS methods have demonstrated to be able to simulate
(the large scales of) transient and steady turbulent flows with high accuracy.
However, there are relatively few comparisons of different VMS methods, see
[63,98] for some examples. In our opinion, comparisons of different numeri-
cal methods should be performed with the same code. Besides using different
codes for comparisons of different VMS methods, other aspects like the choice
of the finite element spaces (inf-sup stable or equal-order, degree of the poly-
nomials), the concrete grid, the explicit or semi-implicit treatment of certain
terms, the time stepping scheme, the stopping criterion for solving the non-
linear problem, the choice of the local mesh width for anisotropic mesh cells,
the concrete choice of parameters in the models, etc. might have an unknown
influence on the results. Since comprehensive studies of several VMS methods
within one code are not available, there will be no recommendation of VMS
methods to use. If one wishes to apply a VMS method for the simulation
of turbulent incompressible flow problems, the decision which concrete VMS
method should be used will be guided from subjective preference and from the
structure and the features of the used code.
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of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal.,
36(6):1933–1948, 1999.
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138. P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems. Computing, 56(3):179–196, 1996. Inter-
national GAMM-Workshop on Multi-level Methods (Meisdorf, 1994).

139. R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes
equations. RAIRO Anal. Numér., 18(2):175–182, 1984.


	Introduction
	Finite Element Methods for the Incompressible Navier–Stokes Equations
	Basic Concepts of VMS Methods
	Two-Scale Residual-Based VMS Method
	Two-Scale VMS Method with Orthogonal Subscales
	Local Projection Stabilization (LPS) Methods as Two-Scale VMS Methods
	Three-Scale Bubble VMS Method
	Three-Scale Velocity Deformation Tensor Projection-Based VMS Method
	Three-Scale Algebraic VMS-Multigrid Methods
	An Unsteady Three-Scale Projection-Based VMS Method
	Summary and Conclusions



