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Abstract

A heuristic method for optimizing a solar power tower system is proposed, in

which both heliostat field (heliostat locations and number) and the tower (tower

height and receiver size) are simultaneously considered.

Maximizing the thermal energy collected per unit cost leads to a difficult optimiza-

tion problem due to its characteristics: it has a nonconvex black-box objective

function with computationally expensive evaluation and nonconvex constraints.

The proposed method sequentially optimizes the field layout for a given tower

configuration and then, the tower design is optimized for the previously obtained

field layout. A greedy-based heuristic algorithm is presented to address the he-

liostat location problem. This algorithm follows a pattern-free method. The only

constraints to be considered are: the field region and the nonconvex constraints
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(which allow heliostats to not collide).

The absence of a geometrical pattern to design the field and the simultaneous op-

timization of the field and the tower designs make this approach different from the

existing ones. Our method is compared against other proposals in the literature

of heliostat field optimization.

Keywords: solar thermal power, heliostat field layout, thermo-economic

optimization, nonconvex optimization, greedy algorithm

1. Introduction

Solar Power Tower (SPT) systems are known as one of the most promis-

ing technologies for producing solar electricity due to the high temperatures

reached, resulting in high thermodynamic performances. For simplicity, we

consider in this article an SPT system to consist of two elements: a tower and

a field of (hundreds or thousands) of heliostats. The study of other related

problems, see Section 5, are beyond the scope of this article.

In an SPT system direct solar irradiance is reflected by the heliostat field

and concentrated onto a receiver placed at the top of the tower. In the

receiver, this thermal energy at a high temperature is then transferred to

the heat transfer fluid to produce electricity through a conventional ther-

modynamic cycle. The heliostat field is a group of mirrors having two-axis

movement to reflect the direct light from the sun to the target point on the

receiver aperture. The heliostat locations take into account the typical solar

irradiance at the site.

The optimal design of an SPT system consists of determining the tower

height, the shape and dimensions of the receiver aperture in the tower (Tower
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Optimization) and the location and number of the heliostats (Field Optimiza-

tion) so as to optimize the annual thermal energy collected and the cost of

the system. From the mathematical point of view, we want to simultane-

ously optimize several criteria. These objectives are in conflict to each other

and they are usually aggregated into a single criterion, namely, the thermal

energy collected per unit cost, see Ramos & Ramos (2012); Spelling et al.

(2012).

Three challenging issues are the dimensionality of the field optimization

problem, with (a priori unknown) hundreds or thousands of variables, the

nonconvex constraints related to the location of heliostats (which prevent

the heliostats from colliding), and the evaluation of the objective function.

This evaluation is implicitly defined by the subroutine, and due to the nature

of the process, is not smooth, multimodal and has no apparent mathematical

structure which can help to choose an appropriate optimization algorithm.

This optimization problem has great interest in the renewable energy

literature, attracting researchers over the past thirty years. The problem

continues being a very active research field, as can be appreciated in some

reviews Lipps & Vant-Hull (1978); Mills (2004); Romero et al. (2002); Stine

& Harrigan (2001); Behar et al. (2013).

Fixed geometrical patterns are traditionally used to solve the Field Op-

timization problem. That is, the heliostat positions are given by some pa-

rameterized curves. The parameters are optimized in order to obtain a field

layout. For instance, radially-staggered layouts are commonly assumed, orig-

inally proposed in Lipps & Vant-Hull (1978), see also Collado (2009); Siala

& Elayeb (2001); Wei et al. (2010). This pattern consists on concentric semi-
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circumferences where the parameters indicate the separation between the

circumferences and the angular distances between the heliostats located at

the same circumference. The Spiral pattern is also used, where two parame-

ters are optimized, see Noone et al. (2012).

Radially-staggered pattern has been so far the most popular SPT systems

design. By the pattern itself, access is guaranteed to all heliostats in the field

for cleaning or repairing work, since roads are naturally given. Although

pattern-free fields do not define roads in their layout, (see e.g. the recently

built Ivanpah system BrightSource (2014)), one may impose, as we do in this

paper, heliostats to be sufficiently apart from each other, so that access to all

heliostats in the field is possible. This would not be needed if new strategies

for cleaning the heliostats were developed, see Alon et al. (2014).

Although these geometric patterns strongly simplify the Field Optimiza-

tion problem, they may not reach good results if, for instance, time asym-

metric weather conditions or terrain constraints are involved, as pointed out

in Romero et al. (2002). The adaptability of the pattern is very limited and

dependent on the chosen geometry, usually field symmetry is induced by the

pattern itself.

Fixed-pattern strategies consider the number of heliostats to be located

not given in advance: an oversized field (i.e., a field with a sufficiently large

number of heliostats), is built, and then those heliostats reflecting less solar

energy into the receiver are sequentially removed while guaranteeing that

a given receiver outlet thermal power is attained. This way, although the

optimal parameters for the oversized field were obtained, there is a high risk

that a strong distortion exists between the original and final fields.
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We present a heliostats location procedure which will not force to follow

a specific geometrical pattern, and, instead, will be a pattern-free optimiza-

tion strategy. With our algorithm an initial oversized field is not needed,

the final number of heliostats is found during the optimization process. A

possible drawback is that road design and building may be more expensive.

Contrarily, pattern-free fields are much more flexible and can be adapted (as

will be shown in Section 4.3) to many geographical circumstances.

Most articles in the literature focus on the Field Optimization problem,

see Collado (2009); Sánchez & Romero (2006); Siala & Elayeb (2001), or on

the Tower Optimization separately, see Ghobeity & Mitsos (2012). Refer-

ences to simultaneous optimization of the Field and Tower are very scarce.

Pitz-Paal et al. (2011) and Ramos & Ramos (2012) address the joint opti-

mization by using a metaheuristic (genetic algorithm and simplex Nelder-

Mead) improved by local searches (Powell algorithm), always under the as-

sumption of a radially-staggered pattern for the field.

This article presents a pattern-free procedure for the field layout opti-

mization, and an optimization algorithm including the optimization of both

the Tower and the Field.

The rest of the article is organized as follows. In Section 2, we describe

the main ingredients affecting the performance of the SPT system. In Section

3, our methodology to solve the problem is explained. In Section 4, we apply

the optimization algorithms and analysis tools to a typical SPT design, and

finally, in Section 5, our main results are summarized and some perspectives

for further work are presented.
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2. Problem statement

In this Section, the SPT system, the variables used in the optimization

process and the constraints that have to be satisfied are described. Finally,

the two criteria involved in the objective function (energy and cost) and the

optimization problem are presented.

2.1. Decision variables

Two types of decision variables appear, some associated to the height of

the tower and the receiver aperture, and the remaining ones associated to

the heliostats locations.

We will assume that the receiver consists of a cylinder pointing to the

North, as can be seen in Figure 1 and is also explained in Behar et al. (2013);

Collado (2008); Stine & Harrigan (2001), among others. The front surface

of the receiver, also known as the aperture, is especially important because

it is here where strong radiative losses occur. For simplicity, only the two

most relevant variables associated to the tower and the receiver design are

considered, namely the aperture size, given by its radius ra, and its height h

in the tower.

In what concerns the heliostat field, the heliostats locations, given by the

coordinates (x, y) of their centers, are the variables to be used. A heliostat

is characterized by its geometry and its optical properties. All heliostats are

assumed to be rectangular, to have the same dimensions and to be composed

of rectangular facets.

From now on we will denote by Θ the variables related to the Tower,

i.e. Θ = (ra, h), and by S the finite set of coordinates of the centers of

6



 

 

 

 

West North 

ra 

z z 

 

Aperture Receiver 

h 

Figure 1: Receiver with circular Aperture

the heliostats that define the Field. The decision variables are Θ and S.

Observe that the points of S belong to R2 and S can be viewed as a set of

non-fixed cardinality. Consequently, we write in the sequel relations of the

form S ⊂ R2.

2.2. Constraints

Let Πt(Θ,S) denote the receiver outlet thermal power at time t for an SPT

system with parameters (Θ,S). Usually, when designing an SPT system, a

fixed instant of time is used to size the system, as explained in Collado (2008);

Sánchez & Romero (2006); Sanz-Bermejo et al. (2014). This time instant is

known in the literature as the design point, Td. At Td, a minimal power Π0

has to be achieved, that is:

7



ΠTd(Θ,S) ≥ Π0 . (1)

Other constraints on the variables related to the receiver are determined

by the operation scheme of the system, which is in turn influenced by techni-

cal and legal regulations, leading to a compact set Θ as the feasible region for

Θ. There exist minimum and maximum values, rmin and rmax respectively,

for the aperture radius and a maximum value hmax for the tower height. The

feasible region Θ can be written as follows:

Θ = {(ra, h) : rmin ≤ ra ≤ min(h, rmax) ≤ hmax} . (2)

Related to the heliostat field we have to consider different constraints.

The heliostats must be located within a given region Ω ⊂ R2 and they have

to rotate freely avoiding collisions between them. The feasible region S can

be written as follows:

S =


S ⊂ Ω ⊂ R2 : |S| < +∞

||(x, y)− (x′, y′)|| ≥ δ ∀ (x, y), (x′, y′) ∈ S

(x, y) 6= (x′, y′)

 , (3)

where δ > 0 is a given positive parameter called security distance. This

security distance has to be considered forcing the heliostats not to overlap.

2.3. Functions

Two criteria are taken into account for the optimization of the SPT sys-

tem: the total investment cost and the annual thermal energy collected.

The cost function C takes into account the investment in SPT system

equipment (tower, receiver and heliostats), land and civil engineering costs.
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Hence, it depends on the receiver variables Θ, that is, its radius ra and its

height h, and the number of heliostats |S| in the field:

C(Θ, |S|) = β1(h+ κ)σ + β2πr
2
a + cF + c|S| , (4)

where β1 and β2 are empirical constants with values in (0, 1), κ and σ are pos-

itive and given by appropriate physical considerations and c denotes the cost

per heliostat. For simplicity, the cost associated with the land (purchasing

and preparing) is considered fixed and denoted by cF .

The collected annual thermal energy function E takes the form:

E(Θ,S) =

∫ T

0

Π̃t(Θ,S) dt− γ1 , (5)

where the function Π̃t denotes the polynomial fitting of the receiver outlet

thermal power at each time instant t and γ1 is a constant that mesures the

fixed thermal energy losses related to the whole system.

The receiver outlet thermal power value at time t is calculated by adding

the values collected into the receiver by each heliostat and written as follows:

Πt(Θ,S) = I(t)fref
∑

(x,y)∈S

ϕ(t, x, y,S,Θ)− γ2πr
2
a . (6)

Here I(t) is the so-called instantaneous direct solar irradiance, fref is the

heliostat reflectance factor, ϕ is the product of the efficiency factors (usual

in this framework), that is, ϕ = fcos · fsb · fsp · fat and the constant γ2 is

related with the thermal energy losses associated to the receiver size.

In particular, fcos = fcos(t, x, y,Θ) is the cosine efficiency, see Collado &

Turégano (1989); fsb = fsb(t, x, y,S,Θ) is the shading and blocking efficiency,

9



see Sassi (1983); Collado & Guallar (2012); Stine & Harrigan (2001); fsp =

fsp(t, x, y,Θ) is the interception efficiency or spillage factor, see Collado &

Turégano (1986) and finally, fat = fat(x, y) is the atmospheric efficiency,

which takes into account atmospheric losses between the heliostat and the

receiver, see Biggs & Vittitoe (1976); Collado & Turégano (1989).

Regarding the annual thermal energy function, the polynomial fitting

is performed using a discretization over the year considering different time

steps. Due to the complexity of the model, it seem very hard to measure

in a rigorous way the error caused by such discretization. However, we can

have an idea by checking how stable results are with respect to the grid

used. For instance, if we consider 5, 9 or 13 different hours to compute the

daily thermal energy, for different fixed days we obtain the results shown in

Table 1. These results suggest that 1 or 2 decimal digits are acceptable and

significant.

aaaaaaaaaaa
E (MWth)

21th Month
March June September December

E5 0.371825 0.405744 0.374933 0.272064

E9 0.367207 0.406332 0.371733 0.268578

E13 0.364203 0.410110 0.370317 0.244562

Table 1: Daily Thermal Energy

The annual thermal energy collected is computed using an algorithm sim-

ilar to NSPOC procedure, that is described in Crespo & Ramos (2009). We

refer the reader to Biggs & Vittitoe (1976); Collado & Turégano (1986, 1989);
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Stine & Harrigan (2001), for further details.

2.4. Optimization problem

As mentioned above, the two criteria involved are the cost of the system

and the annual thermal energy collected. No common optimum can be found

for both criteria, so they are aggregated into one single objective, namely,

the maximization of annual thermal energy collected per unit cost. Written

this way, the optimization problem we are addressing is the following:

(P)



max
Θ,S

F (Θ,S) = E(Θ,S)/C(Θ, |S|)

subject to Θ ∈ Θ

S ∈ S

ΠTd(Θ,S) ≥ Π0

3. An alternating procedure to design the SPT system

In order to solve (P), an alternating procedure is suggested, in which one

sequentially optimizes the field layout for a given tower design and then, the

tower design is optimized for the previously obtained field. In other words,

we alternately solve (PΘ) and (PS). Both subproblems are described below.

Thus, the optimization problem (P) has two blocks of decision variables,

namely those related to the design of the tower Θ, and the coordinates of

the centers of the heliostats S, related to the heliostat field.

A drawback of the alternating strategy is that starting with a bad solu-

tion the algorithm could converge to inefficient solutions. This risk can be

prevented with a multistart of the alternating process, considering different
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random initial tower configurations as initial solutions. Although we do not

have technical proofs, we have empirical evidences which show that the al-

gorithm converges to solutions outperforming heliostat fields such as PS10,

RPS10 and Spiral based, see Section 4.

The (PΘ) subproblem, that is, the optimization of the heliostat field for

a fixed tower, can be written as follows:

(PΘ) Θ fixed


max
S

F (Θ,S)

subject to S ∈ S

ΠTd(Θ,S) ≥ Π0

Observe that the cardinality of S (number of heliostats) is not fixed in

advance in problems (P) and (PΘ), thus we cannot express them as standard

optimization problems in fixed dimension.

The other subproblem (PS) given below describes the optimization of the

tower and receiver when the field of heliostats S is fixed.

(PS) S fixed


max

Θ
F (Θ,S)

subject to Θ ∈ Θ

ΠTd(Θ,S) ≥ Π0

The alternating algorithm used to solve the optimization problem (P) is

described in Algorithm 1. As we have said, this algorithm alternatively solve

the tower and the heliostat field optimization problems. We consider that

the algorithm has performed a complete iteration when a tower problem and

a field problem have been solved. Each time an optimization subproblem

is solved, that is (PS) or (PΘ), the highest value obtained for the objective

function and the system design associated to this value are stored in the
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variables Υobjective and Υdesign respectively. At the end of each iteration, the

relative error is calculated. If it is lower than a given value ε (positive and

small), the algorithm stops and returns the highest computed value.

Algorithm 1 Alternating algorithm

Require: ε and Θ0 (feasible and random)

k ← 0 STEP k = 0

S0 ← solve (PΘ) given Θ = Θ0

Υdesign ← (Θ0,S0)

Υobjective ← F (Θ0,S0)

repeat

k ← k + 1 STEP k > 0

Θk ← solve (PS) given S = Sk−1

if Υobjective < F (Θk,S) then

Υdesign ← (Θk,S)

Υobjective ← F (Θk,S)

end if

Sk ← solve (PΘ) given Θ = Θk

if Υobjective < F (Θ,Sk) then

Υdesign ← (Θ,Sk)

Υobjective ← F (Θ,Sk)

end if

until
F (Θk,Sk)− F (Θk−1,Sk−1)

F (Θk,Sk)
< ε

return

 Υobjective ← best objective function.

Υdesign ← best system design.
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At the starting step, the initial value Θ0 for the variable Θ is set randomly

in the feasible region Θ. Once this initial value is calculated, the first heliostat

field is obtained solving problem (PΘ), with Θ = Θ0.

After the initial step is performed, both problems, (PS) and (PΘ) are

solved at each iteration in this same order. In Subsection 3.1, we detail

the steps in the optimization of the heliostat field for a fixed tower (the

(PΘ) subproblem), since the other subproblem (PS) is directly solvable by

standard techniques as explained below.

We suggest to optimize Θ by a cyclic coordinate method, see Bazaraa

et al. (2006). We start with an initial random solution in the feasible region,

in our case Θ, at which the objective function is evaluated. The algorithm

performs at each iteration two local searches using as search direction each

coordinate axis. No difficulties are expected, since, in our experience, the

function F (·,S) has a unimodal shape, shown in Figure 2 using the reference

field layout PS10 given in Noone et al. (2012).

3.1. Field optimization

We are going to describe in this subsection an algorithm for solving prob-

lem (PΘ). Note that the number of variables (heliostats centers) is not fixed.

Even fixing the number of heliostats, the high number of variables (3, 000 in

recent commercial plants Burgaleta et al. (2011)), together with the charac-

teristics of the objective function (black-box, multimodal, non-smooth and

high time consuming) make this problem difficult to solve.

As we have already mentioned, there exist many approaches considering

fixed-patterns to locate the heliostats. In Sánchez & Romero (2006), a greedy

strategy is used to locate the heliostats in a fixed rectangular gridding. In a

14



0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

29.54

33.42

37.58

41.90

46.17

50.14

53.49

0.00

0.00

0.00

0.00

27.44

30.66

34.05

37.50

40.84

43.85

46.32

0.00

0.00

0.00

0.00

24.65

27.24

29.90

32.53

35.01

37.18

38.90

0.00

0.00

0.00

0.00

21.79

23.81

25.84

27.80

29.59

31.10

32.24

0.00

0.00

0.00

0.00

19.06

20.61

22.12

23.55

24.82

25.86

26.61

0.00

0.00

0.00

0.00

16.55

17.72

18.85

19.88

20.78

21.48

21.96

0.00

0.00

0.00

0.00

14.31

15.19

16.03

16.77

17.40

17.88

18.18

0.00

0.00

0.00

0.00

 r
a
 ∈  [r

min
,r

max
]

h 
∈

 [h
m

in
,h

m
ax

]

F(⋅, S)

1 3.375 5.75 8.125 10.5 12.875 15.25 17.625 20

280

252.1

224.2

196.3

168.4

140.5

112.6

84.7

56.8

28.9

1

Figure 2: F (·,S) values fixed S = PS10
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first step, the annual thermal energy at any point of the grid is calculated.

The heliostats are located at the best positions of the grid. To prevent future

heliostats from being located in the optical path of those previously placed, a

mirror image of the blocking effect is added without considering overlapping.

They introduce a penalizing weight factor to favor the location of heliostats

closer to the tower, due to the need of increasing the heliostat density given

by the grid in the best region of the field (see Figure 3(a)).

Our procedure also uses a greedy strategy although we do not impose

any fixed configuration to locate the heliostats. The process we are going to

present is different from others in the literature in three aspects:

• No parametric form is used as a field pattern (e.g. we do not assume

that the field has to possess a radially staggered shape), therefore the

strategy can be extended directly to complex field regions, see Sec-

tion 4.3.

• The number of heliostats is selected according to the thermal power

requirements into the receiver, avoiding oversizing. This way compu-

tational time and distortion on the optimization results are removed.

• The procedure can be use to generate initial fields. The final result

is susceptible of refinement with local improvements using the method

presented in Buck (2014).

We present a greedy based algorithm which locates the heliostats one

by one at the best feasible position, that is, the position where the annual

thermal energy collected is highest for a given tower. The process is repeated

until no improvement is reached in the annual thermal energy collected. The
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heliostats are located freely, without any pre-arranged distribution. Only

two geometrical constraints have to be taken into account: the field shape

constraint and the heliostat constraints to avoid collisions, see (3). At each

step, the annual thermal energy collected into the receiver by each heliostat

is modified due to the new shading and blocking effects that the heliostat is

causing. This is the main reason of increase of the computing time. Once a

new heliostat is located and the shading and blocking effects are incorporated,

the process must be repeated.

Obviously, the first problem, (P0
Θ), involves locating the first heliostat

center when only the field shape constraint is considered:

(
P0

Θ

)
Θ fixed


max
(x,y)

E(Θ, {(x, y)})

subject to (x, y) ∈ Ω

This problem has an easy-to-handle objective function, as plotted in Fig-

ure 3(a). In return, when we have already located at least one heliostat in

the field and we have obtained a field denoted by S∗k−1 with k − 1 heliostats

which respects the constraints, the problem
(
PkΘ
)

described below is difficult

to solve, since nonconvex constraints are involved and the energy function has

a complex behavior due to the shading and blocking effects, see Figure 3(b).
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Figure 3: Annual Thermal Energy collected

Let us introduce the notation S∗k =
{
S∗k−1, (x, y)

}
, where (x, y) denotes

the variable with respect we maximize in problem
(
PkΘ
)
:

(
PkΘ
)

Θ fixed


max
(x,y)

E(Θ,
{
S∗k−1, (x, y)

}
)

subject to (x, y) ∈ Ω

||(x, y)− (x′, y′)|| ≥ δ0 ∀ (x′, y′) ∈ S∗k−1 .

As noticed the k-step the problem is equivalent to maximizing the annual

thermal energy collected into the receiver by the new heliostat, because the

cost function is fixed at each step. Note that, for simplicity, we assume that

the heliostat cost is independent on its position in the field.

Now, we focus on the resolution of the problem
(
PkΘ
)
, i.e. the location of

one heliostat, and we introduce the Algorithm 2 called Greedy Algorithm to

solve it. It is well known that the energy function evaluation is computation-

ally expensive, see Sánchez & Romero (2006); that is why, in this algorithm,
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we approximate it by a much simpler function. Thus, instead of comput-

ing E as in (5), the receiver outlet thermal power (6) at the design point

Td is used; this is ΠTd . More accurate approximations, as those suggested

in Spelling et al. (2012); Zhang et al. (2007) based on calculating the receiver

outlet thermal power at several time instants could be used, at the expense

of increasing the already high computational cost.

Using ΠTd as the objective function leads to more compact fields. The

reduction on the shading and blocking effects at this time instant favors closer

heliostat positions. In order to compensate for this, the safety distance value

is modified. The new safety distance δ0 is defined as the product of the initial

safety distance δ and a new parameter Fsep that can be in the range [1, 2].

It depends on the selected design point, the heliostat size and the feasible

region among others, that is why it has to be set for each problem.

The Greedy Algorithm considers Nini different random feasible initial so-

lutions. This multistart procedure is used to avoid local minima. The final

solution is selected according to the receiver outlet thermal power at the

design point collected by each new field layout.
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Algorithm 2 Greedy algorithm with multistart

Require: Θ and S∗k−1

for r = 1 to Nini do

(xr, yr): random feasible initial solution

(x̄r, ȳr): solve
(
Pkθ
)

Srk =
{
S∗k−1, (x̄r, ȳr)

}
end for

S∗k ← max
r
{ΠTd(Θ,Srk)}

return S∗k

The complete field is generated using the Field Layout Algorithm which

scheme is given in Algorithm 3 and described below. In order to solve problem

(PΘ), since the functions involved are highly multimodal, and the output

strongly depends on the starting points used on Algorithm 2, the complete

process is repeated Nsem times with different seed states. The initial data

required are the fixed variables related with the tower size Θ, the number

of times that the algorithm will be repeated Nsem, and the number of initial

solution to be used in the greedy multistart procedure N∗ini.

Algorithm 3 has two different steps. At first step (k = 0, no heliostat in

the field), there are not shading and blocking effects involving multimodality

in the objective function. Therefore no multistart strategy is required, and

the number of initial solutions is set to one. Once the first heliostat is located

in the field (k > 0), the multimodality of the problem appears and N∗ini

different feasible random initial solution are considered. As we have already

described, the heliostats are located solving
(
PkΘ
)

using Algorithm 2, with

the corresponding Nini value.
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When k > 0, two phases of Algorithm 3 can be differentiate, Phase A and

B. Phase A consists on locating heliostats using Algorithm 2 until the thermal

power requirement Π0 is reached. At the end of this phase we could stop

locating heliostats, however we continue with Phase B applying a different

stopping criterion. We continue locating heliostats in this phase provided

that the system annual thermal energy collected per unit cost increases.

It may happen that there exist some manufacturer requirements on the

receiver outlet thermal power collected by the field in order to prevent dam-

ages, see Buck et al. (2006). For this reason, Phase B should stop when a

power upper limit, Π1, is reached. In this case the heliostat field layout is

stored in Υdesign−B1. However, this field may be improved and forgetting this

thermal power limitation. The algorithm continues until the system annual

thermal energy collected per unit cost does not increase. In this case, the

solution are the highest annual value attained Υobjective and its tower and

field configuration, Υdesign.
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Algorithm 3 Field Layout Algorithm

Require: Θ, Nsem, N
∗
ini

for sem = 1 to Nsem do

test stop← true STEP k = 0

k ← 0

Nini ← 1

S∗0 ← solve (P0
Θ) with Algorithm 2

STEP k > 0

while ΠTd(Θ,S∗k) < Π0 do

k ← k + 1 Phase A

Nini ← N∗ini

S∗k ← solve
(
PkΘ
)

with Algorithm 2

end while

repeat

Υ0
objective ← F (Θ,S∗k) Phase B

k ← k + 1

S∗k ← solve
(
PkΘ
)

with Algorithm 2

Υ1
objective ← F (Θ,S∗k)

if ΠTd(Θ,S∗k) > Π1 & test stop then

test stop← false

Υdesign−B1 ← (Θ,S∗k)

end if

until Υ1
objective < Υ0

objective

end for

return

 Υobjective ← Υ0
objective

Υdesign ← (Θ,S∗k−1)
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The proposed heuristic algorithm does not give an optimal solution, nor

the ones proposed in the literature. Given the number of variables expected,

we obtain a reasonable solution compared against the reference fields PS10

and RPS10.

Note that the proposed greedy algorithm locates the heliostats one by

one. This strategy can be extended to locate n heliostats in block, being n

small to maintain the numerical treatability of the problem.

4. Results

A prototype of the algorithms has been developed in Matlab c©, using

fminbnd and fmincon as local search routines to solve the optimization sub-

problems involved solving (PΘ) and (PS) respectively.

The accuracy and feasibility of the results have been confirmed by com-

paring to the heliostat fields obtained with benchmark procedures. Although

in the greedy optimization procedure an approximation of the objective func-

tion (based on the thermal power collected at the design point) is used. When

comparing the results, the accurate thermal energy function is used (see in

the tables column label with E). Three fields are considered for comparison

purpose, with a common tower design. Following Noone et al. (2012), such

test fields are called here PS10, RPS10 (redefined PS10) and Spiral. The

values of the geographical, physical and geometrical parameters are given in

Table 2.
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Parameter Default value Ref.

Location and Time

Site Sanlúcar la Mayor (Seville) Osuna et al. (2004)

Latitude 37o26′ N Noone et al. (2012)

Longitude 6o15′ W Noone et al. (2012)

Design Point Td March Day 21 Hour 12 assumed

Design direct normal irradiance DNI 823.9 W/m2 assumed

DNI model cloudless sky assumed

Receiver

Aperture tilt 12.5o Noone et al. (2012)

Receiver Technology Saturated Steam Osuna et al. (2004)

Heliostat

Heliostat Sanlucar120 Noone et al. (2012)

Hel. width 12.84 m Noone et al. (2012)

Hel. height 9.45 m Noone et al. (2012)

Hel. optical height z0 5.17 m Osuna et al. (2004)

Hel. minimal safety distance δ heliostat diagonal Buck (2014)

σoptical 2.9 mrad Noone et al. (2012)

Field

Slope 0o assumed

Shape semicircle assumed

Minimum radius 50 m assumed

Maximum radius 1, 000 m assumed

Maximum surface 156.68 ha assumed

Table 2: Parameter Values
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4.1. Heliostat field layouts comparison given a Tower-Receiver configuration

PS10 as given in Noone et al. (2012), is an SPT system similar to a solar

commercial plant located in Sanlúcar la Mayor, Spain, and it is one of the

most popular test instances. The Tower-Receiver variables for the PS10 are

fixed as parameters, assuming a tower height of 100.50 m and an aperture

radius of 6.39 m, that is Θ = (6.39, 100.5). RPS10 is a variant suggested

in Noone et al. (2012), in which a local search is performed, taking the

PS10 layout as starting point, optimizing the parameters configuration of

the system. Finally, Spiral, as introduced in Noone et al. (2012), is another

field layout obtained when a spiral pattern is given for the field layout and

the parameters of the spiral are optimized.

In Figure 4, the previous heliostat field layouts and also the GPS10

configurations, computed using our greedy algorithm, are shown with the

same number of heliostats. This GPS10 configuration have been obtained

after performing different experiments varying Fsep with Nsem = 5. The best

configuration that we show is obtained with Fsep = 1.5.
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(d) GPS10 Phase A

Figure 4: Heliostat Field Layouts

The receiver outlet thermal energy at the design point Td, the annual

thermal energy collected and annual thermal energy collected per unit cost

for each field layout, are given in Table 3. Note that, in view of the results in

Table 1, at best, we can expect that the computations are 1% accurate and
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this means that the differences of performance of PS10, RPS10 and Spiral

are between the error of calculation. GPS10-(Phase B) results in higher

annual energy collection per unit cost, which implies that a larger number of

heliostats results in lower cost.

If we compare the results obtained fixing the same number of heliostats,

GPS10-(Phase A), we can see that our algorithm provides similar results

compared to PS10, RPS10 and Spiral regarding the annual thermal energy,

and better results than Spiral regarding the receiver outlet thermal energy

at Td. Note that PS10 and Spiral fields are solutions of optimization prob-

lems in which a geometrical configuration pattern is imposed. However, the

solutions so obtained, though optimal under the pattern based constraints,

may be suboptimal if such constraints are removed.

Field N ΠTd (MWth 10−2) E (GWHth 10−3) F

PS10 624 0.43 0.12 0.50

RPS10 624 0.43 0.12 0.50

Spiral 624 0.42 0.12 0.50

GPS10 Phase A 624 0.43 0.12 0.50

GPS10 Phase B 943 0.62 0.17 0.54

Table 3: Thermal Power at Td, Annual Thermal Energy and Annual Thermal Energy per

unit Cost.

The RPS10 and GPS10 fields are shown in Figure 5 with the heliostats

colored according to their contribution to the annual thermal energy col-

lected.
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Figure 5: Annual Thermal Energy collected per heliostat
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In order to compare the four fields layouts we have sorted the heliostats of

each field in terms of the amount of annual thermal energy collected. Some

results are described below, displaying the energy and the cost in terms of

the amount of heliostats. The annual thermal energy collected versus the

number of heliostats located in the field is shown in Figure 6(a); the cost

of the SPT system versus the number of heliostats is depicted in Figure

6(b) and in Figure 6(c) is shown the objective function, that is, the annual

thermal energy collected per unit cost versus the number of heliostat. In these

three figures the four fields have the same behavior, but, when displaying the

marginal annual thermal energy added by each heliostat in the field, see

Figure 6(d), some differences can be observed due to the different heliostat

location procedures.
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Figure 6: Field Layouts Analysis

The multimodality of the problem is rather strong. In Figure 7, the field

layouts obtained using the greedy algorithm without multistart procedure

and with multistart procedure are shown. When the greedy algorithm is

used without multistart procedure the heliostat field layouts obtained are

not so regular. The use of different values for Nini and for Fsep lead to

different results and the best results are not necessary matched with the field

regularity. The results obtained are strongly dependant on the parameter

Fsep, and thus this parameter must be carefully tuned.
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(b) Nini = 25

Figure 7: Multistart Analysis with Fsep = 1.4

4.2. Alternating procedure

When the tower variables are also optimized, using our alternating ap-

proach we obtain step-by-step the results shown in Table 4 and Figure 8.

Using random feasible values as initial data for the tower configuration and

the Alternating Algorithm 1, a more efficient SPT system is sought. To make

a fair comparison, the receiver outlet thermal energy at Td is fixed at 42.52

MWth, the same as the value obtained with the PS10 configuration. The

parameter Nini is set to 25, since this value gave the best results in some

preliminary tests performed and ε is set to 0.01.
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Step Problem Θk Fig. |S| ΠTd
(Θk,Sk) E(Θk,Sk) F (Θk,Sk) Fsep

k=0
Random Θ0 (13.01,30.16) - 0 - - - -

S0: Solve (PΘ) (13.01,30.16) 8(a) 477 0.43 0.12 0.31 2.0

Υobjective = 0.31

Υdesign = (Θ0,S0)

k=1
Θ1: Solve (PS) (5.81,84.22) - 777 0.47 0.12 0.48 2.0

S1: Solve (PΘ) (5.81,84.22) 8(b) 633 0.43 0.12 0.53 1.6

Υobjective = 0.53

Υdesign = (Θ1,S1)

k=2
Θ2: Solve (PS) (6.05,87) - 633 0.45 0.12 0.52 1.6

S2: Solve (PΘ) (6.05,87) 8(c) 631 0.43 0.12 0.52 1.6

Υobjective = 0.53

Υdesign = (Θ1,S1)

Table 4: Results obtained using the Alternating Algorithm

From Table 4 we conclude that the best solution (Θ1,S1) found at the

second step of the Alternating Algorithm, collects a higher annual thermal

energy per unit cost than the values of the three reference SPT systems.

Note that the first heliostat field obtained in this example, see Figure 8(a),

is not as compact as the heliostat fields obtained in next iterations. This

effect is due to the low tower height value and the large receiver radius value

obtained as initial random solution. When the alternating process continues

this effect is corrected by the own algorithm.
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Figure 8: Field Layouts obtained using Algorithm 1

Using the alternating procedure, we cannot prove that it converges. How-

ever, as can be seen in Table 4, starting from a “bad solution” (low tower

and big aperture), the algorithm leads to a very reasonable solution com-

pared against the literature. The alternating algorithm could be embedded
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in a multistart process, starting with different random initial solution Θ0 and

selecting as solution the best obtained configuration.

4.3. Different feasible regions

In real situations, the region selected to build the SPT system can have

some terrain constraints. This means that some unfeasible zones need to

be excluded of the original feasible region. Using the field layout algorithm

described in Algorithm 3, different regions can be considered. The helio-

stat location procedure remains exactly the same, since with our algorithm

the heliostat distribution is not parameterized, and the algorithm can adapt

automatically the heliostat location to the selected region shape.

To illustrate the advantages of our pattern-free method against pattern-

based methods, three different possible feasible regions are considered and

both procedures, radially-staggered parameterization and greedy algorithm

are compared in these regions. The three feasible regions that are considered

are: a rectangular region (R), a perforated region (P) and a valley region (V),

where the SPT system is supposed to be located near a river (see Figure 9).
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Figure 9: Feasible Regions

As said before, we design the heliostat field for each feasible region con-

sidering the receiver outlet thermal energy at Td as Π0 = 42.52 MWth. The

fields are obtained using Algorithm 3 and for each feasible region the differ-

ent constraints associated are considered. In order to compare these fields,

we have limited the PS10 and RPS10 configurations to the three different

regions and evaluated the results.

In Figures 10-12, the heliostat fields for each feasible regions are shown.

The different phases of the greedy algorithm, Phase A and Phase B, are

detailed numerically in Table 5. From the results we conclude that for most
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tests performed the annual thermal energy collected per unit cost improves

with our greedy based procedure, and in the case that this value is not

improved we propose a similar solution.

Fixed-pattern algorithms ignore the shape of the feasible field region and

are always limited to the geometrical pattern selected. By contrast, in Fig-

ure 11, the adaptation of the heliostat positions through the greedy algorithm

around the circle perforation can be appreciate. Also, using our pattern-free

procedure the density of the field is automatically adapted to the field char-

acteristics and takes advantage of the best region. These local adaptations

are not automatically done using the original radially-staggered pattern.
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5. Conclusions

A pattern-free method for optimizing an SPT system has been proposed,

in which both the location of the heliostats and the design of the solar tower

are simultaneously considered. Maximizing the thermal energy collected per

unit cost leads to a difficult optimization problem, since it has nonconvex

constraints and a nonconvex objective function, given in a black-box form

which is computationally expensive to evaluate.

An alternating greedy-based heuristic has been suggested. Our method

provides competitive results against the standard results in the literature and

is more versatile since it is not based on geometrical patterns which may be

valid only under certain physical conditions.

For simplicity, in this article we consider that the heliostat size is fixed,

however our procedure can be extended to consider it as an optimization

variable. In Carrizosa et al. (2014), we address the problem of heliostat

field design considering two different sizes. Note that using a fixed-pattern

approach, this new problem cannot be easily solved as a different pattern

configuration must be studied. Considering also different receiver technolo-

gies, as multiple receivers with different fields aiming to each receiver is also

an interesting problem to be studied. Furthermore, our strategy can be used

to obtain an initial field for other algorithms (such as the one in Buck et al.

(2012)), and can be extended to address many other situations: ground ir-

regularities in the field, the effect of tower shading, variable (stochastic)

meteorological data and Multi-Tower plants.

Unfortunately, given the complexity of the model and our heuristic method-

ology, it is not possible to easily perform an error analysis. However, using
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simpler models, having a low number of heliostats, the quality of the solu-

tions could be measured. As already mentioned, when considering a reduced

number of heliostats a simultaneous heliostat location could be possible. This

is a very interesting problem to be addressed in the future.

Other different challenging problems are mentioned below. The design

of procedures able to approximate the efficient frontier for the biobjective

problem (maximizing thermal energy collected and minimizing cost). The

recent work Spelling et al. (2012) is a promising first approach. The study

of the energy storage operations (see Ghobeity & Mitsos (2012); Sheu et al.

(2012)) and the study of aiming strategies (see Belhomme et al. (2014)).
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