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STOCHASTIC SHELL MODELS DRIVEN BY A MULTIPLICATIVE FRACTIONAL

BROWNIAN–MOTION

HAKIMA BESSAIH, MARÍA J. GARRIDO-ATIENZA, AND BJÖRN SCHMALFUSS

Abstract. We prove existence and uniqueness of the solution of a stochastic shell–model. The equation is
driven by an infinite dimensional fractional Brownian–motion with Hurst–parameter H ∈ (1/2, 1), and contains
a non–trivial coefficient in front of the noise which satisfies special regularity conditions. The appearing
stochastic integrals are defined in a fractional sense. First, we prove the existence and uniqueness of variational
solutions to approximating equations driven by piecewise linear continuous noise, for which we are able to
derive important uniform estimates in some functional spaces. Then, thanks to a compactness argument and
these estimates, we prove that these variational solutions converge to a limit solution, which turns out to be
the unique pathwise mild solution associated to the shell–model with fractional noise as driving process.

October 27, 2014

1. Introduction

In this paper we consider some shell–models under the influence of a noise. Shell–models of turbulence describe
the evolution of complex Fourier-like components of a scalar velocity field un(t) ∈ C and the associated
wavenumbers kn, where the discrete index n is referred as the shell–index. The evolution of the infinite
sequence (un)n∈N is given by

(1.1) u̇n(t) + νk2nun(t) + bn(u(t), u(t)) = gn(t, u(t))ω̇(t), n ∈ N

with the constraints u−1(t) = u0(t) = 0 and un(t) ∈ C for n ∈ N. ω̇ gives a noise path that will be described
below. Here ν ≥ 0 and, in analogy with Navier-Stokes–equations, ν represents a kinematic viscosity; kn = k0λ

n

(k0 > 0 and λ > 1) and gn is a forcing term. The exact form of bn(u, v) ∈ C varies from one model to another.
However in all various models, it is assumed that bn(u, v) is chosen in such a way that

(1.2) ℜ
∞
∑

n=1

bn(u, v)v̄n = 0,

where ℜ denotes the real part and x the complex conjugate of x. Equation (1.2) implies a formal law of
conservation of energy in the inviscid (ν = 0) and unforced form of (1.1). In particular, we define the bilinear
terms bn as

bn(u, v) = i(akn+1ūn+1v̄n+2 + bknūn−1v̄n+1 − akn−1ūn−1v̄n−2 − bkn−1ūn−2v̄n−1)

in the GOY–model (see [18, 24]) and by

bn(u, v) = −i(akn+1ūn+1vn+2 + bknūn−1vn+1 + akn−1un−1vn−2 + bkn−1un−2vn−1)

in the SABRA–model (see [20]). The two parameters a, b are real numbers. There are several shell–models
in literature, the GOY– and SABRA–models defined above have been introduced in [18, 24, 20]. The viscous
version of the GOY– and SABRA–models, well posedness, global regularity of solutions and smooth dependence
on the initial data can be found in [7].
In recent years, shell–models of turbulence have attracted a lot of interest for their ability to capture some of
the statistical properties of the three-dimensional turbulence while presenting a structure much simpler than
the Navier–Stokes–equations. The stochastic version of the GOY–model under the influence of an additive
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white noise has been studied in [1] where some statistical properties in terms of the invariant measure have
been shown. For the same model in [2, 3] a Gaußian invariant measure is associated and a flow constructed.

In this article we consider a long term multiplicative noise allowing to model some memory effects. Such a noise
is given by a trace-class fractional Brownian–motion in our state space with Hurst–parameter H ∈ (1/2, 1),
see below. In contrast to white noise, a fractional–Brownian motion is not a martingale, and therefore the
multiplicative noise term cannot be presented by an Ito–integral. However, to deal with stochastic integration
where the integrator is only Hölder–continuous with an exponent larger than 1/2, one can use the Young–
integration, see Young [31] or the adaptation to a stochastic set up by Zähle [32]. Since the definition of these
integrals is based on fractional derivatives (see Samko et al. [26] for a general presentation), this theory is
often called fractional calculus. An advantage of this theory is that, in contrast to the Ito–integral which is
given in general by a limit in probability of Darboux–sums derived from an adapted integrand, we can define
our integral pathwise which means that for any sufficiently regular integrand and integrator the integral is well
defined. Or in other words, the exceptional sets of measure zero which appear in the classical Ito–integration
does not depends on the integrand. Moreover, integrals can be defined for non-adapted integrands.

The main issue of our work is to prove existence and uniqueness of a pathwise solution of the stochastic shell–
model driven by a fractional multiplicative noise. Applying an infinite dimensional version of the fractional
integration theory we are able to present (1.1) in a mild sense where the last term of this equation generates a
fractional integral. In particular, the properties of the nonlinear term B generated by the sequence (bi(u, v))i∈N

allow to present such a solution in a mild form. Nevertheless, in a first step we replace the fractional noise
path by a piecewise linear continuous approximation. Considering (1.1) with such a noise path, we are able
to construct global and unique mild solutions. It is important to emphasize that the classical contraction
method cannot be used alone since the bilinear term (bi(u, v))i∈N causes to have estimates that do not close
with the right norms. This is why, we have, first to construct weak solutions and get some a priori estimates.
These weak solutions have to be constructed with a smoother path noise in order to define the corresponding
stochastic integral. The a priori estimates combined with the estimates obtained from the mild form are then
used to pass to the limit by means of a compactness argument, and the limit will turn out to be a mild
solution of the original problem. The uniqueness of solutions is proved by an argument that uses the balance
of suitable norms. As we mentioned before, just using the mild form in its usual norm does not allow to
close the estimates, reason for which we rather again combine the a priori estimates and the norms obtained
from the mild form to solve an algebraic system of two inequalities where the unknown is given in terms of
the difference of two mild solutions starting from the same initial condition but in two different norms. The
solution of this system is zero and this is what allows to conclude the uniqueness of solutions. We believe
that our result of existence of solutions can be generalized to the Navier-Stokes equations although careful
calculations have to be performed on the nonlinear term which is the main difference with the current result.
We might have to work in slightly different spaces, and this will be done in the forthcoming paper [4].

Articles dealing with pathwise solutions for quite general stochastic ordinary differential equations driven by
a multiplicative fractional–Brownian motion are, e.g., [22] and [17]. In the infinite dimensional context, there
are also articles studying the existence of pathwise solutions, like [23] (dealing with variational solutions)
and [21], [16], [10] and [6], for the mild solution. In these papers the Hurst–parameter H ∈ (1/2, 1), the
diffusion and the drift are assumed to be Lipschitz–continuous and the existence of solutions is proved using
pathwise arguments through the fractional integrals. There is an extensive literature for fluid flows driven by a
Brownian–motion but only a few with a fractional Brownian–motion. In [5] another fluid model is considered
driven by a fractional Brownian–motion with Hurst–parameter bigger than 1/2. In particular the authors find
a local solution of the 3D Navier–Stokes–equation by using the Young–integral. In [12] the 2D Navier–Stokes–
equation is studied driven by a fractional Brownian–motion with more general Hurst–parameters. However,
the considered noise is additive.

An interesting advantage of considering the existence of pathwise solutions for the stochastic shell–model is that
they will generate a random dynamical system, which gives us the possibility to an intensive asymptotic analysis
of (1.1). In particular, this is the foundation to show the existence of random attractors and the analysis of
their structure. In the forthcoming paper [4] the dynamics of the stochastic shell–model is investigated by
using the random dynamical system theory. We would like to point out that, despite the fact that there
are similarities between the 2D Navier–Stokes–equation and the shell-model, more effort and more involved
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techniques will be necessary to obtain similar results for the stochastic 2D Navier–Stokes–equation than the
ones considered in [4]. Let us also mention that the generation of a random dynamical system as well as
the study of the corresponding random attractor for another kind of stochastic evolution equations with
multiplicative fractional noise have been very recently investigated in the papers [6], [15], and [17].

The paper is organized as follows: in Section 2 we introduce the functional analytical framework. In Section 3,
we define the fractional derivatives and the stochastic integral using some type of generalized Young–integrals.
In Section 4, we introduce the different assumptions on the diffusion and give the definitions of the different
solutions. In Section 5, we prove that the system driven by an smoother path has a unique weak solution,
that it is also a mild solution. Furthermore, we obtain some fundamental uniform estimates for the solution
of the system driven by such a kind of smooth path. In Section 6, thanks to these uniform estimates and a
compactness reasoning we construct a unique pathwise mild solution to the shell–model having a fractional
Brownian–motion as driving path. Section 7 is devoted to an example of a particular diffusion fitting the
assumptions required for developing the abstract framework. Finally, Section 8 contains the proofs of some
results that have been used in different sections of the paper.

As usual we denote by c a positive constant that can change their value from line to line.

2. Preliminaires

2.1. Spaces and operators. For any α ∈ R, let us introduce the following spaces, see Constantin et al. [7]
for the details,

Vα = {u = (u1, u2, . . .) ∈ C
∞ :

∞
∑

n=1

k4αn |un|2 < ∞}1.

This is a separable Hilbert–space with scalar product (u, v)Vα =
∑∞

n=1 k
4α
n unv̄n. Denote by ‖ · ‖Vα its norm.

We have the compact embedding

Vα1
⊂ Vα2

if α1 > α2.

Let us denote by V := V0 and its norm simply by ‖ · ‖ and its scalar product by (·, ·)V .
Let A : D(A) = V1 → V be the linear unbounded operator defined as

A : (u1, u2, . . .) 7→ (−νk21u1,−νk22u2, . . .).

For simplicity let us set ν = 1. It is known that A generates an analytic semigroup S(·) which follows from
the Lax-Milgram lemma, see Sell and You [27] Theorem 36.6, and this semigroup is exponentially stable.
Furthermore, Vα = D(Aα) and (u, v)Vα = (Aαu,Aαv)V , u, v ∈ Vα.
Let L(Vδ, Vγ) denote the space of linear continuous operators from Vδ into Vγ . As usual, L(V ) denotes L(V, V ).
The following properties are well known for analytic semigroups and their generators: for ζ ≥ α there exists
a constant c > 0 such that

|S(t)|L(Vα,Vζ) = |AζS(t)|L(Vα,V ) ≤
c

tζ−α
e−λt, t > 0,(2.1)

|S(t)− id|L(Vσ+ν ,Vθ+ν) ≤ ctσ−θ, for σ ∈ [θ, 1 + θ], ν ∈ R,(2.2)

where λ in (2.1) is a positive constant, see for instance Pazy [25] Theorem 2.6.13. From these inequalities, for
ν, η ∈ [0, 1], ξ, δ ∈ R such that δ ≤ ζ + ν, there exists a c > 0 such that for 0 ≤ q ≤ r ≤ s ≤ t,

|S(t− r)− S(t− q)|L(Vδ,Vζ) ≤ c(r − q)ν(t− r)−ν−ζ+δ ,

|S(t− r)− S(s− r)− S(t− q) + S(s− q)|L(V ) ≤ c(t− s)ν(r − q)η(s− r)−(ν+η).
(2.3)

Define the bilinear operator B : C∞ × C
∞ → C

∞ as

B(u, v) = −(b1(u, v), b2(u, v), . . .)

where the components bi satisfy (1.2).

1Here there is an important difference w.r.t. the notation of spaces in [7] and [8].
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B is well defined when its domain is V1/2 × V or V × V1/2 (see [7]), that is, B : V1/2 × V → V and B :
V × V1/2 → V are bounded operators. The operator B enjoys the following properties

(B(u, v), w)V = −(B(u,w), v)V , u ∈ V1/2, v, w ∈ V,

(B(u, v), w)V = −(B(u,w), v)V , u ∈ V, v, w ∈ V1/2.

As a consequence, we also have that

(2.4) (B(u, v), v)V = 0, u ∈ V, v ∈ V1/2.

Moreover, we extend the result of Constantin et al. [7] to more general spaces:

Lemma 2.1. For any α1, α2, α3 ∈ R

B : Vα1
× Vα2

→ V−α3
with α1 + α2 + α3 ≥ 1

2

and there exists a constant c depending on the αj’s such that

‖B(u, v)‖V−α3
≤ c‖u‖Vα1

‖v‖Vα2
, u ∈ Vα1

, v ∈ Vα2
.

The proof of this result follows by Proposition 1 of Constantin et al. [8], and Bessaih et al. [2] and hence we
omit it here.

Let C([s, t];Vµ) be the space of continuous functions on [s, t] with values in Vµ and with the usual norm ‖·‖C,µ

(or ‖ · ‖C,s,t,µ when we want to stress the interval). In the particular case that µ = 0, we simply write ‖ · ‖C
(or ‖ · ‖C,s,t respectively). For β ∈ (0, 1] we denote by Cβ([s, t];Vµ) the space of Hölder–continuous functions
on [s, t] and with values in Vµ, equipped with the norm

‖u‖β,µ = ‖u‖C,µ + |||u|||β,µ, |||u|||β,µ := sup
s≤p<q≤t

‖u(q)− u(p)‖Vµ

(q − p)β
.

In particular, for the case β = 1 this is the space of Lipschitz–continuous functions.
The spaces Lp(s, t;Vµ), p ∈ [1,∞] have the standard meaning with the usual norms.
As we have mentioned above, sometimes it is important to consider the above norms on different time intervals
[s, t], thus in those cases the time interval will be indicated in the index of the norm.

For the previous spaces the following compactness theorem holds true:

Theorem 2.2. (i) For α, δ > 0, L2(s, t;Vα)∩Cβ([s, t];V−δ) is compactly embedded into L2(s, t;V )∩C([s, t];V−δ).

(ii) For 0 ≤ δ1 < δ2 and 0 ≤ β1 < β2 ≤ 1 the space Cβ2([s, t];V−δ1) is compactly embedded into Cβ1([s, t];V−δ2).

For the first part see Vishik and Fursikov [30] Chapter IV Theorem 4.1. For the second part we refer to
Maslowski and Nualart [21] Lemma 4.5. Indeed, we have the compact embedding V−δ1 ⊂ V−δ2 .

We now rewrite the equation (1.1) in an abstract form

(2.5) du(t) = (Au(t) +B(u(t), u(t))) dt+G(u(t))dω(t).

where G is a nontrivial diffusion term representing the external force, and which assumptions will be describe
in Section 4 below. Here ω represents a path in Cβ′

([0, T ];V ), with β′ > 1/2, or in particular, a fractional
Brownian–motion with Hurst–parameterH ∈ (1/2, 1), see the definition in Section 3. This stochastic evolution
equation has therefore a multiplicative noise. In what follows we will describe the type of stochastic integral
we are going to consider, which will allow us to give an appropriate meaning to (2.5).

3. Integrals in Hilbert–spaces for Hölder-continuous integrators with Hölder exponents

greater than 1/2

In this section we are concerned with the definition of the following infinite dimensional integral
∫ T2

T1

Zdω,
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where ω is a Hölder-continuous function with Hölder exponent β′ > 1/2 and Z is an appropriate integrand.
We follow the recent definition given by Chen et al. [6], and for the sake of completeness, next we shall borrow
the main steps of their construction.
We start by considering an abstract separable Hilbert–space Ṽ , then for 0 < α < 1 and general measurable
functions Z : [T1, T2] → Ṽ and ω : [T1, T2] → V , we define the following fractional derivatives

Dα
T1+Z[r] =

1

Γ(1 − α)

(

Z(r)

(r − T1)α
+ α

∫ r

T1

Z(r)− Z(q)

(r − q)1+α
dq

)

∈ Ṽ ,

D1−α
T2−

ωT2−[r] =
(−1)1−α

Γ(α)

(

ω(r) − ω(T2−)

(T2 − r)1−α
+ (1− α)

∫ T2

r

ω(r) − ω(q)

(q − r)2−α
dq

)

∈ V,

where ωT2−(r) = ω(r) − ω(T2−), being ω(T2−) the left side limit of ω at T2. Here Γ(·) denotes the Gamma
function.
Let us start with the case when the integrand z and the integrator ζ are one-dimensional. Suppose that
z(T1+), ζ(T1+), ζ(T2−) exist, being respectively the right side limit of z at T1 and the right and left side

limits of ζ at T1, T2, and that z ∈ IαT1+
(Lp(T1, T2;R)), ζT2− ∈ IαT2−

(Lp′

(T1, T2;R)) with 1/p + 1/p′ ≤ 1 and
αp < 1 (the definition of these spaces can be found, for instance, in Samko et al. [26]). Then following Zähle
[32] we define

∫ T2

T1

zdζ = (−1)α
∫ T2

T1

Dα
T1+z[r]D

1−α
T2−

ζT2−[r]dr.(3.1)

Suppose now that ζ is Lipschitz–continuous. Then ζ generates a signed measure dζ and ζ ∈ IαT2−
(Lp′

(T1, T2;R)).
Therefore, in this situation the integral

∫ T2

T1

zdζ

can be expressed by (3.1).

Let V̂ be a separable Hilbert–space endowed with the norm ‖ · ‖V̂ and consider the separable Hilbert–space

L2(V, V̂ ) of Hilbert-Schmidt–operators from V into V̂ with the norm ‖·‖L2(V,V̂ ) and inner product (·, ·)L2(V,V̂ ).

Let (ei)i∈N and (fi)i∈N be a complete orthonormal basis of V and V̂ , resp. A base in L2(V, V̂ ) is given by

Eijek =

{

0 : j 6= k
fi : j = k.

Let us consider now mappings Z : [T1, T2] → L2(V, V̂ ) and ω : [T1, T2] → V . Suppose that zji = (Z,Eji)L2(V,V̂ ) ∈
IαT1+

(Lp(T1, T2;R)) and zji(T1+) exists and αp < 1. Moreover, let us also assume that ζiT2− = (ωT2−(t), ei)V ∈
I1−α
T2−

(Lp′

(T1, T2;R)) such that 1/p+ 1/p′ ≤ 1, and the mapping

[T1, T2] ∋ r 7→ ‖Dα
T1+Z[r]‖L2(V,V̂ )‖D1−α

T2−
ωT2−[r]‖ ∈ L1(T1, T2;R).

We introduce
∫ T2

T1

Zdω := (−1)α
∫ T2

T1

Dα
T1+Z[r]D1−α

T2−
ωT2−[r]dr

:= (−1)α
∞
∑

j=1

( ∞
∑

i=1

∫ T2

T1

Dα
T1+zji[r]D

1−α
T2−

ζiT2−[r]dr

)

fj .

(3.2)

This last equality is well defined due to the fact that Pettis’ theorem and the separability of V ensure that the
integrand is weakly measurable and hence measurable. Moreover, the norm of the above integral is given by

∥

∥

∥

∥

∫ T2

T1

Zdω

∥

∥

∥

∥

V̂

=

( ∞
∑

j=1

∣

∣

∣

∣

∞
∑

i=1

∫ T2

T1

Dα
T1+zji[r]D

1−α
T2−

ζiT2−[r]dr

∣

∣

∣

∣

2) 1
2

≤
∫ T2

T1

‖Dα
T1+Z[r]‖L2(V,V̂ )‖D1−α

T2−
ωT2−[r]‖dr.
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The next result, which proof can be found in [6], considers the definition of the above integral when having
suitable Hölder continuous integrator and integrand functions:

Lemma 3.1. Suppose that Z ∈ Cβ([T1, T2];L2(V, V̂ )) and ω ∈ Cβ′

([T1, T2];V ) with 1− β′ < α < β. Then
∫ T2

T1

Zdω ∈ V̂

is well-defined in the sense of (3.2). Also, there exists a constant c depending only on T2, β, β
′ such that

∥

∥

∥

∥

∫ T2

T1

Zdω

∥

∥

∥

∥

V̂

≤ c‖Z‖Cβ([T1,T2];L2(V,V̂ ))|||ω|||β′,T1,T2
(T2 − T1)

β′

.

Moreover, the above integral with driving path ω is well-defined even though the integrand is locally Hölder-
continuous, which will be the case in the next sections when the semigroup S is part of the integrand, see [6]
for the proof of this assertion.

In the following we would like to consider the above integrals when the integrator is a noise given by a fractional
Brownian–motion (fBm). An one–dimensional fBm is a centered Gauß–process given by the auto-covariance

R(s, t) =
1

2
(t2H + s2H − |t− s|2H)

where H ∈ (0, 1) is the so-called Hurst–parameter. The value H = 1/2 determines a Brownian–motion, which
is a martingale and a Markov–process with independent increments. When H 6= 1/2 these properties do not
hold.
An fBm can be also defined in a separable Hilbert–space. By the following construction we obtain such
an infinite-dimensional noise with values in V : let (ζi)i∈N be a iid-sequence of fBm in R having the same
Hurst–parameter H . Then

t → ω(t) :=
∞
∑

i=1

q
1
2

i ζiei,

where (qi)i∈N ∈ l2, defines an fBm with values in V and with auto-covariance

1

2
Q(t2H + s2H − |t− s|2H),

where the operator Q of diagonal form is defined by

(ei, Qej)V = δijqi.

One very important property that will be crucial in this paper is that, thanks to Kolmogorov’s theorem, the
stochastic process ω has a γ–Hölder–continuous version for any γ < H , see Theorem 1.4.1 in Kunita [19]. For
simplicity we restrict ourself to a real fBm. However, taking two one–dimensional independent real fBm ζ1, ζ2

then we could construct a one–dimensional complex fBm: ζ := 1/
√
2(ζ1 + iζ2). Then by the above formula

we could construct a complex fBm ω in V .

Remark 3.2. For our further purposes we need the fBm ω to be piecewise linear approximated. As one can
check later, we will use the property that given ω we can find a sequence of piecewise linear continuous functions
ωn converging to ω in a Hölder–continuous space. However, the space of Hölder–continuous functions is not
separable, but we can modify it in such a way that the modified space is: for β′ < γ < H

C0,β′

([0, T ];V ) :=

{

ω ∈ Cβ′

([0, T ];V ) : lim
δ→0

sup
|s1−s2|<δ,[0,T ]∋s1 6=s2

‖ω(s1)− ω(s2)‖
(s1 − s2)β

′
= 0

}

,

is a separable space since V is itself separable (see [13], [14] and [11]). It is easy to see that Cγ([0, T ];V ) ⊂
C0,β′

([0, T ];V ), and therefore this latter space is the one that we should take when considering the fBm. Hence,

in what follows we shall assume that the path ω in Cβ′

([0, T ];V ) can be piecewise linear approximated by a

sequence (ωn)n∈N converging in Cβ′

([0, T ];V ), because we assume that ω ∈ Cγ([0, T ];V ) with γ < H, but this
statement must be understood according to the sense given above.
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4. Definition of a solution of the stochastic shell–model

In this section we would like to formulate conditions ensuring that (2.5) has a global unique solution.
We emphasize that we have to formulate a definition of solution which is appropriate in our context: on the
one hand, the driving function belongs to Cβ′

([0, T ];V ) for a β′ ∈ (1/2, 1), which means that we cannot define
integrals by using the standard integration theory of bounded-variation integrators. In particular our situation
here covers the case when the driving function is given by an fBm in V with Hurst–parameterH > 1/2. On the
other hand, the bilinear operator B will be the responsible of having to deal with non–Lipschitz–coefficients
in this model.

We now formulate the assumptions for the diffusion operator G of (2.5). In what follows, we choose a constant
δ > 0 which will be determined later.
Assumption (G) Assume that the mapping G : V−δ → L2(V ) is bounded and twice continuously Fréchet–
differentiable with bounded first and second derivatives DG(u) and D2G(u), for u ∈ V−δ. Let us denote,
respectively, by cG, cDG and cD2G the bounds for G, DG and D2G. Then, for u ∈ V−δ

‖G(u)‖L2(V ) ≤ cG.

Furthermore, for u1, u2 ∈ V−δ,

‖G(u1)−G(u2)‖L2(V ) ≤ cDG‖u1 − u2‖V−δ
,

and for u1, u2, v1, v2 ∈ V−δ,

‖G(u1)−G(v1)− (G(u2)−G(v2))‖L2(V )

≤cDG‖u1 − v1 − (u2 − v2)‖V−δ
+ cD2G‖u1 − u2‖V−δ

(‖u1 − v1‖V−δ
+ ‖u2 − v2‖V−δ

).
(4.1)

Notice that DG : Vδ 7→ L2(V × V−δ, V ) is a bilinear mapping whereas D2G a trilinear mapping.

In this paper we shall look at the existence and uniqueness of a solution of (2.5) according to the next definition:

Definition 4.1. Let 1/2 < β < β′ ≤ 1 and let ω ∈ Cβ′

([0, T ], V ), u0 ∈ V and δ ∈ (β, 1). A function u is said
to be a mild solution to (2.5) over the interval [0, T ] associated to the initial condition u0 if

u ∈ C([0, T ], V ) ∩ L2(0, T, V1/2) ∩Cβ([0, T ], V−δ)

and such that

(4.2) u(t) = S(t)u0 +

∫ t

0

S(t− r)B(u(r), u(r))dr +

∫ t

0

S(t− r)G(u(r))dω(r)

for every t ∈ [0, T ].

Remark 4.2. Note that the first integral in (4.2) is well defined in V because of the fact that u ∈ C([0, T ], V )∩
L2(0, T, V1/2) and Lemma 2.1. The stochastic integral in (4.2) must be understood in V according to the
definition given in Section 3.

We stress that we are interested in finding a mild solution for (2.5). Following [23] we could also consider weak
solutions for our problem. Nevertheless for u ∈ L∞(0, T, V )∩L2(0, T, V1/2) we have that B(u, u) is sufficiently
regular so that we can work with mild solutions.
When ω is regular, we can also interpret the solution in the following weak sense:

Definition 4.3. Assume that ω is piecewise linear continuous in [0, T ] with values in V and u0 ∈ V . We say
that u is a weak solution to (2.5) over the interval [0, T ] associated to the initial condition u0 if

u ∈ C([0, T ], V ) ∩ L2(0, T, V1/2)

and such that

(4.3) (u(t), ϕ)V +

∫ t

0

(A1/2u(s), A1/2ϕ)V ds−
∫ t

0

(B(u(s), u(s)), ϕ)V ds = (u0, ϕ)V +

∫ t

0

(G(u(s))ω′(s), ϕ)V ds

holds for every ϕ ∈ V1/2 and t ∈ [0, T ].
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5. Solutions of the stochastic shell–model for piecewise linear continuous path noise

In this section we assume that ω is a piecewise linear continuous function. This case is the foundation for
studying the more general case which will be treated in the next section. Indeed, in further sections given
ω ∈ Cβ′

([0, T ], V ) we shall consider a sequence (ωn)n∈N of piecewise linear continuous paths converging to

ω ∈ Cβ′

([0, T ], V ), see Remark 3.2. As we cannot assume that the sequence (ω′
n)n∈N in uniformly bounded

in L∞([0, T ], V ), we will have to construct uniform a priori estimates for the solutions to equations driven by

ωn, which will be based on uniform estimates of (ωn)n∈N with respect to the Cβ′

-norm.

We start by studying the existence of solutions for the stochastic Shell–model having this kind of regular
driving function:

Proposition 5.1. Assume that β̂ ∈ (1/2, 1), δ ∈ (β̂, 1), u0 ∈ V , ω is a piecewise linear continuous function
and G and satisfies the assumption (G). Then, there is a global unique weak solution u for equation (2.5) in
the sense of Definition 4.3.

Proof. The proof is very classical but, for the the sake of completeness, we will sketch it here. Let us denote by
Pn the projection operator in V onto the space spanned by e1, e2, . . . , en. Then, the Galerkin–approximations
(un)n∈N to problem (2.5) are solutions of the finite-dimensional systems

(5.1) dun(t) = (Aun(t) + PnB(un(t), un(t)))dt+ PnG(un(t))ω
′(t)dt.

On the other hand, if G∗ denotes the adjoint operator of G, taking the scalar product of (5.1) by un, using
the property (2.4) and assumption (G), we get that

1

2

d

dt
‖un(t)‖2 + ‖un(t)‖2V1/2

≤ |(PnG(un(t))ω
′(t), un(t))V | ≤ |(ω′(t), G∗(un(t))un(t))V |

≤ ‖ω′(t)‖‖G∗(un(t))un(t)‖ ≤ cG‖ω′(t)‖‖un(t)‖

≤ c2G
2
‖ω′(t)‖2 + 1

2
‖un(t)‖2.

Hence, using the Gronwall lemma yields that

sup
t∈[0,T ]

‖un(t)‖2 ≤ c(‖un(0)‖, ‖ω′‖2L∞(0,T,V ), T )

for an appropriate positive constant c, and consequently we also have

∫ T

0

‖un(t)‖2V1/2
dt ≤ c,

uniformly in n.

Also, by classical arguments, we get that (un)n∈N is bounded in C β̂([0, T ], V−δ). In fact, since un ∈ L∞(0, T, V )
and, in particular, δ > 1/2, it follows by Lemma 2.1

sup
0≤s<t≤T

∫ t

s ‖A−δB(un(r), un(r))‖dr
(t− s)β̂

≤ c sup
0≤s<t≤T

∫ t

s ‖A− 1
2B(un(r), un(r))‖dr

(t− s)β̂
≤ cT 1−β̂‖un‖2L∞(0,T,V ) < ∞,

and by (G) we arrived at

sup
0≤s<t≤T

∫ t

s
‖A−δG(un(r))ω

′(r)‖dr
(t− s)β̂

≤ c sup
0≤s<t≤T

∫ t

s
‖G(un(r))‖L2(V )‖ω′(r)‖dr

(t− s)β̂
≤ ccGT

1−β̂‖ω′‖L∞(0,T,V ) < ∞.

Moreover, applying the interpolation inequality (see [27], Theorem 37.6), we know that there exists a constant
c = c(δ) ≥ 1 such that

‖A1−δv‖ ≤ c‖A0v‖2δ−1‖A1/2v‖2−2δ for all v ∈ V,
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and therefore

sup
0≤s<t≤T

∫ t

s ‖A−δAun(r)‖dr
(t− s)β̂

≤ c sup
0≤s<t≤T

∫ t

s ‖un(r)‖2δ−1‖A1/2un(r)‖2−2δdr

(t− s)β̂

≤c‖un‖2δ−1
L∞(0,T,V ) sup

0≤s<t≤T

(
∫ t

s
dr)δ(

∫ t

s
‖A1/2un(r)‖2dr)1−δ

(t− s)β̂
≤ cT δ−β̂‖un‖2δ−1

L∞(0,T,V )‖un‖2−2δ
L2(0,T,V1/2)

< ∞.

Hence, by the compactness Theorem 2.2 (i) we get a subsequence, still denoted by (un)n∈N, that converges
strongly in L2(0, T, V )∩C([0, T ], V−δ) to some limit u. Since (un)n∈N is bounded in L∞(0, T, V )∩L2(0, T, V1/2)

this sequence is relatively weak-star compact in L∞(0, T, V ) and relatively weak compact in L2(0, T, V1/2).

As a consequence, the limit u ∈ L∞(0, T, V ) ∩ L2(0, T, V1/2). Now, it remains to prove that the limit u is a
solution to the system (2.5) according to the Definition 4.3. Indeed, assuming that un is solution in the sense
of Definition 4.3, we can pass to the limit on each term. Furthermore, the regularity of u implies that the
right hand side of (4.3) as well as the last two terms of the left hand side of (4.3) are in C([0, T ], V ), hence
u ∈ C([0, T ], V ). For similar limit considerations we refer to Constantin et al. [7]. �

Moreover, we have the following result about mild solutions:

Proposition 5.2. Under the same hypotheses than in Proposition 5.1, every weak solution u to (2.5) is a

mild solution, that is, u ∈ C([0, T ], V ) ∩ L2(0, T, V1/2) ∩ C β̂([0, T ], V−δ) and satisfies for every t ∈ [0, T ] the
following integral formulation in V :

(5.2) u(t) = S(t)u0 +

∫ t

0

S(t− r)B(u(r), u(r))dr +

∫ t

0

S(t− r)G(u(r))ω′(r)dr.

Proof. Suppose that u fulfills (4.3). Then

t 7→ B(u(t), u(t)) +G(u(t))ω′(t) ∈ L2(0, T, V )

such that

t 7→
∫ t

0

S(t− r)B(u(r), u(r))dr +

∫ t

0

S(t− r)G(u(r))ω′(r)dr ∈ C([0, T ], V ),

see Pazy [25], proof of Theorem 4.3.1. In addition, every Galerkin–approximation solution of (5.1) satisfies

(un(t), ϕ)V = (S(t)Pnun(0), ϕ)V +

∫ t

0

(S(t− r)PnB(un(r), un(r)), ϕ)V dr

+

∫ t

0

(S(t− r)PnG(un(r))ω
′(r), ϕ)V dr

(5.3)

for every ϕ ∈ V and every t ∈ [0, T ]. From the convergence of (un)n∈N in L2(0, T, V ) and the boundedness in
L2(0, T, V1/2) it follows that the left hand side of (5.3) converges to

(S(t)u0, ϕ)V +

∫ t

0

(S(t− r)B(u(r), u(r)), ϕ)V dr +

∫ t

0

(S(t− r)G(u(r))ω′(r), ϕ)V dr

for every t ∈ [0, T ]. On the other hand, from the proof of Proposition 5.1 we know that (un)n∈N converges to
u in C([0, T ], V−δ) and hence un(t) converges to u(t) in V−δ for every t ∈ [0, T ]. Since the right hand side is
in V for every t ∈ [0, T ], u(t) too. Also, following the same reasoning than in Proposition 5.1, one can prove

that (un)n∈N is bounded in Cγ([0, T ], V−δ̂) for γ = β̂+ ε and δ̂ = δ− ε for small enough ε > 0 such that δ̂ > γ.

Then it suffices to apply Theorem 2.2 (ii) to conclude the proof. �

From now on, we often use the following property, which is a consequence of the definition of Beta function:
for every 0 ≤ s < t ≤ T , a, b > −1,

(5.4)

∫ t

s

(r − s)a(t− r)bdr = c(t− s)a+b+1

where c only depends on a and b.
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Next we develop a priori estimates that later we need to derive the existence of a solution for a general
ω ∈ Cβ′

([0, T ], V ). We cannot use the estimate from Proposition 5.1 because we do not have that the

sequence (ωn)n∈N approximating ω in Cβ′

([0, T ], V ) is in general uniformly bounded in L∞(0, T, V ). That is
why in the following estimates |||ω|||β′ appears.

Lemma 5.3. Assume that 1/2 < β̂ < β′, 1−β′ < α < β̂, δ ∈ (β̂, 1), u0 ∈ V , ω is a piecewise linear continuous
function and G satisfies (G). Then, if u is a weak solution to (2.5) in the sense of Definition 4.3, there is a
constant c > 0 such that for t ∈ [0, T ]

‖u(t)‖2 + 2

∫ t

0

‖u(r)‖2V1/2
dr ≤ ‖u0‖2 + c|||ω|||β′tβ

′‖u‖C,0,t + c|||ω|||β′tβ̂+β′

(1 + ‖u‖C,0,t)|||u|||β̂,−δ,0,t.(5.5)

Proof. Applying the formula of the square norm, see Teman [29] Lemma III.1.2 , using the skew-symmetric
property (2.4), and finally integrating over (0, t), this gives us for every t ∈ [0, T ] the following energy inequality

‖u(t)‖2 + 2

∫ t

0

‖u(r)‖2V1/2
dr ≤ ‖u0‖2 + 2

∣

∣

∣

∣

∫ t

0

(G∗(u(r))u(r), ω′(r))V dr

∣

∣

∣

∣

.

The integral on the right hand side of the previous expression can be interpreted in the sense of Section 3 using
fractional derivatives. Since for any r we have ‖Dα

0+G
∗(u(r))u(r)‖ < ∞ the expression Dα

0+G
∗(u(r))u(r) can

be interpreted as an element in the space of Hilbert–Schmidt–operators L2(V,R) ≃ V . Moreover, from the
definition of the fractional derivative it is easy to derive that

‖D1−α
t− ωt−[r]‖ ≤ c|||ω|||β′(t− r)α+β′−1,(5.6)

and therefore we get
∣

∣

∣

∣

∫ t

0

(G∗(u(r))u(r), ω′(r))V dr

∣

∣

∣

∣

≤ c|||ω|||β′

∫ t

0

(t− r)α+β′−1

(‖G∗(u(r))u(r)‖
rα

+

∫ r

0

‖G∗(u(r))u(r) −G∗(u(q))u(q)‖
(r − q)1+α

dq

)

dr.

Trivially the boundedness of G implies that ‖G∗(u)u‖ ≤ cG‖u‖ for u ∈ V and therefore

‖G∗(u(r))u(r)‖
rα

≤ cG‖u‖C,0,t

rα
, r ∈ [0, t].

The boundedness and the Lipschitz–continuity of G imply

∫ r

0

‖G∗(u(r))u(r) −G∗(u(q))u(q)‖
(r − q)1+α

dq

≤ cG

∫ r

0

‖u(r)− u(q)‖V−δ

(r − q)1+α
dq + ‖u‖C,0,t

∫ r

0

‖G∗(u(r)) −G∗(u(q))‖L2(V−δ,V )

(r − q)1+α
dq

≤ (cG + cDG‖u‖C,0,t)|||u|||β̂,−δ,0,t

∫ r

0

(r − q)−1−α+β̂dq

= c(cG + cDG‖u‖C,0,t)|||u|||β̂,−δ,0,tr
β̂−α.

Hence, for an appropriate c > 0

∣

∣

∣

∣

∫ t

0

(G∗(u(r))u(r), ω′(r))V dr

∣

∣

∣

∣

≤ c|||ω|||β′tβ
′‖u‖C,0,t + c|||ω|||β′tβ̂+β′

(1 + ‖u‖C,0,t)|||u|||β̂,−δ,0,t.

�

Lemma 5.4. Under the same conditions of Lemma 5.3, if u is a solution to (2.5) there exist constants c, c̄ > 0
such that for t ∈ [0, T ]

|||u|||β̂,−δ,0,t ≤ c̄tδ−β̂‖u0‖+ ct1−β̂‖u‖2C,0,t + c|||ω|||β′tβ
′−β̂(1 + tβ̂ |||u|||β̂,−δ,0,t).(5.7)
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Proof. Consider (5.2) written as

u(t) = S(t)u0 +A1/2

∫ t

0

S(t− r)A−1/2B(u(r), u(r))dr +

∫ t

0

S(t− r)G(u(r))ω′(r)dr.

Then the following splitting is considered:

A−δ(u(q)− u(p)) = A−δ(S(q)− S(p))u0 +A−δ+1/2

∫ q

p

S(q − r)A−1/2B(u(r), u(r))dr

+A−δ+1/2

∫ p

0

(S(q − r)− S(p− r))A−1/2B(u(r), u(r))dr

+A−δ

∫ q

p

S(q − r)G(u(r))ω′(r)dr +A−δ

∫ p

0

(S(q − r) − S(p− r))G(u(r))ω′(r)dr

=: I1 + I2 + I3 + I4 + I5.

(5.8)

For the term related to the initial condition, due to the fact that δ ∈ (β̂, 1) and (2.1), (2.2) we have

sup
0≤p<q≤t

‖I1(p, q)‖
(q − p)β̂

≤ sup
0≤p<q≤t

‖A−δ(S(q − p)− Id)S(p)u0‖
(q − p)β̂

≤ c̄ sup
0≤p<q≤t

(q − p)δ‖u0‖
(q − p)β̂

≤ c̄tδ−β̂‖u0‖.

Moreover, due to Lemma 2.1 and taking into account that V ⊂ V−δ+1/2,

sup
0≤p<q≤t

‖I2(p, q)‖
(q − p)β̂

≤ sup
0≤p<q≤t

1

(q − p)β̂

∫ q

p

‖A−δ+1/2S(q − r)A−1/2B(u(r), u(r))‖dr

≤ sup
0≤p<q≤t

c

(q − p)β̂

∫ q

p

‖A−1/2B(u(r), u(r))‖dr

≤ sup
0≤p<q≤t

c

(q − p)β̂
(q − p)‖u‖2C,0,t ≤ ct1−β̂‖u‖2C,0,t.

(5.9)

For I3, thanks to Lemma 2.1 and (2.3),

sup
0≤p<q≤t

‖I3(p, q)‖
(q − p)β̂

≤ sup
0≤p<q≤t

c

(q − p)β̂

∫ p

0

‖A−δ+1/2(S(q − p)− Id)S(p− r)A−1/2B(u(r), u(r))‖dr

≤ c‖u‖2C,0,t sup
0≤p≤t

∫ p

0

(p− r)δ−1/2−β̂dr

≤ ctδ+1/2−β̂‖u‖2C,0,t ≤ c′t1−β̂‖u‖2C,0,t.

(5.10)

Similar estimates to those of I4, I5 can be found in [6]. However, and for the completeness of the presentation,
we also show these technical estimates in this paper, but we have shifted these calculations into the Appendix
Section, see Lemma 8.1 above. In particular, in Lemma 8.1 we get

(5.11) sup
0≤p<q≤t

‖I4(p, q)‖+ ‖I5(p, q)‖
(q − p)β̂

≤ ctβ
′−β̂ |||ω|||β′

(

1 + tβ̂ |||u|||β̂,−δ,0,t

)

.

Hence, collecting all the estimates for the expressions Ij the inequality (5.7) is obtained. �

Lemma 5.5. Under the assumptions of Lemma 5.3, if un is a solution of (4.3) on [0, T ] with initial condition

u0 ∈ V and driven by a piecewise linear continuous path ωn where (ωn)n∈N is bounded in Cβ′

([0, T ], V ), then

(un)n∈N is uniformly bounded in C β̂([0, T ], V−δ) ∩ C([0, T ], V ).

The proof of the previous result rests upon the technical Lemmas 8.2–8.4 whose proofs are presented into the
Appendix section.

Remark 5.6. We emphasize that we consider Hölder–continuity with respect to the space V−δ in the definition
of a mild solution and in the results of this section, as well. The estimates in these results also make sense for

smaller δ. However, the initial condition u0 is the responsible of having to consider δ ∈ (β̂, 1), since in (5.7)

the exponent in the term tδ−β̂ multiplying ‖u0‖ must be positive.
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6. Construction of solutions

We are now able to construct solutions for the stochastic equation (2.5) and give the main result of this
paper. We consider a sequence of solutions (un)n∈N to (2.5) driven by (ωn)n∈N, a sequence of piecewise linear
continuous approximations of ω converging to ω where ω satisfies Remark 3.2.
First we formulate a general uniqueness theorem.

Theorem 6.1. Suppose that there are two mild solutions u1, u2 of (4.2) with u1(0) = u2(0) = u0 ∈ V
and driven by the same path ω. Then, under the before mentioned assumptions on A, B and G we have
u1(t) = u2(t) for t ∈ [0, T ].

Proof. Assume that there exists a maximal interval [0, t0] contained in [0, T ] such that ∆u := u1 − u2 is zero
on this interval being t0 < T . Then there exists a 0 < µ < 1 such that ∆u 6= 0 on (t0, t0 + µ].
We divide the proof in several steps:
(i) First we want to estimate

|||∆u|||β,−δ,t0,t0+µ = sup
t0≤s<t≤t0+µ

‖∆u(t)−∆u(s)‖V−δ

(t− s)β
.

Regarding the non-stochastic integral, we have to estimate

1

(t− s)β

∥

∥

∥

∥

∫ t

s

S(t− r)A−δ(B(u1(r), u1(r)) −B(u2(r), u2(r)))dr

∥

∥

∥

∥

+
1

(t− s)β

∥

∥

∥

∥

∫ s

t0

(S(t− r)− S(s− r))A−δ(B(u1(r), u1(r)) −B(u2(r), u2(r)))dr

∥

∥

∥

∥

=: J1 + J2.

Since V−1/2 ⊂ V−δ, from Lemma 2.1 we obtain

‖A−δ(B(u1(r), u1(r)) −B(u2(r), u2(r)))‖ ≤ c‖B(∆u(r), u1(r))‖V−1/2
+ c‖B(u2(r),∆u(r))‖V−1/2

≤ c‖∆u(r)‖(‖u1(r)‖ + ‖u2(r)‖).
Therefore

J1 ≤ c

(t− s)β

∫ t

s

‖∆u(r)‖(‖u1(r)‖ + ‖u2(r)‖)dr ≤ cµ1−β ||∆u||C,t0,t0+µ(||u1||C,t0,t0+µ + ||u2||C,t0,t0+µ).

Notice also that using the properties of the semigroup S

‖(S(t− r)− S(s− r))A−δ(B(u1(r), u1(r)) −B(u2(r), u2(r)))‖
=‖(S(t− s)− id)S(s− r)(B(u1(r), u1(r)) −B(u2(r), u2(r)))‖V−δ

≤c(t− s)δ‖(B(u1(r), u1(r)) −B(u2(r), u2(r)))‖
≤c(t− s)δ‖∆u(r)‖(‖u1(r)‖V1/2

+ ‖u2(r)‖V1/2
),

and thus

J2 ≤ 1

(t− s)β

∫ s

t0

(t− s)δ‖∆u(r)‖(‖u1(r)‖V1/2
+ ‖u2(r)‖V1/2

)dr

≤µ
1
2
+δ−β‖∆u‖C,t0,t0+µ(||u1||L2(0,T,V1/2) + ||u2||L2(0,T,V1/2)).

To analyze the terms corresponding to the stochastic integral, that is,

sup
t0≤s<t≤t0+µ

∥

∥

∥

∥

∫ t

s

S(t− r)(G(u1(r)) −G(u2(r)))dω −
∫ s

t0

(S(t− r) − S(s− r))(G(u1(r)) −G(u2(r)))dω

∥

∥

∥

∥

V−δ

(t− s)β

we can consider the estimates of I4, I5 given in the Appendix, replacing ‖A−δ(G(u(r))‖L2(V ) by

(6.1) ‖A−δ(G(u1(r)) −G(u2(r)))‖L2(V ) ≤ cDG‖∆u(r)‖V−δ
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and ‖A−δ(G(u(r)) −G(u(q)))‖L2(V ) by

‖A−δ(G(u1(r)) −G(u2(r)) − (G(u1(q)) −G(u2(q))))‖L2(V )

≤ cDG‖∆u(r)−∆u(q)‖V−δ
+ cD2G(‖∆u(r)‖V−δ

(‖u1(r) − u1(q)‖V−δ

+ ‖u2(r)− u2(q)‖V−δ
),

(6.2)

where these two above estimates follow by (G). Then following the steps of Lemma 8.1 and taking into account

‖∆u(r)‖V−δ
= ‖∆u(r)−∆u(t0)‖V−δ

≤ |||∆u|||β,−δ,t0,t0+µ(r − t0)
β ,

which is true due to the fact that ∆u(t0) = 0, we obtain the following term as an upper bound of the stochastic
part:

c|||ω|||β′µβ′ |||∆u|||β,−δ,t0,t0+µ + c|||ω|||β′µβ′+β(|||u1|||β,−δ,0,T + |||u2|||β,−δ,0,T )‖∆u‖C,t0,t0+µ.

Collecting everything we get

|||∆u|||β,−δ,t0,t0+µ ≤ c1µ|||∆u|||β,−δ,t0,t0+µ + c2µ‖∆u‖C,t0,t0+µ,(6.3)

with

c1µ = cµβ′ |||ω|||β′ ,

c2µ = c(µ
1
2
+δ−β(||u1||L2(0,T,V1/2) + ||u2||L2(0,T,V1/2)) + µβ′+β |||ω|||β′(|||u1|||β,−δ,0,T + |||u2|||β,−δ,0,T )

+ µ1−β(||u1||C,t0,t0+µ + ||u2||C,t0,t0+µ)).

(6.4)

(ii) In this second step we are interested in estimating ‖∆u‖C,t0,t0+µ. The non-stochastic part gives us

sup
t0≤t≤t0+µ

∥

∥

∥

∥

∫ t

t0

S(t− r)(B(u1(r), u1(r)) −B(u2(r), u2(r)))dr

∥

∥

∥

∥

≤c sup
t0≤t≤t0+µ

∫ t

t0

‖∆u(r)‖(||u1(r)||V1/2
+ ||u2(r)||V1/2

)dr

≤cµ
1
2 (||u1||L2(0,T,V1/2) + ||u2||L2(0,T,V1/2))‖∆u‖C,−δ,t0,t0+µ.

To study the norm of the stochastic integral, for t ∈ [t0, t0 + µ] we split it as follows

|||ω|||β′

∫ t

t0

(t− r)α+β′−1

(‖S(t− r)(G(u1(r)) −G(u2(r)))‖L2(V )

(r − t0)α

+

∫ r

t0

‖(S(t− r)− S(t− r̂))(G(u1(r)) −G(u2(r)))‖L2(V )

(r − r̂)α+1
dr̂

+

∫ r

t0

‖S(t− r̂)((G(u1(r)) −G(u2(r))) − (G(u1(r̂))−G(u2(r̂))))‖L2(V )

(r − r̂)α+1
dr̂

)

dr

=: J3(t) + J4(t) + J5(t).

Following the steps of Lemma 8.1, thanks to (G) we obtain

sup
t0≤t≤t0+µ

J3(t) ≤ c|||ω|||β′µβ′‖∆u‖C,t0,t0+µ,

sup
t0≤t≤t0+µ

J4(t) ≤ c|||ω|||β′µβ′‖∆u‖C,t0,t0+µ.
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Finally, using again (G), since ‖∆u(r)‖V−δ
≤ c‖∆u(r)‖,

sup
t0≤t≤t0+µ

J5(t) ≤ c|||ω|||β′

∫ t

t0

(t− r)α+β′−1

×
(
∫ r

t0

‖∆u(r)−∆u(r̂)‖V−δ
+ ‖∆u(r)‖(‖u1(r) − u1(r̂)‖V−δ

+ ‖u2(r) − u2(r̂)‖V−δ
)

(r − r̂)α+1
dr̂

)

dr

≤ c|||ω|||β′(|||∆u|||β,−δ,t0,t0+µ + ‖∆u‖C,t0,t0+µ(|||u1|||β,−δ,t0,t0+µ + |||u2|||β,−δ,t0,t0+µ)

× sup
t0≤t≤t0+µ

∫ t

t0

(t− r)α+β′−1

(
∫ r

t0

(r − r̂)β−α−1dr̂

)

dr

≤ c|||ω|||β′µβ+β′

(|||∆u|||β,−δ,t0,t0+µ + ‖∆u‖C,t0,t0+µ(|||u1|||β,−δ,0,T + |||u2|||β,−δ,0,T )).

Hence,

‖∆u‖C,t0,t0+µ ≤ c3µ‖∆u‖C,t0,t0+µ + c4µ|||∆u|||β,−δ,t0,t0+µ,(6.5)

with

c3µ = c(µ
1
2 (||u1||L2(0,T,V1/2) + ||u2||L2(0,T,V1/2)) + µβ′ |||ω|||β′

+ µβ′+β |||ω|||β′(|||u1|||β,−δ,0,T + |||u2|||β,−δ,0,T )),

c4µ = cµβ′+β |||ω|||β′ .

(6.6)

Therefore, solving the system given by (6.3) and (6.5) means that we have to solve a system of inequalities,
namely

X ≤ c1µX + c2µY, Y ≤ c3µY + c4µX

with ciµ given by (6.4) and (6.6). It is now straightforward to check that for a small enough µ ∈ (0, 1) we
obtain that ||∆u||C,t0,t0+µ = 0, which contradicts the fact that the maximal interval of uniqueness is [0, t0].
Hence the solution of (2.5) is unique.

�

Finally, we can prove the main theorem of the paper:

Theorem 6.2. Under the assumptions of Lemma 5.3 there exists a mild solution to the stochastic shell–model
(2.5) with driving function ω ∈ Cβ′

([0, T ];V ).

Proof. We divide the proof in several steps:
(i) Let (ωn)n∈N be a sequence of piecewise linear continuous functions converging to ω in Cβ′

([0, T ], V ), see
Remark 3.2, and let (un)n∈N be the sequence of unique solutions driven by (ωn)n∈N with initial condition

u0 ∈ V . From Lemma 5.5 we know that (un)n∈N is uniformly bounded in C β̂([0, T ], V−δ) ∩ C([0, T ], V ).
Then (5.5) implies that (‖un‖L2(0,T,V1/2))n∈N is also bounded and hence (un)n∈N is relatively weak compact

in L2(0, T, V1/2). Furthermore, this sequence is relatively compact in L2(0, T, V ) ∩C([0, T ], V−δ) by Theorem
2.2 (i). Moreover, from Lemma 5.4 and Lemma 8.1 we obtain that

|||un|||β̂,−δ̂,0,t ≤ ctδ̂−β̂‖un(0)‖+ ct1−β̂‖un‖2C,0,t + c|||ωn|||β′tβ
′−β̂−ε(1 + tβ̂ |||un|||β̂,−δ,0,t),

which, together with the fact that (ωn)n∈N converges to ω, imply that (un)n∈N is uniformly bounded in

C β̂([0, T ], V−δ̂) with δ̂ = δ − ε being ε > 0 arbitrarily small such that δ, δ̂ satisfies still the conditions of

Lemma 5.3. Hence, by Theorem 2.2 (ii), this sequence in relatively compact in Cβ([0, T ], V−δ).

(ii) Let (un′)n′∈N be a subsequence converging to some limit point u ∈ L2(0, T, V1/2)∩Cβ([0, T ], V−δ). Let us
denote this subsequence simply by (un)n∈N. Then, since B : V 1

2
× V−δ → V−δ and also B : V−δ × V 1

2
→ V−δ
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and un(0)− u(0) = 0, applying Lemma 2.1 we have
∥

∥

∥

∥

∫ t

0

S(t− r)(B(un(r), un(r)) − B(u(r), u(r)))dr

∥

∥

∥

∥

V−δ

≤
∫ t

0

(‖B(un(r), un(r)) −B(u(r), un(r))‖V−δ
+ ‖B(u(r), un(r)) −B(u(r), u(r))‖V−δ

)dr

≤ c

∫ t

0

(‖un(r)‖V1/2
+ ‖u(r)‖V1/2

)‖u(r)− un(r)‖V−δ
dr

≤ c|||u− un|||β,−δ,0,T

∫ t

0

rβ(‖un(r)‖V1/2
+ ‖u(r)‖V1/2

)dr

≤ cT β+ 1
2 |||u− un|||β,−δ,0,T (‖un‖L2(0,T,V1/2) + ‖u‖L2(0,T,V1/2))

which shows the convergence in V−δ of the left hand side to zero.
For the stochastic integral we consider the splitting

∥

∥

∥

∥

∫ t

0

S(t− r)G(un(r))dωn(r)−
∫ t

0

S(t− r)G(u(r))dω(r)

∥

∥

∥

∥

V−δ

≤
∥

∥

∥

∥

∫ t

0

S(t− r)G(un(r))d(ωn(r)− ω(r))

∥

∥

∥

∥

V−δ

+

∥

∥

∥

∥

∫ t

0

S(t− r)(G(un(r)) −G(u(r)))dωn(r)

∥

∥

∥

∥

V−δ

.

Similar to (5.11), an upper bound for the first integral on the right hand side is given by

CT β′ |||ωn − ω|||β′

(

1 + T β|||un|||β,−δ,0,T

)

and since the set {|||un|||β,−δ,0,T}n∈N is bounded, we obtain the convergence in V−δ of the first integral on the
right hand side. Now using (6.1)-(6.2), setting u1 = un, u2 = u we arrive at

∥

∥

∥

∥

∫ t

0

S(t− r)(G(un(r)) −G(u(r)))dωn(r)

∥

∥

∥

∥

V−δ

≤ c|||ωn|||β′T β′ |||un − u|||β,−δ,0,T

× (1 + T β(1 + |||un|||β,−δ,0,T + |||u|||β,−δ,0,T ))

which shows the convergence in V−δ of the second integral.
Also, since (un)n∈N converges to u in C([0, T ], V−δ), for every t ∈ [0, T ] we have that un(t) → u(t) in V−δ.

(iii) Since u ∈ L2(0, T, V1/2) ∩ L∞(0, T, V ) we have that t 7→ B(u(t), u(t)) ∈ L2(0, T, V ) and hence the

continuity in V of the first integral of (4.2) with respect to t follows. Moreover, since u ∈ Cβ([0, T ], V−δ) by
(G) we obtain that

t 7→
∫ t

0

S(t− r)G(u(r))dω ∈ C([0, T ], V ).

(iv) Collecting the above properties, on the one hand (i)-(ii) mean that u ∈ Cβ([0, t], V−δ)∩L2(0, T, V1/2) and
u satisfies (4.2) in V−δ. On the other hand, (iii) means that the right hand side of (4.2) belongs to C([0, T ], V ),
and hence also the left hand side. In conclusion, we have proven the existence of a mild solution u to the
stochastic shell–model in the sense of Definition 4.1. �

7. An example of diffusion term

We define the operator G by a sequence of functions gnm(u) ∈ C with u ∈ V−δ, such that for v ∈ V :

(7.1) (G(u)v)n :=
∞
∑

n,m=1

gnm(u)vm ∈ V.

We now define properties for this sequence such that G satisfies the hypotheses (G). For every n,m = 1, . . . ,
assume that

(7.2) sup
u∈V−δ

∞
∑

n,m=1

|gnm(u)|2 =: c2G < ∞.
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In addition, let us assume that the operators gnm are twice differentiable having the following properties: For
u, h ∈ V−δ and (fk)k∈N an orthonormal base in V−δ we have that

∞
∑

n,m=1

(gnm(u + h)− gnm(u)−Dgnm(u)h)
2
=

∞
∑

n,m=1

(

on,mu (‖h‖V−δ
)
)2

= ou(‖h‖V−δ
)2,

sup
u∈V−δ

∞
∑

n,m,k=1

|Dgnm(u)fk|2 =: c2DG < ∞.

(7.3)

The on,mu , ou have the usual properties: limh→0 |on,mu (‖h‖V−δ
)|/‖h‖V−δ

= 0 and similar for ou. In addition we
assume that for u, h1, h2 ∈ V−δ

∞
∑

n,m=1

(

Dgnm(u+ h2)h1 −Dgnm(u)h1 −D2gnm(u)h1h2

)2
=

∞
∑

n,m=1

(

on,mu,h1
(‖h2‖V−δ

)
)2

=:
(

ou,h1
(‖h2‖V−δ

)
)2

,

sup
u∈V−δ

∞
∑

n,m,k,l=1

|D2gnm(u)(fk, fl)|2 =: c2D2G < ∞

(7.4)

where the little o’s have the same property as above.

Now we can verify the properties of the operator G formulated in hypothesis (G). It follows from (7.2) that

sup
u∈V−δ

‖G(u)‖2L2(V ) = sup
u∈V−δ

∞
∑

m=1

‖G(u)em‖2 = sup
u∈V−δ

∞
∑

n,m=1

|(G(u)em)n|2

= sup
u∈V−δ

∞
∑

n,m=1

|gnm(u)|2 = c2G.

Simple calculations show that (7.3), (7.4) imply that the operator DG and D2G exist and are bounded. In
fact, if u, h ∈ V−δ, then we have that

‖G(u+ h)−G(u)−DG(u)h‖2L2(V ) =
(

o(‖h‖V−δ
)
)2

and

sup
u∈V−δ

‖DG(u)‖2L2(V×V−δ,V ) = sup
u∈V−δ

∞
∑

m,k=1

‖DG(u)(em, fk)‖2 = sup
u∈V−δ

∞
∑

n,m,k=1

|Dgnm(u)fk|2 = c2DG.

Now, using the boundedness of DG we can prove the Lipschitz condition. Similarly, (7.4) implies that the
operatorD2G exists and is bounded. Using the boundedness of the second derivative ofG standard calculations
give (4.1).

8. Appendix

We start this section by completing the proof of Lemma 5.4, although in the next result (item (i)) we prove a
bit more.

Lemma 8.1. (i) Let I4, I5 be defined in (5.8). Then for any sufficient small ε ≥ 0 such that β′ − β̂ > ε we
have

sup
0≤p<q≤t

‖AεI4(p, q)‖+ ‖AεI5(p, q)‖
(q − p)β̂

≤ ctβ
′−β̂−ε|||ω|||β′

(

1 + tβ̂ |||u|||β̂,−δ,0,t

)

.

(ii) Let I2, I3 be defined in (5.8) and let 0 ≤ ε < δ − 1/2. Then

sup
0≤p<q≤t

‖AεI2(p, q)‖ + ‖AεI3(p, q)‖
(q − p)β̂

≤ ct1−β̂‖u‖2C,0,t

Note that (5.11) follows then by (i) simply taking ε = 0.
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Proof. Throughout the proof we will use frequently the properties (2.1), (2.2) and (5.4). We choose an α in

the same conditions than in Lemma 5.3, that is, 1− β′ < α < β̂.
First, using the definition of the stochastic integral and the estimate (5.6),

sup
0≤p<q≤t

‖AεI4(p, q)‖
(q − p)β̂

≤ sup
0≤p<q≤t

1

(q − p)β̂
|||ω|||β′

∫ q

p

(q − r)α+β′−1

(

‖S(q − r)AεA−δG(u(r))‖L2(V )

(r − p)α

+

∫ r

p

‖(S(q − r) − S(q − r̂))AεA−δG(u(r))‖L2(V )

(r − r̂)α+1
dr̂ +

∫ r

p

‖S(q − r̂)AεA−δ(G(u(r)) −G(u(r̂)))‖L2(V )

(r − r̂)α+1
dr̂

)

dr.

The first term is estimated by

‖S(q − r)AεA−δG(u(r))‖L2(V )

(r − p)α
≤ c

cG
(r − p)α(q − r)ε

and since α+ β′ − ε > 0, we get

sup
0≤p<q≤t

c
cG

(q − p)β̂
|||ω|||β′

∫ q

p

(q − r)α+β′−ε−1(r − p)−αdr ≤ c|||ω|||β′tβ
′−β̂−ε.

Concerning the second term, taking an appropriate α′ > α such that α+ β′ > α′ + ε, we have
∫ r

p

‖(S(q − r) − S(q − r̂))AεA−δG(u(r))‖L2(V )

(r − r̂)α+1
dr̂ ≤ c cG

(q − r)α′+ε

∫ r

p

(r − r̂)α
′

(r − r̂)α+1
dr̂ ≤ c cG(r − p)α

′−α

(q − r)α′+ε
,

and hence

sup
0≤p<q≤t

c cG

(q − p)β̂
|||ω|||β′

∫ q

p

(r − p)α
′−α

(q − r)α′+ε
(q − r)α+β′−1dr ≤ c|||ω|||β′tβ

′−β̂−ε.

Finally, since β̂ > α

∫ r

p

‖S(q − r̂)AεA−δ(G(u(r)) −G(u(r̂)))‖L2(V )

(r − r̂)α+1
dr̂ ≤ c

∫ r

p

‖A−δ(G(u(r)) −G(u(r̂)))‖L2(V )

(r − r̂)α+1(q − r̂)ε
dr̂

≤ ccDG|||u|||β̂,−δ,0,t

1

(q − r)ε

∫ r

p

(r − r̂)β̂

(r − r̂)α+1
dr̂ ≤ ccDG|||u|||β̂,−δ,0,t

(r − p)β̂−α

(q − r)ε
,

and since β′ + α− ε > 0 we have

sup
0≤p<q≤t

ccDG|||u|||β̂,−δ,0,t

(q − p)β̂
|||ω|||β′

∫ q

p

(q − r)α+β′−ε−1(r − p)β̂−αdr ≤ c|||ω|||β′ |||u|||β̂,−δ,0,tt
β′−ε.

Hence, we get that

sup
0≤p<q≤t

‖AεI4(p, q)‖
(q − p)β̂

≤ ctβ
′−β̂−ε|||ω|||β′

(

1 + tβ̂ |||u|||β̂,−δ,0,t

)

.

Thanks to the definition of the stochastic integral and the estimate (5.6) for I5 we get

sup
0≤p<q≤t

‖AεI5(p, q)‖
(q − p)β̂

≤ sup
0≤p<q≤t

1

(q − p)β̂
|||ω|||β′

∫ p

0

(p− r)α+β′−1

(‖(S(q − r)− S(p− r))AεA−δG(u(r))‖L2(V )

rα

+

∫ r

0

‖(S(q − r̂)− S(p− r̂))AεA−δ(G(u(r)) −G(u(r̂)))‖L2(V )

(r − r̂)α+1
dr̂

+

∫ r

0

‖(S(q − r) − S(q − r̂)− S(p− r) + S(p− r̂))AεA−δG(u(r))‖L2(V )

(r − r̂)α+1
dr̂

)

dr

=: sup
0≤p<q≤t

1

(q − p)β̂
|||ω|||β′

∫ p

0

(p− r)α+β′−1 (I5,1 + I5,2 + I5,3) dr.
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We start with

I5,1 =
‖(S(q − p)− Id)S(p− r)AεA−δG(u(r))‖L2(V )

rα
≤ c

cG(q − p)β̂

(p− r)β̂+εrα

and because α < 1/2 and α+ β′ − β̂ − ε > 0, the term involving I5,1 is estimated by

sup
0≤p<q≤t

c cG

(q − p)β̂
|||ω|||β′(q − p)β̂

∫ p

0

(p− r)α+β′−1−β̂−εr−αdr ≤ c|||ω|||β′tβ
′−β̂−ε.

On the other hand,

I5,2 =

∫ r

0

‖(S(q − p)− Id)S(p− r̂)AεA−δ(G(u(r)) −G(u(r̂)))‖L2(V )

(r − r̂)α+1
dr̂

≤ c cDG

∫ r

0

(p− r̂)−β̂−ε(q − p)β̂‖u(r)− u(r̂)‖V−δ

(r − r̂)α+1
dr̂

≤ c cDG|||u|||β̂,−δ,0,t(p− r)−β̂−ε(q − p)β̂
∫ r

0

1

(r − r̂)α+1−β̂
dr̂

≤ c cDG|||u|||β̂,−δ,0,t(p− r)−β̂−ε(q − p)β̂rβ̂−α,

and thus

sup
0≤p<q≤t

1

(q − p)β̂
|||ω|||β′

∫ p

0

(p− r)α+β′−1I5,2dr

≤ c cDG|||ω|||β′ |||u|||β̂,−δ,0,t sup
0≤p<q≤t

∫ p

0

(p− r)α+β′−1−β̂−εrβ̂−αdr

≤ c cDG|||ω|||β′ |||u|||β̂,−δ,0,tt
β′−ε.

Finally, taking α′ close enough to α such that α′ > α and α+β′ > α′ + β̂+ ε (for a small enough ε), applying
the second part of (2.3)

I5,3 ≤ c

∫ r

0

(q − p)β̂(r − r̂)α
′

(p− r)−α′−β̂−ε‖A−δG(u(r))‖L2(V )

(r − r̂)α+1
dr̂

≤ c cG(q − p)β̂(p− r)−α′−β̂−ε

∫ r

0

(r − r̂)α
′−α−1dr̂

≤ c cG(q − p)β̂(p− r)−α′−β̂−εrα
′−α,

and hence

sup
0≤p<q≤t

1

(q − p)β̂
|||ω|||β′

∫ p

0

(p− r)α+β′−1I5,3dr

≤ c c̃G|||ω|||β′ sup
0≤p<q≤t

∫ p

0

(p− r)α+β′−1−α′−β̂−εrα
′−αdr

≤ c c̃G|||ω|||β′tβ
′−β̂−ε.

Taking into account the previous estimates we finally get

sup
0≤p<q≤t

‖AεI5(p, q)‖
(q − p)β̂

≤ ctβ
′−β̂−ε|||ω|||β′

(

1 + tβ̂ |||u|||β̂,−δ,0,t

)

.

(ii) The proof of this part follows similarly to the estimates (5.9) and (5.10). In particular, for the estimate
of ‖AεI2(p, q)‖ we need to use the continuous embedding V ⊂ V−δ+ε+1/2, which holds true for small enough

ε ≥ 0 since δ ∈ (β̂, 1). �

The rest of the Appendix section is devoted to the proof of Lemma 5.5, which relies upon several results that
are proven below.
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Lemma 8.2. Let 1/2 < β̂ < β̃ < δ and suppose that u ∈ C β̃([0, T ], V−δ). Then the mapping

[s, T ] ∋ t 7→ |||u|||β̂,−δ,s,t

is continuous and
lim
t→s+

|||u|||β̂,−δ,s,t = 0.

Proof. We only consider here the case s = 0. Let us define the following transform of u given by

ût̂(r) =

{

u(r) : r ≤ t̂,
u(t̂) : r ≥ t̂.

Then for 0 ≤ t̂ < t ≤ T

|||u|||β̂,−δ,0,t − |||u|||β̂,−δ,0,t̂ = |||u|||β̂,−δ,0,t − |||ût̂|||β̂,−δ,0,t ≤ |||u|||β̂,−δ,t̂,t ≤ c(t− t̂)β̃−β̂|||u|||β̃,−δ,0,T

from which the desired continuity follows immediately. The convergence to 0 follows in the same way. �

Lemma 8.3. For positive continuous functions a(t), b(t) consider

Y = b(t) + a(t)Y 2

and assume 4a(t)b(t) < 1 for every t ∈ [0, t1], where t1 > 0 is some positive number. Then there exist two real
solutions Y1(t) < Y2(t) ∈ R+ given by

Y1(t) =
1

2a(t)
(1 −

√

1− 4a(t)b(t)), Y2(t) =
1

2a(t)
(1 +

√

1− 4a(t)b(t))

where Y1(t) ≤ 2b(t). Suppose in addition that y(t) ≥ 0 is continuous on [0, t1] such that

y(t) ≤ b(t) + a(t)y(t)2, lim
t→0+

y(t) = 0,

and that limt→0+ a(t) = 0. Then we have y(t) ≤ Y1(t) on [0, t1].

Proof. It follows by Sohr [28] Page 317 that under the conditions of the lemma there exist real solutions Y1,
Y2 satisfying the above conditions.
On the other hand, y satisfies the above inequality if and only if y(t) ≤ Y1(t) or y(t) ≥ Y2(t). If y(t) ≥ Y2(t)
for some t ∈ (0, t1] then by the continuity of y, Y2 and by the fact that Y2(t) > Y1(t) on (0, t1], it follows
that y(t) ≥ Y2(t) on [0, t1]. However, under the assumptions we have limt→0+ Y2(t) = +∞ and this is a
contradiction with respect to the behavior of y. �

To simplify the presentation of the following technical result we assume that T = 1. In the following, see
Lemma 8.4 below, we shall consider inequalities of the type

(8.1) y(t) ≤ d(t, x)y(t) + f(t, x) + h(t)y(t)2, t ∈ [0, t1]

where the increasing functions d(·, x), f(·, x), h(·) are defined by

d(t, x) = ctβ
′

+ 2c3t1+2β′

+ 2c2xt1+β′

,

f(t, x) = xtδ−β̂ + cx2t1−β̂ + c2xt1+β′−β̂ + c3t1+2β′−β̂ + ctβ
′−β̂,(8.2)

h(t) = 4c3t1+2β′+β̂ .

Note that d(t, x) and f(t, x) depend on a positive parameter x. Furthermore, the constants c, c2, c3 are coming
from the estimates of Lemma 5.3 and Lemma 5.4, as we will show in Lemma 8.4 below. In particular, these
constants are constricted such that they are including the value |||ω|||β′ = |||ω|||β′,0,1. In the following proof
we need these constants with norms only for subintervals of [0, 1]. However, using |||ω|||β′,0,1 these constants
can be chosen independently of the subinterval. In that result, depending on the value of x we shall choose
t1 > 0 such that d(t1, x) ≤ 1/2. Then, defining a(t) := 2h(t) and b(t, x) := 2f(t, x) we can rewrite (8.1) as

y(t) ≤ b(t, x) + a(t)y(t)2, t ∈ [0, t1]

which looks like the inequality of Lemma 8.3. Let us emphasize that with the above choice limt→0+ a(t) =
limt→0+ 2h(t) = 0. In the next result we will also choose suitable values of x such that the rest of assumptions
of Lemma 8.3 also hold.
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Lemma 8.4. Let u be a solution of (2.5) on [0, 1] with initial condition u0 ∈ V and driven by a piecewise
linear continuous path ω. Then for any x0 ≥ max{1, c̄‖u0‖ , ‖u0‖} (where c̄ here denotes the constant of (5.7))

there exist constants K ≥ K̂ > 1 defining finitely many intervals (Ii)i=1,··· ,i∗ by

I1 = [0,
1

K̂
] = [ť1, t̂1], · · · , Ii = [t̂i−1, t̂i−1 +

1

Ki
] = [ťi, t̂i]

in such a way that on Ii we have

|||u|||β̂,−δ,I1
≤ (K̂)β̂ , |||u|||β̂,−δ,Ii

≤ (Ki)β̂

‖u‖C,I1 ≤ 3cK̂1−β′

1− β′
, ‖u‖C,Ii ≤

3c(Ki)1−β′

1− β′

for i = 2, · · · , i∗. This constant c in particular depends on |||ω|||β′,0,1.

We point out that in the previous result i∗ is given by the condition ťi∗ < 1 = T ≤ t̂i∗ , and in this case we set
t̂i∗ = 1.

Proof. We abbreviate x1(t) := max{1, ‖u‖C,0,t} and y1(t) := |||u|||β̂,−δ,0,t, for t ∈ I1 = [0, t̂1], where t̂1 will be

determined later. The inequality (5.5) together with the fact that x0 ≥ max{1, ‖u0‖} imply

‖u(t)‖2 ≤ ‖u0‖2 + ctβ
′‖u‖C,0,t + ctβ̂+β′

(1 + ‖u‖C,0,t)|||u|||β̂,−δ,0,t

≤ x2
0 + ctβ

′‖u‖C,0,t + ctβ̂+β′

(1 + ‖u‖C,0,t)|||u|||β̂,−δ,0,t,

and also

1 ≤ x2
0 + ctβ

′‖u‖C,0,t + ctβ̂+β′

(1 + ‖u‖C,0,t)|||u|||β̂,−δ,0,t.

Then

max{‖u‖2C,0,t, 1} ≤ x2
0 + ctβ

′‖u‖C,0,t + ctβ̂+β′

(1 + ‖u‖C,0,t)|||u|||β̂,−δ,0,t

≤ x2
0 + ctβ

′

max{1, ‖u‖C,0,t}+ ctβ̂+β′

(1 + max{1, ‖u‖C,0,t})|||u|||β̂,−δ,0,t

and therefore

(8.3) x2
1(t) ≤ x2

0 + c x1(t)t
β′

+ 2cx1(t) y1(t)t
β̂+β′

.

Furthermore, (5.7) implies

(8.4) y1(t) ≤ x0t
δ−β̂ + cx2

1(t)t
1−β̂ + ctβ

′−β̂ + cy1(t)t
β′

.

Note that in (8.3) we have used that x1(t) ≥ 1 and therefore the corresponding last term on the left hand side
of (5.5) can be estimated as

ctβ̂+β′

(1 + x1(t))y1(t) ≤ 2cx1(t) y1(t)t
β̂+β′

.

Now combining (8.3) with (8.4) we get

(8.5) y1(t) ≤ x0t
δ−β̂ + c(x2

0 + c x1(t)t
β′

+ 2cx1(t) y1(t)t
β̂+β′

)t1−β̂ + ctβ
′−β̂ + cy1(t)t

β′

.

In addition, from (8.3) the following estimate holds

(8.6) x1(t) ≤
ctβ

′

+ 2cy1(t)t
β̂+β′

2
+

√

(ctβ′ + 2cy1(t)tβ̂+β′)2 + 4x2
0

4
≤ ctβ

′

+ 2cy1(t)t
β̂+β′

+ x0

and plugging this into (8.5) we finally arrive at

y1(t) ≤ d(t, x0)y1(t) + f(t, x0) + h(t)y1(t)
2, t ∈ I1 = [0, t̂1],

where the functions have been defined in (8.2). Then, taking a(t) = 2h(t) and b(t, x0) = 2f(t, x0) there exists

a K1 ≥ 1 such that for any K̂ ≥ K1 and t̂1 = K̂−1 we have

d(K̂−1, x0) ≤
1

2
, b(K̂−1, x0) ≤

(K̂)β̂

2
, 4a(K̂−1)b(K̂−1, x0) < 1.
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Hence, we have the conditions Lemma 8.3 and as a consequence we claim that y1(t̂1) ≤ (K̂)β̂ = t̂−β̂
1 . Let us

fix such a K̂ such that in addition x0 ≤ cK̂1−β′

/(1− β′). Then, from (8.6), simply using the general notation
for constants c, we get

x1(t̂1) ≤ 3ct̂β
′

1 + x0 ≤ 4cK̂1−β′

1− β′
=: x̂1.

Now we can repeat the same arguments than above in each interval Ii, i = 2, 3, · · · , by doing the corresponding
suitable changes. In order to do that we need to rewrite the estimates (5.5) and (5.7) in those intervals. In
particular, in Ii we have to take as initial condition u(t̂i−1) and t can be estimated by the length of the interval Ii
which is nothing but (Ki)−1. Taking xi(t) := max{1, ‖u‖C,t̂i−1,t

} with xi(t̂i−1) ≥ 1 and yi(t) := |||u|||β̂,−δ,t̂i−1,t
,

for t ∈ Ii. For induction we assume

xi−1(ti−1) ≤ 3c

i−1
∑

j=1

K−β′

j + x0 ≤ 4c(K(i− 1))1−β′

1− β′
=: x̂i−1

and choose K > K̂ such that for i = 2, 3, · · ·
d((Ki)−1, x̂i−1) = c(Ki)−β′

+ 2c3(Ki)−1−2β′

+ 2c2x̂i−1(Ki)−β′−1

≤ cK−β′

+ 2c3K−1−2β′

+
8c3

1− β′
K1−β′

K−β′−1 ≤ o(K−ε) ≤ 1

2

f((Ki)−1, x̂i−1) = x̂i−1(Ki)β̂−δ + cx̂2
i−1(Ki)β̂−1 + c2x̂i−1(Ki)−1+β̂−β′

+ c3(Ki)−1−2β′+β̂ + c(Ki)−β′+β̂

≤ Co(K−ε)(Ki)β̂ ≤ (Ki)β̂

4

for a constant C and an sufficiently small ε > 0 independent of K and i. For example, for the critical term in
the expression of f given for the quadratic term, we have that

cx̂2
i−1(Ki)β̂−1 ≤ 16c3

(1 − β′)2
K2−2β′−1+β̂i2−2β′−1+β̂ ≤ 16c3

(1− β′)2
K1−2β′

(Ki)β̂ ≤ Co(K−ε)(Ki)β̂

where this last inequality is true since β′ ∈ (1/2, 1).
Again, for a(t) = 2h(t), b(t, x̂i−1) = 2f(t, x̂i−1), choosing K sufficiently large such that

4a((Ki)−1)b((Ki)−1, x̂i−1) ≤ 16c3(Ki)−1−2β′−β̂ (Ki)β̂

4
< 1

we obtain by Lemma 8.2 and Lemma 8.3 that yi(t̂i) ≤ (Ki)β̂. If we denote t̂i − ťi =: ∆ti = (Ki)−1 the

previous inequality can be rewriten as yi(t̂i) ≤ (∆ti)
−β̂ , and similar to (8.6)

xi(t̂i) ≤ c∆tβ
′

i + 2cyi(t̂i)∆tβ̂+β′

i + xi−1(t̂i−1) ≤ 3c∆tβ
′

i + xi−1(t̂i−1)

≤ x0 + 3c
i
∑

j=1

(Kj)−β′ ≤ x0 + 3cK−β′

∫ i

0

r−β′

dr ≤ x0 +
3cK−β′

i1−β′

1− β′
≤ 4c(Ki)1−β′

1− β′
=: x̂i

and therefore we obtain that xi(t̂i) ≤ x̂i. �

Finally we present the proof of Lemma 5.5:

Proof. Consider the sequence (un)n∈N of weak solutions of (4.3) driven by the sequence (ωn)n∈N of piecewise

linear continuous paths. Following the steps of Proposition 5.4 we could prove that each un ∈ C β̃([0, T ];V−δ)

with 1/2 < β̂ < β̃. Then we can apply Lemmas 8.2-8.4 to (un)n∈N, obtaining that this sequence is uniformly

bounded in C β̂([0, T ], V−δ) ∩ C([0, T ], V ). �
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