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Abstract

This paper deals with a nonlinear system of partial differential equations modeling the
effect of an anti-angiogenic therapy based on an agent that binds specific receptors of the
endothelial cells. We study the time-dependent problem as well as the stationary problem
associated to it.
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1 Introduction

This paper deals with the theoretical study of a system of PDE which is related with
a model of anti-angiogenic therapy. It is well-known that tumor induced angiogenesis is
a complex process by which a tumor prompts the formation of a vascular network which
starts of a near blood vessel and leads to vascular growth towards it to gain access to
the necessary nutrients to continue growing. Also, the tumor cells acquire a means of
transport to form a new colony in distant organs (metastases). This process begins when
the avascular tumor mass releases substances called tumor angiogenic factors (TAF) which
diffuse through the surrounding tissue, from which the extracellular matrix (ECM) is part,
and arrive to a blood vessel; the TAF weaken the wall of the vessel and provoke the out
of control growth of the endothelial cells (EC), which form the vessel, towards the tumor
through the ECM, forming an irregular vascular network which ends up arriving to it
(cf. [23]).

Among the continuum models, in a first step, the process is modeled by two equations,
one for the EC density and another for the concentration of the TAF. The first one is a
parabolic equation with a chemotaxis term, which takes into account the cellular movement
towards the tumor, and a reaction term which models the growth of EC. The second one
is a parabolic equation with a linear diffusion and a decay term. This basic model is
sometimes completed with one equation for the ECM, a differential equation without
diffusion and with a degradation term (see, for instance [24]); the statement of a variable
for the ECM density allows to introduce in the EC equation the term of haptotaxis which
takes into account the dragging of the EC on the ECM. Also, the time scale of the diffusion
of the chemical substances (TAF) and the time scale of the cellular splitting underlying
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to the generation of the vascular network are different, and sometimes this is modeled by
the statement of one elliptic (non parabolic) equation for the TAF.

Here, we are interested to model an anti-angiogenic therapy and we are going to com-
plete the basic model with one equation for the therapy, which will be a parabolic equation
with linear diffusion, a decay term and a term which model the introduction of the drug
in the organism. We assume a tumor, whose boundary is Γ1, surrounded by a vessel and
we consider a “virtual” regular boundary, Γ2, next to the vessel: our bounded regular
domain, Ω ⊂ IRN is limited by Γ1 and Γ2 (see Figure 1, where we have represented a
particular situation).
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Γ
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2

Figure 1: A particular example of domain Ω.

In this domain we consider the equations
ut = ∆u−∇ · (α(v, z)u∇v) + λβ(v, z)u− u2 in Ω× (0, T ), T > 0
vt = ∆v − v in Ω× (0, T ),
zt = ∆z − z + I0 in Ω× (0, T ),

(1)

where u stands for the density of the EC, and v and z stand for the concentration of
the TAF and the drug, respectively. The growth of the EC follows a logistic law and λβ
represents the rate growth; λ is a real parameter and β depends on v and z, because,
for instance, it is known, [8], that there is no growing until the TAF exceed a threshold
value. The function α represents for chemotactic sensitivity, which is signal-dependent
and depends on v and z (see [19]). I0 stands the introduction of the therapy and can be
constant (constant introduction of medicine), periodic, etc.; in this paper I is a general
function depending on x and t.

With respect to the domain, we consider the case

∂Ω = Γ1 ∪ Γ2,

with Γ1 ∩ Γ2 = ∅, being Γi closed and open in the relative topology of ∂Ω. We assume
Robin homogeneous boundary conditions on Γ2 and also on Γ1 for the first and third
variables, but on Γ2, the EC come in the domain and the TAF and the drug leave the
domain toward the vessel and on Γ1 the EC and the drug leave the domain penetrating
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in the tumor. For the second variable on Γ1, it is known that the TAF is produced by
hypoxic cells, that is, tumoral cells which have deprivation of oxygen. In order to avoid
one equation for the oxygen, we include the relationship between the oxygen and the EC;
in fact, the oxygen is transport by the red blood cells and these arrive at the tumor cells
through the vascular network formed by the EC. So, a low EC level implies a low oxygen
level and a high TAF level production, and the other way round. It is the reason because
we consider a Neumann non-homogenous boundary condition where γ will be a positive
and decreasing function. Then, we arrive to the following boundary conditions{

B1u = B3z = (0, 0) on ∂Ω× (0, T ),
B2v = (γ(u), 0) on ∂Ω× (0, T ),

(2)

where we have denoted

B1u :=


∂u

∂n
+ γ1u on Γ1,

∂u

∂n
− τ1u on Γ2,

B2v :=


∂v

∂n
on Γ1,

∂v

∂n
+ τ2v on Γ2,

B3z :=


∂z

∂n
+ γ3z on Γ1,

∂z

∂n
+ τ3z on Γ2,

with γ1, τ1, τ2, γ3, τ3 > 0 and n denotes the outward unit normal vector.
We must consider closely the action mechanism of the angiogenic process. When the

TAF arrive at the EC, the molecules must fit in some receptors existing in the cellular
membrane through which can cross to the cytoplasm starting a chain of biochemical re-
actions whose result is the degradation of the basal lamina which cover the surface of
the capillaries, the development of the foot-like structures on the normally smooth cell
surface, the penetration of the basal lamina in the ECM and the proliferation of the EC
towards the gradient of the TAF. So, a possible anti-angiogenic therapy consists in the
introduction of a drug which blocks these receptors stopping the process; the TAF in the
ECM is inactive and have not bad consequences. The introduction of this therapy gives
rise to a complex situation in which there are free receptors, which can join to molecules
of the TAF, occupied receptors by molecules of TAF and inactive receptors by the drug.
The study of this system permits to conclude that the functions α and β depend on the
one variable, s, which represents the free receptors, then

α(v, z) = αR(s) and β(v, z) = βR(s),

being αR, βR are regular functions in [0,∞). The TAF attract the EC, so the chemotactic
sensitivity is positive and we will suppose αR positive with αR(0) > 0. The rate growth
of the EC will growth with a high level of free receptors, so we will asume that βR is
increasing and βR(0) = 0. The dependence of s on v and z is also regular.

Various models of tumor induced angiogenesis, discrete as well as continuous, were
introduced in [4]. In the continuous model it was supposed a non-diffusive equation and
no-flux boundary condition for the TAF. Such a condition was also assumed in [20] where it
is proposed an angiogenesis model that takes into account biochemical processes. Under
the hypothesis that some of the biochemical processes are quasi-stationary it is proven
in [16] existence and uniqueness of a global-in-time solution and local stability of stationary
solutions in 1-Dimensional domains. The previous condition was discussed in [23].

A similar model to the one in the present paper, without an equation for the therapy,
and a flux of TAF entering in the domain depending only of the amount of TAF in the
domain was study in [12] for the linear case and [10] for the nonlinear case.
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Let us mention [13] and [24] where it is proved the global existence and uniqueness of
solution for a model of tumor invasion, another important process in the tumor develop-
ment.

Finally, in [14, 15] different models of tumor in the breast are proposed and the effect
of different therapies are studied by numerical experiments.

The structure of the paper is as follows. In Section 2, we study the evolution problem,
proving the existence and the uniqueness of positive solution for the system. In Section 3
we study the stationary problem showing the existence of coexistence states for λ greater
than a certain value. In Section 4, we apply our results in the particular case when I0 is
constant, with supplementary hypotheses on αR, βR and s.

2 The evolution problem

Let Ω ⊂ IRN a bounded regular domain whose boundary ∂Ω := Γ1 ∪ Γ2 with Γ1, Γ2

open and closed sets in the relative topology of ∂Ω. Let λ ∈ IR, γ1, γ2, τ1, τ2, τ3, T positive
constants and I0 ∈ C([0, T ];C0(Ω)). We consider the evolution problem

ut = ∆u−∇ · (α(v, z)u∇v) + λβ(v, z)u− u2 in Ω× (0, T ),
vt = ∆v − v in Ω× (0, T ),
zt = ∆z − z + I0 in Ω× (0, T ),

B1u = B3z = (0, 0) on ∂Ω× (0, T ),
B2v = (γ(u), 0) on ∂Ω× (0, T ),
(u, v, z)(x, 0) = (u0, v0, z0) in Ω,

(3)

where Bi, i = 1, 2, 3 is defined above. During this work we assume the following hypothe-
ses:

(H)


γ ∈ C1(IR), γ decreasing and γ(0) > 0,
α(v, z) = αR(s), β(v, z) = βR(s), where s = s(v, z), s ∈ C1(IR2),
αR, βR ∈ C1([0,+∞)), αR positive and αR(0) > 0, βR increasing and βR(0) = 0.

Remark 2.1. If p > N then by the embedding W 1,p(Ω) ↪→ C0(Ω) and by (H), there exists
C > 0 such that

‖α(v(t), z(t))− α(v(t), z(t))‖C0(Ω) ≤ C
(
‖v(t)− v(t)‖W 1,p(Ω) + ‖z(t)− z(t)‖C0(Ω)

)
,

‖β(v(t), z(t))− β(v(t), z(t))‖C0(Ω) ≤ C
(
‖v(t)− v(t)‖W 1,p(Ω) + ‖z(t)− z(t)‖C0(Ω)

)
,

for all t ∈ IR, v(t), v(t) ∈W 1,p(Ω), z(t), z(t) ∈ C0(Ω).

Let p ∈ (1,∞), for j > 0 we define the operator

A(j)0w := −∆w + jw

with domains
Di(A(j)0) := {w ∈W 2,p(Ω) : Bi(w) = 0} i = 1, 2, 3.
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We pick j > 0 sufficiently large such that Reσ(A(j)0, Bi) > 0 i = 1, 2, 3 where σ(A(j)0, Bi)
stand for the spectrum of A(j)0 with domains Di, i = 1, 2, 3. Observe that since τ2, τ3, γ3 >
0 we can take j = 1 for i = 2, 3.

Let ρ ∈ (0, 1). By the positivity of the spectrum we have that the fractional powers
(A(j)ρ0, Bi) i = 1, 2, 3 in the sense of [18, Ch. 1, Sec. 4] for (A(j)0, Bi) i = 1, 2, 3 are
well-defined. Let

Xρ
i,p := Di(A(j)ρ0) i = 1, 2, 3

then by [18, Theorem 1.6.1] we have the following embedding properties

Xρ
i,p ↪→W k,q(Ω) for k −N/q < 2ρ−N/p, q ≥ p,

Xρ
i,p ↪→ Cν(Ω) for 0 ≤ ν < 2ρ−N/p.

(4)

Since (A(j)0, Bi) i = 1, 2, 3 are sectorial operators then

T1(t) := e−t(A(j)0,B1) Ti(t) := e−t(A(1)0,Bi) i = 2, 3

define analytical semigroups in Lp(Ω). Moreover having in mind [18, Th. 1.3.4,Th. 1.4.3]
Ti i = 1, 2, 3 satisfy the following:

a) For every δ ∈ (0,min{Reσ(A(j)0, Bi), i = 1, 2, 3}), there exists C > 0 such that

‖Ti(t)‖L(Lp,Lp) ≤ Ce−δt i = 1, 2, 3 .

b) Let ρ ∈ (0, 1) then there exists a constant Cρ such that for every u ∈ Lp(Ω), t > 0
and δ ∈ (0,min{Reσ(A(j)0, Bi), i = 1, 2, 3}) we have

‖Ti(t)u‖Xρ
i,p
≤ Cρt−ρe−δt‖u‖p i = 1, 2, 3 .

c) Let p > N . Combining (4) and an easy variant of [25, Lemma 1.3] then for all
u ∈ C∞0 (Ω), t > 0 we have

‖T1(t)∇u‖C0(Ω) ≤ Ct
−γ‖u‖p,

for some constants C > 0, γ ∈ (0, 1). In particular, the operator T1(t)∇ admits an
extension for all u ∈ Lp(Ω) where the above inequality holds.

Let
A(1)0 = A0.

It is known that (A0, B2) is a normally elliptic problem (see [3, p. 18]). Therefore we can
construct an interpolation scales of spaces; let E0 = Lp, E1 = W 2,p

B2
where

W s,γ
B2

:=


{z ∈W s,γ(Ω) : B2z = 0} if 1 + 1/γ < s ≤ 2,
W s,γ(Ω) if −1 + 1/γ < s < 1 + 1/γ,
(W−s,γ

′
(Ω))′ if −2 + 1/γ < s ≤ −1 + 1/γ,

and E1 is a completion of E0 (see [3, p. 29]). Next we define

Eθ := (E0, E1)θ,p = W 2θ,p
B2

for 2θ ∈ (0, 2) \ {1, 1 + 1/p},
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where (·, ·)θ,p denotes the real interpolation functor. Then, there exists a family of opera-
tors Aθ ∈ L(E1+θ, Eθ), with −Aθ the infinitesimal generator of an analytic semigroup on
Eθ (see [3, p. 28-30]).

In our next result we show the existence and uniqueness of local in time weak solutions
for the problem (3) and the continuity of the solutions respect to the initial data and the
function I0. Moreover, it is proven that, if the functions α, β and γ are regular, then the
weak solution is classical.

Theorem 2.2. Let p > N ,

XT := C([0, T ];C0(Ω)) , YT := C([0, T ];W 1,p(Ω)) ,

and the initial data

u0 := (u0, v0, z0) ∈ X := C0(Ω)×W 1,p(Ω)× C0(Ω).

Then there exists τ(‖u0‖X) > 0 such that the evolution problem (3) admits a unique
solution

u := (u, v, z) ∈ Xτ := Xτ × Yτ ×Xτ .

Moreover, there exists C > 0 such that

‖u(u0)− u(u0)‖Xτ ≤ C‖u0 − u0‖X

where u(u0) and u(u0) stand for the solutions to (3) with initial data u0 and u0, respec-
tively. Furthermore, there exists C > 0 such that

‖u(I0)− u(I0)‖Xτ ≤ C‖I0 − I0‖Xτ

where u(I0) and u(I0) stand for the solutions to (3) with coefficients I0 and I0, respectively.

Proof. In the proof we will use the Banach fixed point Theorem. Let 2α ∈ (1, 1 + 1/p)
and γ0 the trace operator. We define the closed sets

BX(R, T ) := {f ∈ XT : ‖f‖XT ≤ R} ,
BY (R, T ) := {f ∈ YT : ‖f‖YT ≤ R}

and B(R, T ) := BX(R, T )×BY (R, T )×BX(R, T ). On B(R, T ) we consider the operator

F(u, v, z) :=

 F1(u, v, z)
F2(u, v, z)
F3(u, v, z)


where

F1(u, v, z) := T1(t)u0 +
∫ t

0
T1(t− s)(−∇ · (α(v, z)u∇v) + (λβ(v, z) + j)u− u2)ds ,

F2(u, v, z) := T2(t)v0 +
∫ t

0
T2(t− s)(Aα−1Bcγ0(γ(u)))ds ,

F3(u, v, z) := T3(t)z0 +
∫ t

0
T3(t− s)I0ds .
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Here
Bc := (B2cKerA0)−1.

Let us point out that Aα−1Bc ∈ L(W 2α−1−1/p,p(∂Ω),W 2α−2,p
B2

) and γ0 ∈ L(C0(Ω), C(∂Ω)).
Therefore by the embedding

C(∂Ω) ↪→ Lp(∂Ω) ↪→W 2α−1−1/p,p(∂Ω),

Aα−1Bcγ0 is well defined.
Step 1. There exist R, t > 0 such that F(B(R, t)) ⊂ B(R, t). For some constants
0 < κ < ρ < 1 we have

‖F1(u, v, z)‖C0(Ω) ≤ C‖u0‖C0(Ω) +
∫ t

0

(
‖T1(t− s)(∇ · (α(v, z)u∇v))‖C0(Ω)+

+‖T1(t− s)((λβ(v, z) + j)u)‖C0(Ω) + ‖T1(t− s)u2‖C0(Ω)

)
ds

≤ C‖u0‖Xt +
∫ t

0

(
C(t− s)−ρ‖α(v, z)u∇v‖p+

+C(t− s)−κe−δ(t−s)(‖λ(β(v, z) + j)u‖p + ‖u2‖p)
)
ds

≤ C‖u0‖Xt + C‖α‖∞R2 t
1−ρ

1− ρ
+ C(λ‖β‖∞R+ jR+R2)

t1−κ

1− κ
.

By [11, Lemma 2.1] there exists η ∈ (0, 1) such that

‖F2(u, v, z)‖1,p ≤ C‖v0‖W 1,p(Ω) +
∫ t

0
C(t− s)−η‖Aα−1Bcγ0(γ(u))‖

W 2α−2,p
B2

ds.

The last term in the right-hand side is estimated as follows

‖Aα−1Bcγ0(γ(u))‖
W 2α−2,p
B2

≤ C‖γ0(γ(u))‖W 2α−1−1/p,p(∂Ω)

≤ C‖γ0(γ(u))‖C(∂Ω)

≤ C‖γ(u)‖C0(Ω) .

Thus, we get

‖F2(u, v, z)‖1,p ≤ C‖u0‖Xt + C‖γ‖∞
t1−η

1− η
.

Finally for F3 we can argue as for F1 to obtain

‖F3(u, v, z)‖C0(Ω) ≤ C‖u0‖Xt + C‖I0‖Xt
t1−κ

1− κ
for some κ ∈ (0, 1). The previous estimates assert that there exists τ0 such that for every
t ≤ τ0

‖F(u, v, z)‖Xt ≤ C‖u0‖Xt + 1 .

If we take R > C‖u0‖Xt + 1, it follows that that F(B(R, t)) ⊂ B(R, t).
Step 2. F is contractive in B(R, τ) for some τ ≤ τ0. Let t ≤ τ0 and (u, v, z) ∈ B(R, t),
(u, v, z) ∈ B(R, t). We have

‖F1(u, v, z)− F1(u, v, z)‖C0(Ω) ≤
∫ t

0

(
‖T1(t− s)∇ · (α(v, z)u∇v − α(v, z)u∇v)‖C0(Ω)+

+‖T1(t− s)((λβ(v, z) + j)u− (λβ(v, z) + j)u)‖C0(Ω)+

+‖T1(t− s)(u2 − u2)‖C0(Ω)

)
ds .
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We denote by (a1), (a2) and (a3) the first, second and third term respectively in the
right-hand side of the above inequality. In what follows we provide with a bound for each
term in the above inequality.

(a1) ≤
∫ t

0
‖T1(t− s)∇ · (α(v, z)(u− u)∇v)‖C0(Ω) + ‖T1(t− s)∇ · (α(v, z)u∇(v − v))‖C0(Ω)+

+‖T1(t− s)∇ · (α(v, z)− α(v, z))u∇v)‖C0(Ω)

≤
∫ t

0
C(t− s)−ρC(‖α‖∞, R)(‖u− u‖C0(Ω) + ‖v − v‖W 1,p(Ω) + ‖z − z‖C0(Ω)) ,

where ρ ∈ (0, 1). In the same fashion for some κ ∈ (0, 1) we obtain

(a2) ≤
∫ t

0
C(t− s)−κC(j, ‖β‖∞, R)(‖u− u‖C0(Ω) + ‖v − v‖1,p + ‖z − z‖C0(Ω)) ,

(a3) ≤
∫ t

0
C(t− s)−κ2R‖u− u‖C0(Ω).

Putting the previous estimates together we get

‖F1(u, v, z)− F1(u, v, z)‖C0(Ω) ≤
(
C(‖α‖∞, R)

t1−ρ

1− ρ
+ C(j, ‖β‖∞, R)

t1−κ

1− κ

)
‖u− u‖Xt .

Now, we deal with F2:

‖F2(u, v, z)− F2(u, v, z)‖1,p ≤
∫ t

0
C(t− s)−η‖γ(u)− γ(u)‖C0(Ω)ds

≤ C t1−η

1− η
‖u− u‖Xt .

Finally,
‖F3(u, v, z)− F3(u, v, z)‖C0(Ω) = 0 .

Therefore, there exists τ ≤ τ0 such that F is contractive in B(R, τ).

At the end we show the continuity of the solutions respect to the initial data and
the coefficient I0. Let R > C max{‖u0‖, ‖u0‖} + 1. Then, there exists τ such that F is
contractive; as a consequence, there exists κ < 1 such that

‖u(u0)− u(u0)‖Xτ ≤ ‖T1(t)(u0 − u0)‖C0(Ω) + ‖T2(t)(v0 − v0)‖1,p+

+‖T3(t)(z0 − z0)‖C0(Ω) + ‖F(u(u0))− F(u(u0))‖Xτ

≤ C‖u0 − u0‖X + κ‖u(u0)− u(u0)‖Xτ .

The proof of the continuity on I0 follows in the same fashion.

Proposition 2.3. The local in time solution provided by the previous Theorem satisfies
additionally

(u, v, z) ∈ C1((0, τ);W 1,p(Ω))× C1((0, τ);W 1,p(Ω))× C1((0, τ);W 2,p(Ω)).
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Proof. Let us fix any t ∈ (0, τ) then by [18, Th. 3.5.2] for every ρ ∈ (0, 1) we have that

du

dt
(t) ∈ Xρ

1,p ,
dv

dt
(t) ∈ Xρ

2,p ,
dz

dt
(t) ∈ Xρ

3,p.

In particular, by [11, Lemma 2.2] Xρ
2,p ↪→W 1,p(Ω) for ρ sufficiently close to 1. Therefore,

there exists ρ < 1 such that

du

dt
(t) ∈W 1,p(Ω) ,

dv

dt
(t) ∈W 1,p(Ω) ,

dz

dt
(t) ∈W 1,p(Ω).

We observe that {
−∆v(t) + v(t) = −dv

dt (t) in Ω,
B2(v(t)) = (γ(u(t)), 0) on ∂Ω.

Hence, the elliptic regularity [3, Th. 9.2] asserts v(t) ∈W 1,p(Ω). In a similar way, we get
z(t) ∈W 2,p(Ω). Finally we rewrite the u-equation as follows{

−∆u(t) + ju(t) = h(t) in Ω,
B1(u(t)) = (0, 0) on ∂Ω,

where

h(t) := −∇ · (α(v(t), z(t))u(t)∇v(t)) + λ(β(v(t), z(t)) + j)u(t)− u(t)2 − du

dt
(t) .

Since h(t) ∈ (W 1,p(Ω))′ then u(t) ∈W 1,p(Ω).

Remark 2.4. Let ν ∈ (0, 1). If we additionally suppose that ∂α
∂v , γ′ are Lipschitz and

I0 ∈ C1((0, T );Cν(Ω)), then for every t > 0 the solution constructed in Theorem 2.2 is
classical.

Proposition 2.5. Under conditions of Theorem 2.2, if u0(x), v0(x), z0(x) ≥ 0 for all
x ∈ Ω and I0(x, t) ≥ 0 for all (x, t) ∈ Ω × (0, τ) then u(x, t), v(x, t), z(x, t) ≥ 0 for all
(x, t) ∈ Ω× (0, τ).

Proof. Let u+ := max{u, 0} and u− := min{u, 0}. We consider the problem

ut = ∆u−∇ · (α(v, z)u+∇v) + λβ(v, z)u+ − uu+ in Ω× (0, τ),
vt = ∆v − v in Ω× (0, τ),
zt = ∆z − z + I0 in Ω× (0, τ),

∂u

∂n
= (−γ1u+, τ1u+) on ∂Ω× (0, τ),

B2v = (γ(u), 0) on ∂Ω× (0, τ),
B3z = (0, 0) on ∂Ω× (0, τ),
(u, v, z)(x, 0) = (u0, v0, z0) in Ω.

(5)

Since the positive part is a Lipschitz function then we can argue as in Theorem 2.2 to get a
unique local solution solution to (5). Now, we take u− as a test function in the u-equation
and we integrate in the space variable to obtain

d

dt

∫
Ω

(u−)2 = −
∫

Ω
|∇u−|2 .

9
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Hence, ∫
Ω
u−(t)2 ≤

∫
Ω
u−(0)2

for every t ∈ (0, τ). Thus, u−(t) ≡ 0 in Ω for all t ∈ (0, τ). Since u is positive then we have
u = u+ and the unique solution to (5) is also the unique solution to (3). The positivity of
v and z are consequence of a standard maximum principle for parabolic equations.

Remark 2.6. Let us observe that we can argue as in Theorem 2.2 to get

‖v‖1,p ≤ C‖v0‖1,p + Cγ(0)
∫ t

0
e−ν(t−s)(t− s)−η ≤ C‖v0‖1,p + Cγ(0)

for some ν > 0, p > 1, η ∈ (0, 1) and for every t < Tmax. Moreover,

‖z‖C(Ω) ≤ C(‖z0‖C(Ω) + ‖I0‖C(Ω)). (6)

Let us denote Tmax the maximal existence of time for the solutions constructed in
Theorem 2.2. Taking into account that the equation for z is linear and (6), in order to
show that Tmax = +∞ we just need to find a function w : (0,∞) → (0,∞) such that for
each T > 0,

‖(u(t), v(t))‖C0(Ω)×W 1,p(Ω) ≤ w(T ), 0 < t < min{T, Tmax}.

For this purpose we will use the following estimates. The first one is the Sobolev-Trace
inequality, see for instance [17, Lemma 6].

Lemma 2.7. (Sobolev-Trace inequality)
For every ε > 0, θ > 1 there exists a constant C = C(Ω, θ) such that∫

Γ2

w2 ≤ ε
∫

Ω
|∇w|2 + C(ε−θ + 1)

∫
Ω
w2 , ∀w ∈W 1,2(Ω).

Lemma 2.8. Let s > N , for every δ > 0 there exist m > 1 and a constant C(Ω) such that∫
Ω
|w∇v · ∇w| ≤ C(Ω)‖∇v‖s(δ‖w‖21,2 +mδ−m‖w‖22) , ∀w ∈W 1,2(Ω), v ∈W 1,s(Ω).

Proof. By the Hölder inequality∫
Ω
|w∇v · ∇w| ≤ ‖∇v‖s‖∇w‖2‖w‖q,

such that 1/s+ 1/q = 1/2 and q > 2. Moreover, by the Gagliardo-Nirenberg interpolation
inequality we get

‖w‖q ≤ C(Ω)‖w‖θ1,2‖w‖1−θ2 with 2 < q < 2∗ = 2N/(N − 2), θ ∈ (0, 1).

Hence, using the above estimate we get∫
Ω
|w∇v · ∇w| ≤ C(Ω)‖∇v‖s‖w‖1+θ

1,2 ‖w‖
1−θ
2 .

Finally we deduce the result by the Young inequality with exponents r, r′ and taking into
account that (1 + θ)r = (1− θ)r′ = 2.

10
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Now, we look for the bound of u(t) in C0(Ω). In a first step we provide a bound in
Lp(Ω) for every p ∈ [2,+∞).

Proposition 2.9. Let t < Tmax then we have that

‖u(t)‖p ≤ C(t) ∀p ∈ [2,∞).

Proof. Let w := up/2. On multiplying the u-equation by up−1 and integrating in the space
variable we get

1
p

d

dt

∫
Ω
w2 = − 4

p2
(p− 1)

∫
Ω
|∇w|2 −

∫
Γ1

(γ1 + α(v, z)γ(u))w2 +
∫

Γ2

(τ1 + τ2α(v, z)v)w2+

+
2
p

(p− 1)
∫

Ω
α(v, z)w∇v · ∇w +

∫
Ω

(λβ(v, z)u− u2)up−1.

Then,

1
p

d

dt

∫
Ω
w2 ≤ − 4

p2
(p−1)

∫
Ω
|∇w|2 +C1

∫
Γ2

w2 +C2

∫
Ω
|w∇v ·∇w|+

∫
Ω

(λβ(v, z)u−u2)up−1,

where
C1 := τ1 + τ2‖α‖∞‖v‖∞ , C2 :=

2(p− 1)
p

‖α‖∞ . (7)

We apply Lemma 2.7 with θ = 2 and Lemma 2.8 for some s > N to obtain

1
p

d

dt

∫
Ω
w2 ≤ A(δ, ε)

∫
Ω
|∇w|2 + C(δ, ε)

∫
Ω
w2 +

∫
Ω

(λβ(v, z)u− u2)up−1 ,

where
A(δ, ε) := C2C(Ω)‖∇v‖sδ + C1ε−

4
p2

(p− 1) ,

C(δ, ε) := C2C(Ω)‖∇v‖s(δ +mδ−m) + C1C(ε−2 + 1) ,

and the constants C and C(Ω) are given by Lemmas 2.7 and 2.8. We pick ε = ε0, δ = δ0

such that A(δ0, ε0) < 0. Thus,

1
p

d

dt

∫
Ω
w2 ≤ (C(δ0, ε0) + λ‖β‖∞)

∫
Ω
w2

and the result follows after integrating in the time variable.

Finally for the bound in C0(Ω) we have just to argue as in the bound for F1 in
Theorem 2.2.

Proposition 2.10. Let 0 < τ < t < Tmax where τ is given in Theorem 2.2, then we have
that

‖u(t)‖C0(Ω) ≤ C(t)

Proof. For some constants 0 < κ < ρ < 1 we have

‖u‖C0(Ω) ≤ C‖u0‖C0(Ω) +
∫ t

0

(
C(t− s)−ρ‖α‖∞‖v‖1,p‖u‖C0(Ω) +

+C(t− s)−κ(λ‖β‖∞ + j)‖u‖p + ‖u‖22p
)
ds .

By the Gronwall Lemma we easily deduce the result.

11



May 17, 2011 M. Delgado, C. Morales-Rodrigo, A. Suárez

Then, we can conclude:

Theorem 2.11. Assume that the initial data (u0, v0, z0) ∈ C0(Ω) ×W 1,p(Ω) × C0(Ω),
p > N , with u0(x), v0(x), z0(x) ≥ 0 in Ω and I0 ∈ C((0,∞);C0(Ω)) and I0(x, t) ≥ 0 for
x ∈ Ω and t > 0. Then, there exists a unique non-negative global solution in time solution
of (3).

3 The stationary problem

In this section we consider the stationary problem associated to (3)

−∆u = −∇ · (α(v, z)u∇v) + λβ(v, z)u− u2 in Ω,
−∆v = −v in Ω,
−∆z = −z + I0 in Ω,

B1u = B3z = (0, 0) on ∂Ω,
B2v = (γ(u), 0) on ∂Ω,

(8)

where I0 ∈ Cρ(Ω), ρ ∈ (0, 1) and non-negative function.
Along this section, we are going to use the following notation: for ρ ∈ (0, 1) we denote

X1 := {u ∈ C2,ρ(Ω) : B1u = (0, 0) on ∂Ω},
X2 := {v ∈ C2,ρ(Ω) : ∂v/∂n+ τ2v = 0 on Γ2},

and finally
X := X1 ×X2.

We need introduce more notations. Given functions m, c, b ∈ C0(Ω), b > 0 and a ∈
C1(Ω) we denote by

Lu := −∆u+ c(x)∇a · ∇u

and consider the following eigenvalue problem{
Lϕ+m(x)ϕ = λb(x)ϕ in Ω,
Bϕ = (0, 0) on ∂Ω,

(9)

being B an operator similar to B1, B2 or B3, that is,

Bϕ :=


∂ϕ

∂n
+ b1ϕ on Γ1,

∂ϕ

∂n
+ b2ϕ on Γ2,

with b1, b2 ∈ IR.
Since b > 0 in Ω, it is well-known (see for instance [6]) the existence of a principal

eigenvalue of (9), denoted λ1(L+m; b;B).
When no confusion arises, we delete the operator B in the notation of the principal

eigenvalue.
On the other hand, if for λ ∈ IR we denote by

µ(λ) := λ1(L+m− λb; 1)

12
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then λ1(L+m; b) is the principal eigenvalue of (9) if, and only if, λ1(L+m; b) is a zero of
µ(λ). Moreover, since b > 0 the map µ(λ) is decreasing and so

λ1(L+m− λb; 1) > 0 (resp. < 0)⇔ λ < λ1(L+m; b) (resp. λ > λ1(L+m; b)). (10)

Finally, recall that λ1(L + m; b;B) is continuous on b and m, see for instance [6].
Moreover, in Proposition 5.1 of [5] it is proved that λ1(L+m; b;B) is also continuous with
respect to the coefficient c when the boundary conditions are Dirichlet, see also [2]. In the
following result, we show this continuity with the boundary conditions B.

Proposition 3.1. The principal operator λ1(L+m; b;B) is continuous with respect to the
coefficient c in L∞(Ω).

Proof. First, we make a change of variable which transforms (9) into another equivalent
eigenvalue problem with Robin boundary condition and positive coefficients.

Since ∂Ω is regular, there exists ψ ∈ C2(Ω) (see Proposition 3.4 in [22]) such that

∂ψ

∂n
≥ ρ0 > 0 on ∂Ω.

Under the change of variable
ϕ = eKψw, K > 0

problem (9) is transformed into{
−∆w + ~N(x) · ∇w +M(x)w = λb(x)w in Ω,
Bw = (0, 0) on ∂Ω,

(11)

where
~N(x) := −2K∇ψ + c(x)∇a,
M(x) := −K2|∇ψ|2 +Kc(x)∇a · ∇ψ −K∆ψ +m(x)

and

Bw :=


∂w

∂n
+R1w on Γ1,

∂w

∂n
+R2w on Γ2,

being

Ri(x) := bi +K
∂ψ

∂n
, i = 1, 2

and so, taking K large,
Ri > 0 on ∂Ω for i = 1, 2. (12)

Fixed such K, we are going to prove the continuity of the principal eigenvalue of (11).
Observe that when you move the coefficient c, you move M and ~N . Since we know the
continuity with respect to M , we fix our attention on the coefficient ~N . On the other
hand, it suffices to show the continuity of λ1(L+M ; 1;B) because λ1(L+M ; b;B) is the
zero of λ1(L+M − λb; 1;B). Take ~Ni ∈ [C0(Ω)]N , i = 1, 2, such that

‖ ~N1 − ~N2‖∞ ≤ ε.

13
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Denote by λ1( ~Ni) := λ1(Li +M ; 1;B) with

Liw := −∆w + ~Ni(x) · ∇w,

and wi a positive eigenfunction associated to λ1( ~Ni).
Step 1: Assume that λ1( ~N1) = 0, and so

ML := inf
x∈Ω

M(x) < 0.

Indeed, if M ≥ 0, then positive constants are strict supersolutions of (L1 +M,B1) and so
λ1( ~N1) > 0.

Take ρ ∈ (0, 1). Then,

L2w
ρ
1 +M(x)wρ1 = ρ(1− ρ)wρ−2

1 |∇w1|2 + ρwρ−1
1 ∇w1 · ( ~N2 − ~N1) +M(x)(1− ρ)wρ1 ≥

≥ ρ(1− ρ)wρ−2
1 |∇w1|2 − ρwρ−1

1 |∇w1|| ~N2 − ~N1|+M(x)(1− ρ)wρ1 ≥

≥
[
− ρ

4(1− ρ)
ε2 +ML(1− ρ)

]
wρ1.

Consider ρ such that
1− ρ =

ε

2
√
−ML

we get that
L2w

ρ
1 +M(x)wρ1 ≥ ε

[
−
√
−ML +

ε

4

]
wρ1 in Ω.

On the other hand,

∂wρ1
∂n

+Ri(x)wρ1 = (1− ρ)Ri(x)wρ1 > 0 on Γi.

Hence, wρ1 is a supersolution of (L2 +M − ε
[
−
√
−ML + ε

4

]
, B) and then

λ1( ~N2) ≥ ε
[
−
√
−ML +

ε

4

]
,

that is
ε
[√
−ML −

ε

4

]
≥ λ1( ~N1)− λ1( ~N2). (13)

Step 2: Assume now the general case that λ1( ~N1) ∈ IR. Then, there exists a K1 ∈ IR
such that

λ1( ~N1;K1) := λ1(L1 +M +K1; 1;B) = λ1(L1 +M ; 1;B) +K1 = λ1( ~N1) +K1 = 0.

Then, applying the Step 1 and (13), we deduce that

λ1( ~N1)−λ1( ~N2) = λ1( ~N1)+K1−(λ1( ~N2)+K1) = λ1( ~N1;K1)−λ1( ~N2;K1) ≤ ε
[√
−ML −

ε

4

]
.

Consider now λ1( ~N2) ∈ IR. Then, there exists a K2 ∈ IR such that

λ1( ~N2;K2) = λ1( ~N2) +K2 = 0.

14
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Then, applying again the Step 1 and interchanging the roles of ~N1 and ~N2, we deduce that

λ1( ~N2)−λ1( ~N1) = λ1( ~N2)+K2−(λ1( ~N1)+K2) = λ1( ~N2;K2)−λ1( ~N1;K2) ≤ ε
[√
−ML −

ε

4

]
.

Therefore,
|λ1( ~N1)− λ1( ~N2)| ≤ ε

[√
−ML −

ε

4

]
.

This concludes the result.

The next result will be useful along the work.

Lemma 3.2. Consider sequences mn, cn, bn ∈ C0(Ω), with bn > 0 and such that mn → m,
cn → c, bn → 0 as n→∞ in L∞(Ω). Denote by

Lnu := −∆u+ cn(x)∇a · ∇u, Lu := −∆u+ c(x)∇a · ∇u.

Then,

λ1(Ln +mn; bn)→

{
+∞ if λ1(L+m; 1) > 0,
−∞ if λ1(L+m; 1) < 0.

Proof. Denote by λn := λ1(Ln+mn; bn) or equivalently 0 = λ1(Ln+mn−λnbn; 1). Assume
that λ1(L + m; 1) > 0, then by the continuity of the principal eigenvalue with respect to
the coefficients we get that λ1(Ln +mn; 1) > 0 for n large. Hence, since λn are the zeros
of the maps λ1(Ln + mn − λbn; 1) we conclude that λn > 0 for n large. Assume that λn
is bounded. Since

0 = λ1(Ln +mn − λnbn; 1)

then we conclude that 0 = λ1(L+m; 1), an absurdum.

Observe that since λ1(−∆+1; 1;B3) > 0 and I0 ≥ 0 there exists a unique non-negative
solution z0 of

−∆z + z = I0 in Ω, B3z = (0, 0) on ∂Ω. (14)

Then, to solve (8), we need to study the following system
−∆u = −∇ · (α(v, z0)u∇v) + λβ(v, z0)u− u2 in Ω,
−∆v = −v in Ω,
B1u = (0, 0), B2v = (γ(u), 0) on ∂Ω.

(15)

Observe now that (15) possesses the semi-trivial solution (0, v0) being v0 the unique
positive solution of {

−∆v + v = 0 in Ω,
B2v = (γ(0), 0) on ∂Ω.

(16)

Observe that since λ1(−∆ + 1; 1;B2) > 0 and γ(0) > 0, this positive solution exists.
In order to find positive solution of (15), we are going to use the bifurcation method

from the semi-trivial solution (0, v0). In fact, we will show that a continuum of positive
solutions emanates from the semi-trivial solution (0, v0) at a determined value of λ, exactly,

λ = λ1(v0, z0),

15
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where λ1(v0, z0) denotes the principal eigenvalue of the problem{
−∆ξ = −∇ · (α(v0, z0)∇v0ξ) + λβ(v0, z0)ξ in Ω,
B1ξ = (0, 0) on ∂Ω.

(17)

Observe that (17) is in the general setting of (9) with b = β(v0, z0), c = α(v0, z0),
a = v0 and

m(x) := αv(v0, z0)|∇v0|2 + αz(v0, z0)∇v0 · ∇z0 + α(v0, z0)∆v0.

We need some important previous results. In the first one we obtain a priori bounds
of positive solution of (15). For that, we have divided the proof in different steps.

Lemma 3.3. Let (u, v) be a solution of (15). Then,
‖v‖∞ ≤ ‖v0‖∞,
‖v‖1,s ≤ Cγ(0),
‖v‖2,s ≤ C‖γ(u)‖W 1−1/s,s(Γ1),

(18)

for all s ∈ (1,∞), v0 is the unique positive solution of (16) and C is a positive constant
depending on Ω.

Proof. For the first inequality, observe that since 0 ≤ γ(u) ≤ γ(0) we have that

−∆v + v = 0 in Ω,
∂v

∂n
≤ γ(0) on Γ1,

∂v

∂n
+ τ2v = 0 on Γ2,

and then
v ≤ v0 in Ω.

The other inequalities are direct consequences of Proposition 3.3 in [1] and that 0 ≤ γ(u) ≤
γ(0).

In the second step, we show that u is bounded in Lp(Ω) for all 1 < p <∞.

Lemma 3.4. Let (u, v) be a solution of (15). Then,

‖u‖p ≤ C and ‖u‖1,2 ≤ C (19)

for all p ∈ (1,∞) and C is a positive constant depending on Ω.

Proof. Let us compute explicitly the constants appearing along the proof, because they
will be used in the next results.

With a completely similar reasoning that Proposition 2.9, we get

0 ≤ − 4
p2

(p− 1)
∫

Ω
|∇w|2 + C1

∫
Γ2

w2 + C2

∫
Ω
|w∇v · ∇w|+

∫
Ω

(λβ(v, z0)u− u2)up−1,

where w = up/2 and C1 and C2 are defined in (7). Then, by Lemmas 2.7 and 2.8 we get∫
Ω
up+A

∫
Ω
|∇up/2|2 ≤

∫
Ω

[(λβ(v, z0)+C1C(ε−θ+1)+C2C(Ω)‖∇v‖s(δ+mδ−m)+1)up−up+1],

(20)

16
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where
A :=

4
p2

(p− 1)− C1ε− C2C(Ω)‖∇v‖sδ. (21)

Take ε and δ such that A > 0. Now, it is clear that for some constant C > 0

(λβ(v, z0) + C1C(ε−θ + 1) + C2C(Ω)‖∇v‖s(δ +mδ−m) + 1)up − up+1 ≤ C for all u ≥ 0,

and then u is bounded in Lp(Ω) for all p ∈ (1,∞). Also, using (20) with p = 2, we get that
u is bounded in H1(Ω). Finally, from (20) we deduce that up/2 ∈ H1(Ω). This completes
the proof.

We are ready now to show the main result of a priori bound.

Theorem 3.5. Assume that λ ∈ Λ, a compact of IR. Then, there exists a constant C > 0
such that

‖(u, v)‖X ≤ C,

for all (u, v) solution of (15).

Proof. First, observe that since u ∈ H1(Ω) and γ is a Lipschitz function, γ(u) ∈ H1(Ω)
and so γ0(γ(u)) ∈ H1/2(Γ1) and then by [1] we get that v ∈ H2(Ω) and

‖v‖2,2 ≤ C. (22)

Now, we re-write the equation of u as

−∆u = −αv(v, z0)u|∇v|2−αz(v, z0)u∇v·∇z0−α(v, z0)∇u·∇v−α(v, z0)uv+λβ(v, z0)u−u2.

Observe that
αv(v, z0) = α′R(s)

∂s

∂v
, αz(v, z0) = α′R(s)

∂s

∂z
,

and then taking into account that αR is regular and β bounded, we get for any p > 1 that
αv(v, z0)u|∇v|2 ∈ Lp(Ω),
αz(v, z0)u∇v · ∇z0 ∈ Lp(Ω),
α(v, z0)∇u · ∇v ∈ Lj(Ω), for some j < 2 and close to 2,
−α(v, z0)uv + λβ(v, z0)u− u2 ∈ Lp(Ω).

Hence, we can conclude that u ∈ W 2,j(Ω), and so picking j close to 2, u ∈ W 1,j∗(Ω) for
j∗ > 2. Repeating this argument several times, we can conclude the result.

The following result proves the non-existence of positive result for λ very negative.

Proposition 3.6. There exists λ0 < 0 such that if λ ≤ λ0, (15) does not possess positive
solution.

Proof. In the first part of the proof we use a Moser’s argument to obtain a bound in
L∞(Ω) for u independent of λ ≤ 0. Indeed, denoting w = up/2, from (20), λ ≤ 0 and
Lemma 3.3 we get that

a

∫
Ω
|∇w|2 ≤ b

∫
Ω
w2, (23)
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where
a :=

4
p2

(p− 1)− C1ε− C̃2
p− 1
p

δ,

b := C1C(ε−θ + 1) + C̃2
p− 1
p

(δ +mδ−m),

and
C̃ := CC(Ω)γ(0)‖α‖∞.

where we have used (18). Taking

δ =
1
pC̃

and ε =
p− 1
p2C1

,

we get

a =
p− 1
p2

> 0,

and so, ∫
Ω
|∇w|2 ≤ b

a

∫
Ω
w2. (24)

Now, we use H1(Ω) ↪→ Lr(Ω), r > 2, and we get(∫
Ω
wr
)1/r

≤ C3

[∫
Ω
|∇w|2 +

∫
Ω
w2

]1/2

and hence, (∫
Ω
up(r/2)

)2/(rp)

≤
[
C2

3

(
b

a
+ 1
)]1/p(∫

Ω
up
)1/p

.

Denoting

R(p) := C2
3

(
b

a
+ 1
)
.

we have that

R(p) = C2
3

(
3 + C1C

p2

p− 1
+ C1+θ

1 C
p2+2θ

(p− 1)θ+1
+ 2mC̃1+mp1+m

)
.

Consider now q = r/2 > 1, we have that

‖u‖pq ≤ (R(p))1/p‖u‖p. (25)

Taking p = 2qn, n = 0, 1, 2... we get

‖u‖2qn+1 ≤ (R(2))1/2(R(2q))1/2q(R(2q2))1/2q2 ......(R(2qn))1/2qn‖u‖2. (26)

It suffices to take n→∞ and take into account that

lim
n→∞

(R(2))1/2(R(2q))1/2q(R(2q2))1/2q2 ......(R(2qn))1/2qn ≤ C,

we conclude that
‖u‖∞ ≤ C‖u‖2.
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Then, using (20),

‖u‖∞ ≤ C = C(γ(0),Ω), independent of λ ≤ 0. (27)

Consider now the v-equation. Then, since γ(u) ≥ γ(‖u‖∞) ≥ γ(C), we have that

−∆v + v = 0 in Ω,
∂v

∂n
≥ γ(C) on Γ1,

∂v

∂n
+ τ2v = 0 on Γ2,

and then
v ≥ v∗ > 0,

being v∗ the unique positive solution of the linear problem

−∆v + v = 0 in Ω,
∂v

∂n
= γ(C) on Γ1,

∂v

∂n
+ τ2v = 0 on Γ2.

Finally, observe that since λ < 0

λβ(v, z0) + C1C(ε−θ + 1) + C2C(Ω)‖∇v‖s(δ +mδ−m) + 1 ≤

λβ + C1C(ε−θ + 1) + C2C(Ω)‖∇v‖s(δ +mδ−m) + 1 ≤ 0

for λ ≤ λ0 for some λ0 < 0. Here, we have denoted β := min
v∗≤v≤v0

β(v, z0) > 0. Now, it

suffices to use (20).

Now, we can prove the main theoretical result of this section:

Theorem 3.7. Assume that
λ > λ1(v0, z0). (28)

Then, (15) possesses at least a positive solution.

Proof. We are going to apply the bifurcation method. We consider λ as bifurcation pa-
rameter. First, we apply the Crandall-Rabinowitz theorem, [9], in order to find the bifur-
cation point from the semi-trivial solution (0, v0). Consider the map F : IR×X1 ×X2 7→
Cρ(Ω)× Cρ(Ω)× Cρ(Γ1) defined by

F(λ, u, v) := (−∆u+∇ · (α(v, z0)u∇v)− λβ(v, z0)u+ u2,−∆v + v,
∂v

∂n
− γ(u)).

It is clear that F is regular, that F(λ, 0, v0) = 0 and

D(u,v)F(λ1, u1, v1)

(
ξ

η

)
=


A1(ξ, η)
−∆η + η

∂η

∂n
− γ′(u1)ξ

 ,

where

A1(ξ, η) := −∆ξ +∇ · ([α(v1, z0)ξ + αv(v1, z0)ηu1]∇v1 + α(v1, z0)u1∇η)
−(λ1β(v1, z0)− 2u1)ξ − λ1βv(v1, z0)u1η.

19



May 17, 2011 M. Delgado, C. Morales-Rodrigo, A. Suárez

Hence, for λ = λ0 := λ1(v0, z0), see (17), and (u1, v1) = (0, v0) we get that

Ker[D(u,v)F(λ0, 0, v0)] = span{(Φ1,Φ2)}

where Φ1 is an eigenfunction associated to λ0 and

(−∆ + 1)Φ2 = 0 in Ω, B2(Φ2) = (γ′(0)Φ1, 0) on ∂Ω.

Hence, dim(Ker[D(u,v)F(λ0, 0, v0)]) = 1.
On the other hand, observe that

Dλ(u,v)F(λ1, u1, v1)

(
ξ

η

)
=

 −β(v1, z0)ξ − βv(v1, z0)u1η

0
0

 .

We can show that Dλ(u,v)F(λ0, 0, v0)(Φ1,Φ2)t /∈ R(D(u,v)F(λ0, 0, v0)). Indeed, suppose
that there exists (ξ, η) ∈ X such that D(u,v)F(λ0, 0, v0)(ξ, η)t = (−β(v0, z0)Φ1, 0, 0), and
so

−∆ξ +∇ · (α(v0, z0)ξ∇v0)− λ0β(v0, z0)ξ = −β(v0, z0)Φ1 in Ω, B1ξ = (0, 0) on ∂Ω.

Consider Φ∗1 the eigenfunction associated to the adjoint equation of Φ1, that is{
−∆Φ∗1 − α(v0, z0)∇v0 · ∇Φ∗1 = λ0β(v0, z0)Φ∗1 in Ω,
B∗1Φ∗1 = 0 on ∂Ω,

(29)

where

B∗1Φ∗1 :=


∂Φ∗1
∂n

+ (γ1 + α(v0, z0)γ(0))Φ∗1 on Γ1,

∂Φ∗1
∂n
− (τ1 + τ2v0α(v0, z0))Φ∗1 on Γ2.

Then, multiplying the equation by Φ∗1, we get

0 =
∫

Ω
β(v0, z0)Φ1Φ∗1,

an absurdum. Again, it can be showed that R(D(u,v)F(λ0, 0, v0)) has co-dimension 1.
Hence, from [9], the point (λ, u, v) = (λ0, 0, v0) is a bifurcation point from the semi-

trivial solution (0, v0).
Now, we can apply Theorem 4.1 of [21] and conclude the existence of a continuum

C+ ⊂ IR × X1 × X2 of positive solutions of (15) emanating from the point (λ, u, v) =
(λ0, 0, v0) such that:

i) C+ is unbounded in IR×X1 ×X2; or

ii) there exists λ ∈ IR such that (λ, 0, 0) ∈ cl(C+).

Alternative ii) is not possible by the v-equation. Therefore, alternative i) holds. On the
other hand, by Corollary 3.6, (15) does not possess positive solution for λ ≤ λ0 and by
Theorem 3.5, it follows that C+ is bounded in X uniformly on compact subintervals of λ.
Hence, we can conclude the existence of at least coexistence state for

λ > λ1(v0, z0).

This completes the proof.
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Condition (28) is related to the local stability of (0, v0) with respect to the parabolic
problem.

Proposition 3.8. Assume λ < λ1(v0, z0) (resp. λ > λ1(v0, z0)). Then, (0, v0) is stable
(resp. unstable).

Proof. Observe that the stability of (0, v0) is given by the sign of the real parts of the
eigenvalues for which the following problem admits a solution (ξ, η) ∈ X \ {(0, 0)}

−∆ξ +∇ · (α(v0, z0)ξ∇v0)− λβ(v0, z0)ξ = σξ in Ω,
−∆η + η = ση in Ω,
B1ξ = (0, 0) on ∂Ω,
B2η = (γ′(0)ξ, 0) on ∂Ω.

(30)

Assume that ξ ≡ 0, then σ = λj(−∆ + 1; 1;B2) ≥ λ1(−∆ + 1; 1;B2) > 0. Suppose that
ξ 6≡ 0, denote by

Lξ := −∆ξ +∇ · (α(v0, z0)ξ∇v0),

then
Re σ = Re λj(L − λβ(v0, z0); 1;B1) ≥ λ1(L − λβ(v0, z0); 1;B1) > 0

because λ < λ1(v0, z0), where we have used (10).
Assume now that λ > λ1(v0, z0). Then,

σ1 := λ1(L − λβ(v0, z0); 1;B1) < 0.

Denote by ξ a positive eigenfunction associated to σ1, that is

Lξ − λβ(v0, z0)ξ = σ1ξ in Ω, B1ξ = (0, 0) on ∂Ω.

Since σ1 < 0, then
λ1(−∆ + 1− σ1; 1;B2) > 0,

and so there exists η such that

−∆η + η = σ1η in Ω, B2η = (γ′(0)ξ, 0) on ∂Ω.

Then, σ1 < 0 is an eigenvalue of (30) with associated eigenfunction (ξ, η), so (0, v0) is
unstable.

4 Application and interpretation

In this section we consider the case I0 ≥ 0 is a positive constant. In this case, recall
(14),

z0 := I0e, (31)

where e is the unique positive solution of

−∆e+ e = 1 in Ω, B3e = (0, 0) on ∂Ω.
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We remind that the functions α and β depend on a variable s which represents the
free receptors, so

s = s(v, z), α(v, z) = αR(s(v, z)), β(v, z) = βR(s(v, z)),

supposing αR positive in [0,+∞) and βR increasing with βR(0) = 0, remember hypothesis
()

If we consider the behavior of the function s = s(v, z), it is reasonable to think that
when z is big (a lot of medicine), s tends to 0. Also, we will suppose that this rapproche-
ment is regular and so, sv(v, z) and sz(v, z) tend also to 0 when z goes to +∞. Finally, we
will need the technical hypothesis that zsz(v, z) goes also to 0. These hypotheses move to
α and β in the following way

α(v, z)→ αR(0), as z →∞,
αv(v, z)→ 0,
sαz(v, z)→ 0,
β(v, z)→ βR(0) = 0.

(32)

In the following result we study the principal eigenvalue λ1(v0, z0) in function of I0,
that is, the map

I0 ∈ [0,∞) 7→ λ1(v0, z0) = λ1(v0, I0e) := λ1(I0) ∈ IR.

Let us to introduce some notation before enunciating the result. Denote ϕ1(I0) a principal
eigenfunction associated to λ1(I0), that is,{

−∆ϕ1(I0) = −∇ · (α(v0, I0e)∇v0ϕ1(I0)) + λ1(I0)β(v0, I0e)ϕ1(I0) in Ω,
B1ϕ1(I0) = (0, 0) on ∂Ω.

(33)

We denote also ϕ1 := ϕ1(0) a positive eigenfunction associated to λ1(0), that is{
−∆ϕ1 +∇ · (α(v0, 0)∇v0ϕ1) = λ1(0)β(v0, 0)ϕ1 in Ω,
B1ϕ1 = (0, 0) on ∂Ω.

Moreover, ϕ∗1 stands for a positive eigenfunction associated to the adjoint problem, that
is {

−∆ϕ∗1 − α(v0, 0)∇v0 · ∇ϕ∗1 = λ1(0)β(v0, 0)ϕ∗1 in Ω,
B∗1ϕ

∗
1 = (0, 0) on ∂Ω,

(34)

where

B∗1ϕ
∗
1 :=


∂ϕ∗1
∂n

+ (γ1 + α(v0, 0)γ(0))ϕ∗1 on Γ1,

∂ϕ∗1
∂n
− (τ1 + τ2v0α(v0, 0))ϕ∗1 on Γ2.

Finally, we denote by
λ∞ := λ1(L+ αR(0); 1;B1).

where Lφ := −∆φ+ αR(0)∇v0 · ∇φ.
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Proposition 4.1. Then map I0 7→ λ1(I0) is derivable in [0,∞),

λ′1(0) = −
λ1(0)

∫
Ω
βz(v0, 0)eϕ1ϕ

∗
1 +

∫
Ω
αz(v0, 0)eϕ1∇v0 · ∇ϕ∗1 +

∫
∂Ω
αz(v0, 0)eϕ1ϕ

∗
1

∂v0

∂n∫
Ω
β(v0, 0)ϕ1ϕ

∗
1

(35)
and

lim
I0→+∞

λ1(I0) =

{
+∞ if λ∞ > 0,
−∞ if λ∞ < 0.

Proof. The regularity of the map λ1(I0) follows by standard argument, see for instance [7].
Now, we can differentiate (33) with respect to I0 at I0 = 0 and obtain

−∆ϕ′1 +∇ · (α(v0, 0)∇v0ϕ
′
1)− λ1(0)β(v0, 0)ϕ′1 =

−∇ · (αz(v0, 0)eϕ1∇v0) + (λ′1(0)β(v0, 0) + λ1(0)βz(v0, 0)e)ϕ1 in Ω,
B1ϕ

′
1 = (0, 0) on ∂Ω.

Multiplying by ϕ∗1 and integrating we get (35).
To obtain the behaviour when I0 → +∞, we re-write (33) as

−∆ϕ1(I0) + α(v0, I0e)∇v0 · ∇ϕ1(I0) +M(I0)ϕ1(I0) = λ1(I0)β(v0, I0e)ϕ1(I0)

where
M(I0) := αv(v0, I0e)|∇v0|2 + I0αz(v0, I0e)∇v0 · ∇e+ α(v0, I0e)v0.

Taking into account the properties of the functions α and β in (32), we can show that as
I0 →∞ 

α(v0, I0e)→ αR(0) in L∞(Ω),
αv(v0, I0e)→ 0 in L∞(Ω),
I0αz(v0, I0e)→ 0 in L∞(Ω),
β(v0, I0e)→ 0 in L∞(Ω),

and using Lemma 3.2 we conclude the result.

Now, we would like to give a biological interpretation to the main results of the work.
Basically, we compare the stability of the semi-trivial solution (u, v) = (0, v0) in the cases
I0 = 0 (absence of treatment) and I0 > 0. We understand that if (0, v0) is stable, then
the process of angiogenesis does not occur, that is, the EC disappear when time is large.

a) Case I0 = 0: Observe that in absence of medicine, I0 = 0, the semi-trivial solution
(0, v0) is stable if λ < λ1(0) = λ1(v0, 0) and unstable for λ > λ1(0). So, if the growth
rate of the EC is less than λ1(0), then the angiogenesis does no occur and it is not
necessary to introduce the medicine.

b) Case I0 > 0: Assume that λ > λ1(0) and let us introduce medicine, that is I0 > 0.
Now, (0, v0) is stable if λ < λ1(I0) = λ1(v0, z0). We have studied this map in the
last section. We distinguish two cases:
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(a) Assume that λ∞ > 0. Then, λ1(I0)→∞ as I0 →∞. Hence, fix λ > λ1(v0, 0),
that is (0, v0) is not stable in absence de medicine. Then, in this case there
exists a value of I1

0 > 0 such that for I0 > I1
0 we have that

λ < λ1(I0).

That means that introducing a sufficient quantity of medicine, I0 > I1
0 , we can

avoid the angiogenesis.

(b) Assume that λ∞ < 0. In this case, λ1(I0) → −∞ as I0 → ∞. So, we can not
assure that the angiogenesis could avoid even introducing a great quantity of
medicine. We try now to give an explication to this fact. Observe that the
sign of λ∞ depends on ∇v0, αR(0), the domain Ω and the boundary condition
B1. For example, λ∞ < 0 if τ1 is large, that is, if the number of EC which
are introducing along Γ2 is large, hence, even introducing a lot of medicine we
can not eliminate the ECs. That is, the capacity of binding receptors is not
sufficient to avoid angiogenesis, due to there are a lot of EC.
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[11] M. Delgado, C. Morales-Rodrigo, A. Suárez and J. I. Tello, On a parabolic-elliptic
chemotactic model with coupled boundary conditions, Nonlinear Analysis RWA 11
(2010), 3884–3902.
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