

Positive solutions for some indefinite nonlinear eigenvalue elliptic problems with Robin boundary conditions

H. RAMOS QUOIRIN¹, AND A. SUÁREZ²,

1. Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

 Dpto. de Ecuaciones Diferenciales y Análisis Numérico Fac. de Matemáticas, Univ. de Sevilla C/. Tarfia s/n, 41012 - Sevilla, Spain,

E-mail addresses: humberto.ramos@usach.cl, suarez@us.es

Abstract

We consider a nonlinear eigenvalue problem with indefinite weight under Robin boundary condition. We prove the existence and multiplicity of positive solutions. To this end, we carry out a detailed study of some linear eigenvalues problems and we use mainly bifurcation and sub-supersolution methods.

Key Words. Elliptic equations, Indefinite weight, Robin boundary conditions.

1 Introduction and main results

Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded domain with a $C^{2,\gamma}$ boundary, $0 < \gamma < 1$. We are interested in the study of positive solutions for the problem

(P)
$$\begin{cases} -\Delta u = \lambda m(x)(u - u^2) & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \alpha u & \text{on } \partial \Omega, \end{cases}$$

where $\lambda, \alpha \in \mathbb{R}$, $m \in C^1(\overline{\Omega})$ changes sign and ν is the outward unit normal to $\partial\Omega$.

Throughout this article we assume that

$$\int_{\Omega} m < 0, \tag{1.1}$$

since the case $\int_{\Omega} m > 0$ reduces to (1.1) changing λ by $-\lambda$. The case $\int_{\Omega} m = 0$ is singular and will be treated elsewhere.

We shall treat (P) by a bifurcation approach, so we shall consider the linear eigenvalue problem

(E)
$$\begin{cases} -\Delta u = \lambda m(x)u & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \alpha u & \text{on } \partial \Omega. \end{cases}$$

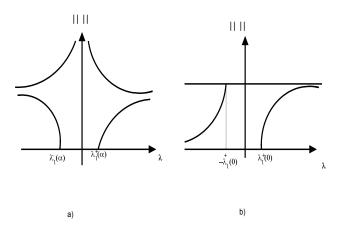


Figure 1: Bifurcation diagrams of (P): Case a) $\alpha < 0$ and Dirichlet boundary conditions. Case b) $\alpha = 0$.

It is shown in [1] that there exists $\alpha_0^* > 0$ such that, for $\alpha < \alpha_0^*$, (E) possesses two principal eigenvalues, denoted by $\lambda_1^-(\alpha)$ and $\lambda_1^+(\alpha)$. In the homogeneous Dirichlet boundary conditions case, we denote them by $\lambda_1^\pm(D)$. In Section 2 we recall the results from [1] and complement them providing an expression for α_0^* .

(P) has already been studied in different cases. For the cases $\alpha<0$ [7] and Dirichlet boundary conditions [2, 11], it has been proved that (P) has a positive solution for all $\lambda\neq 0$ and, under further conditions for a priori bounds, at least two positive solutions for $\lambda\in(-\infty,\lambda_1^-(\alpha))\cup(\lambda_1^+(\alpha),+\infty)$ and $\lambda\in(-\infty,\lambda_1^-(D))\cup(\lambda_1^+(D),+\infty)$, respectively. See Figure 1 (a) for the bifurcation diagram in these cases.

The case $\alpha=0$, which has been analyzed in [6] (see also [14, 17]), is singular in the following sense: the trivial solutions $u\equiv 0$ and $u\equiv 1$ exist for all $\lambda\in\mathbb{R}$, and for $\lambda=0$ the positive constants are solutions. Moreover, for $\lambda\in(-\infty,-\lambda_1^+(0))\cup(\lambda_1^+(0),+\infty)$ there exists a stable solution u<1, which is the only positive solution of (P) less than one, see Figure 1 (b). Recall that in this case $\lambda_1^-(0)=0$.

Finally, the case $\alpha > 0$ and small was studied in [7]. Assuming 2 < (N+2)/(N-2) and using variational methods, the authors proved that if $0 < \alpha < \alpha_0^*$ and $\lambda \in (\lambda_1^-(\alpha), \lambda_1^+(\alpha))$ then (P) possesses at least a positive solution.

In this article, we adopt a different viewpoint, namely, we consider λ fixed and look at α as a bifurcation parameter. Consequently, we improve some results of [6] for $\alpha = 0$, and complement the study of (P) when $\alpha > 0$.

We shall assume that

$$M_{\pm} := \{ x \in \Omega : m^{\pm} > 0 \}$$

are open and regular sets; here m^{\pm} denote the positive and negative part of m respectively. We shall also assume that $m^{\pm}(x) \approx [\operatorname{dist}(x, \partial M_{\pm})]^{\gamma^{\pm}}$ for x close to ∂M_{\pm} and some $\gamma_{\pm} \geq 0$. Let

$$M_0 := \Omega \setminus (\overline{M_+} \cup \overline{M_-}). \tag{1.2}$$

We assume the following conditions on M_{\pm} and M_0 :

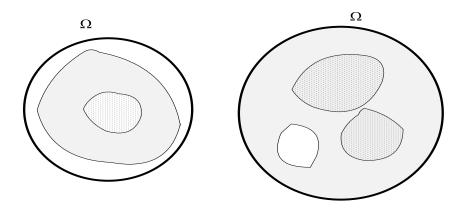


Figure 2: Two examples of admissible domains. The white, shady and lined sets represent M_0 , M_+ and M_- , respectively.

 (H_{M_0}) M_0 is a proper subdomain of Ω , i.e. $dist(\partial\Omega,\partial M_0\cap\Omega)>0$.

$$(H_{M_{\pm}}) \ \partial M_{\pm} = \Gamma_1^{\pm} \cup \Gamma_2^{\pm}, \text{ with } \Gamma_1^{\pm} = \partial \Omega \cap \partial M_{\pm} \text{ and } \Gamma_2^{\pm} \subset \Omega.$$

In fact, $(H_{M_{\pm}})$ is assumed to avoid regularity issues, see [12]. In Figure 2 we have represented two different admissible domains.

Our first result is related to a priori bounds for positive solutions of (P). We show that if

$$2 < \min\left\{\frac{N+2}{N-2}, \ \frac{N+1+\gamma^{\pm}}{N-1}\right\},\tag{1.3}$$

then, there exist a priori bounds for positive solutions of (P) whenever α varies in compact sets of \mathbb{R} .

In order to show our main results, we need to introduce some further notation. We denote by $\lambda_1(-\Delta - \lambda m, N)$ and $\lambda_1(-\Delta - \lambda m, D)$ the principal eigenvalues of the problem

$$-\Delta \varphi - \lambda m(x)\varphi = \sigma \varphi$$
 in Ω ,

under homogenous Neumann and Dirichlet boundary conditions, respectively. In Section 2, we show that given $\lambda \in \mathbb{R}$, there exists a principal eigenvalue of (E) with respect to α , denoted by $\alpha_1(\lambda)$, if and only if $\lambda_1(-\Delta - \lambda m, D) > 0$. Furthermore, $sign(\alpha_1(\lambda)) = sign(\lambda_1(-\Delta - \lambda m, N))$.

Note that if $\lambda = 0$ then (P) has no positive solutions unless if $\alpha = 0$, in which case, all the positive constants are solutions. So we assume that $\lambda \neq 0$ along this article.

We state now our main result (see Figure 3):

Theorem 1.1. Assume (1.1) and (1.3).

1. Assume $\lambda_1(-\Delta - \lambda m, D) > 0$. Then there exists $\alpha_* \ge \alpha_1(\lambda)$ such that (P) has a positive solution if $\alpha < \alpha_*$ and no positive solution for $\alpha > \alpha_*$. Moreover, there exists $\alpha_{**} \in (\alpha_1(\lambda), \alpha_*]$ such that (P) has at least two positive solutions for $\alpha \in (\alpha_1(\lambda), \alpha_{**})$. In addition:

- (a) If $\lambda_1(-\Delta \lambda m, N) > 0$ then $0 < \alpha_1(\lambda) \le \alpha_{**}$.
- (b) If $\lambda_1(-\Delta \lambda m, N) = 0$ then $0 = \alpha_1(\lambda) < \alpha_{**}$.
- (c) If $\lambda_1(-\Delta \lambda m, N) < 0$ and $\lambda \neq -\lambda_1^+(0)$ then $\alpha_1(\lambda) < 0 < \alpha_{**}$.
- (d) If $\lambda = -\lambda_1^+(0)$ then $\alpha_1(\lambda) < 0 \le \alpha_{**}$.
- 2. Assume $\lambda_1(-\Delta \lambda m, D) \leq 0$. Then there exist $\alpha_* > 0$ such that (P) has a positive solution if and only if $\alpha \leq \alpha_*$. Moreover, there exists $\alpha_{**} \in (0, \alpha_*]$ such that (P) has at least two positive solutions for $\alpha < \alpha_{**}$.

As a consequence, we obtain (see Figure 4 (a)):

Theorem 1.2. Assume (1.1) and $\alpha = 0$.

- 1. For all $\lambda \in \mathbb{R}$, $u \equiv 1$ is a positive solution of (P), which is stable for $\lambda \in (-\lambda_1^+(0), 0)$.
- 2. (P) has a second (and stable) positive solution for $\lambda > \lambda_1^+(0)$ and $\lambda < -\lambda_1^+(0)$.
- 3. Assume (1.3). (P) has a second positive solution for $-\lambda_1^+(0) < \lambda < 0$.

In the case $\alpha > 0$, we get:

Theorem 1.3. Assume (1.1), (1.3) and $\alpha > 0$.

- 1. There exists $\alpha_0 > 0$, such that (P) has no positive solution for $\alpha \geq \alpha_0$.
- 2. Let $\lambda < 0$ and $\lambda \neq -\lambda_1^+(0)$. Then there exists $\alpha^*(\lambda)$ such that (P) has at least two positive solutions for $\alpha < \alpha^*(\lambda)$.
- 3. Let $\lambda \in (\lambda_1^-(\alpha), \lambda_1^+(\alpha))$ and $0 < \alpha < \alpha_0^*$. Then (P) has at least a positive solution.
- 4. Let $\lambda \geq \lambda_1^+(0)$. Then (P) has at least two positive solutions for α sufficiently small.

We stress that we do not know what the bifurcation diagram looks like in the case $\lambda \in [\lambda_1^+(\alpha), \lambda_1^+(0))$. However, since $\lambda_1^+(\alpha) \to \lambda_1^+(0)$ as $\alpha \to 0$, we have represented in Figure 4 (b) the suggested bifurcation diagram in the case $\alpha > 0$ and small.

The outline of this article is as follows: in Section 2 we study in detail the eigenvalue problems related to (P). In Section 3 we consider (P) with α as the bifurcation parameter. Finally, Section 4 is devoted to prove our main results.

2 Eigenvalue problems

Given $m \in L^{\infty}(\Omega)$ and $h \in C^{1}(\partial\Omega)$, we denote by $\lambda_{1}(-\Delta + m, N + h)$ the principal eigenvalue (the notation N refers to the Neumann boundary condition) of the problem

$$\begin{cases} -\Delta u + m(x)u = \lambda u & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} + h(x)u = 0 & \text{on } \partial \Omega. \end{cases}$$

Let us summarize the main properties of $\lambda_1(-\Delta + m, N + h)$. For a proof, we refer to [8]:

Lemma 2.1. $\lambda_1(-\Delta+m, N+h)$ is a simple eigenvalue, and any eigenfunction φ associated to $\lambda_1(-\Delta+m, N+h)$ satisfies $\varphi \in C^{1,\gamma}(\overline{\Omega}) \cap H^2(\Omega)$, $\gamma \in (0,1)$. In addition:

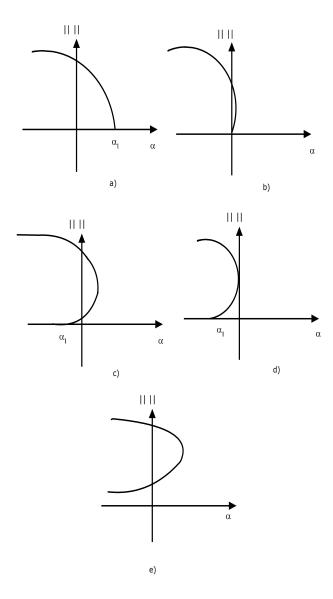
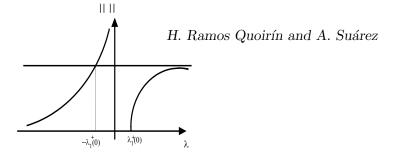
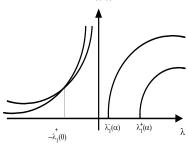


Figure 3: Bifurcation diagrams of (P): Case a) $\lambda_1(-\Delta - \lambda m, N) > 0$. Case b) $\lambda_1(-\Delta - \lambda m, N) = 0$. Case c) $\lambda_1(-\Delta - \lambda m, N) < 0 < \lambda_1(-\Delta - \lambda m, D)$ and $\lambda \neq -\lambda_1^+(0)$. Case d) $\lambda = -\lambda_1^+(0)$. Case e) $\lambda_1(-\Delta - \lambda m, D) \leq 0$.



a)



b)

Figure 4: Bifurcation diagrams of (P): Case a) $\alpha = 0$. Case b) $\alpha > 0$ and small.

- 1. $\lambda_1(-\Delta + m, N + h)$ is separately increasing with respect to m and h.
- 2. $\lambda_1(-\Delta+m, N+h) < \lambda_1(-\Delta+m, D)$ where $\lambda_1(-\Delta+m, D)$ stands for the principal eigenvalue of $-\Delta + m$ with homogeneous Dirichlet boundary conditions.
- 3. Assume that $G \subset \Omega$ is a proper regular subdomain of Ω , that is,

$$dist(\partial\Omega,\partial G\cap\Omega)>0,$$

and denote by $\lambda_1^G(-\Delta+m,N+h,D)$ the principal eigenvalue of

$$\left\{ \begin{array}{ll} -\Delta u + m(x)u = \lambda u & in \ G, \\ \frac{\partial u}{\partial \nu} + h(x)u = 0 & on \ \partial G \cap \partial \Omega, \\ u = 0 & on \ \partial G \cap \Omega. \end{array} \right.$$

Then

$$\lambda_1(-\Delta+m,N+h) < \lambda_1^G(-\Delta+m,N+h,D).$$

4. There holds

$$\lim_{K \to -\infty} \lambda_1(-\Delta + m, N + K) = -\infty,$$

$$\lim_{K \to +\infty} \lambda_1(-\Delta + m, N + K) = \lambda_1(-\Delta + m, D).$$
(2.4)

Given $\lambda, \alpha \in \mathbb{R}$, we set

$$\mu(\lambda, \alpha) := \lambda_1(-\Delta - \lambda m, N - \alpha) \tag{2.5}$$

and

$$I_{\lambda,\alpha}(u) = \int_{\Omega} (|\nabla u|^2 - \lambda m(x)u^2) - \alpha \int_{\partial\Omega} u^2 \quad \text{for} \quad u \in H^1(\Omega).$$

Recall that

$$\mu(\lambda, \alpha) = \min \left\{ I_{\lambda, \alpha}(u); \ u \in H^1(\Omega), \int_{\Omega} u^2 = 1 \right\}.$$

This map has the following properties, which follow from Lemma 2.1 and [1, Lemma 2]:

Lemma 2.2.

1. The map $\alpha \mapsto \mu(\lambda, \alpha)$ is decreasing on \mathbb{R} and

$$\lim_{\alpha \to +\infty} \mu(\lambda, \alpha) = -\infty,$$

$$\lim_{\alpha \to -\infty} \mu(\lambda, \alpha) = \lambda_1(-\Delta - \lambda m, D).$$
(2.6)

2. Assume that m changes sign. Then the map $\lambda \mapsto \mu(\lambda, \alpha)$ is concave on \mathbb{R} and $\lim_{|\lambda| \to \infty} \mu(\lambda, \alpha) = -\infty$. Moreover, it is differentiable and

$$\frac{d\mu}{d\lambda}(\lambda,\alpha) = -\int_{\Omega} m(x)\phi_{\lambda,\alpha}^{2},$$

where $\phi_{\lambda,\alpha}$ is the eigenfunction achieving $\mu(\lambda,\alpha)$.

3. For every $\alpha \in \mathbb{R}$ the map $\lambda \mapsto \mu(\lambda, \alpha)$ has an unique maximum point.

We shall first consider (E) as an eigenvalue problem with respect to α . It is clear that, given $\lambda \in \mathbb{R}$, $\alpha_1(\lambda)$ is a principal eigenvalue of (E) if and only if $\mu(\lambda, \alpha_1(\lambda)) = 0$. From Lemma 2.2 we deduce:

Lemma 2.3. Given $\lambda \in \mathbb{R}$, (E) has a principal eigenvalue $\alpha_1(\lambda)$ if and only if $\lambda_1(-\Delta - \lambda m, D) > 0$. In this case we have

$$\alpha_1(\lambda) = \min \left\{ I_{\lambda,0}(u); \ u \in H^1(\Omega), \ \int_{\partial \Omega} u^2 = 1 \right\}$$
 (2.7)

and

$$\alpha_1(\lambda) > 0$$
 (respect. = 0, < 0) $\iff \lambda_1(-\Delta - \lambda m, N) > 0$ (respect. = 0, < 0).

In Figure 5 we have depicted the map $\alpha \mapsto \mu(\lambda, \alpha)$ depending on the values of λ .

On the other hand, when dealing with (E) as an eigenvalue problem with respect to λ , we shall consider the maximum of the map $\lambda \mapsto \mu(\lambda, \alpha)$. We complement Lemma 2.2 providing an expression for this maximum, namely:

$$\mu_0(\alpha) := \inf \left\{ I_{0,\alpha}(u); \ u \in H^1(\Omega), \int_{\Omega} u^2 = 1, \int_{\Omega} m(x)u^2 = 0 \right\}.$$
 (2.8)

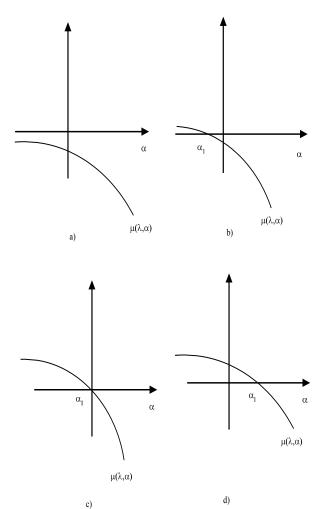


Figure 5: The map $\alpha \mapsto \mu(\lambda, \alpha)$: Case a) $\lambda_1(-\Delta - \lambda m, D) \leq 0$. Case b) $\lambda_1(-\Delta - \lambda m, N) < 0 < \lambda_1(-\Delta - \lambda m, D)$. Case c) $\lambda_1(-\Delta - \lambda m, N) = 0$. Case d) $\lambda_1(-\Delta - \lambda m, N) > 0$.

Lemma 2.4. For every $\alpha \in \mathbb{R}$ there holds

$$\max_{\lambda \in \mathbb{R}} \mu(\lambda, \alpha) = \mu_0(\alpha).$$

Proof. We know that $\lim_{|\lambda|\to\infty}\mu(\lambda,\alpha)=-\infty$ and $\lambda\mapsto\mu(\lambda,\alpha)$ is continuous, so that it has a global maximum achieved by some λ_0 , i.e.

$$\max_{\lambda \in \mathbf{R}} \mu(\lambda, \alpha) = \mu(\lambda_0, \alpha).$$

We shall prove that $\mu(\lambda_0, \alpha) = \mu_0(\alpha)$. Since $\lambda \mapsto \mu(\lambda, \alpha)$ is differentiable and

$$\frac{d\mu}{d\lambda}(\lambda,\alpha) = -\int_{\Omega} m(x)\phi_{\lambda,\alpha}^{2},$$

where $\phi_{\lambda,\alpha}$ is the eigenfunction achieving $\mu(\lambda,\alpha)$, we must have

$$\int_{\Omega} m(x)\phi_0^2 = 0,$$

where $\phi_0 = \phi_{\lambda_0,\alpha}$. Consequently

$$\mu(\lambda_0, \alpha) = I_{\lambda_0, \alpha}(\phi_0) = I_{0, \alpha}(\phi_0) \ge \mu_0(\alpha).$$

On the other hand, it is easily seen that $\mu_0(\alpha)$ is achieved by some u_0 . Hence

$$\mu(\lambda_0, \alpha) < I_{\lambda_0, \alpha}(u_0) = I_{0, \alpha}(u_0) = \mu_0(\alpha),$$

and we get the conclusion.

We are now in position to analyse the existence of zeros for the map $\lambda \mapsto \mu(\lambda, \alpha)$. The case $\alpha = 0$ (Neumann) is well-known, whereas the other cases were considered in [1], but we shall provide them a complete and unified description. We set

$$\alpha_0^* := \inf \left\{ \int_{\Omega} |\nabla u|^2; \ u \in H^1(\Omega), \int_{\Omega} m(x)u^2 = 0, \int_{\partial \Omega} u^2 = 1 \right\}.$$
 (2.9)

Lemma 2.5. Assume (1.1).

- 1. If $\alpha > \alpha_0^*$ then (E) has no principal eigenvalues.
- 2. If $\alpha = \alpha_0^*$ then (E) has a unique principal eigenvalue $\lambda_1(\alpha)$.
- 3. If $\alpha < \alpha_0^*$ then (E) has two principal eigenvalues $\lambda_1^-(\alpha) < \lambda_1^+(\alpha)$, given by

$$\lambda_1^{\pm}(\alpha) = \pm \min \left\{ I_{0,\alpha}(u); \ u \in H^1(\Omega), \int_{\Omega} m(x)u^2 = \pm 1 \right\}.$$
 (2.10)

Moreover:

- (a) If $\alpha < 0$ then $\lambda_1^-(\alpha) < 0 < \lambda_1^+(\alpha)$.
- (b) If $\alpha = 0$ then $\lambda_1^-(\alpha) = 0 < \lambda_1^+(\alpha)$.
- (c) If $0 < \alpha < \alpha_0^*$ then $0 < \lambda_1^-(\alpha) < \lambda_1^+(\alpha)$.

Proof. Since λ is a principal eigenvalue of (E) if and only if $\mu(\lambda, \alpha) = 0$, we shall look for the zeros of the map $\lambda \mapsto \mu(\lambda, \alpha)$. From Lemma 2.4, we know that $\max_{\lambda \in \mathbb{R}} \mu(\lambda, \alpha) = \mu_0(\alpha)$.

Thus the condition $\mu_0(\alpha) \geq 0$ is necessary for the existence of principal eigenvalues of (E).

Note also from (2.8) that $\mu_0(\alpha) > 0$ if $\alpha \le 0$. Now, if $\alpha > 0$ then $\mu_0(\alpha) \ge 0$ if and only if and only if $I_{0,\alpha}(u) > 0$ for every $u \ne 0$ such that $\int_{\Omega} m(x)u^2 = 0$, i.e. if and only if $\alpha \le \alpha_0^*$. Moreover, if $\alpha = \alpha_0^*$ then $\mu_0(\alpha) = 0$ and, by Lemma 2.4, there is an unique λ_0 such that $\mu(\lambda_0, \alpha) = \mu_0(\alpha)$. We set $\lambda_1(\alpha) = \lambda_0$. On the other hand, if $\alpha < \alpha_0^*$ then $\lambda \mapsto \mu(\lambda, \alpha)$ vanishes at some $\lambda_1^-(\alpha) < \lambda_1^+(\alpha)$. Since

$$\mu(\lambda_1^-(\alpha), \alpha) = 0$$
 and $\frac{d\mu}{d\lambda}(\lambda_1^-(\alpha), \alpha) > 0$,

we have, denoting $\phi = \phi_{\lambda_1^-(\alpha),\alpha}$,

$$I_{\lambda_1^-(\alpha),\alpha}(u) \geq 0 \text{ for every } u \in H^1(\Omega), \quad I_{\lambda_1^-(\alpha),\alpha}(\phi) = 0 \quad \text{and} \quad \int_{\Omega} m(x) \phi^2 < 0.$$

Let $\psi = \left(-\int_{\Omega} m(x)\phi^2\right)^{-\frac{1}{2}}\phi$. Then $\int_{\Omega} m(x)\psi^2 = -1$ and, from $I_{\lambda_1^-(\alpha),\alpha}(\phi) = 0$, we get

$$-\lambda_1^-(\alpha) = I_{0,\alpha}(\psi).$$

Moreover, since $I_{\lambda_1^-(\alpha),\alpha}(u) \geq 0$ for every $u \in H^1(\Omega)$, we have in particular

$$-\lambda_1^-(\alpha) \le I_{0,\alpha}(u)$$
 for every u such that $\int_{\Omega} m(x)u^2 = -1$.

Thus

$$-\lambda_1^-(\alpha) = \min \left\{ I_{0,\alpha}(u); \ u \in H^1(\Omega), \int_{\Omega} m(x)u^2 = -1 \right\}.$$
 (2.11)

In a similar way, we can prove that

$$\lambda_1^+(\alpha) = \min \left\{ I_{0,\alpha}(u); \ u \in H^1(\Omega), \int_{\Omega} m(x)u^2 = 1 \right\}.$$

Finally, note from (2.11) that the map $\alpha \mapsto -\lambda_1^-(\alpha)$ is decreasing on $(-\infty, \alpha_0^*)$ and $\lambda_1^-(0) = 0$, in view of (1.1). Therefore $\lambda_1^-(\alpha) > 0$ if and only if $0 < \alpha < \alpha_0^*$. In a similar way, $\alpha \mapsto \lambda_1^+(\alpha)$ is decreasing on $(-\infty, \alpha_0^*)$ and $\lambda_1^+(\alpha) > \lambda_1^-(\alpha) > 0$ if $0 < \alpha < \alpha_0^*$, so that $\lambda_1^+(\alpha) > 0$ for every $\alpha < \alpha_0^*$.

In the following result, we compare the maps $\alpha_1(\lambda)$ and $\lambda_1^{\pm}(\alpha)$. It can be easily proved using Lemmas 2.2 and 2.3, and the fact that, whenever $\alpha_1(\lambda)$ and $\lambda_1^{\pm}(\alpha)$ exist, we have

$$\alpha < \alpha_1(\lambda) \Leftrightarrow \mu(\lambda,\alpha) > 0 \Leftrightarrow \lambda_1^-(\alpha) < \lambda < \lambda_1^+(\alpha).$$

Lemma 2.6. Assume (1.1) and $\alpha < \alpha_0^*$. Then

1.
$$\alpha < \alpha_1(\lambda) \Leftrightarrow \lambda \in (\lambda_1^-(\alpha), \lambda_1^+(\alpha))$$
.

2. If
$$\alpha > \alpha_1(\lambda)$$
 and $\lambda < 0$, then $\lambda < \lambda_1^-(\alpha)$.

3. If
$$\alpha > \alpha_1(\lambda)$$
, $\lambda > 0$ and:

(a)
$$\alpha \leq 0$$
, then $\lambda > \lambda_1^+(\alpha)$.

(b)
$$\alpha > 0$$
, then either $0 < \lambda < \lambda_1^-(\alpha)$ or $\lambda > \lambda_1^+(\alpha)$.

3 Bifurcation with respect to α

Let us recall that a positive solution u_0 of (P) is stable if the principal eigenvalue of the linearisation of (P) at u_0 is positive, i.e.

$$\lambda_1(-\Delta - \lambda m + 2u_0\lambda m, N - \alpha) > 0.$$

Since $\alpha_1(\lambda)$ is a simple eigenvalue whenever it exists, i.e., if $\lambda \in (\lambda_1^-(D), \lambda_1^+(D))$, we can apply the classical Crandall-Rabinowitz Theorem [9] to deduce the following result:

Lemma 3.1. Assume that there exists $\alpha_1(\lambda)$. Then:

- 1. The trivial solution $u \equiv 0$ is stable for $\alpha < \alpha_1(\lambda)$ and unstable for $\alpha > \alpha_1(\lambda)$.
- 2. The point $(\alpha, u) = (\alpha_1(\lambda), 0)$ is a bifurcation point from the trivial solution of (P). Moreover, there exist $\varepsilon > 0$ and two C^1 maps

$$\alpha: (-\varepsilon, \varepsilon) \mapsto \mathbb{R} \quad and \quad v: (-\varepsilon, \varepsilon) \mapsto \langle \varphi_1 \rangle^{\perp},$$

where φ_1 is a positive eigenfunction associated to $\alpha_1(\lambda)$, satisfying $\alpha(0) = \alpha_1(\lambda)$, v(0) = 0 and

$$\alpha(s) = \alpha_1(\lambda) + s\alpha_2 + o(s), \quad u(s) = s(\varphi_1 + v(s))$$

are such that $(\alpha(s), u(s))$ is the only solution of (P) in a neighborhood of $(\alpha_1(\lambda), 0)$. Moreover,

$$\alpha_2 = \frac{\lambda \int_{\Omega} m\varphi_1^3}{\int_{\Omega} \varphi_1^2}.$$

Consequently, for $\lambda \neq 0$, the bifurcation direction is supercritical (resp. subcritical) if $\alpha_2 > 0$ (resp. $\alpha_2 < 0$).

- 3. If the bifurcation direction is supercritical (respect. subcritical) the new solution u(s) is stable (respect. unstable).
- 4. There exists $\delta > 0$ such that $\alpha_2 > 0$ if $\lambda \in (\lambda_1^-(D) \delta, 0) \cup (\lambda_1^+(0) \delta, \lambda_1^+(D) + \delta)$. In particular $\alpha_2 > 0$ if $\alpha_1(\lambda) = 0$.

Proof. Observe that $u \equiv 0$ is stable if $\lambda_1(-\Delta - \lambda m, N - \alpha) > 0$, that is $\alpha < \alpha_1(\lambda)$. The existence and properties of the maps $\alpha(s)$ and u(s) follow by the Crandall-Rabinowitz Theorem. In addition, since $(\alpha(s), u(s))$ solve (P), we have

$$\begin{cases} -\Delta((\varphi_1 + v(s))) = \lambda m(x)(\varphi_1 + v(s))(1 - s(\varphi_1 + v(s))) & \text{in } \Omega, \\ \frac{\partial(\varphi_1 + v(s))}{\partial v} = (\alpha_1(\lambda) + s\alpha_2 + o(s))(\varphi_1 + v(s)) & \text{on } \partial\Omega. \end{cases}$$

We can write $v(s) = sv_1 + s^2v_2 + o(s^2)$ for $s \simeq 0$. Plugging this expression in the above equation and rearranging the terms in s, we get

$$-\Delta v_1 - \lambda m(x)v_1 = -\lambda m(x)\varphi_1^2$$
 in Ω , $\frac{\partial v_1}{\partial \nu} - \alpha_1(\lambda)v_1 = \alpha_2\varphi_1$ on $\partial\Omega$,

and multiplying by φ_1 , we get

$$\alpha_2 = \frac{\lambda \int_{\Omega} m \varphi_1^3}{\int_{\Omega} \varphi_1^2}.$$

Now, since

$$-\Delta \varphi_1 - \lambda m(x)\varphi_1 = 0$$
 in Ω , $\frac{\partial \varphi_1}{\partial \nu} = \alpha_1(\lambda)\varphi_1$ on $\partial \Omega$,

multiplying by φ_1^2 , we get

$$2\int_{\Omega} \varphi_1 |\nabla \varphi_1|^2 - \alpha_1(\lambda) \int_{\partial \Omega} \varphi_1^3 = \lambda \int_{\Omega} m \varphi_1^3.$$

Recall that $\alpha_1(\lambda) < 0$ for $\lambda \in (\lambda_1^-(D), 0 = \lambda_1^-(0)) \cup (\lambda_1^+(0), \lambda_1^+(D))$. Thus, by continuity of $\alpha_1(\lambda)$ and φ_1 with respect to λ (see for instance [8]), there exists $\delta > 0$ such that $\alpha_2 > 0$ for $\lambda \in (\lambda_1^-(D) - \delta, 0) \cup (\lambda_1^+(0) - \delta, \lambda_1^+(D) + \delta)$. In particular, $\alpha_2 > 0$ when $\alpha_1(\lambda) = 0$, that is, when $\lambda = \lambda_1^+(0)$.

Finally, the stability of the new solution u(s) follows by [10].

The following result has a global character (see [15]):

Lemma 3.2. Whenever $\alpha_1(\lambda)$ exists, there is an unbounded continuum C of positive solutions of (P) emanating from $(\alpha, u) = (\alpha_1(\lambda), 0)$.

In the following result, we prove that (P) has no positive solutions for α large and independent of λ . Let α_0 be the principal eigenvalue of

$$\begin{cases}
-\Delta u = 0 & \text{in } M_0, \\
\frac{\partial u}{\partial \nu} = \alpha u & \text{on } \partial M_0 \cap \partial \Omega, \\
u = 0 & \text{on } \partial M_0 \setminus \partial \Omega,
\end{cases}$$
(3.12)

where M_0 is given in (1.2).

Remark 3.3. Note that (3.12) has indeed a principal eigenvalue α_0 . This can be proved in the same way as the existence of $\alpha_1(\lambda)$ in Lemma 2.3. As a matter of fact, if we denote by $\mu_1(\alpha)$ the principal eigenvalue of the problem

$$\begin{cases}
-\Delta u = \mu_1(\alpha)u & \text{in } M_0, \\
\frac{\partial u}{\partial \nu} - \alpha u = 0 & \text{on } \partial M_0 \cap \partial \Omega, \\
u = 0 & \text{on } \partial M_0 \setminus \partial \Omega,
\end{cases}$$
(3.13)

then α_0 is a principal eigenvalue of (3.12) if and only if $\mu_1(\alpha_0) = 0$. Now, since $\alpha \mapsto \mu_1(\alpha)$ is decreasing, $\mu_1(0) > 0$ and $\lim_{\alpha \to \infty} \mu_1(\alpha) = -\infty$, we deduce the existence and uniqueness of α_0 .

Lemma 3.4. If $\alpha \geq \alpha_0$ then (P) has no positive solution.

Proof. Let u be a positive solution of (P). Since M_0 is a proper subdomain of Ω , by Lemma 2.1 we have

$$0 = \lambda_1(-\Delta - \lambda m + \lambda m u, N - \alpha) \le \lambda_1^{M_0}(-\Delta, N - \alpha, D),$$

which implies $\alpha < \alpha_0$.

We shall take advantage of the results known for (P) when $\alpha = 0$, as shown in [6]:

Lemma 3.5. Assume (1.1) and $\alpha = 0$. Then:

- 1. (P) has two trivial solutions, $u \equiv 0$ and $u \equiv 1$, for all $\lambda \in \mathbb{R}$. Moreover, $u \equiv 0$ is stable for $\lambda \in (0, \lambda_1^+(0))$ and $u \equiv 1$ is stable for $\lambda \in (-\lambda_1^+(0), 0)$.
- 2. (P) has a stable positive solution u_{λ} for $\lambda \in (-\infty, -\lambda_1^+(0)) \cup (\lambda_1^+(0), +\infty)$. Moreover, $u_{\lambda} < 1$ and this is the only positive solution of (P) satisfying u < 1.

Proof.

1. It is clear that u = 0 and u = 1 solve (P). The stability of u = 0 follows by Theorem 3 in [6], whereas the linearized problem around u = 1 is

$$-\Delta w = (-\lambda)m(x)w$$
 in Ω , $\frac{\partial w}{\partial \nu} = 0$ on $\partial \Omega$,

for which the first eigenvalue is positive if and only $-\lambda \in (0, \lambda_1^+(0))$.

2. The case $\lambda \in (\lambda_1^+(0), +\infty)$ follows by [6]. On the other hand, observe that w = 1 - u verifies

$$-\Delta w = (-\lambda)m(x)w(1-w)$$
 in Ω , $\frac{\partial w}{\partial \nu} = 0$ on $\partial \Omega$,

so that, by [6], there exists a unique stable solution $0 < w_{\lambda} < 1$ for $-\lambda \in (\lambda_1^+(0), +\infty)$, that is, for $\lambda \in (-\infty, -\lambda_1^+(0))$.

Let us set $\mathcal{E} := \mathcal{C}(\overline{\Omega}), \, \mathcal{P} := \{u \in \mathcal{E}; u \geq 0\}$ and

$$\Sigma =: \{(\alpha, u) \in \mathbb{R} \times \mathcal{P}; u \text{ is a positive solution of } (P)\}.$$

Lemma 3.6. Assume that u_0 is a positive stable solution of (P) for $\alpha = 0$. Then:

- 1. There exist $\varepsilon > 0$ and a neighborhood $\mathcal{U} \subset \mathbb{R} \times \mathcal{P}$ such that $\mathcal{U} \cap \Sigma = \{(\alpha, u_{\alpha}); \alpha \in (-\varepsilon, \varepsilon)\}$. Morever, u_{α} is stable for $\alpha \in (-\varepsilon, \varepsilon)$.
- 2. There exists an unbounded continuum C_0 of positive solutions of (P) containing $(0, u_0)$. Moreover, if we assume that there exist a priori bounds for positive solutions of (P) whenever α varies in a compact set, then there exists $\mathcal{F} \subset \mathcal{P}$ such that

$$C_0 \cap (\{0\} \times \mathcal{F}) \neq \emptyset, \quad C_0 \cap (\{0\} \times (\mathcal{P} \setminus \mathcal{F})) \neq \emptyset.$$

Proof. Since u_0 is stable, the first result follows by Proposition 20.6 in [3] and the existence of C_0 containing $(0, u_0)$ by Theorem 17.1 in [3]. The second paragraph is a consequence of the first one and Lemma 3.4. See also [5], Theorems 4.4.1 and 4.4.2 for the first and second paragraphs, respectively.

3.1 A priori bounds

In this section we get a priori bounds for positive solutions of (P) when α belongs to a compact set of \mathbb{R} .

Proposition 3.7. Let $\lambda > 0$. Assume that there exist a function $h^- : \overline{M_-} \mapsto \mathbb{R}^+$, continuous and bounded away from zero in a neighborhood of ∂M_- , and a constant $\gamma_- \geq 0$ such that

$$m^{-}(x) = h^{-}(x)(dist(x, \partial M_{-}))^{\gamma_{-}} \qquad in \ M_{-}.$$

Assume in addition

$$2 < \min\left\{\frac{N+1+\gamma_{-}}{N-1}, \frac{N+2}{N-2}\right\} \quad if \ N \ge 3.$$
 (3.14)

Then, for every compact interval $\Lambda \subset \mathbb{R}$ there exists a positive constant C such that

$$||u||_{\infty} \leq C$$
,

for any positive solution u of (P) with $\alpha \in \Lambda$.

Proof. First note that if (P) has positive solution u then, by Lemma 3.4, we must have $\alpha < \alpha_0$.

We split the proof in two steps.

Step 1: A priori bounds on \overline{M}_{-} **.** For this step, we use (3.14), an adequate rescaling Gidas-Spruck argument and a Liouville type theorem, see exactly Lemma 4.2 and Theorem 4.3 of [4].

Step 2: A priori bounds on Ω . Define

$$R:=\sup_{\alpha\in\Lambda}\sup_{x\in\overline{M}_{-}}u(x)<\infty.$$

We consider the problem

$$\begin{cases}
-\Delta u = \lambda m(x)u(1-u) & \text{in } \Omega \backslash \overline{M_{-}}, \\
u = R & \text{on } \partial(M_{-}) \backslash \partial\Omega, \\
\frac{\partial u}{\partial \nu} = \alpha u & \text{on } \partial(\Omega \backslash \overline{M_{-}}) \cap \partial\Omega.
\end{cases} (3.15)$$

We claim that there exists a unique positive solution U of (3.15) for all $\alpha < \alpha_0$. In this case it is clear that a solution u of (P) is a subsolution of (3.15) in $\Omega \setminus \overline{M}$. By the uniqueness of the positive solution of (3.15) we get

$$||u||_{L^{\infty}(\Omega\setminus\overline{M}_{-})} \le ||U||_{L^{\infty}(\Omega\setminus\overline{M}_{-})},$$

whence the result follows.

It remains to prove the claim. We use the sub-supersolution method to obtain U. Indeed, $\underline{u} := 0$ is a subsolution of (3.15). Now, set

$$M_{\delta} := \{ x \in \Omega : dist(x, M_0) < \delta \},$$

for $\delta > 0$, and consider the eigenvalue problem

$$\begin{cases}
-\Delta u = 0 & \text{in } M_{\delta}, \\
u = 0 & \text{on } \partial M_{\delta} \cap \Omega, \\
\frac{\partial u}{\partial \nu} = \alpha u & \text{on } \partial \Omega.
\end{cases}$$
(3.16)

Thanks to Remark 3.3 there exists a principal eigenvalue $\alpha_1(\delta)$ of (3.16), and φ_{δ} a positive eigenfunction associated to $\alpha_1(\delta)$. Now, we can show that M_{δ} is a sequence of bounded and regular domains converging to M_0 from the exterior in the sense of [8]. So, by Theorem 7.1 in [8], we conclude that

$$\alpha_1(\delta) \uparrow \alpha_0$$
 as $\delta \uparrow 0$.

Take $\alpha < \alpha_0$ and consider δ such that $\alpha < \alpha_1(\delta) < \alpha_0$. Now, define

$$\Psi := \left\{ \begin{array}{ll} \varphi_{\delta} & \text{in } M_{\delta/2} \cap (\Omega \setminus \overline{M}_{-}), \\ \psi & \text{in } M_{+} \setminus M_{\delta/2}, \end{array} \right.$$

where ψ is a smooth and positive function such that Ψ is smooth. Then, $\overline{u} := K\Psi$ is a supersolution of (3.15) for K sufficiently large. Indeed, it is clear that $K\Psi$ is supersolution in M_0 because $-\Delta(K\Psi) = 0$ in M_0 . In $M_+ \cap M_{\delta/2}$ we have

$$-\Delta(K\Psi) = 0 \ge \lambda m(x) K \varphi_{\delta} (1 - K \varphi_{\delta})$$
 for K large.

Moreover, in $M_+ \setminus M_{\delta/2}$ we get

$$-\Delta(K\Psi) = K(-\Delta(\psi)) \ge \lambda m(x) K \psi (1 - K\psi)$$
 for K large.

On ∂M_- , we take K such that $K\Psi \geq R$. Thus, it is clear that

$$\frac{\partial \overline{u}}{\partial \nu} = \frac{\partial (K\Psi)}{\partial \nu} = K \frac{\partial \varphi_d}{\partial \nu} = K \alpha_1 \varphi_\delta > \alpha \overline{u} \quad \text{on } \partial \Omega.$$

Finally, the uniqueness follows by Theorem 1.2 in [16].

By symmetry on λ , we deduce the following a priori bounds result for positive solutions of (P).

Theorem 3.8. Let $\lambda \neq 0$. Assume that there exist two functions $h^{\pm}: \overline{M_{\pm}} \mapsto \mathbb{R}^+$, continuous and bounded away from zero in a neighborhood of ∂M_{\pm} , and constants $\gamma_{\pm} \geq 0$ such that

$$m^{\pm}(x) = h^{\pm}(x)(dist(x,\partial M_{\pm}))^{\gamma_{\pm}}$$
 in M_{\pm} .

Assume in addition

$$2<\min\left\{\frac{N+1+\gamma_{\pm}}{N-1},\;\frac{N+2}{N-2}\right\} \qquad \text{if } N\geq 3.$$

Then, for every compact interval $\Lambda \subset \mathbb{R}$ there exists a positive constant C such that

$$||u||_{\infty} \leq C$$
,

for any positive solution u of (P) with $\alpha \in \Lambda$.

4 Proof of the main results

Before proving our main results, we need the following result (recall the definition of $\mu(\lambda, \alpha)$ in (2.5)).

Lemma 4.1.

- 1. Assume that there exists a positive solution u_* of (P) for $\alpha = \alpha_*$. Then, there exists a positive solution for every $\alpha < \alpha_*$ such that $\mu(\lambda, \alpha) < 0$.
- 2. Assume that there exists a positive solution u_0 of (P) for $\alpha = 0$. Then, there exists a positive solution u_{α} for all $\alpha < 0$ such that $\mu(\lambda, \alpha) < 0$. Moreover, if $u_0 \leq 1$ then u_{α} is stable.

Proof.

1. We use the sub-supersolution method. Consider φ a positive eigenfunction associated to $\mu(\lambda, \alpha)$. Take as pair of sub-supersolution $(\underline{u}, \overline{u}) = (\varepsilon \varphi, u_*)$, with $\varepsilon > 0$. It is easily seen that \underline{u} is a sub-solution of (P) if

$$\mu(\lambda, \alpha) + \lambda m(x) \varepsilon \varphi \le 0,$$

which holds for ε small enough. Then, there exists a positive solution $u_{\alpha} \in (\underline{u}, u_*)$.

2. The existence of u_{α} follows by the previous item. Assume that $u_0 \leq 1$. Since $u \equiv 1$ is not solution of (P) for $\alpha < 0$, we have $u_{\alpha} < 1$. Now, we show that u_{α} is stable, i.e.

$$\lambda_1(-\Delta - \lambda m(x)(1 - 2u_\alpha), N - \alpha) > 0. \tag{4.17}$$

To this end, we prove the existence of a positive supersolution for the operator $(-\Delta - \lambda m(x)(1 - 2u_{\alpha}), N - \alpha)$. Take $\overline{u} := f(u_{\alpha})$ where $f(u_{\alpha}) = u_{\alpha}(1 - u_{\alpha}) > 0$, see [6]. Then, it is clear that

$$-\Delta \overline{u} - \lambda m(x)(1 - 2u_{\alpha})\overline{u} = -f''(u_{\alpha})|\nabla u_{\alpha}|^{2} > 0 \text{ in } \Omega,$$

and

$$\frac{\partial \overline{u}}{\partial \nu} - \alpha \overline{u} = -2\alpha u_{\alpha}^2 > 0 \quad \text{on } \partial \Omega.$$

This proves that u_{α} is stable.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1.

1. Assume that $\lambda_1(-\Delta - \lambda m, D) > 0$. By Lemma 2.3 we know that (E) has a principal eigenvalue $\alpha_1(\lambda)$ and from Lemma 3.2 there exists an unbounded continuum C of positive solutions of (P) emanating from $(\alpha, u) = (\alpha_1(\lambda), 0)$. On the other hand, by Lemma 3.4 there is no positive solution of (P) for $\alpha \geq \alpha_0$. Moreover, Theorem 3.8 provides us with a priori bounds for positive solutions of (P), so we conclude the existence of positive solutions of (P) for all $\alpha < \alpha_1$.

Now, we set

$$\alpha_* := \sup \{ \alpha \in \mathbb{R} : (P) \text{ has a positive solution} \}$$

It is clear that $\alpha_* < \infty$. Thanks to the *a priori bounds*, we infer the existence of a non-negative solution of (P) for $\alpha = \alpha_*$, which we denote by u_* .

If $\alpha_* = \alpha_1(\lambda)$ we conclude the existence of positive solution for $\alpha < \alpha_*$ and no positive solution for $\alpha > \alpha_*$.

Assume that $\alpha_* > \alpha_1(\lambda)$. In this case, since $\alpha_1(\lambda)$ is the unique bifurcation point from the trivial solution, we can show that $u_* > 0$. Now, by Lemma 4.1, we know that (P) has a positive solution u_{α} for every $\alpha < \alpha_*$ such that $\mu(\lambda, \alpha) < 0$, that is, for $\alpha \in (\alpha_1, \alpha_*)$.

On the other hand, by Lemma 3.1 the solution u_{α} is stable for $\alpha \in (\alpha_1(\lambda), \alpha_1(\lambda) + \delta)$ for some $\delta > 0$. This implies the existence of two positive solutions of (P) for $\alpha \in (\alpha_1(\lambda), \alpha_1(\lambda) + \delta)$ and the existence of positive solution for all $\alpha \leq \alpha_*$.

- (a) Assume that $\lambda_1(-\Delta \lambda m, N) > 0$. Then, in this case $\alpha_1(\lambda) > 0$ and so $\alpha_* > 0$.
- (b) If $\lambda_1(-\Delta \lambda m, N) = 0$ then $\alpha_1(\lambda) = 0$. In this case, by Lemma 3.1, the direction of bifurcation is supercritical, and so again $\alpha_* > 0 = \alpha_1(\lambda)$.
- (c) Assume now that $\lambda_1(-\Delta \lambda m, N) < 0$, that is, $\lambda > \lambda_1^+(0)$ or $\lambda < \lambda_1^-(0) = 0$ and $\lambda \neq -\lambda_1^+(0)$. Recall that in this case $\alpha_1 < 0$. Hence, by Lemma 3.5, for $\alpha = 0$ there exists a stable solution $u_0 \leq 1$ of (P). By Lemma 4.1, we have a stable positive solution u_α for all $\alpha \in (\alpha_1, 0]$. By continuity, we have a stable solution, still denoted u_α , for $\alpha \in (\alpha_1, \alpha_{**})$. Now, in view of non-existence of solutions for large α , the continuum \mathcal{C}_0 has to turn backwards, and so we conclude the existence of a second solution, w_α , for $\alpha \in (\alpha_1, \alpha_{**})$.
- (d) Finally, assume that $\lambda = -\lambda_1^+(0)$. Again we have $\alpha_1(\lambda) < 0$ and by Lemma 3.5 for $\alpha = 0$ there exists the trivial solution $u_0 \equiv 1$ of (P). By Lemma 4.1, we have a stable positive solution u_{α} for all $\alpha \in (\alpha_1(\lambda), 0]$. Hence, in this case, $\alpha_{**} \geq 0$.
- 2. Assume now that $\lambda_1(-\Delta \lambda m, D) \leq 0$, which implies that $\lambda_1(-\Delta \lambda m, N) < 0$. In this case, $\alpha_1(\lambda)$ does not exist. However, by Lemma 3.5, for $\alpha = 0$ there exists a stable solution $u_0 \leq 1$ of (P), and consequently, by Lemma 3.6, there exists an unbounded continuum \mathcal{C}_0 containing $(0, u_0)$ and at least a positive solution for $\alpha \in (-\varepsilon, \varepsilon)$. We set α_* as in the previous case. Now, by Lemma 4.1, there exists a positive solution for every $\alpha < \alpha_*$ such that $\mu(\lambda, \alpha) < 0$, that is, for all $\alpha < \alpha_*$. Indeed, since $\lambda_1(-\Delta \lambda m, D) \leq 0$, we have $\mu(\lambda, \alpha) < 0$ for all α . Moreover, there exists a stable solution for all $\alpha \in (-\infty, \alpha_{**})$. This implies the existence of a second solution in this interval.

Proof of Theorem 1.2.

Items 1 and 2 follow by Lemma 3.5. Moreover, for $\lambda \in (-\lambda_1^+(0), 0)$ there holds

$$\lambda_1(-\Delta - \lambda m, N) < 0 < \lambda_1(-\Delta - \lambda m, D)$$

so that, by Theorem 1.1, there exist two positive solutions for $\alpha = 0$.

Proof of Theorem 1.3.

- 1. This item follows directly from Lemma 3.4.
- 2. Assume that $\lambda < 0$, $\lambda \neq -\lambda_1^+(0)$. In this case, $\lambda_1(-\Delta \lambda m, N) < 0$ and applying Theorem 1.1 (in both cases $\lambda_1(-\Delta \lambda m, D) \leq 0$ and $\lambda_1(-\Delta \lambda m, D) > 0$) we conclude that there exist two positive solutions of (P) for α small enough.
- 3. Assume now $\lambda \in (\lambda_1^-(\alpha), \lambda_1^+(\alpha))$. Then $\lambda_1(-\Delta \lambda m, N) > 0$, so $\alpha_1(\lambda) > 0$ and there exists at least a positive solution for $\alpha < \alpha_1(\lambda)$, that is, for $\lambda \in (\lambda_1^-(\alpha), \lambda_1^+(\alpha))$, by Lemma 2.6.
- 4. Assume that $\lambda > \lambda_1^+(0)$. In this case $\lambda_1(-\Delta \lambda m, N) < 0$ and again by Theorem 1.1 we conclude that (P) has at least two positive solutions for α small enough. Finally, for $\lambda = \lambda_1^+(0)$ we have $\alpha_1(\lambda) = 0$, so that for α sufficiently small, (P) has at least two positive solutions.

Acknowledgements. Supported by Spanish Government under the project MTM2012-31304 (AS) and Fondecyt 11121567.

References

- [1] G. A. Afrouzi and K. J. Brown, On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions, Proc. Amer. Math. Soc., **127** (1999), 125-130.
- [2] G. A. Afrouzi and K. J. Brown, Positive mountain pass solutions for a semilinear elliptic equation with a sign-changing weight function, Nonlinear Anal., 64 (2006), 409-416.
- [3] H. Amann, Fixed points equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, **18** (1976), 620–709.
- [4] H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, **146** (1998), 336–374.
- [5] A. Ambrosetti and D. Arcoya, An introduction to nonlinear functional analysis and elliptic problems. Progress in Nonlinear Differential Equations and their Applications, 82. Birkhuser Boston, Inc., Boston, MA, 2011.
- [6] K. J. Brown and P. Hess, Stability and uniqueness of positive solutions for a semilinear elliptic boundary value problem, Differential Integral Equations, 3 (1990), 201-207.
- [7] K. J. Brown and B. Ko, The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problem, Nonlinear Anal., 39 (2000), 587-597.

- [8] S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations, 178 (2002), 123-211.
- [9] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971) 321-340.
- [10] M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., **52** (1973), 161-180.
- [11] M. Delgado and A. Suárez, On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem. Proc. Amer. Math. Soc., 132 (2004), 1721-1728
- [12] J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition I, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 499-525.
- [13] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883–901.
- [14] Y. Lou, T. Nagylak and W-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., **33** (2013), 4349-4373.
- [15] C. Morales-Rodrigo and A. Suárez, Some elliptic problems with nonlinear boundary conditions, in "Spectral Theory and Nonlinear Analysis with Applications to Spatial Ecology" (S. Cano-Casanova, J. López-Gómez, C. Mora-Corral, eds), World Scientific, (2005), 175-199.
- [16] C. Morales-Rodrigo and A. Suárez, Uniqueness of solution for elliptic problems with nonlinear boundary conditions, Comm. Appl. Nonlinear Anal., 13 (2006), 69-78.
- [17] S. Senn, On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics, Comm. Partial Differential Equations, 8 (1983), 1199-1228.