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Abstract

In this paper we give new presentations of the braid groups and the pure braid

groups of a closed surface. We also give an algorithm to solve the word problem in

these groups, using the given presentations.

1 Introduction

Let M be a closed surface, not necessarily orientable, and let P = {P1, . . . , Pn} be a set of
n distinct points of M . A geometric braid over M based at P is an n-tuple Γ = (γ1, . . . , γn)
of paths, γi : [0, 1] −→M , such that

(1) γi(0) = Pi for all i = 1, . . . , n,

(2) γi(1) ∈ P for all i = 1, . . . , n,

(3) {γ1(t), . . . , γn(t)} are n distinct points of M for all t ∈ [0, 1].

For all i = 1, . . . , n, we will call γi the i-th string of Γ.

Two geometric braids based at P are said to be equivalent if there exists a homotopy
which deforms one of them into the other, provided that at any time we always have a
geometric braid based at P. We can naturally define the product of two braids as induced
by the usual product of paths: for every i = 1, . . . , n, we compose the string of the first
braid which ends at Pi, with the i-th string of the second braid. This product is clearly
well defined, and it endows the set of equivalence classes of braids with a group structure.
This group is called the braid group on n strings over M based at P, and is denoted by
Bn(M,P). This group does not depend, up to isomorphism, on the choice of P, but only
on the number of strings, so we may write Bn(M) instead of Bn(M,P).

A braid Γ = (γ1, . . . , γn) is said to be pure if γi(1) = Pi for all i = 1, . . . , n, that is, if
all its strings are loops. The set of equivalence classes of pure braids forms a subgroup of
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Bn(M,P) called pure braid group on n strings over M based at P, and denoted PBn(M,P).
Again, we may write PBn(M) since it does not depend on the choice of P. Note that if
n = 1, then B1(M) = PB1(M) = π1(M), the fundamental group of M .

There exists an interpretation of braid groups as fundamental groups of some spaces,
called configuration spaces. Let FnM denote the space of n-tuples of distinct points of M ,
that is, FnM = Mn\∆, where

∆ = {(x1, . . . , xn) ∈Mn / xi = xj for some i 6= j}.

It is clear that PBn(M) ≃ π1(FnM). Now consider the symmetric group on n elements,
Σn. This group acts naturally on FnM by permuting coordinates, so we can consider the
configuration space:

F̂nM = FnM/Σn,

which can be seen as the space of embeddings of n points in M . We clearly have Bn(M) ≃
π1(F̂nM).

This way to look at braids provides some useful exact sequences, derived from fibrations.
The first one comes from the covering space map

FnM −→ F̂nM,

with fiber Σn. It induces the following exact sequence:

1 −→ PBn(M)
e

−→ Bn(M)
f

−→ Σn −→ 1. (1)

The homomorphism e is the natural inclusion, and f maps a given braid to the permutation
that it induces on P.

Now we consider the Fadell-Neuwirth fibration ([FN]): given 1 ≤ m < n, the map

p : FnM −→ FmM
(x1, . . . , xn) 7−→ (xn−m+1, . . . , xn)

is a locally trivial fibration with fiber Fn−m(M\{Q1, . . . , Qm}), for any choice of the points
{Q1, . . . , Qm}. Set P ′ = {P2, . . . , Pn}, take m = n − 1, and consider M different from
the sphere and from the projective plane (so π2(M) = 1). By the long exact sequence of
homotopy groups of this fibration, we obtain

1 −→ π1(M\P ′, P1)
u

−→ PBn(M,P)
v

−→ PBn−1(M,P ′) −→ 1. (2)

If γ ∈ π1(M\P ′, P1), then u(γ) = (γ, eP2
, . . . , ePn

), where ePi
denotes the constant path on

Pi, and, for Γ = (γ1, . . . , γn) ∈ PBn(M,P), one has v(Γ) = (γ2, . . . , γn).

The goal of this paper is to determine new presentations of the braid groups of closed
surfaces different from the sphere and from the projective plane. These presentations are

2



much simpler than those which were known before ([S]). Moreover, the generators and
the relations have an easy geometric interpretation. We also show that these presentations
furnish an algorithm to solve the word problem for surface braid groups. Notice that
similar presentations of the braid groups of the sphere and of the projective plane can be
found in [FvB] and in [vB], respectively.

Our work is organized as follows. In Section 2 we state the results, introducing the
generators and relations of our new presentations. Then we explain in Section 3 the
method followed in the proofs, which we apply throughout Sections 4 and 5, for orientable
and non-orientable surfaces, respectively. Finally, we describe in Section 6 an algorithm to
solve the word problem in surface braid groups.

I would like to thank Luis Paris for giving me the idea of applying Lemma 3.1 to surface
braid groups, and also for its valuable help in the writing of this paper.

2 Statements

The aim of this section is to state our presentations of surface braid groups, defining the
generators and showing that the proposed relations are satisfied. We start with the case
of an oriented surface different from the sphere.

Let M be a closed, orientable surface of genus g ≥ 1. The first thing we want is to
have a geometrical representation of a braid over M . We represent M as a polygon L of
4g sides, identified in the way of Figure 1 (See [M], page 34, ex. 8.9).

α1
α2g

α2g−1

α1

α2

α2g−1

α2g

α2

Figure 1: The polygon L representing M .

We could now take the cylinder L× I (I = [0, 1]), and represent a braid Γ over M as it
is usually done for the open disc, that is, in L× {t} we draw the n points γ1(t), . . . , γn(t).
But in this case a string could “go through a wall” of the cylinder and appear from the
other side. Hence, if we look at the cylinder from the usual viewpoint, it would not be
clear which are the “crossed walls” (see the left hand side of Figure 2).
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L

I

Figure 2: A braid over a surface of genus 2: two different viewpoints.

The solution we propose is to look at the cylinder from above, as in the right hand side
of Figure 2. In this way, we get rid of the ambiguity, and moreover we see the strings again
as paths in the surface. When two strings cross, we see passing above the one that reaches
before the crossing point. Anyway, it is good to keep in mind the idea that we are looking
to a cylinder, and to consider the paths as strings: in this manner, one can see more easily
when two geometric braids are equivalent.

Now we can define the generators of Bn(M). We choose the n base points along the
horizontal diameter of L, as in Figure 3. Now given r, 1 ≤ r ≤ 2g we define the braid ar
as follows: its only nontrivial string is the first one, which goes through the r-th wall, in
the way of Figure 3. That is, the first string will go upwards if r is odd, and downwards
otherwise.

We also define, for all i = 1, . . . , n−1, the braid σi as in Figure 3. Note that σ1, . . . , σn−1

are the classical generators of the braid group Bn of the disc.

a2k+1

α2k+1

α2k+1

PnP1 P1

α2k

α2k

Pn

a2k σi

PnPi+1P1 Pi

Figure 3: The generators of BnM .
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We will see later that the set {a1, . . . , a2g, σ1, . . . , σn−1} is a set of generators of Bn(M).
There are two relations between these generators that we can deduce as follows. Consider
the interior of L. It is a subsurface D of M homeomorphic to a disc, so clearly every
relation satisfied in the braid group Bn = Bn(D) will be satisfied as well in Bn(M) (the
same homotopy can be used in both cases). In fact, since g ≥ 1, it is known that Bn is
a subgroup of Bn(M) (see [PR]). Hence, from the classical presentation of Bn, we obtain
two relations in Bn(M):

σiσj = σjσi (|i− j| ≥ 2),

σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n− 2).

Note also that if i ∈ {2, . . . , n− 1} and r ∈ {1, . . . , 2g}, then the non-trivial strings of
σi and the one of ar may be taken to be disjoint. This clearly implies that these two braids
commute. Hence we have

arσi = σiar (1 ≤ r ≤ 2g; i ≥ 2).

Now, in order to find more relations between the set of generators, we do the following
construction. Denote by sr the first string of ar, for all r = 1, . . . , 2g, and consider all the
paths s1, . . . , s2g. We can “cut” the polygon L along them, and “glue” the pieces along the
paths α1, . . . , α2g. We obtain another polygon of 4g sides which are labeled by s1, . . . , s2g

(see in Figure 4 the case of a surface of genus 2; the general case is analogous). We will call
this new polygon the P1-polygon of M , since all of its vertices are identified to P1, while L
will be called the initial polygon. We obtain in this way a new representation of the surface
M .

P1

α3

α3 α2

α2

α4

α1 α4

α1

Pn

s4

s2s3

s1

P1

s2

s3

s1

s4α1 α4

P1
PnP1

α2 α3

s2

s1

s4

s3

P1

P1

P1

P1 P1

Figure 4: The initial and the P1-polygon of a surface of genus 2.

We will use the P1-polygon to show three more relations in Bn(M). For instance,
consider the braid a1 · · ·a2ga

−1
1 · · ·a−1

2g . If we look at it in the P1-polygon, it is clear that it
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is equivalent to the braid of Figure 5. But this one can be seen into the initial polygon as a
braid that does not go through the walls, namely, an element of Bn, the braid group of the
disc. Then we can easily show that it is equivalent to the braid σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1.

So we have:
a1 · · ·a2ga

−1
1 · · ·a−1

2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1.

Pn

s1

s2g

P1
P1

s2g

s1

Figure 5: The braid a1 · · ·a2ga
−1
1 · · ·a−1

2g .

Now we define, for each r = 1, . . . , 2g, the braid

A2,r = σ−1
1

(
a1 · · ·ar−1a

−1
r+1 · · ·a

−1
2g

)
σ−1

1 .

We will use the P1-polygon to see how it looks like. In the left hand side of Figure 6, we can
see a braid which is clearly equivalent to A2,r (if r is odd, the other case being analogous).
If we “cut” and “glue” to see this braid in the P1-polygon, we obtain the situation of the
right hand side of Figure 6. That is, A2,r can be seen as a braid whose only nontrivial
string is the second one, which goes upwards and crosses once the r-th wall sr. Note that,
unlike the case of ar, A2,r always points upwards in the P1-polygon, no matter the parity
of r.

Therefore we have seen that the braid A2,r can be represented by a geometric braid,
whose only non trivial string can be taken disjoint from all the paths st, t 6= r. This
clearly implies that

atA2,r = A2,rat (1 ≤ t, r ≤ 2g; t 6= r).

Now we finish our set of relations by considering the commutator of the braids (a1 · · ·ar)
and A2,r, for all r = 1, . . . , 2g. In Figure 7 we can see a sketch of the homotopy which
starts with this commutator and deforms it to a braid clearly equivalent to σ2

1 . Therefore,
we obtain the relation:

(a1 · · ·ar)A2,r = σ2
1A2,r (a1 · · ·ar) (1 ≤ r ≤ 2g).
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P2
α1

α2

αr+1αr−1

αr+1 αr−1

α2g

α2g−2

α3

P1

α1

α2

α3

α2g

α2g−1

α2g−1

α2g−2

αr

αr

P2

sr

s2g

s2g−1

s1

s2

s2

s1

s2g

s2g−1

sr−1sr+1 sr

P1

sr−1 sr+1

Figure 6: The braid A2,r: In the P1-polygon and in the initial one.

Now we claim that the six relations that we have considered form a complete set of
defining relations of Bn(M). In other words, we have the following result.

Theorem 2.1. If M is a closed, orientable surface of genus g ≥ 1, then Bn(M) admits
the following presentation:

• Generators:

σ1, . . . , σn−1, a1, . . . , a2g.

• Relations:

(R1) σiσj = σjσi (|i− j| ≥ 2)

(R2) σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n− 2)

(R3) a1 · · ·a2ga
−1
1 · · ·a−1

2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1

(R4) arA2,s = A2,sar (1 ≤ r, s ≤ 2g; r 6= s)

(R5) (a1 · · ·ar)A2,r = σ2
1A2,r (a1 · · ·ar) (1 ≤ r ≤ 2g)

(R6) arσi = σiar (1 ≤ r ≤ 2g; i ≥ 2)

where
A2,r = σ−1

1

(
a1 · · ·ar−1a

−1
r+1 · · ·a

−1
2g

)
σ−1

1 .

Now we turn to the non-orientable case. Let M be a closed non-orientable surface of
genus g ≥ 2. To represent a braid in M we will also present the surface as a polygon, this
time of 2g sides, as in Figure 8, and we make an additional cut: define the path e as in
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P1 P2

sr

sr

s1 s1

P2
P1

sr

sr sr

P1
P2

s1

sr

Figure 7: The braid [a1 · · ·ar, A2,r].

the left hand side of Figure 8, and cut the polygon along it. We get M represented as in
the right hand side of the same figure, where we can also see how we choose the points
P1, . . . , Pn.

α2

α1

e

α1

αg−1

αg−1

αg

αg

α2 α1

ee

PnP1

αg

αg

α1

Figure 8: Representation of a non-orientable surface M .

We define now the generators of Bn(M). They will be similar to those of the orientable
surface braid groups. For all i ∈ {1, . . . n − 1}, the braid σi will be the same as in the
orientable case. For all r ∈ {1, . . . , g}, the braid ar consists on the first string passing
through the r-th wall, in the way of Figure 9, while the other strings are trivial paths.

There are six relations in the braid group of M that are analogous to those considered
for an orientable surface. They can be shown to hold in the same way as in the orientable
case; the only difference is the construction of the P1-polygon. We denote by s1, . . . , sg the
first string of a1, . . . , ag, respectively, and in this case we define another path, e1, which goes
from P1 to the final point of e (see Figure 9). Then we cut along the paths s1, . . . , sg, e1 and
glue along α1, . . . , αg, e. The result is the P1-polygon of M whose sides, reading clockwise,
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ar

ee

αr αr

Pn

e1

P1
PnPi+1P1 Pi

σi

ee

αg

αg

α1

α1

Figure 9: The generators of Bn(M).

are labeled by s1, s1, s2, s2, . . . , sg, sg, e1, e
−1
1 .

We claim that the six mentioned relations form a set of defining relations of Bn(M).
To be more precise, we claim the following.

Theorem 2.2. If M is a closed, non-orientable surface of genus g ≥ 2, then Bn(M) admits
the following presentation:

• Generators:

σ1, . . . , σn−1, a1, . . . , ag.

• Relations:

(r1) σiσj = σjσi (|i− j| ≥ 2)

(r2) σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n− 2)

(r3) a2
1 · · ·a

2
g = σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1

(r4) arA2,s = A2,sar (1 ≤ r, s ≤ g; r 6= s)

(r5)
(
a2

1 · · ·a
2
r−1ar

)
A2,r = σ2

1A2,r

(
a2

1 · · ·a
2
r−1ar

)
(1 ≤ r ≤ g)

(r6) arσj = σjar (1 ≤ r ≤ g; j ≥ 2)

where
A2,r = σ−1

1

(
a2

1 · · ·a
2
r−1a

−1
r a−2

r−1 · · ·a
−2
1

)
σ1.
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3 A method for finding presentations

Consider an exact sequence of groups

1 −→ A
i

−→ B
p

−→ C −→ 1,

where we suppose A ⊂ B, and i is the inclusion map. Suppose that A and C have
presentations

A =< GA; RA >, C =< GC ; RC > .

For each y ∈ GC , we choose an element ỹ ∈ B such that p(ỹ) = y, and for each relator
r = y1 . . . ym ∈ RC , we write r̃ = ỹ1 . . . ỹm ∈ B. Then it is clear that for every r ∈ RC ,
there exists a word fr over GA such that r̃ = fr in B.

On the other hand, for all x ∈ GA and y ∈ GC , there exists a word gx,y over GA such
that ỹ x ỹ−1 = gx,y in B.

Lemma 3.1. Under the above conditions, B admits the following presentation:

• Generators: {GA} ∪ {ỹ; y ∈ GC}

• Relations:

– Type 1: rA = 1, for all rA ∈ RA.

– Type 2: r̃ = fr, for all r ∈ RC .

– Type 3: ỹ x ỹ−1 = gx,y, for all x ∈ GA, and all y ∈ GC .

The proof of this lemma is left to the reader. The plan of the proofs of Theorems 2.1
and 2.2 is as follows:

Step 1. We will introduce an abstract group PBn(M) given by its presentation, and define
a homomorphism

PBn(M)
ϕ

−→ PBn(M).

Step 2. We will prove by induction on n that ϕ is an isomorphism, applying Lemma 3.1
to the exact sequence (2):

1 −→ π1(M\P ′, P1)
u

−→ PBn(M,P)
v

−→ PBn−1(M,P ′) −→ 1.

Step 3. We denote by Bn(M) the abstract group given by the presentation of Theorem 2.1
if M is oriented, and by the presentation of Theorem 2.2 if M is non-oriented. It is shown
in Section 2 that there is a well defined homomorphism

Bn(M)
ψ

−→ Bn(M).

10



We will apply Lemma 3.1 to the exact sequence (1):

1 −→ PBn(M)
e

−→ Bn(M)
f

−→ Σn −→ 1

to show that ψ is actually an isomorphism.

4 The braid groups of an orientable surface

In this section we prove Theorem 2.1 following the procedure given in Section 3. So,
throughout the section, M is assumed to be an orientable surface of genus g ≥ 1.

Step 1. Let PBn(M) be the group given by the following presentation:

Presentation 1

• Generators: {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

• Relations:

(PR1) a−1
n,1a

−1
n,2 · · ·a

−1
n,2gan,1an,2 · · ·an,2g =

∏n−1
i=1 T

−1
i,n−1Ti,n.

(PR2) ai,rAj,s = Aj,sai,r (1 ≤ i < j ≤ n; 1 ≤ r, s ≤ 2g; r 6= s).

(PR3) (ai,1 · · ·ai,r)Aj,r
(
a−1
i,r · · ·a

−1
i,1

)
A−1
j,r = Ti,jT

−1
i,j−1 (1 ≤ i < j ≤ n; 1 ≤ r ≤ 2g).

(PR4) Ti,jTk,l = Tk,lTi,j (1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n).

(PR5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l (1 ≤ i < k ≤ j < l ≤ n).

(PR6) ai,rTj,k = Tj,kai,r (1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n), (1 ≤ r ≤ 2g).

(PR7) ai,r
(
a−1
j,2g · · ·a

−1
j,1Tj,kaj,2g · · ·aj,1

)
=
(
a−1
j,2g · · ·a

−1
j,1Tj,kaj,2g · · ·aj,1

)
ai,r

(1 ≤ j < i ≤ k ≤ n).

(PR8) Tj,n =
(∏j−1

i=1 a
−1
i,2g · · ·a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · ·ai,2g

)
aj,1 · · ·aj,2ga

−1
j,1 · · ·a

−1
j,2g.

Where
Aj,s = aj,1 · · ·aj,s−1a

−1
j,s+1 · · ·a

−1
j,2g.

Later, we will make use of a different presentation of PBn(M), based on the following
lemma.

Lemma 4.1. Let F be the free group freely generated by {x1, . . . , x2g}. Set

Xr = x1 · · ·xr−1x
−1
r+1 · · ·x

−1
2g .

Then {X1, . . .X2g} is a free system of generators of F .

11



Proof: We only need to give the formulae of the change of generators, which are

xk =
(
X1X

−1
2 · · ·Xk−2X

−1
k−1

) (
Xk+1X

−1
k+2 · · ·X

−1
2g−1X2g

)
if k is odd,

x−1
k =

(
X1X

−1
2 · · ·X−1

k−2Xk−1

) (
X−1
k+1Xk+2 · · ·X

−1
2g−1X2g

)
if k is even.

As a direct consequence of this lemma, PBn(M) admits the following presentation.

Presentation 2

• Generators: {Ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

• Relations: The same of Presentation 1, where

ai,k =
(
Ai,1A

−1
i,2 · · ·Ai,k−2A

−1
i,k−1

) (
Ai,k+1A

−1
i,k+2 · · ·A

−1
i,2g−1Ai,2g

)
if k is odd,

a−1
i,k =

(
Ai,1A

−1
i,2 · · ·A

−1
i,k−2Ai,k−1

) (
A−1
i,k+1Ai,k+2 · · ·A

−1
i,2g−1Ai,2g

)
if k is even.

According to Step 1, we must define a homomorphism

PBn(M)
ϕ

−→ PBn(M).

By abuse of notation, we will still denote by ai,r and Ti,j the braids that will be the images
of ai,r and Ti,j , respectively, under the homomorphism ϕ. These braids are defined as
follows.

• In ai,r, the i-th string goes through the r-th wall, as in Figure 10. This string will go
upwards if r is odd, and downwards otherwise. The other strings are trivial. Note
that a1,r = ar for all r.

• In Ti,j, the i-th string surrounds the points Pi+1, . . . , Pj, in the way of Figure 10,
while the other strings are trivial paths. If i = j, we make Ti,j to be the trivial braid.

We will denote by si,r the i-th string of ai,r, and by ti,j that of Ti,j. One can easily show
that for any i, the set of paths {si,1, . . . , si,2g} generates π1(M). Now, for any i ∈ {2, . . . , n}
we can define the Pi-polygon as we defined the P1-polygon in Section 2: we cut L along
si,1, . . . , si,2g and glue along α1, . . . , α2g.

We define, for 2 ≤ j ≤ n and 1 ≤ r ≤ 2g, the braid

Aj,r = aj,1 · · ·aj,r−1a
−1
j,r+1 · · ·a

−1
j,2g.

Like in the representation of A2,r in the P1-polygon considered in Section 2, Aj,r can be
represented in the Pi-polygon (for 1 ≤ i < j), as the braid of Figure 11, whose only

12



α2k+1

PiP1 Pn

α2k+1

ai,2k+1 ai,2k

P1 PnPi

α2k

α2k

Ti,j

P1 PnPi Pj

Figure 10: The generators of PBnM .

Pi Pj

si,r

si,r

Figure 11: The braid Aj,r in the Pi-polygon (i < j).

nontrivial string is the j-th one, which goes upwards and crosses once the r-th wall si,r.
Note that this representation does not depend on i, but it is only valid when i < j.

Now we define ϕ in the obvious way. In order to show that it is a homomorphism,
we must show that the relations of PBn(M) still hold in PBn(M). Relations (PR4)
and (PR5) can be easily checked, since they can be seen in the cylinder as if they were
braids over a disc (the interior of L). Relation (PR6) is obvious, once we have drawn
the corresponding braids. Relations (PR1), (PR2) and (PR3) are analogous to Relations
(R3), (R4) and (R5) of Theorem 2.1, and can be verified in the same way. Relation (PR7)
is easily checked in the Pj-polygon, and finally, to verify Relation (PR8) we need all the
Pi-polygons for i = 1, . . . , j: If i < j, it is clear by looking at the Pi-polygon that

a−1
i,2g · · ·a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · ·ai,2g

13



is equivalent to the braid on the left hand side of Figure 12, thus it is equivalent to that on
the right hand side, represented in the Pj-polygon. Then Relation (PR8) is clear, drawing
all the factors in the Pj-polygon.

Hence, we have shown that ϕ is a homomorphism, so this finishes the first step.

si,1

PnPj
Pi Pi

si,2g

Pn Pi
Pj

Figure 12: The braid a−1
i,2g · · ·a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · ·ai,2g.

Step 2. We show by induction on n that ϕ is an isomorphism. The case n = 1 is clear,
since the presentation of PB1(M) turns to be

PB1(M) =
〈
{a1,1, . . . , a1,2g} ; a−1

1,1a
−1
1,2 · · ·a

−1
1,2ga1,1a1,2 · · ·a1,2g = 1

〉
,

and this is also a presentation of π1(M) = PB1(M). Moreover, since n = 1, one has

ϕ(a1,i) = a1,i = s1,i for all i = 1, . . . , 2g, so PB1(M)
ϕ
≃ PB1(M).

Now suppose PBn−1(M)
ϕ
≃ PBn−1(M), and recall the exact sequence (2):

1 −→ π1(M\P ′, P1)
u

−→ PBn(M,P)
v

−→ PBn−1(M,P ′) −→ 1.

In order to apply Lemma 3.1 we need to know presentations of the groups at both hand
sides. For the group on the left hand side, we have the presentation

π1(M\P ′, P1) = 〈{s1,1, . . . , s1,2g, t1,2, . . . , t1,n−1}; φ 〉 .

It will be good for our purposes to include t1,n among the generators, so we add a single
relation which can be easily deduced from the pictures (using the P1-polygon):

π1(M\P ′, P1) =
〈
{s1,1, . . . , s1,2g, t1,2, . . . , t1,n}; t1,n = s1,1 · · · s1,2gs

−1
1,1 · · · s

−1
1,2g

〉
.

We know as well, by the induction hypothesis, two presentations of PBn−1(M); we shall
use Presentation 2 of PBn−1(M). So we can apply Lemma 3.1 to the exact sequence (2).

14



Note that v(ai,r) = ai−1,r, for i = 2, . . . , n, so v(Ai,r) = Ai−1,r, for i = 2, . . . , n. Note
also that v(Ti,j) = Ti−1,j−1, where 2 ≤ i ≤ j ≤ n. So we know pre-images by v of the
generators of PBn−1(M,P ′).

It is also clear that u(s1,r) = a1,r and u(t1,j) = T1,j for all possible r and j. Hence, we
obtain immediately that a set of generators of PBn(M,P) is

{a1,r; 1 ≤ r ≤ 2g} ∪ {Ai,r; 2 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

We can apply again Lemma 4.1 to have a new set of generators

{ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

which is the image by ϕ of the generating set of PBn(M). In particular, ϕ is surjective.

Now we prove that ϕ is an isomorphism by the following procedure.

First, we denote by GA the set of generators of π1(M\P ′, P1), and by G the set of gen-
erators of PBn(M). We consider the unique relation in the presentation of π1(M\P ′, P1),
which we can consider via u as a relation in PBn(M). This will be the unique relation of
Type 1 in the presentation of PBn(M). The procedure starts by showing that this relation
holds when it is considered in PBn(M), that is, we have a relation in PBn(M) which maps
by ϕ to the only relation in the presentation of π1(M\P ′, P1).

Next, for each relator r of PBn−1(M), we consider the “canonical” pre-image by v of
r, denoted by r̃, in the way of Lemma 3.1. Since PBn(M) and PBn(M) have the “same”
generators (via ϕ), we can also consider r̃ as a word over G. Now we find a word U over
G such that the equality r̃ = U holds in PBn(M), and such that ϕ(U) is a word over GA.
This will give us the relations of Type 2 in the presentation of PBn(M).

Finally, for each x ∈ GA and each generator y of PBn−1(M), we find a word V over G
such that the equality ỹ x ỹ−1 = V holds in PBn(M), where ỹ is the canonical pre-image
by v of y, and such that ϕ(V ) is a word over GA. This will give us the relations of Type 3
in the presentation of PBn(M).

In this way, we will have found all relations of Types 1, 2 and 3 of Lemma 3.1 and,
therefore, a presentation of PBn(M), and, at the same time, we will have shown that ϕ is
injective, and consequently, that ϕ is an isomorphism.

Let us start with the procedure. The unique relation in the presentation of π1(M\P ′, P1)
corresponds to Relation (PR8) of PBn(M), for j = 1, so it holds in this group.

Relations of Type 2 are easy to find. First, (PR1) can be seen as follows:

a−1
n,1a

−1
n,2 · · ·a

−1
n,2gan,1an,2 · · ·an,2g

(
n−1∏

i=2

T−1
i,n−1Ti,n

)−1

= T−1
1,n−1T1,n.
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Note that the left hand side maps by ϕ to r̃, where r is a relator of PBn−1(M) corresponding
to (PR1), while the right hand side maps by ϕ to a word over GA. Hence, U is equal to the
right hand side of the equation, and this yields the first relation of Type 2. The remaining
relations of Type 2 are also images by ϕ of relations in Presentation 1; namely (PR2),
(PR3), (PR4) and (PR5) when i ≥ 2, (PR6) when i ≥ 2 and j ≥ 2, and (PR7), (PR8)
when j ≥ 2. For all these relations, the word U is just the trivial word, except for (PR8),
for which U = a−1

1,2g · · ·a
−1
1,1T1,j−1T

−1
1,j a1,1 · · ·a1,2g.

Finally, we find the relations of Type 3. For i = 1, (PR2) becomes

Aj,sa1,rA
−1
j,s = a1,r (r 6= s),

so V = a1,r. Next, using (PR2), Relation (PR3) turns to be equivalent to

Aj,ra1,rA
−1
j,r =

(
a−1

1,r−1 · · ·a
−1
1,1

)
T1,j−1T

−1
1,j (a1,1 · · ·a1,r) ,

so V equals the right hand side of this equation. Relations of the form Tk,lT1,jT
−1
k,l = V ,

where V is a word over GA, follow from (PR4)-(PR5), while those of the form Tk,la1,rT
−1
k,l =

V follow from (PR6), when i = 1. Also, if j > k, we obtain from (PR6) the relations
Aj,rT1,kA

−1
j,r = V , where V is a word over GA.

The only remaining relations are those of the form Aj,rT1,kA
−1
j,r = V , when 1 < j ≤ k,

which are deduced as follows: By (PR7), we know that aj,s commutes with the element

a−1
1,2g · · ·a

−1
1,1T1,ka1,2g · · ·a1,1

for s = 1, . . . , 2g. This implies that Aj,r commutes with the same element, so

(
a−1

1,2g · · ·a
−1
1,1T1,ka1,2g · · ·a1,1

)
= Aj,r

(
a−1

1,2g · · ·a
−1
1,1T1,ka1,2g · · ·a1,1

)
A−1
j,r

=
(
Aj,ra

−1
1,2gA

−1
j,r

)
· · ·

(
Aj,ra

−1
1,1A

−1
j,r

) (
Aj,rT1,kA

−1
j,r

) (
Aj,ra1,2gA

−1
j,r

)
· · ·

(
Aj,ra1,1A

−1
j,r

)
.

But using (PR2) and (PR3) we know how to write all the terms in the above product
(except the middle one) as words over GA, so we are done.

Hence, we have shown that PBn(M)
ϕ
≃ PBn(M) and therefore, we have proved:

Theorem 4.2. If M is a closed, orientable surface of genus g ≥ 1, then PBn(M) admits
Presentation 1 (and also Presentation 2) as presentation.

Step 3. Now we want to find a presentation of Bn(M), for g ≥ 1. We define then the
group Bn(M), given by the presentation in Theorem 2.1.

This is the most reduced presentation we have found. But to show its validity we will
modify it, obtaining a new one with more generators and relations, but equivalent to the
first one.
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First, we change our notation, and call a1,r the generators ar, for r = 1, . . . , 2g. Then
we must simply add to the given presentation the generators

− ai,r i = 2, . . . , n ; r = 1, . . . , 2g,

− Tj,k 1 ≤ j < k ≤ n,

and the relations

(R7) aj+1,r = σjaj,rσj ( 1 ≤ j ≤ n− 1; 1 ≤ r ≤ 2g; r even).

(R8) aj+1,r = σ−1
j aj,rσ

−1
j (1 ≤ j ≤ n− 1; 1 ≤ r ≤ 2g; r odd).

(R9) Tj,k = σjσj+1 · · ·σk−2σ
2
k−1σk−2 · · ·σj (1 ≤ j < k ≤ n).

Clearly, both presentations define the same group, that is, Bn(M). Now we define
ψ : Bn(M) → Bn(M) in the natural way. It is an easy exercise to show, using the
same methods as before, that Relations (R7), (R8) and (R9) map to relations in Bn(M).
Therefore, ψ is a well defined homomorphism.

Recall now the exact sequence (1):

1 −→ PBn(M)
e

−→ Bn(M)
f

−→ Σn −→ 1.

We know by Theorem 4.2 a presentation of PBn(M) (say Presentation 1), and it is also
known that a presentation of Σn is

• Generators: δ1, . . . , δn−1.

• Relations:

– δiδj = δjδi |i− j| ≥ 2,

– δiδi+1δi = δi+1δiδi+1 1 ≤ i ≤ n− 2,

– δ2
i = 1 1 ≤ i ≤ n− 1,

where δi is the permutation (i, i+ 1), for any i.

Now σi is clearly a pre-image by f of δi, so by Lemma 3.1 Bn(M) and Bn(M) have the
same generators, and ψ is surjective.

Similarly to what we did in Step 2, we show now that ψ is an isomorphism by the
following procedure.

First, we denote by GA the set of generators of PBn(M), and by G the set of generators
of Bn(M). For each relation in the presentation of PBn(M), we consider it via e as a
relation in Bn(M), and we show that it also holds in Bn(M).
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Next, for each relator r of Σn, we consider its canonical pre-image by f , denoted by r̃.
Then we find a word U over G such that the equality r̃ = U holds in Bn(M), and such
that ψ(U) is a word over GA.

Finally, for each x ∈ GA and each generator δi of Σn, we find a word V over G such
that the equality σi x σ

−1
i = V holds in Bn(M), and such that ψ(V ) is a word over GA.

This gives us the relations of Types 1, 2, and 3 of Lemma 3.1 and, therefore, a presen-
tation of Bn(M), and, at the same time, this shows that ψ is injective, and, consequently,
that ψ is an isomorphism.

Let us then verify in Bn(M) the relations of Type 1. In the case of (PR1), we start
with (R3):

a1,1 · · ·a1,2ga
−1
1,1 · · ·a

−1
1,2g = σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1. (3)

Using (R7) and (R8), we see that the left hand side of Equation (3) becomes

σ1 · · ·σn−1 (an,1 · · ·an,2g) σ
−1
n−1 · · ·σ

−2
1 · · ·σ−1

n−1

(
a−1
n,1 · · ·a

−1
n,2g

)
σn−1 · · ·σ1.

On the other hand, from (R1), (R2) (braid relations) and (R9), we get

T−1
i,n−1Ti,n = σ−1

i σ−1
i+1 · · ·σ

−1
n−2σ

2
n−1σn−2 · · ·σi = σn−1 · · ·σi+1σ

2
i σ

−1
i+1 · · ·σ

−1
n−1,

so
n−1∏

i=1

T−1
i,n−1Ti,n = σn−1 · · ·σ

2
1 · · ·σn−1.

Therefore, Equation (3) becomes

an,1 · · ·an,2g

(
n−1∏

i=1

T−1
i,n−1Ti,n

)−1

a−1
n,1 · · ·a

−1
n,2g = 1,

which is clearly equivalent to (PR1).

We will use in what follows some relations of Bn(M) easily deduced from (R1)-(R9).
From (R7) and (R8), we get

ai,r =
(
σ−1
i−1 · · ·σ

−1
1

)
a1,r

(
σ−1

1 · · ·σ−1
i−1

)
if r is odd. (4)

ai,r = (σi−1 · · ·σ1) a1,r (σ1 · · ·σi−1) if r is even. (5)

Aj,s =
(
σ−1
j−1 · · ·σ

−1
2

)
A2,s

(
σ−1

2 · · ·σ−1
j−1

)
=
(
σ−1
j−1 · · ·σ

−1
1

)
A1,s

(
σ−1

1 · · ·σ−1
j−1

)
. (6)

Also, from (R1) and (R2), we obtain

σj (σkσk−1 · · ·σi) = (σkσk−1 · · ·σi)σj+1 (i ≤ j < k). (7)

σj
(
σ−1
k σ−1

k−1 · · ·σ
−1
i

)
=
(
σ−1
k σ−1

k−1 · · ·σ
−1
i

)
σj+1 (i ≤ j < k). (8)
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σi · · ·σk−1σ
2
kσ

−1
k−1 · · ·σ

−1
i = σ−1

k · · ·σ−1
i+1σ

2
i σi+1 · · ·σk. (9)

Now using (6), (7), (8) and (R6), we see that if 1 ≤ k ≤ j − 2;

σkAj,s = σk
(
σ−1
j−1 · · ·σ

−1
1

)
A1,s

(
σ−1

1 · · ·σ−1
j−1

)

=
(
σ−1
j−1 · · ·σ

−1
1

)
σk+1A1,s

(
σ−1

1 · · ·σ−1
j−1

)

=
(
σ−1
j−1 · · ·σ

−1
1

)
A1,sσk+1

(
σ−1

1 · · ·σ−1
j−1

)
= Aj,sσk. (10)

In the same way, using (6), (R6) and (R4), we get

a1,rAj,s = a1,r

(
σ−1
j−1 · · ·σ

−1
2

)
A2,s

(
σ−1

2 · · ·σ−1
j−1

)
= Aj,sa1,r,

if r 6= s and 1 < j.

Therefore, if i < j and r 6= s, by (4) and (5) ai,r is a product of elements which commute
with Aj,s, so we obtain

ai,rAj,s = Aj,sai,r,

which shows that (PR2) holds in Bn(M).

Now we verify Relation (PR3). We will do the case when r is odd, the other case being
analogous. It is clear which of the known relations of Bn(M) we are using at each of the
following equalities:

(ai,1 . . . ai,r)Aj,r =
(
σ−1
i−1 · · ·σ

−1
1

)
(a1,1 . . . a1,r)

(
σ−1

1 · · ·σ−1
i−1

)
Aj,r

=
(
σ−1
i−1 · · ·σ

−1
1

)
(a1,1 . . . a1,r)Aj,r

(
σ−1

1 · · ·σ−1
i−1

)

=
(
σ−1
i−1 · · ·σ

−1
1

)
(a1,1 . . . a1,r)

(
σ−1
j−1 · · ·σ

−1
2

)
A2,r

(
σ−1

2 · · ·σ−1
j−1

) (
σ−1

1 · · ·σ−1
i−1

)

=
(
σ−1
i−1 · · ·σ

−1
1

) (
σ−1
j−1 · · ·σ

−1
2

)
(a1,1 . . . a1,r)A2,r

(
σ−1

2 · · ·σ−1
j−1

) (
σ−1

1 · · ·σ−1
i−1

)

=
(
σ−1
i−1 · · ·σ

−1
1

) (
σ−1
j−1 · · ·σ

−1
2

)
σ2

1A2,r (a1,1 . . . a1,r)
(
σ−1

2 · · ·σ−1
j−1

) (
σ−1

1 · · ·σ−1
i−1

)

=
(
σi · · ·σj−2σ

2
j−1σ

−1
j−2 · · ·σ

−1
1

) (
σ−1
j−1 · · ·σ

−1
2 A2,rσ

−1
2 · · ·σ−1

j−1

)
(a1,1 . . . a1,r)

(
σ−1

1 · · ·σ−1
i−1

)

=
(
σi · · ·σj−2σ

2
j−1σ

−1
j−2 · · ·σ

−1
1

)
Aj,r (a1,1 . . . a1,r)

(
σ−1

1 · · ·σ−1
i−1

)

=
(
σi · · ·σj−2σ

2
j−1σ

−1
j−2 · · ·σ

−1
i

)
Aj,r (ai,1 . . . ai,r)

= Ti,jT
−1
i,j−1Aj,r (ai,1 . . . ai,r) .
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This shows the case of (PR3). Relations (PR4) and (PR5) are actually relations in
the braid group of the disc, so they are a consequence of (R1) and (R2). (PR6) is ob-
tained easily from (R9), (4), (5) and the braid relations (R1) and (R2). So we may
turn to (PR7): It is clear that it suffices to show that in Bn(M), Ai,r commutes with(
a−1
j,2g · · ·a

−1
j,1Tj,kaj,2g · · ·aj,1

)
for 1 ≤ j < i ≤ k < n. This is shown as follows (remember

that we can already use (PB1)-(PB6)):

Ai,r
(
a−1
j,2g · · ·a

−1
j,1Tj,kaj,2g · · ·aj,1

)

=
(
a−1
j,2g · · ·a

−1
j,r+1

)
Ai,r

(
a−1
j,r · · ·a

−1
j,1

)
Tj,kaj,2g · · ·aj,1

=
(
a−1
j,2g · · ·a

−1
j,1

)
Tj,iT

−1
j,i−1Ai,rTj,kaj,2g · · ·aj,1

=
(
a−1
j,2g · · ·a

−1
j,1

)
Tj,iT

−1
j,i−1Ai,r

(
σj · · ·σ

2
k−1 · · ·σj

)
aj,2g · · ·aj,1

=
(
a−1
j,2g · · ·a

−1
j,1

)
Tj,iT

−1
j,i−1Ai,r

(
σj · · ·σ

2
k−1 · · ·σ1

)
a1,2g · · ·a1,1

(
σ−1

1 · · ·σ−1
j−1

)

(using (R3))

=
(
a−1
j,2g · · ·a

−1
j,1

)
Tj,iT

−1
j,i−1Ai,r

(
σj · · ·σk−1σ

−1
k · · ·σ−2

n−1 · · ·σ
−1
1

)
a1,1 · · ·a1,2g

(
σ−1

1 · · ·σ−1
j−1

)

(by (R9) and (10))

= a−1
j,2g · · ·a

−1
j,1

(
σj · · ·σ

2
i−1Ai,rσi−1 · · ·σk−1σ

−1
k · · ·σ−2

n−1 · · ·σ
−1
1

)
a1,1 · · ·a1,2g

(
σ−1

1 · · ·σ−1
j−1

)

= a−1
j,2g · · ·a

−1
j,1

(
σj · · ·σi−1Ai−1,rσi · · ·σk−1σ

−1
k · · ·σ−2

n−1 · · ·σ
−1
1

)
a1,1 · · ·a1,2g

(
σ−1

1 · · ·σ−1
j−1

)

= a−1
j,2g · · ·a

−1
j,1

(
σj · · ·σk−1σ

−1
k · · ·σ−2

n−1 · · ·σ
−1
i σi−1σ

−1
i−2 · · ·σ

−1
1

)
Ai,ra1,1 · · ·a1,2gσ

−1
1 · · ·σ−1

j−1

= a−1
j,2g · · ·a

−1
j,1

(
σj · · ·σk−1σ

−1
k · · ·σ−2

n−1 · · ·σ
−1
1

)
a1,1 · · ·a1,2g

(
σ−1

1 · · ·σ−1
j−1

)
Ai,r

(by (R3) again)

= a−1
j,2g · · ·a

−1
j,1Tj,k

(
σj−1 · · ·σ1a1,2g · · ·a1,1σ

−1
1 · · ·σ−1

j−1

)
Ai,r

=
(
a−1
j,2g · · ·a

−1
j,1Tj,kaj,2g · · ·aj,1

)
Ai,r.

Finally, Relation (PR8) is verified using some intermediary results. The first is evident:
by (R4) we see that in Bn(M), A1,2gA2,2g = A2,2gA1,2g, and moreover this braid commutes
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with σ1, since

A1,2gA2,2gσ1 = A1,2gσ
−1
1 A1,2g = σ1A2,2gA1,2g = σ1A1,2gA2,2g.

Analogously, one shows that (a1,2ga2,2g) commutes with σ1. The following result is a con-
sequence of the previous ones and of (R5):

a1,2gA2,2ga
−1
1,2g =

(
a−1

1,2g−1 · · ·a
−1
1,1

)
σ2

1A2,2g (a1,1 · · ·a1,2g−1)

= A−1
1,2gσ

2
1A2,2gA1,2g = A−1

1,2gA2,2gA1,2gσ
2
1 = A2,2gσ

2
1,

so we obtain
a−1

1,2gA2,2g = A2,2ga
−1
1,2gσ

−2
1 . (11)

Now we consider the factors in the right hand side of (PR8), and we see that

(
a−1
i,2g · · ·a

−1
i,1

)
Ti,j−1T

−1
i,j (ai,1 · · ·ai,2g)

=
(
a−1
i,2g · · ·a

−1
i,1

)
σi · · ·σj−2σ

2
j−1σ

−1
j−2 · · ·σ

−1
i (ai,1 · · ·ai,2g)

= σ−1
i−1 · · ·σ

−1
1

(
a−1

1,2g · · ·a
−1
1,1

)
σ1 · · ·σj−2σ

2
j−1σ

−1
j−2 · · ·σ

−1
1 (a1,1 · · ·a1,2g)σ1 · · ·σi−1

(by (9))

= σ−1
i−1 · · ·σ

−1
1

(
a−1

1,2g · · ·a
−1
1,1

)
σ−1
j−1 · · ·σ

−1
2 σ−2

1 σ2 · · ·σj−1 (a1,1 · · ·a1,2g) σ1 · · ·σi−1

= σ−1
i−1 · · ·σ

−1
1 σ−1

j−1 · · ·σ
−1
2

(
a−1

1,2g · · ·a
−1
1,1

)
σ−2

1 (a1,1 · · ·a1,2g)σ2 · · ·σj−1σ1 · · ·σi−1

=
(
σ−1
i−1 · · ·σ

−1
1 σ−1

j−1 · · ·σ
−1
2

)
a−1

1,2gA
−1
1,2gσ

−2
1 A1,2ga1,2g (σ2 · · ·σj−1σ1 · · ·σi−1)

(since (A1,2gA2,2g) commutes with σ1)

=
(
σ−1
i−1 · · ·σ

−1
1 σ−1

j−1 · · ·σ
−1
2

)
a−1

1,2gA2,2gσ
−2
1 A−1

2,2ga1,2g (σ2 · · ·σj−1σ1 · · ·σi−1)

(by (11))

=
(
σ−1
i−1 · · ·σ

−1
1 σ−1

j−1 · · ·σ
−1
2

)
A2,2ga

−1
1,2gσ

−2
1 a1,2gA

−1
2,2g (σ2 · · ·σj−1σ1 · · ·σi−1)

(since, (a1,2ga2,2g) commutes with σ1)

=
(
σ−1
i−1 · · ·σ

−1
1 σ−1

j−1 · · ·σ
−1
2

)
A2,2ga2,2gσ

−2
1 a−1

2,2gA
−1
2,2g (σ2 · · ·σj−1σ1 · · ·σi−1)
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=
(
σ−1
i−1 · · ·σ

−1
1

)
Aj,2gaj,2g

(
σ−1
j−1 · · ·σ

−1
2 σ−2

1 σ2 · · ·σj−1

)
a−1
j,2gA

−1
j,2g (σ1 · · ·σi−1)

(by (10))

= Aj,2gaj,2g
(
σ−1
i−1 · · ·σ

−1
1

) (
σ−1
j−1 · · ·σ

−1
2 σ−2

1 σ2 · · ·σj−1

)
(σ1 · · ·σi−1) a

−1
j,2gA

−1
j,2g

(by (9))

= aj,1 · · ·aj,2g
(
σ−1
j−1 · · ·σ

−1
i+1σ

−2
i σi+1 · · ·σj−1

)
a−1
j,2g · · ·a

−1
j,1 .

And this clearly yields (PR8):

(∏j−1
i=1 a

−1
i,2g · · ·a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · ·ai,2g

)
aj,1 · · ·aj,2ga

−1
j,1 · · ·a

−1
j,2g

=
(∏j−1

i=1 aj,1 · · ·aj,2g
(
σ−1
j−1 · · ·σ

−1
i+1σ

−2
i σi+1 · · ·σj−1

)
a−1
j,2g · · ·a

−1
j,1

)
aj,1 · · ·aj,2ga

−1
j,1 · · ·a

−1
j,2g

= aj,1 · · ·aj,2g
(
σ−1
j−1 · · ·σ

−1
2 σ−2

1 σ−1
2 · · ·σ−1

j−1

)
a−1
j,1 · · ·a

−1
j,2g

= (σj · · ·σn−1) an,1 · · ·an,2g
(
σ−1
n−1 · · ·σ

−2
1 · · ·σ−1

n−1

)
a−1
n,1 · · ·a

−1
n,2g (σn−1 · · ·σj)

(by (R9) and (PR1))

= (σj · · ·σn−1) (σn−1 · · ·σj) = Tj,n.

We have thus finished with relations of Type 1.

Consider now those of Type 2. For each relator in the presentation of Σn, we must find
the word U mentioned above.

The first relator is δiδjδ
−1
i δ−1

j , when |i − j| ≥ 2 which, by (R1), yields in Bn(M) the
relation

σiσjσ
−1
i σ−1

j = 1 (|i− j| ≥ 2).

Clearly, U is the trivial word.

The second relator, δiδi+1δiδ
−1
i+1δ

−1
i δ−1

i+1 gives, by (R2),

σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1 = 1 (i = 1, · · · , n− 2),

so in this case U is also the trivial word.

Finally, by the third relator δ2
i , we obtain, using (R9),

σ2
i = Ti,i+1 (i = 1, · · · , n− 1),
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hence U = Ti,i+1.

So we have obtained the relations in Bn(M) mapped by ψ to the relations of Type 2.

We finish the proof of Theorem 2.1 obtaining the relations of Type 3. They are very
easy to deduce, using (10), (R1), (R2), (R7), (R8) and (R9). They are the following:

σiaj,rσ
−1
i = aj,r (j 6= i, i+ 1),

σiai,rσ
−1
i = ai+1,rT

−1
i,i+1 if r is even,

σiai,rσ
−1
i = Ti,i+1ai+1,r if r is odd,

σiai+1,rσ
−1
i = Ti,i+1ai,r if r is even,

σiai+1,rσ
−1
i = ai,rT

−1
i,i+1 if r is odd,

σiTj,kσ
−1
i = Tj,k (i 6= j − 1, j, k),

σiTi+1,kσ
−1
i = Ti,kT

−1
i,i+1,

σiTi,kσ
−1
i = Ti,i+1Ti+1,k,

σiTj,iσ
−1
i = Tj,i−1T

−1
j,i Tj,i+1.

5 The braid groups of a non-orientable surface

This section is devoted to prove Theorem 2.2, using the same method as before. Thus, let
M be a closed, non-orientable surface of genus g ≥ 2.

Step 1. Denote by PBn(M) the group defined by the following presentation.

Presentation 3

• Generators: {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

• Relations:

(Pr1) a2
n,1 · · ·a

2
n,g =

∏n−1
i=1 T

−1
i,n−1Ti,n.

(Pr2) ai,rAj,s = Aj,sai,r (1 ≤ i < j ≤ n; 1 ≤ r, s ≤ g; r 6= s).

(Pr3)
(
a2
i,1 · · ·a

2
i,r−1ai,r

)
Aj,r

(
a−1
i,r a

−2
i,r−1 · · ·a

−2
i,1

)
A−1
j,r = Ti,jT

−1
i,j−1

(1 ≤ i < j ≤ n; 1 ≤ r ≤ g).

(Pr4) Ti,jTk,l = Tk,lTi,j (1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n).

(Pr5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l (1 ≤ i < k ≤ j < l ≤ n).
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(Pr6) ai,rTj,k = Tj,kai,r (1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n), (1 ≤ r ≤ g).

(Pr7) ai,r
(
a−2
j,g · · ·a

−2
j,1Tj,k

)
=
(
a−2
j,g · · ·a

−2
j,1Tj,k

)
ai,r (1 ≤ j < i ≤ k ≤ n).

(Pr8) Tj,n = a2
j,1 · · ·a

2
j,g

(∏j−1
i=1 T

−1
j−i,jTj−i,j−1

)
.

Where
Aj,r = a2

j,1 · · ·a
2
j,r−1a

−1
j,ra

−2
j,r−1 · · ·a

−2
j,1 .

We shall need, as in the orientable case, another presentation of PBn(M), which is the
following one.

Presentation 4

• Generators: {Ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

• Relations: the same as in Presentation 3, where

ai,r = A2
i,1 · · ·A

2
i,r−1A

−1
i,rA

−2
i,r−1A

−2
i,1 .

It is clear that Presentation 3 and Presentation 4 are equivalent, in the same way as
they were Presentation 1 and Presentation 2. We must now define the homomorphism

PBn(M)
ϕ

−→ PBn(M),

by giving the image of the generators. They will be similar to those of the orientable
surface. For all i and j such that 1 ≤ i ≤ j ≤ n, the braid Ti,j will be the same as in
Section 4. For all i, r, such that 1 ≤ i ≤ n and 1 ≤ r ≤ g, the braid ai,r will represent the
i-th string passing through the r-th wall, in the way of Figure 13. We define as well the
path ei (i = 1, . . . , n), which goes from Pi to the final point of e, as in Figure 13.

Given i ∈ {1, . . . , n}, denote by si,r the i-th string of ai,r. We can proceed as we did for
the P1-polygon in Section 2 to get the Pi-polygon: Cut along the paths ei and si,1, . . . , si,g,
and glue along e and α1, . . . , αg. The resulting Pi-polygon is labeled by the paths

si,1, si,1, si,2, si,2, . . . , si,g, si,g, ei, e
−1
i ,

reading clockwise. Now we can repeat the process of Section 2 to see that for 1 ≤ i < j,
the braid

Aj,r = a2
j,1 · · ·a

2
j,r−1a

−1
j,ra

−2
j,r−1 · · ·a

−2
j,1

can be represented in the Pi-polygon in the way of Figure 14.

The remainder of Step 1, that is to show that ϕ is a well defined homomorphism,
is analogous to the orientable case. That is, Relations (Pr4), (Pr5) and (Pr6) are obvi-
ous; Relations (Pr1), (Pr2) and (Pr3) are analogous to Relations (r3), (r4) and (r5) of
Theorem 2.2; and we can easily check Relations (Pr7) and (Pr8) in the Pj-polygon.
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ai,r

ee

αr αr

ei

Pi

PnP1
P1 PnPi

Ti,j

Pj

Figure 13: The generators of PBn(M).

si,r

ei

Pi

si,r

Pn

Pj

P1

si,1 si,g

ei

Figure 14: The braid Aj,r in the Pi-polygon (i < j).

Step 2. This step parallels, up to evident substitutions, the corresponding one in Section 4,
showing the following theorem:

Theorem 5.1. If M is a closed, non-orientable surface of genus g ≥ 2, then PBn(M)
admits Presentation 3 (and also Presentation 4) as presentation.

Step 3. Denote by Bn(M) the group defined by the presentation of Theorem 2.2. Call
a1,r the elements ar for r = 1, . . . , g, and then add the generators

− ai,r i = 2, . . . , n ; r = 1, . . . , g,

− Tj,k 1 ≤ j < k ≤ n,

and the relations
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(r7) aj+1,r = σ−1
j aj,rσj (1 ≤ j ≤ n− 1; 1 ≤ r ≤ g).

(r8) Tj,k = σjσj+1 · · ·σk−2σ
2
k−1σk−2 · · ·σj (1 ≤ j < k ≤ n).

This provides an equivalent presentation of Bn(M), and the naturally defined function

ψ : Bn(M) −→ Bn(M),

which is easily proved to be a well defined homomorphism.

Now it remains to apply Lemma 3.1 to the exact sequence (1), and then to find relations
in Bn(M) mapping by ψ to those of Types 1, 2 and 3, as we did in Section 4. For those of
Type 1 corresponding to (Pr1)-(Pr6), we can use almost the same calculations that in the
previous section.

The relation mapping to (Pr7) is obtained as follows:

a1,r

(
a−2
j,g · · ·a

−2
j,1Tj,k

)

= ai,r
(
σ−1
j−1 · · ·σ

−1
1 a−2

1,g · · ·a
−2
1,1σ1 · · ·σk−1

)
σk−1 · · ·σj

(by (r3))

= ai,r
(
σ−1
j−1 · · ·σ

−1
1

) (
σ−1

1 · · ·σ−1
n−1

) (
σ−1
n−1 · · ·σ

−1
k

)
(σk−1 · · ·σj)

=
(
σ−1
j−1 · · ·σ

−1
1

) (
σ−1

1 · · ·σ−1
i−2

)
ai,rσ

−1
i−1

(
σ−1
i · · ·σ−1

n−1

) (
σ−1
n−1 · · ·σ

−1
k

)
(σk−1 · · ·σj)

=
(
σ−1
j−1 · · ·σ

−1
1

) (
σ−1

1 · · ·σ−1
i−2

)
σ−1
i−1ai−1,r

(
σ−1
i · · ·σ−1

n−1

) (
σ−1
n−1 · · ·σ

−1
k

)
(σk−1 · · ·σj)

=
(
σ−1
j−1 · · ·σ

−1
1

) (
σ−1

1 · · ·σ−1
n−1

) (
σ−1
n−1 · · ·σ

−1
k

)
(σk−1 · · ·σi) ai−1,rσi−1σi−2 · · ·σj

=
(
σ−1
j−1 · · ·σ

−1
1

) (
σ−1

1 · · ·σ−1
n−1

) (
σ−1
n−1 · · ·σ

−1
k

)
(σk−1 · · ·σj) ai,r

=
(
a−2
j,g · · ·a

−2
j,1Tj,k

)
ai,r,

and the relation mapping to (Pr8), comes from the following calculation:

a2
j,1 · · ·a

2
j,g

(∏j−1
i=1 T

−1
j−i,jTj−i,j−1

)

(by (9))

= a2
j,1 · · ·a

2
j,g

(
σ−1
j−1 · · ·σ

−2
1 · · ·σ−1

j−1

)
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= σ−1
j−1 · · ·σ

−1
1 a2

1,1 · · ·a
2
1,gσ

−1
1 · · ·σ−1

j−1

(by (r3))

= σj · · ·σ
2
n−1 · · ·σj = Tj,n.

Finally, the relations mapping by ψ to those of Type 2, are identical to those for the
orientable surfaces, and relations of Type 3 are equally easy to deduce. Therefore, we have
finished the proof of Theorem 2.2.

6 The word problem

In this section we explain an algorithm to solve the word problem in the braid group of a
surface, using our new presentations. We shall only explain the orientable case, remarking
that the same method can be used in the non-orientable one.

Let ω be a word over the generators of Bn(M), that is, over σ1, . . . , σn−1, a1, . . . , a2g

and their inverses. The algorithm we propose shall give as output a word

ω′ = ω1 · · ·ωns

equivalent to w, where ωi will be a word over {ai,1, . . . , ai,2g, Ti,i+1, . . . , Ti,n−1}, and s will
be a word over {σ1, . . . , σn−1} representing the permutation which ω induces on the strings.
Moreover, we will show that this expression is unique, thus ω = 1 if and only if ω′ is the
trivial word. This algorithm is analogous to the classical braid combing in the braid group
of the disc.

First we need some previous results. Consider the homomorphism f in the exact
sequence (1); it sends ω to its corresponding permutation. Now for any element of Σn, we
can take a normal form as a word over {δ1, . . . , δn−1}. For instance, we can use the normal
forms in [H], where any element of Σn is written as a product

t1,k1t2,k2 · · · tn−1,kn−1
,

where tm,0 = 1 and tm,k = δmδm−1 · · · δm−k+1. If we replace in this normal form δi by σi
for i = 1, . . . , n − 1, we obtain a map g : Σn → W , where W is the set of words over
{σ1, . . . , σn−1} and their inverses.

Consider then the composition ε = g ◦ f :

ε : Bn(M)
f

−→ Σn
g

−→ W.

This map sends any braid to a braid word inducing the same permutation on the strings.
Moreover, the image of ε is finite, since so is Σn.
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Now in order to apply the algorithm, we need to make a “dictionary”, in the following
way: for all braid words p in the image of ε, consider all braids of the form

p a±1
r p−1, p σ±1

i ε(pσi)
−1.

Clearly, there is only a finite number of them, and they are all pure braids. It is not difficult
to write these braids as words over {ai,r, Tj,k} using the relations of the given presentation
of Bn(M). These are the first words in our dictionary.

Now for j = 1, . . . , n, we define the following sets:

Wj = {a±1
i,r ; i = 1, . . . , j, r = 1, . . . , 2g} ∪ {T±1

i,k ; i = 1, . . . , j, k = i+ 1, . . . , n− 1},

Vj = {A±1
j,r ; r = 1, . . . , 2g} ∪ {T±1

j,k ; k = j + 1, . . . , n− 1}.

For each x ∈Wi and each y ∈ Vj, i < j, we want to add to our dictionary an expression of
the form

y x y−1 = Z,

where Z is a word over Wi. If y is a positive letter, this expression is just a relation of
Type 3. It may happen that in Z there is a letter of the form T±1

l,n (l ≤ i), but we can
replace it by a word over Wi using (PR8). If y is a negative letter, we can deduce the
above expression in the same way that we did for relations of Type 3. So in any case, we
can add all of them to our dictionary.

We still need one more result: Denote by Sn,r the n-th string of An,r. Since sn,1, . . . , sn,2g
generates π1(M,Pn), Lemma 4.1 clearly implies that {Sn,1, . . . , Sn,2g} is another set of
generators. Moreover, applying the formulae of Lemma 4.1, one has

s−1
n,1s

−1
n,2 · · · s

−1
n,2gsn,1sn,2 · · · sn,2g =

(
S−1
n,2gSn,2g−1S

−1
n,2g−2 · · ·Sn,1

) (
Sn,2gS

−1
n,2g−1Sn,2g−2 · · ·S

−1
n,1

)
.

Hence we obtain:

π1(M,Pn) =
〈
{Sn,1, . . . , Sn,2g};

(
S−1
n,2gSn,2g−1 · · ·S

−1
n,2Sn,1

) (
Sn,2gS

−1
n,2g−1 · · ·Sn,2S

−1
n,1

)
= 1

〉
.

We are now ready to start with the algorithm. Thus, let ω be a word over the generators
of Bn(M). Define the word s = ε(ω). Since the normal forms in Σn are unique, so is s.
We obtain a word ω = ωs−1 ∈ PBn(M) such that ω = ωs.

Next we want to write ω as a word over {ai,r, Tj,k} (where i, r, j and k take all possible
values). Suppose that ω has length m, that is, ω = x1 · · ·xm where each xi is a generator
of Bn(M) or its inverse. For all i = 1, . . . , m define ωi = x1 · · ·xi. Since ω ∈ PBn(M),
then ε(ωm) = ε(ω) = 1, so one has:

ω = x1 · · ·xm =
(
1 x1 ε(ω1)

−1
) (
ε(ω1) x2 ε(ω2)

−1
)
· · ·

(
ε(ωm−1) xm ε(ωm)−1

)
.

But all factors on the right hand side of the equation are included in our dictionary, so we
can use it to write all of them, and thus ω, as a word over the generators of PBn(M).
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The next step is to replace in ω all the letters of the form a±1
n,r using the formula in

Presentation 2,

a(−1)r+1

n,r =
(
An,1A

−1
n,2An,3 · · ·A

±1
n,r−1

) (
A∓1
n,r+1 · · ·A

−1
n,2g−1An,2g

)
,

and all the letters of the form T±1
j,n , using (PR8). In this way we obtain ω written as a

word over Wn−1 ∪ Vn. We use again the dictionary to “move” to the right hand side of ω
all the letters in Vn. We will obtain ω = X Y , where X is a word over Wn−1 and Y is a
word over Vn.

Consider now the following exact sequence, coming also from the Fadell-Neuwirth fi-
bration (see [B]).

1 −→ PBn−1(M\{Pn})
u

−→ PBn(M)
v

−→ π1(M,Pn) −→ 1,

where for all Γ = (γ1, . . . , γn) ∈ PBn(M), v(Γ) = γn. Note that v(ω) = Y ∈ π1(M). Now
in π1(M) we could apply Dehn’s algorithm (see [LS]) to obtain a normal form of Y . At
each step of Dehn’s algorithm, a sub-word of Y would be replaced by a shorter one, using
the relation

(
S−1
n,2gSn,2g−1S

−1
n,2g−2 · · ·Sn,1

) (
Sn,2gS

−1
n,2g−1Sn,2g−2 · · ·S

−1
n,1

)
= 1.

Instead of this, we will do a similar process in PBn(M): each time that Dehn’s algorithm
replaces a sub-word of Y in π1(M), we replace the corresponding sub-word in ω = XY ∈
PBn(M) using

(
A−1
n,2gAn,2g−1A

−1
n,2g−2 · · ·An,1

) (
An,2gA

−1
n,2g−1An,2g−2 · · ·A

−1
n,1

)
=

n−1∏

i=1

T−1
i,n−1Ti,n,

which is a relation equivalent to (PR1); then we remove the T±1
i,n using (PR8) and we move

again the letters in Vn to the right hand side of our word.

At the end of this process, we will obtain ω = Xn−1 ωn, where ωn is the normal form
of v(ω) in π1(M), so it is unique, and Xn−1 is a word over Wn−1.

The algorithm will end in n− 1 steps: At each step, we have a word Xm over Wm, we
replace the letters of the form a±1

m,r by words over Vm, and then we move all the letters of
Vm to the right hand side, using the dictionary. Then we remove all the sub-words of the
form xx−1 or x−1x, and we obtain Xm = Xm−1ωm, where Xm−1 is a word over Wm−1 and
ωm is a reduced word over Vm. If we prove that the word ωm is unique, we will have the
unique factorization ω = ω1 · · ·ωns as the output of our algorithm.

Define Mn−m = M\{Pm+1, . . . , Pn} for any m = 1, . . . , n − 1. In [B] we can find the
following exact sequence, analogous to the previous one.

1 −→ PBm−1(Mn−m+1)
f

−→ PBm(Mn−m)
g

−→ π1(Mn−m) −→ 1.
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We only need to notice that Xm ∈ PBm(Mn−m), and g(Xm) = ωm. Now since π1(Mn−m) is
a free group with free system of generators {am,r; 1 ≤ r ≤ 2g}∪{Tm,j; m+1 ≤ j ≤ n−1},
and since ωm is a reduced word, then it is unique, as we wanted to show.
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