
ar
X

iv
:0

71
2.

00
01

v2
 [

m
at

h.
A

G
]

 2
0

Ja
n

20
08

The Computation of the Logarithmic

Cohomology for Plane Curves

Francisco Jesús Castro-Jiménez and Nobuki Takayama

November 28, 2007, Revised December 13, 2007

Abstract: We will give algorithms of computing bases of logarithmic cohomology
groups for square-free polynomials in two variables.

1 Introduction

Let us denote by R = C[x] = C[x1, . . . , xn] the polynomial ring, by An =
C〈x1, . . . , xn, ∂1, . . . , ∂n〉 the Weyl algebra of order n over the complex numbers
C and by (Ω•

R, d) the complex of polynomial (or regular) differential forms (i.e.
the complex of differential forms with polynomial coefficients) where d is the
exterior derivative.

The elements of An are called linear differential operators with polynomial
coefficients. An element P (x, ∂) in An can be written as a finite sum P (x, ∂) =∑

α aα(x)∂α where α = (α1, . . . , αn) ∈ N
n, aα(x) ∈ R and ∂α = ∂α1

1 · · ·∂αn
n .

Here ∂i stands for the partial derivative ∂
∂xi

.
For a non zero polynomial f ∈ R we denote by Rf the ring of rational

functions
Rf = { g

fm
| g ∈ R, m ∈ N}

and by (Ω•
f , d) := (Rf ⊗R Ω•

R, d) the complex of rational differential forms with
coefficients in Rf where d is the corresponding exterior derivative.

Let us denote by DerC(R) the free R–module of polynomial vector fields (or
equivalently of C-linear derivations of R). Following K. Saito [17] we will denote
by DerR(− log f) the R–module of logarithmic vector fields with respect to f ,
i.e.

DerR(− log f) = {δ =

n∑

i=1

ai(x)∂i ∈ DerC(R) | δ(f) ∈ R · f}.

Der(− log f) is canonically isomorphic to the R–module SyzR(∂1(f), . . . , ∂n(f), f)
of syzygies among (∂1(f), . . . , ∂n(f), f). This isomorphism associates the log-

arithmic vector field δ =
∑

i ai(x)∂i with the syzygy (a1(x), . . . , an(x),− δ(f)
f

).

We will denote simply Der(− log f) if no confusion is possible.
If f is a non zero constant, then Der(− log f) = DerC(R). So we will assume

from now that f is a non constant polynomial in R.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51405749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0712.0001v2

It is clear that

fDerC(R) ⊂ DerR(− log f) ⊂ DerC(R)

and then Der(− log f) has rank n as R–module. The R–module DerR(− log f)
does not depend on the polynomial f but only on the hypersurface D = V(f) :=
{a ∈ Cn | f(a) = 0} ⊂ Cn.

Assume f is reduced (i.e. f is square-free). According to K.Saito [17] a
rational differential p-form ω ∈ Ωp

f is said to be logarithmic with respect to f
(or with respect to the hypersurface D = V(f) ⊂ Cn) if both fω and fdω are
regular (i.e. fω ∈ Ωp

R and fdω ∈ Ωp+1
R). We denote by Ωp(log f) the R–module

of logarithmic differential p–forms with respect to f . K. Saito [17, Corollary
1.6] proved that DerR(− log f) is a reflexive R–module whose dual is Ω1(log f).
We denote by (Ω•(log f), d) the complex

0 −→ Ω0(log f)
d−→ Ω1(log f)

d−→ · · · d−→ Ωn(log f) −→ 0

which will be called the logarithmic de Rham complex and is also, for simple
notation, denoted by Ω•(log f) if no confusion arises.

Algorithms of computing dimensions and bases of the de Rham cohomology
groups Hi(Ω•

f) are given by T.Oaku and N.Takayama [13], [15] and U.Walther
[19]. Here, f is any non-zero polynomial in n-variables. The purpose of this
paper is to give algorithms of computing dimensions and bases of the logarithmic
de Rham cohomology groups Hi(Ω•(log f)) as C-vector spaces in the case of two
variables.

1.1 Logarithmic Comparison Theorem

The rings R and Rf have natural structures of left An–module where ∂i acts
on a polynomial g and on a rational function g

fm as the partial derivative with
respect to xi.

The de Rham complex of a left An–module M , denote by DR(M), is by
definition the complex of C–vector spaces (M ⊗R Ω•

R,∇•) where

∇p : M ⊗R Ωp
R → M ⊗R Ωp+1

R

is defined, for p ≥ 1, by ∇p(m ⊗ ω) = ∇0(m) ∧ ω + m ⊗ dω and ∇0(m) =∑
i ∂i(m) ⊗ dxi. Note that am ⊗ ω = m ⊗ aω for m ∈ M , ω ∈ Ωp and a ∈ R.

The complexes Ω•
f and DR(Rf) are naturally isomorphic.

For any non zero f ∈ R, the inclusion if is a natural morphism of complexes

if : Ω•(log f) → Ω•
f .

We say (see [3]) that f satisfies the (global) logarithmic Comparison Theorem
if the morphism if is a quasi-isomorphism (i.e. if if induces an isomorphism
Hp(Ω•(log f)) → Hp(Ω•

f) for any p).
If n = 2, by [3, Cor. 2.7] and [2, Th. 1.3], if is a quasi-isomorphism if and

only if f is a quasi-homogeneous polynomial.

2

1.2 The case n = 2. Bases for DerR(− log f)

If n = 2, any reflexive R–module is projective and then, by Quillen-Suslin
theorem, this R–module is free. So, if n = 2, the R-module DerR(− log f) is
free of rank 2. In this case, we would like to compute a basis of DerR(log f) by
taking the polynomial f = f(x, y) as input. By using the isomorphism

Der(− log f) ≃ SysR(∂1(f), ∂2(f), f)

and using Groebner basis computation, a system of generators of DerR(− log f)
can be calculated. Then we can apply Quillen-Suslin algorithm (as presented
for example in [8] and implemented in [6]) to compute such a basis. Known
Quillen-Suslin algorithms use Groebner bases computation. Nevertheless, in
some cases, for a big family of polynomials f(x1, x2) we will use an easier way
to compute a basis of Der(− log f).

First of all, we can assume f to be a reduced polynomial since Der(− log f)
depends only on the affine plane curve D = V(f) = {(a1, a2) ∈ C2 | f(a1, a2) =
0} ⊂ C2.

Assume the plane curve D = V(f) is not smooth. The singular points of the
plane curve D = V(f) (i.e. the affine algebraic set

Sing(D) := V(f, f1, f2) = {a = (a1, a2) ∈ C
2 | f(a) = f1(a) = f2(a) = 0})

–where f1 = ∂1(f), f2 = ∂2(f) – consists in a finite number of points (and it is
not the empty set).

We will consider the affine plane C2 as a Zariski open subset of the projective
plane P2(C), the affine point (a1, a2) is mapped into the point with homogeneous
coordinates (1 : a1 : a2). Coordinates in P2(C) will be denoted by (x0 : x1 : x2)
and then the line at infinity is defined by x0 = 0.

Let us denote h = H(f), h1 = H(f1) and h2 = H(f2) where H(−) denotes
dehomogenization with respect to the variable x0. We will denote by Z =
VP(h, h1, h2) ⊂ P2(C) (resp. Z ′ = V(h, h1, h2) ⊂ C3) the projective algebraic
set (resp. the affine algebraic set) defined by the polynomials h, h1, h2. The
non-empty set Z (resp. Z ′) consists of a finite number of points in P2(C) (resp.
a finite number of straight lines in C3). Denote by S = C[x0, x1, x2] the ring
of polynomials graded by the degree of the polynomials. If J = (h, h1, h2)
denotes the ideal in S generated by h, h1, h2 then the quotient ring S/J has
Krull dimension 1. Let us denote by S+ the irrelevant ideal in S, i.e. the ideal
generated by x0, x1, x2.

Proposition 1.1 The graded ring S/J is Cohen-Macaulay if and only if J is
unmixed (i.e. S+ is not an embedded prime associated with J).

Proof: If S/J is Cohen-Macaulay then J is unmixed (see [9]). If J is un-
mixed then S+ is not an embedded prime of J and then the set of non zero-
divisors of S/J contains homogeneous elements of positive degree. That proves
depth(S/J) ≥ 1 but we also have depth(S/J) ≤ dim(S/J) = 1. []

3

If S/J is Cohen-Macaulay then the projective dimension of S/J is 2 and J
satisfies the Hilbert-Burch Theorem [5], i.e. there exists an exact sequence

0 → S2 φ2−→ S3 φ1−→ J → 0

where φ1(g0, g1, g2) = g0h + g1h1 + g2h2 and φ2 is defined by a syzygy matrix
of φ1. In particular, since ker(φ1) = SyzS(h, h1, h2) is a graded free S–module
of rank 2 we can compute {s(1) = (s10, s11, s12), s

(2) = (s20, s21, s22)} a minimal
system of generators and this system is in fact a basis of ker(φ1). By deho-

mogenization (i.e. by setting x0 = 1), we obtain a system {s(1)
|x0=1, s

(2)
|x0=1} of

generators of SyzR(f, f1, f2) ≃ DerR(− log f) and since this R–module is free
of rank 2, this last system is in fact a basis.

If S/J is not Cohen-Macaulay we cannot apply, in general, the Hilbert-Burch
theorem and the previous procedure fails to compute a basis of DerR(− log f).

Example 1.2 (a) Consider the polynomial f = (x3 + y4 +xy3)(x2 − y2). With
the notations as before (and writing x1 = x, x2 = y, x0 = t) we can use Macaulay
2 to prove that the corresponding S/J is Cohen-Macaulay and to compute a min-
imal system of generators of SyzS(h, h1, h2) and then a basis of DerR(− log f).

Macaulay 2, version 0.9.2

--Copyright 1993-2001, D. R. Grayson and M. E. Stillman

--Singular-Factory 1.3b, copyright 1993-2001, G.-M. Greuel, et al.

--Singular-Libfac 0.3.2, copyright 1996-2001, M. Messollen

i1 : R=QQ[t,x,y];

i2 : f=(x^3+y^4+x*y^3)*(x^2-y^2);

i3 : f1=diff(x,f),f2=diff(y,f),h=homogenize(f,t),h1=homogenize(f1,t),h2=homogenize(f2,t);

i4 : Jf=ideal(h,h1,h2);

o4 : Ideal of R

i5 : pdim coker gens Jf

o5 = 2

i6 : Syzf=kernel matrix({{h1,h2,h}})

o6 = image {5} | x3+1/3x2y-4/3xy2 -tx2+4txy+3x2y+4xy2-y3 |

{5} | 2/3x2y+1/3xy2-y3 tx2-txy+3ty2+2xy2+4y3 |

{6} | -5x2-5/3xy+6y2 5tx-18ty-15xy-23y2 |

3

o6 : R-module, submodule of R

i7 : mingens Syzf

o7 = {5} | x3+1/3x2y-4/3xy2 -tx2+4txy+3x2y+4xy2-y3 |

{5} | 2/3x2y+1/3xy2-y3 tx2-txy+3ty2+2xy2+4y3 |

{6} | -5x2-5/3xy+6y2 5tx-18ty-15xy-23y2 |

4

3 2

o7 : Matrix R <--- R

Then the basis of DerR(− log f) is

{(x3+
1

3
x2y−

4

3
xy2)∂x+(

2

3
x2y+

1

3
xy2−y3)∂y , (−x2+4xy+3x2y+4xy2−y3)∂x+(x2−xy+3y2+2xy2+4y3)∂y}

(b) Consider the polynomial g = (x3 + y4 + xy3)(x2 + y2). With the notations
as before (and writing x1 = x, x2 = y, x0 = t) we can use Macaulay 2 to prove
that the corresponding S/J is not Cohen-Macaulay and the minimal number of
generators of SyzS(h, h1, h2) is 3. We can continue the last Macaulay 2 session:

i8 : g=(x^3+y^4+x*y^3)*(x^2+y^2);

i9 : g1=diff(x,g),g2=diff(y,g),h=homogenize(g,t),h1=homogenize(g1,t),h2=homogenize(g2,t);

i10 : Jg=ideal(h,h1,h2);

i11 : pdim coker gens Jf

o11 = 3

i12 : Syzg=kernel matrix({{h1,h2,h}})

o12 =

image

{5} | tx2-5x3-4txy-20/3x2y-2xy2-5/3y3 x4+4/3x3y+x2y2+4/3xy3 tx3-tx2y+4x3y+4txy2+16/3x2y2+2xy3+4/3y4 |

{5} | tx2+txy-10/3x2y-3ty2-5xy2-1/3y3 2/3x3y+x2y2+2/3xy3+y4 -txy2+8/3x2y2+3ty3+4xy3+2/3y4 |

{6} | -5tx+25x2+18ty+100/3xy+11/3y2 -5x3-20/3x2y-13/3xy2-6y3 -5tx2+5txy-20x2y-18ty2-80/3xy2-16/3y3 |

3

o12 : R-module, submodule of R

i13 : mingens Syzg

o13 =

{5} | tx2-5x3-4txy-20/3x2y-2xy2-5/3y3 x4+4/3x3y+x2y2+4/3xy3 tx3-tx2y+4x3y+4txy2+16/3x2y2+2xy3+4/3y4 |

{5} | tx2+txy-10/3x2y-3ty2-5xy2-1/3y3 2/3x3y+x2y2+2/3xy3+y4 -txy2+8/3x2y2+3ty3+4xy3+2/3y4 |

{6} | -5tx+25x2+18ty+100/3xy+11/3y2 -5x3-20/3x2y-13/3xy2-6y3 -5tx2+5txy-20x2y-18ty2-80/3xy2-16/3y3 |

3 3

o13 : Matrix R <--- R

We will revisit this example in Example 4.1.

2 Logarithmic An–modules

Let us denote by M log f the quotient An–module M log f = An

AnDerR(− log f) .

Moreover, we denote by D̃erR(− log f) the set

D̃erR(− log f) = {δ +
δ(f)

f
| δ ∈ DerR(− log f)}

5

and by M̃ log f the quotient An–module

M̃ log f =
An

AnD̃erR(− log f)
.

As quoted in subsection 1.2, for n = 2 the R–module Der(− log f) (and
hence Ω1(log f)) is free of rank 2. Moreover, by [17, 1.8] there exists a R-basis
{δ1, δ2} of Der(− log f) satisfying det(A) = f where

δi = ai1∂1 + ai2∂2, i = 1, 2

and A is the matrix (aij). Then the dual basis of {δ1, δ2} is {ω1, ω2} with

ω1 =
1

f
(a22dx1 − a21dx2) ω2 =

1

f
(−a12dx1 + a11dx2).

The R–module Ω2(log f) is free of rank 1 and ω1∧ω2 is a basis of it. Moreover
we have ω1 ∧ ω2 = dx1∧dx2

f
.

Proposition 2.1 Let f ∈ R = C[x, y] be a non zero reduced polynomial. There
exists a natural quasi-isomorphism

Ω•(log f)
≃−→ RHomA2(M

log f , R)

where the last complex is the solution complex of M log f with values in R.

This Proposition is proven in [1] in a more general setting using the notion
of V0–module. We will give here a direct proof to apply for our algorithm of
computing logarithmic cohomology groups.
Proof: F.J. Calderón [1] defines the so called logarithmic Spencer complex asso-
ciated with M log f . In our situation, once a basis {δ1, δ2} is fixed in Der(− log f),
this complex is nothing but

0 → A
ǫ2−→ A2 ǫ1−→ A → 0 (1)

where A stands for A2, the A-module morphism ǫ1 is defined by ǫ1(P1, P2) =
P1δ1 + P2δ2 (for Pi ∈ A) and ǫ2 is defined by ǫ2(Q) = Q(−δ2 − b1, δ1 − b2) for
Q ∈ A and the polynomials bi being defined by the equality [δ1, δ2] = δ1δ2 −
δ2δ1 = b1δ1 + b2δ2. In [1] it is proven that this complex is a A–free resolution
of the module M log f . We will use this resolution to find a complex of C–vector
spaces representing the solution complex RHomA(M log f , R). Applying the
functor HomA(−, R) to the logarithmic Spencer complex and using the natural
isomorphism R ≃ HomA(A, R), we obtain the complex

0 → R
ǫ∗1−→ R2 ǫ∗2−→ R → 0

where ǫ∗1(g) = (δ1(g), δ2(g)) for g ∈ R and ǫ∗2(h1, h2) = δ1(h2)− δ2(h1)− b1h1 −
b2h2 for hi ∈ R. There is a natural morphism of complexes

6

Ω0(log f) = R
d→ Ω1(log f)

d→ Ω2(log f)

η0 ↓ η1 ↓ η2 ↓
R

ǫ∗1−→ R2 ǫ∗2−→ R

where η0 = id, η1(h1ω1 + h2ω2) = (h1, h2) and η2(gω1 ∧ ω2) = g for h1, h2, g ∈
R and where {ω1, ω2} is the dual basis in Ω1(log f) of the basis {δ1, δ2} in
Der(− log f). It is obvious that this morphism η• of complexes of vector spaces
is in fact an isomorphism of complexes. That proves the proposition. []

To each finitely generated left An–module M we associate the complex of
finitely generated right An–modules RHomAn

(M, An). To this one we associate
the complex of finitely generated left An–modules HomR(Ωn

R,RHomAn
(M, An))

which is by definition the dual M∗ of the left An–module M .
If M is holonomic (i.e. if the dimension of the characteristic variety of

M is n) then it can be shown that ExtiAn
(M, An) = 0 for i 6= n and then

M∗ is the left holonomic An–module HomR(Ωn
R, ExtnAn

(M, An)) (see e.g. [10,

pag. 41]). Assume ExtnAn
(M, An) = An

J
for some right ideal J ⊂ An. Then

HomR(Ωn
R, An/J) is naturally isomorphic to the left An–module An

JT where JT

is the left ideal JT = {PT |P ∈ J} and PT is the formal adjoint of the operator
P .

If N1, N2 are finitely generated left An–modules there exists a natural iso-
morphism of complexes

RHomAn
(N1, N2)→RHomAn

(RHomAn
(N2, An),RHomAn

(N1, An))

and then a natural isomorphism

RHomAn
(N1, N2)→RHomAn

(N∗
2 , N∗

1).

In particular, if N2 = R = C[x1, . . . , xn] then there exists a natural isomor-
phism from RHomAn

(N1, R) (i.e. the solution complex of N1) to

RHomAn
(R∗, N∗

1).

As the complex RHomAn
(R, An) is naturally isomorphic to Ωn

R we can identify
R and R∗ and then we have a natural isomorphism

RHomAn
(N1, R)

≃→ RHomAn
(R, N∗

1)
≃→ DR(N∗

1). (2)

Proposition 2.2 Let f ∈ C[x, y] be a non zero reduced polynomial. Then there
exists a natural isomorphism

(M log f)∗ ≃ M̃ log f .

Proof: This is one of the main results in [4]. We include here its proof for

the sake of completeness. First of all, both A2–modules M log f and M̃ log f are

7

holonomic. That can be deduced from [1, Cor. 4.2.2] since the set of principal
symbols {σ(δ1), σ(δ2)} is a regular sequence in the polynomial ring R[ξ1, ξ2] and
then the Krull dimension of the quotient ring

R[ξ1, ξ2]/〈σ(δ1), σ(δ2)〉

is 2. Then the characteristic variety of both A2–modules M log f and M̃ log f has
dimension 2 and the modules are holonomic.

We will use the logarithmic Spencer complex associated with M log f (see the
complex (1)) in order to compute Ext2A(M, A) where A = A2 and M = M log f .
Applying the functor HomA2(−, A2) to the complex (1) we get (by using the
natural isomorphism HomA2(A2, A2) ≃ A2)

0 −→ A
ǫ1−→ A2 ǫ2−→ A −→ 0

where ǫ1(P) = (δ1P, δ2P) and ǫ2(P1, P2) = (−δ2 − b1)P1 + (δ1 − b2)P2. Then
we have

Ext2A(M, A) ≃ A

(−δ2 − b1, δ1 − b2)A
.

So,

M∗ ≃ A

A((−δ2 − b1)T , (δ1 − b2)T)
.

Finally, (−δ2−b1)
T = δ2 + δ2(f)

f
and (δ1−b2)

T = −δ1− δ1(f)
f

(see [4, Cor. 3.1]).

[]

Theorem 2.3 For any non zero reduced polynomial f ∈ C[x, y], the complexes

Ω•(log f) and DR(M̃ log f) are naturally quasi-isomorphic.

As a consequence of this theorem and by [13], [15] and [19], the cohomology
of the complex Ω•(log f) can be computed starting with the given polynomial f ,

since a system of generators of the R-module D̃erR(− log f) can be computed
using the R–syzygies of (∂1(f), ∂2(f), f).

Proof: Let us simply denote R = C[x, y], A = A2, M = M log f , M̃ = M̃ log f .
By Proposition 2.1 there exists a natural isomorphism

Ω•(log f)
≃−→ RHomA(M, R)

and by equation (2) there exists a natural isomorphism

RHomA(M, R)
≃−→ DR(M∗).

By Proposition 2.2 we have DR(M∗) ≃ DR(M̃).
We can give the explicit form of this quasi-isomorphism of complexes τ• :

Ω•(log f) → DR(M̃).

τ0 : R → M̃ is defined by τ0(g) = gf where () means the equivalent class

in the ideal A2D̃erR(log f).

8

τ1 : Ω1(log f) → M̃ ⊗R Ω1
R is defined by

τ1(c1ω1 + c2ω2) =
∑

i

ci ⊗ fωi.

τ2 : Ω2(log f) → M̃ ⊗R Ω2
R is defined by τ2(gω1 ∧ ω2) = g ⊗ fω1 ∧ ω2. []

3 Algorithm

Let us summarize our algorithm of computing logarithmic cohomology groups
in the two dimensional case. Most tensor products ⊗ in the sequel are over A2.
If we omit the subscript A2 for ⊗, it means that the tensor product is over A2.

Algorithm 3.1

Input: a non zero reduced polynomial f(x, y)
Output: dimensions and bases of Hi(Ω•(log f)).

1. Compute a free basis s = (s0, s1, s2) and t = (t0, t1, t2) of the syzygy
module of f, fx, fy over the polynomial ring C[x, y]. This step can be
performed by the following way.

(a) Compute the minimal syzygy of h(f), h(fx), h(fy). Here, h(g) is
the homogenization of g. If the number of generators is 2, then the
dehomogenizations of these generators are s and t.

(b) If we fail on the first step, apply an algorithm for the Quillen-Suslin
theorem to obtain s and t (call the procedure Quillen-Suslin).

2. Define a left ideal in A2 by

I = A2 · {−s0 + s1∂x + s2∂y,−t0 + t1∂x + t2∂y} . (3)

Compute the dimensions and bases of the de Rham cohomology groups
for M̃ = A2/I with the algorithm in [13], [15]. In other words, replace the
A2-module C[x, y, 1/f] by A2/I of (3) in the algorithm 1.2 in [13].

3. The bases of the previous step are given in A2/(∂xA2 +∂yA2)⊗M̃• where

M̃• is (1, 1,−1,−1)-adaptive free resolution of M̃ . Bases of de Rham co-

homology groups in Ω•⊗M̃ ≃q.i.s DR(M̃) ≃q.i.s Ω•(log f) are determined
by the transfer algorithm of U.Walther [19, Theorem 2.5 (Transfer The-
orem)] and the correspondence τ i given in our Theorem 2.3. Here, Ω• is
the Koszul resolution of the right A2-module A2/(∂xA2 + ∂yA2).

In the first step, we should firstly try to find the minimal syzygy. Because,
mostly it is faster than applying implementations and algorithms for the Quillen-
Suslin theorem.

The following example will illustrate how our algorithm works.

9

Example 3.2 We consider the case of f = xy(x−y). Two canonical generators

of I = D̃erR(log f) are

ℓ1 = 3 + x∂x + y∂y, ℓ2 = −(2x − y) + (−x2 + xy)∂x

The associated canonical logarithmic forms are

ω1 =
1

f
x(x − y)dy, ω2 =

1

f
(−ydx + xdy)

Let us proceed on the step 2. We apply the procedure of computing the de
Rham cohomology groups [13], [16] for A2/I. The maximal integral root of the
b function for I = A2 · {ℓ1, ℓ2} with respect to the weight (1, 1,−1,−1) is 1. The
dehomogenization of the (1, 1,−1,−1)-minimal filtered free resolution of A2/I
is

A• : A2[0]
a−2

// A2[1] ⊕ A2[0]
a−1

// A2[1] (4)

where

a−2(c) = c(−ℓ2, ℓ1 − 1) for c ∈ A2

a−1(c, d) = (c, d)

(
ℓ1

ℓ2

)
for (c, d) ∈ A2[1] ⊕ A2[0]

Following [13, procedure 1.8], we truncate the complex A2/(∂xA2+∂yA2)⊗A2 A•

to the forms of (1, 1,−1,−1)-degree at most 1 since the maximal integral root
of the b-function is 1. The truncated complex is the following complex of finite
dimensional vector spaces

C
ā−2

// (C + Cx + Cy) ⊕ C
ā−1

// (C + Cx + Cy)
ā0

// 0 (5)

Here,

ā−2(1) = (−ℓ2, ℓ1 − 1) mod ∂xA2 + ∂yA2

= (0, 0)

ā−1(a + bx + cy, d) = (a + bx + cy)ℓ1 + dℓ2 mod ∂xA2 + ∂yA2

= a

Therefore, the cohomology groups Hi(A2/(∂xA2 + ∂yA2) ⊗ A•) are

H0(A2/(∂xA2 + ∂yA2) ⊗ A•) = Ker ā−2 = C

H1(A2/(∂xA2 + ∂yA2) ⊗ A•) = Ker ā−1/Im ā−2 = (Cx + Cy) ⊕ C

H2(A2/(∂xA2 + ∂yA2) ⊗ A•) = Ker ā0/Im ā−1 = Cx + Cy

Finally, we perform the step 3. Put M̃ = A2/I. In order to give bases of the

cohomology groups in M̃ ⊗R Ωi
R, we apply the transfer theorem (algorithm) of

Uli Walther [19].

10

We consider the following double complex (c.f., 2.4 of [19]).

Ω(2) ⊗ A2
1⊗a−2

// Ω(2) ⊗ (A2 ⊕ A2)
1×a−1

// Ω(2) ⊗ A2

A2 ⊗ A2

OO

α2,−2
// A2 ⊗ (A2 ⊕ A2)

OO

α2,−1
// A2 ⊗ A2

OO

// A2 ⊗ M̃

A2

⊕
A2

 ⊗ A2

ε1,−2

OO

α1,−2
//

A2

⊕
A2

 ⊗ (A2 ⊕ A2)

ε1,−1

OO OO

α1,−1
//

A2

⊕
A2

 ⊗ A2

ε1,0

OO OO

//

A2

⊕
A2

 ⊗ M̃

ε1,−2

OO

A2 ⊗ A2

ε0,−2
OO

α0,−2
// A2 ⊗ (A2 ⊕ A2)

ε0,−1
OO OO

α0,−1
// A2 ⊗ A2

ε0,0
OOOO

// A2 ⊗ M̃

ε0,−2
OO

Here we denote A2/(∂xA2 + ∂yA2) by Ω(2), which is isomorphic to Ω2
R as the

right A2-module. The vertical complex is constructed by the Koszul resolution of
Ω(2) as the right module denoted by Ω•. The horizontal complex is constructed
by A•. Note that we have the following maps in the complex:

ε1,−2((a, b) ⊗ c) = (−∂ya + ∂xb) ⊗ c

ε0,−2(a ⊗ c) = (∂xa, ∂ya) ⊗ c

ε1,−1((a, b) ⊗ (c, d)) = (∂ya − ∂xb) ⊗ (c, d)

ε0,−1(a ⊗ (c, d)) = (∂xa, ∂ya) ⊗ (c, d)

ε1,0((a, b) ⊗ c) = (−∂ya + ∂xb) ⊗ c

ε0,0(a ⊗ c) = (∂xa, ∂ya) ⊗ c

α2,−2(a ⊗ c) = a ⊗ c(−ℓ2, ℓ1 − 1)

α2,−1(a ⊗ (c, d)) = a ⊗ (cℓ1 + dℓ2)

α1,−2((a, b) ⊗ c) = (a, b) ⊗ c(−ℓ2, ℓ1 − 1)

α1,−1((a, b) ⊗ (c, d)) = (a, b) ⊗ (cℓ1 + dℓ2)

α0,−2(a ⊗ c) = a ⊗ c(−ℓ2, ℓ1 − 1)

α0,−1(a ⊗ (c, d)) = a ⊗ (cℓ1 + dℓ2)

The last vertical complex is quasi isomorphic to DR(M̃). Let us compute trans-
fers. Two cohomology classes x and y in Ker ā0 ⊂ Ω(2)⊗ A2 are lifted to 1 ⊗ x

11

and 1⊗ y in A2⊗A2 respectively, and we push them to A2⊗ M̃ . It follows from
the definition of τ2, xω1 ∧ ω2 and yω1 ∧ ω2 is the basis of H2(Ω(log f)•).

Let us compute transfers of bases of H1(Ω(2) ⊗ A•). The cohomology class
1⊗ (x, 0) in Ker ā1 are lifted to 1⊗ (x, 0) in A2 ⊗ (A2 ⊕A2). We have α2,−1(1⊗
(x, 0)) = 1 ⊗ xℓ1. Solving −∂ya + ∂xb = xℓ1 in A2, we obtain the preimage

by ε1,0; we have ε1,0((−xy, x2) ⊗ 1) = xℓ1. Push this element to

A2

⊕
A2

 ⊗ M̃ ,

we obtain (xydx − x2dy) ⊗ 1. Let us compute the preimage by τ1. Solving
c1fω1 + c2fω2 = xydx − x2dy, we obtain c1 = 0, c2 = −x. Therefore, 1 ⊗ (x, 0)
stands for −xω2. Analogously, 1 ⊗ (y, 0) is transfered to −y2dx + xydy and
stands for −yω2 and 1⊗ (0, 1) is transfered to x(y − x)dy and stands for ω1. In
summary,

H1(Ω(log f)•) = C(−x)ω2 + C(−y)ω2 + Cω1.

Finally, we compute transfers of bases of H0(Ω(2)⊗A•). Since α2,−2(1⊗1) =
1 ⊗ (−ℓ2, ℓ1 − 1), we firstly need to compute the preimage of this element by
ε1,−1. Since the projection of this element to Ω(2)⊗ (A2 ⊕A2) is zero, we have
−ℓ2 = ∂xx(x − y) and ℓ1 − 1 = ∂xx + ∂yy. We decompose 1 ⊗ (−ℓ2, ℓ1 − 1) as

1 ⊗ (−ℓ2, 0) + 1 ⊗ (0, ℓ1 − 1) = −ℓ2 ⊗ (1, 0) + (ℓ1 − 1) ⊗ (0, 1)

= ∂xx(x − y) ⊗ (1, 0) + (∂xx + ∂yy) ⊗ (0, 1)

Since ε1,−1 is linear, this sum is equal to ε1,−1(c) where c1 = (0,−x(x − y)) ⊗
(1, 0) + (y,−x) ⊗ (0, 1). Since α1,−1(c1) = (yℓ2,−x(x − y)ℓ1 − xℓ2) ⊗ 1 =
(∂xxy(y − x), ∂yxy(y − x)) ⊗ 1, the preimage of α1,−1(c1) by ε0,0 is equal to

xy(y−x)⊗1 ∈ A2⊗M̃ . Therefore, the preimage of τ0 is equal to −1 and hence
H0(Ω(log f)•) = C(−1). Although we have done this computation by hand,
computation of transfers can be done by Gröbner basis computation. See [19]
and the source code for deRhamAll of the Macaulay 2 package for D-modules
[7].

Before presenting implementations and larger examples, we explain a bit
about a procedure to find a preimage of τ i in general. The transfer algorithm
gives an element in Ωi ⊗A2 M̃ where Ω• is the Koszul resolution of Ω(2) ≃ Ω2

R

as the right A2-module. This element can be identified with a differential form
with coefficients in M̃ and we need to find the preimage of it by τ i which lies in
Ωi(log f). This can be performed by the method of undetermined coefficients.

Consider the case of τ1. Take an element c1ω1 + c2ω2 in Ω1(log f) where
ci ∈ R. We have seen in Theorem 2.3 that

τ1(c1ω1 + c2ω2) = fω̄1 ⊗A2 c̄1 + fω̄2 ⊗A2 c̄2 ∈

A2

⊕
A2

 ⊗A2 M̃ (6)

Here, we identify

(
1
0

)
⊗A2 m1 with m1⊗R dx and

(
0
1

)
⊗A2 m2 with m2⊗R dy,

mi ∈ M̃ (comparison theorem) and when ωi = aidx+ bidy, we denote

(
ai

bi

)
by

12

ω̄i. As the output of the transfer algorithm, we are given an element m1dx +
m2dy, mi ∈ M̃ . We regard mi as an element in A2 in the sequel. We rewrite
fωi as fω1 = Adx + Bdy and fω2 = Cdx + Ddy. Assume I is generated by ℓ1

and ℓ2. Then, the definition of τ1 (6) induces the following identity in A2 by
taking coefficients of dx and dy

Ac1 + Cc2 = m1 +

2∑

j=1

dj
1ℓj + ∂xe (7)

Bc1 + Dc2 = m2 +

2∑

j=1

dj
2ℓj + ∂ye (8)

where ci ∈ R, dj
i , e ∈ A2 are unknown. Fix a degree bound m for these elements

and determine these elements by the method of unknown coefficients. The iden-
tities (7) and (8) induce a system of linear equations over C for the coefficients.
Increasing the degree bound and solving the system, we will be able to obtain
c1 and c2 in finite steps by virtue of Theorem 2.3.

Consider the case of τ2. Since our basis in H2(Ω• ⊗ M̃) is given in terms of
x and y and fω1 ∧ ω2 = dx ∧ dy, we need no computation to find the preimage
by τ2.

Let us consider the case of τ0. Let m be an output of the transfer algorithm.
It lies in A2 in general. Finding the preimage g of τ0 can be done by solving
gf = m +

∑2
j=1 djℓj where g ∈ R and dj ∈ A2.

4 Implementation and Examples

The second and third steps of Algorithm 3.1 can be performed with the help of
the D-module package on Macaulay2; use the commands DintegrationAll to
obtain the dimension of the cohomology groups, DintegrationClasses to ob-
tain the bases of cohomology groups, and a modification of DeRhamAll to obtain
the bases of cohomology groups in Ω•⊗ M̃ . Unfortunately, this implementation
has not installed an efficient algorithm of computing b-function by Noro [11] to
get the truncated complex in [13], [15]. Then, only relatively small examples
are feasible. The Example 4.1 is computed by our Macaulay2 program. The
Example 4.2 is computed by our implementation on kan/k0 and Risa/Asir with
an implementation of [11] (the transfer algorithm has not been implemented
yet for kan/k0). This implementation also uses the minimal filtered resolution
to reduce the size of complex of A2-modules [16]. The program is contained
in the OpenXM package with the name logc2.k (http://www.openxm.org).
Our implementation does not contain that for the Quillen-Suslin theorem. We
utilize the implementation by A.Fabianska on Maple when the step 1-(a) fails.
We also note that computation of the preimage of τ1 may become a bottleneck
of computation.

13

http://www.openxm.org

Example 4.1 (Continued from Example 1.2 (b).) We will determine bases of
Hi(Ω•(log f)) where f = (x3 + y4 + xy3)(x2 + y2). We firstly use Fabianska’s
program for the Quillen-Suslin theorem to find the 2 free generators of the
syzygies of f, fx, fy. The two rows of the following matrix S are the generators

S =
(

S11 (−23/6y + 1/2)x2 + (y3 + y2 − 2y)x − 5/6y3 (1/3y + 1/2)x2 + (−3y2 + 1/2y)x + y4 + 4/3y3 − 3/2y2

S21 −46/75x3 + (4/25y2 − 2/25y)x2 − 8/15y2x 4/75x3 − 12/25yx2 + (4/25y3 − 2/75y2)x − 2/5y3

)

where S11 = (115/6y−5/2)x−6y3−43/6y2+9y, S21 = 46/15x2 +(−24/25y2+

22/75y)x + 12/5y2. Put A =

(
S12 S13

S22 S23

)
. Then, det(A) = 1

3f . We put

ω1 = 1
f
(a22dx− a21dy) and ω2 = 1

f
(−a12dx + a11dy). (

√
3ωi agrees with the ωi

in Theorem 2.3.)

We apply the integration algorithm and the transfer algorithm for M̃ . We
obtain the following result. (1) H0(DR(M̃)) is spanned by 1 ⊗ f and then we

have H0(Ω•(log f)) ≃ C ·1. (2) H2(DR(M̃)) is spanned 1⊗a where a runs over

3 3 2 3 4

o9 = {{1}, {-x}, {y }, {-x*y }, {x*y }, {x y}, {y }}

(We have pasted the output of our Macaulay 2 program trans.m2.) Then, we
have

H2(Ω•(log f)) ≃ (C · 1 + C · (−x) + · · · + C · y4)ω1 ∧ ω2

(3) H1(DR(M̃)) is spanned by 3 differential forms m1dx+m2dy where m1, m2

are elements in A2, of which explicit expressions are a little lengthy. We solve
the identities (7) and (8) to find c1 and c2. In other words, we need to compute
preimages of m1dx + m2dy by τ1. As we explained, this can be done by the
method of undetermined coefficients degree by degree. We can find solutions
when the degree of ci, d

j
i , e with respect to x, y is 6 and that with respect to

∂x, ∂y is 0. Here is a basis of 3-dimensional vector space H1(Ω•(log f)) obtained
by this method.

−yxω1 − 4/25x2ω2

((215/28y − 1101/280)x− 367/56y2)ω1 + (43/35x2 − 367/350yx)ω2

((y − 11/30)x− 28/9y3 − 13/6y2 + 14/3y)ω1 + (4/25x2 + (−112/225y2 + 2/5y)x + 56/45y2)ω2

All programs and session logs to find this answer is obtainable from
http://www.math.kobe-u.ac.jp/OpenXM/Math/LogCohomology/2007-11/log-2007-11-22.txt

The logarithmic comparison theorem does not hold for this example. In fact,
the dimensions of the de Rham cohomology groups Hi(Ω•

f), (i = 2, 1, 0) are
5, 3, 1 respectively.

Example 4.2 We apply a part of our algorithm to compute the dimensions of
the cohomology groups Hi(Ω•(log f)) for f = xp + yq + xyq−1. Here is a table
of p, q and the dimensions of H2, H1, H0 and timing data.

14

http://www.math.kobe-u.ac.jp/OpenXM/Math/LogCohomology/2007-11/log-2007-11-22.txt

p q Dimensions Timing in seconds

10 11 (8,1,1) 3.5
10 12 (9,1,1) 4.6
10 13 (10,1,1) 6.9
10 14 (11,1,1) 9.4
10 20 (17,1,1) 55.0
10 21 (18,1,1) 86.8

The program is executed on a machine with 2G RAM and Pentium III (1G Hz).

The homogenization of f , fx, fy generates an ideal that is Cohen-Macaulay.
These examples do not need to call the subprocedure Quillen-Suslin. However,
the logarithmic comparison theorem does not hold for these examples. Compu-
tation of de Rham cohomology groups is not feasible by our implementation.

5 A Yet Another Algorithm

In the previous section, we have presented a general algorithm of computing a
basis of the logarithmic cohomology groups for plane curves. However, this al-
gorithm relies on algorithms for the Quillen-Suslin theorem and they are some-
times slow. We will present a yet another algorithm, which is free from the
Quillen-Suslin theorem, but it works only for computing a basis of the middle
dimensional cohomology group H2(Ω•(log f)) under some conditions on f . This
section can be read independently from other sections. For reader’s convenience,
we will also redefine some notations.

Before stating the main algorithm, we start with an introductory example,
which explains the idea of our algorithm.

Put K = C and L = (1 − x)x∂ + 2x(= θx − x(θx − 2)). We consider the
problem of determining a basis of the K-vector space K[x]/L ·K[x]. Since L is a
K-linear map and K[x] is an infinite dimensional K-vector space, the quotient
has the structure of a K-vector space. However, note that L · K[x] is not an
ideal and we cannot use Gröbner basis to get a basis.

Let us act L on monomials; L · xk = kxk − (k − 2)xk+1. For small k, they
are L ·1 = 2x, L ·x = x+x2, L ·x2 = 2x2. Then xk+1 ≃ k

k−2xk modulo L ·K[x].

In particular, if k ≥ 3, then the monomial xk+1 can be reduced to a lower order
monomial modulo L · K[x]. Hence, the set of monomials 1, x, x2, x3 generates
K[x]/L · K[x]. More precisely, we can prove that it is isomorphic to F3/L · F2.
Where Fk is the set of polynomials of which degree is less than or equal to k.
The monomials 1, x, x2, x3 are not independent modulo L · K[x] and satisfies
the relation above. Finally, we conclude that K[x]/LK[x] ≃ K · 1 + K · x3.

Note that 3 is the magic number, which is characterized as follows. Put
L∗ = −(1−x)x∂ − 1+4x. in(1,−1)(L

∗)∩K[−∂x] is generated by b(−∂x) where
b(s) = s − 3. The polynomial b(s) is called the indicial polynomial (b-function)
for integration. The magic number 3 is the root of b(s) = 0. We will call
the method to bound a degree by a root of a b-function b-function criterion.
T.Oaku firstly introduced the b-function criterion to compute restrictions and

15

integrations of D-modules [12]. The topic of computing K[x]/L · K[x] by the
b-function was also discussed in more detail in an expository book “D-modules
and Computational Mathematics” (in Japanese) by T.Oaku.

Let f be a polynomial in two variables. Put

Ωk
f = k-form with coefficients in K[x, y, 1/f]

As we have explained in the introduction, the k form ω ∈ Ωk
f is called log-

arithmic k-form iff both of fω and df ∧ ω have polynomial coefficients. The
space of logarithmic k-forms is denoted by Ωk(log f). The question we ad-

dress in this section is the computation of Ω2(log f)
d Ω1(log f) . It is easy to see that

Ω2(log f) =
K[x, y]dx ∧ dy

f
. Let us determine all the logarithmic 1-forms. Let

(p, q, r) a triple of polynomials such that

fyp − fxq + fr = 0 (syzygy equation). (9)

Note that (0, f, fx), (f, 0,−fy), (fx, fy, 0) are trivial solutions of the syzygy

equation. For a solution (p, q, r) of the syzygy equation, ω = pdx+qdy
f

belongs

to Ω1(log f). Conversely, any logarithmic 1-form can be expressed in this way.
In fact, the condition that df ∧ ω has a polynomial coefficient is equivalent to
that fyp − fxq is a multiple of f .

Put ω = pdx+qdy
f

. Let e(x, y) be any polynomial. Then, d(eω) = (Le)dx∧dy
f

where

L = q∂x − p∂y + qx − py +
fyp − fxq

f

We denote the Weyl algebra A2 by D for simplicity in the sequel. Sup-
pose that Li, (i = 1, . . . , m) stand for a set of generators of the solution
space of the syzygy equation, which is a K[x, y]-module. Then d Ω1(log f) =∑

LiK[x, y]dx∧dy/f . Therefore, the computation of H2 is nothing but the com-
putation of K[x, y]/

∑m
i=1 Li•K[x, y]. Put I∗ = D ·{L∗

1, . . . , L
∗
m}, which is a left

D ideal. We denote by Fk the K-subvector space of D of which (1, 1,−1,−1)-
order is less than or equal to k [18, p.14, p.203]

Algorithm 5.1 H2(Ω·(log f)).
Step 1. Find generators of the syzygy equation and obtain explicit expressions
of Li.
Step 2. Compute (1, 1,−1,−1)-Gröbner basis (standard basis) of I. We denote
the elements of the Gröbner basis by Li∗ (renaming).
Step 3. Find the monic generator b(−∂xx− ∂yy) of in(1,1,−1,−1) (I)∩K[−∂xx−
∂yy].
Step 4. Let k0 be the maximal non-negative root of b(s) = 0. Then, return
K-vector space basis {ci} of

Fk0/
∑

i

Li · Fk0−ord(1,1,−1,−1) (Li).

16

{cidx ∧ dy/f} is a basis of H2.

The steps 2, 3, 4 can also be done by computing D/(I∗ + ∂xD + ∂yD) (0-th
integral module) where I∗ is the formal adjoint of I. (As to details for the steps
2, 3, 4, see [14].)
Note: Although our discussion is independent from the discussions of the pre-
vious sections, the left ideal generated by L∗

i is nothing but D̃erR(− log f) and
hence this algorithm and the Algorithm 3.1 are analogous for computing a ba-
sis of H2(Ω•(f)). We also note that finding bases for Hi(Ω• ⊗A2 M̃) can be
performed by applying the integration algorithm and the transfer algorithm for
D/I∗. The Algorithm 3.1 relies on algorithms for the Quillen-Suslin theorem to
find bases for Hi(Ω(log f)•), i = 1, 0.

Theorem 5.2 If dimV (f, fx, fy) ≤ 0, dimV (f, fx) ≤ 1, dimV (f, fy) ≤ 1,
then the Algorithm 5.1 is correct.

Proof: Let I be the left ideal in D generated by L1, . . . , Lm. We may assume
that I contains f∂x, f∂y and fy∂x−fx∂y. Therefore, the characteristic variety of
I is contained in V (f(x, y)ξ, f(x, y)η, fy(x, y)ξ−fx(x, y)η), of which dimension is
less than or equal to 2 from the assumption. In fact, assume (a, b) ∈ V (f, fx, fy).
Then, ξ and η are free and then the dimension of the characteristic variety is
less than or equal to 2. Assume (a, b) ∈ V (f, fx) \ V (f, fx, fy). Then, we have
f(a, b) = 0, fx(a, b) = 0 and fy(a, b) 6= 0. Then, η is free and ξ = 0 and then
the dimension of the characteristic variety is less than or equal to 2. The rest
cases can be shown analogously. Therefore, D/I is a holonomic D-module and
hence a non-trivial b exists ([18, Chapter 5, Theorem 5.1.2]). The rest of the
correctness proof is analogous with that of the 0-th integration algorithm of
D-modules [12], [18, Chapter 5; Theorems 5.2.6 and 5.5.1]. []

Note: The algorithm works to get Hn(Ω•(log f)) in the n-variable case if
dimV (f, fxi1

, . . . , fxim
) ≤ n − m for all m = 1, . . . , n and all combinations

i1, . . . , im. The algorithm and the correctness proof are analogous. In fact,
since fξi and (−1)ifxj

ξi − (−1)jfxi
ξj , (1 ≤ i 6= j ≤ n) are in the characteristic

ideal for I and then the dimension of the characteristic variety is less than or
equal to n by utilizing the condition.

Example 5.3 For f = (x3 +y4+xy3)(x2 +y2), we have dimH2(Ω•(log f)) = 7
with our yet another algorithm 5.1. The execution time is 1.9s. We need to call
the procedure Quillen-Suslin if we use the first algorithm.

We close this paper with a final note and the acknowledgement of this paper.
We think that logarithmic differential forms give nice simple bases for some of
hypergeometric integrals as pairings of twisted cycles and cocycles when the
logarithmic comparison theorem holds for twisted de Rham complex. We hope
that our result have applications to study hypergeometric integrals. The authors
are grateful to A.Fabianska for helping us to compute free bases of syzygies by
using her implementation for Quillen-Suslin’s theorem.

17

References

[1] F. J. Calderón-Moreno, Logarithmic differential operators and logarithmic
de Rham complexes relative to a free divisor, Annales Scientifiques de lÉcole
Normale Supérieure (4) 32 (1999), 701–714.

[2] F. J. Calderón-Moreno, D. Mond, L. Narváez-Macarro and F. J. Castro-
Jiménez, Logarithmic Cohomology of the Complement of a Plane Curve,
Commentarii Mathematici Helvetici 77 (2002), 24–38.

[3] F. J. Castro-Jiménez, L. Narváez-Macarro and D. Mond, Cohomology of
the complement of a free divisor, Transactions of the American Mathemat-
ical Society 348 (1996), 3037–3049.

[4] F. J. Castro-Jiménez and J. M. Ucha, Explicit comparison theorems for
D-modules, Journal of Symbolic Computation 32 (2001), 677–685.

[5] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry,
Springer, New York, (1995).

[6] A. Fabianska, QuillenSuslin package,
http://wwwb.math.rwth-aachen.de/QuillenSuslin/

[7] A. Leykin, H. Tsai, D-module package for Macaulay2, 1999–2007.
http://www.math.uiuc.edu/Macaulay2

[8] A. Logar and B. Sturmfels, Algorithms for the Quillen-Suslin Theorem,
Journal of Algebra 145, (1992), 231-239.

[9] H. Matsumura, Commutative Ring Theory, Cambridge University Press,
(1986).

[10] Mebkhout, Z. Le formalisme des six opérations de Grothendieck pour les
DX -modules cohérents. Travaux en Cours, 35. Hermann, Paris, 1989.

[11] M. Noro, An Efficient Modular Algorithm for Computing the Global B-
Function, Mathematical Software, Proceedings of the first international
congress of mathematical software, Beijing, Edited by A. M. Cohen,
X. S. Gao, N. Takayama, World Scientific, (2002), 147–157.

[12] T. Oaku, Algorithms for b-functions, restrictions, and algebraic local coho-
mology groups of D-modules. Advances in Applied Mathematics 19 (1997),
61–105,

[13] T. Oaku and N. Takayama, An algorithm for de Rham cohomology groups
of the complement of an affine variety via D-module computation, Journal
of Pure and Applied Algebra, 139 (1999), 201–233.

[14] T. Oaku, N. Takayama, H. Tsai, Polynomial and rational solutions of holo-
nomic systems. Journal of Pure and Applied Algebra 164 (2001), 199–220.

18

http://wwwb.math.rwth-aachen.de/QuillenSuslin/
http://www.math.uiuc.edu/Macaulay2

[15] T. Oaku and N. Takayama, Algorithms for D-modules—restriction, tensor
product, localization, and local cohomology groups, Journal of Pure and
Applied Algebra 156 (2001), 267–308.

[16] T. Oaku and N. Takayama, Minimal Free Resolutions of Homogenized D-
modules, Journal of Symbolic Computation, 32 (2001), 575–592.

[17] K. Saito, Theory of logarithmic differential forms and logarithmic vector
fields, Journal of Faculty of Science, University of Tokyo. Section IA. 27

(1980), 265–291.

[18] M.Saito, B.Sturmfels, N.Takayama, Gröbner deformations of hypergeomet-
ric differential equations, Algorithms and Computation in Mathematics, 6.
Springer-Verlag, Berlin, 2000. viii+254 pp.

[19] U. Walther, Computing the cup product structure for complements of com-
plex affine varieties, Journal of Pure Applied Algebra 164 (2001), 247–273.

19

	Introduction
	Logarithmic Comparison Theorem
	The case n=2. Bases for DerR(-logf)

	Logarithmic An–modules
	Algorithm
	Implementation and Examples
	A Yet Another Algorithm

