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Abstract

In this paper we continue the study of the g— classical (discrete) polynomials (in the Hahn’s
sense) started in [18]. Here we will compare our scheme with the well known g—Askey Scheme
and the Nikiforov-Uvarov Tableau. Also, new families of ¢—polynomials are introduced.

Introduction

The so-called g—polynomials constitute a very important and interesting set of special functions
and more specifically of orthogonal polynomials. They appear in several branches of the natural
sciences, e.g., continued fractions, Eulerian series, theta functions, elliptic functions,...; see [3, 9],
quantum groups and algebras [14, 15, 25|, among others (see also [10, 20]). They have been
intensively studied in the last years by several people (see e.g. [13]) using several tools. One of
them is the one reviewed in [13] which is based on the basic hypergeometric series [10] and was
developed mainly by the American School starting by the works of Andrews and Askey (see e.g.
[4], the literature on this method is so vast that we are not able to include it here, a very complete
list is given in [13]) and lead to the so-called g—Askey Tableau of hypergeometric polynomials
[13]. In other direction, the Russian (former Soviet) school, starting from the works by Nikiforov
and Uvarov [21] and further developed by Atakishiyev and Suslov (see e.g. [5, 6, 20, 23, 24] and
references contained therein), have considered the difference analog in non-uniform lattices of the
hypergeometric differential equation [22], from where the hypergeometric representation of the
g—polynomials follows in a very simple way [5, 23]. This schema leads to the Nikiforov-Uvarov
tableau [20, 23] for the polynomial solutions of the difference hypergeometric equation on non-
uniform lattices. A special mention deserves the paper by Atakishiev and Suslov [6] where a
difference analog of the well known method of undeterminated coefficients have been developed
for the hypergeometric equation on non-uniform lattices and also give a classification similar to
the Nikiforov and Uvarov 1991 one but for the g—special functions (not only for the polynomials
solutions).

Our main aims here are two: to continue the study started in [18] using the algebraic theory
developed by Maroni [16] and to classify the g—classical polynomials and compare with the g—Askey
and Nikiforov & Uvarov Tableaus. In fact, in [18] we have proven several characterization of
the g—classical polynomials as well as a very simple computational algorithm for finding their
main characteristics (e.g. the coefficients of the three-term recurrent relation, structure relation
of Al-Salam Chihara, etc). Going further, we will give here a “very natural” classification of the

g—classical polynomials introduced by Hahn in his paper [11], i.e., we will classify all orthogonal

flqz)—f(z)
(¢—1)=z

in the widespread sence: the ¢g—Hahn Tableau (a first step on this in the frame work of the

g—Askey tableau was done in [15]). Notice that the aforesaid polynomials are instances of the

polynomial sequences such that their g—differences, defined by © f(z) = are orthogonal
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g—polynomials on the linear exponential lattice z(s) = ¢1¢°. For several surveys on this lattice and
their corresponding polynomials see [2, 4, 5, 8, 10, 13, 20, 24]. (see also section 3.2 from below).
Furthermore, we will compare our classification (¢g—Hahn Tableau) with the aforesaid two Schemas.
From this comparation we find that there are missing families in the g—Askey Schema (one of them
is a non-positive definite family) and using the results of [18] we study them with details. Also the
correspondence of this g—Hahn Schema and the Nikiforov & Uvarov one will be stablished. In such
a way a complete correspondence between the g—classical families of the g—Askey and Nikiforov
& Uvarov Tableaus for exponential linear lattices will be shown.

The structure of the paper is as follows. In Section 1 we introduce some notations and definitions
useful for the next ones. In Section 2, the g—weight functions are introduced and computed
for all g—classical families. This will allow to classify all orthogonal polynomial families of the
g—Hahn tableau. Finally, in Section 3, several applications are considered: the classification of the
g—classical polynomials (¢—Hahn Tableau), the integral representation for the orthogonality, the
hypergeometric representation of these g—classical polynomials as well as the detailed study of two
new families of g—polynomials.

1 Preliminaries

In this section we will give a brief survey of the operational calculus and some basic concepts
and results needed for the rest of the work.

Let P be the linear space of polynomial functions in C with complex coefficients and P* be
its algebraic dual space, i.e., P* is the linear space of all linear applications u : P — C. In the
following we will refer to the elements of P* as functionals and we will denote them with bold letters
(u, v,...).

Since the elements of P* are linear functionals, it is possible to determine them from their
actions on a given basis (B;),>0 of P, e.g. the canonical basis of P, ("),>0. In general, we will
represent the action of a functional over a polynomial by formula (u,7), u € P* |, 7= € P, and
therefore a functional is completely determined by a sequence of complex numbers (u,z") = u,,,
n > 0, the so-called moments of the functional.

Definition 1.1 Let (P,)n>0 be a basis sequence of P. We say that (P,)n>0 is an orthogonal
polynomial sequence (OPS in short), if and only if there exists a functional u € P* such that
(u, PPp) = kndmn, kn #0, n >0, where dpy is the Kronecker delta. If ky, > 0 for all m > 0,
we say that (P, )n>0 is a positive definite OPS.

Definition 1.2 Let u € P* be a functional. We say that u is a quasi-definite functional if and only
if there exists a polynomial sequence (P,)n>0, which is orthogonal with respect to u. If (P,)n>0 is
positive definite, we say that u is a positive definite functional.

Definition 1.3 Given a polynomial sequence (Py)n>0, we say that (Py)n>0 is a monic orthogonal
polynomial sequence (MOPS in short) with respect to u, and we denote it by (P,),>0 = mopsu if
and only if P,(z) = 2" + lower degree terms  and (u, P, P,) = knlpm » kn 20, n > 0.

Also the next theorem will be useful

Theorem 1.1 (Favard Theorem [7]) Let (P,)n>0 be a monic polynomial basis sequence. Then,
(Pn)n>0 is an MOPS if and only if there exist two sequences of complex numbers (dp)n>0 and
(gn)n>1, such that g, #0, n > 1 and

P, =Py +dn Py +gnPy1, P1=0,FP=1 n>0, (]-]-)

where P_1(z) =0 and Py(x) = 1. Moreover, the functional u with respect to which the polynomials
(Pp)n>0 are orthogonal is positive definite if and only if (dp)n>0 is a real sequence and g, > 0 for
alln > 1.
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In the following, we will use the notation:

Definition 1.4 Let m € P and a € C, a # 0. We call the operator H, : P — P, Hym(z) = w(ax),
a dilation of ratio a € C\ {0}.

This operator is linear on P and satisfies H,(mp) = Hom- Hyp. Also notice that for any complex
number a # 0, H, - H,—1 = I, where I is the identity operator on P, i.e., for all a # 0, H, has an
inverse operator. In the following we will omit any reference to ¢ in the operators H, and their
inverse H,-1. So, H:=Hy, H™':=H_ 1.

Next, we will define the so called g—derivative operator [11]. We will suppose also that |g| # 1
(although it is possible to weak this condition).

Definition 1.5 Let m € P and q € C\ {0}, |q| # 1. The gq—derivative operator ©, is the operator
O:P — P, defined by

Hr — 7w Hr — 7w

G)W:Hx—x_ (q— Dz~

The q~' —derivative operator ©*, is the operator ©* : P — P defined by

o* Hlr—7 Hlnr-7
= = .
Hlz—z (¢'-1z

1

In this way, O and ©*w will denote the q—derivative and q~ ' —derivative of w, respectively.

The above two operators © and ©* are linear operators on P, and

Hz™ — 2™ (¢" —1)z™ 1
Oz" = = =[n]z"", n>0, ©O61=0, 1.2
G- Dr (@D " (2

i.e., ©Or € P. Here [n], n € N, denotes the basic g—number n defined by

1
q_1=1+q+...+q”*1, n>0, [0]=0. (1.3)

Also the ¢~ ! numbers [n]*, defined by [n]* = Z:Tj = ¢! "[n] will be used.

Notice that ©* is not the inverse of ©. In fact they are related by HO* = ©, H™'© = O*.
The g—derivative satisfies the product rule O(mp) = pOm + Hr - Op = Hp - O + 7Op.

Definition 1.6 Let w a derivable function at © = 0 such that Va € domw, aq € domw. Then, we
will define the q—derivative of w by the expression

_Hwre Hozw L0 ew(0) = w(0). (1.4)

G)w_H:z:—ac (q— 1Dz’

Definition 1.7 Let u € P* and m € P. We define the action of a dilation H, and the g—derivative
© on P* by the expressions Hy, : P* — P*, (Hyu, ) = (u,H,m), © : P* - P*, (Ou,7) = —(u, O7),
respectively.

Definition 1.8 Let u € P* and m € P. We define a polynomial modification of a functional u, the
functional Tu, (mu,p) = (u,7p), Vp€eP.

Notice that we use the same notation for the operators on P and P*. Whenever it is not specified

on which linear space an operator acts, it will be understood that it acts on the polynomial space
P.

Definition 1.9 Let u € P* be a quasi-definite functional and (P,)n>0 = mops(u). We say that u
or (Pp)n>0 are g—classic functional or MOPS, respectively, if and only if the sequence (©Ppi1)n>0
s also orthogonal.
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Notice that in the Hahn definition [11] ¢ is a real parameter and here, in general, ¢ € C\ {0},
lq] # 1.

In the following (Qn)n>0 will denote the sequence of monic g—derivatives of (P,)n>0, i.e.,

Qn = [n—_l|_1]Pn+1a for all n > 0.

Theorem 1.2 (Medem et al. [17, 18]) Let u € P* be a quasi-definite functional. and (P,),>0 =
mops(u). Then, the following statements are equivalent:

(a) u and (P,),>o are, respectively, a q—-classical functional and a q—classical MOPS.

(b) There exists a pair of polynomials ¢ and 1, degp < 2, degtp =1, such that
O(¢pu) = u. (1.5)
(¢) (Pn)n>0 satisfies the ¢ — SL difference equation
$OO* P, + 1h)O*P, = A\, P , n > 0, (1.6)

i.e., P, are the eigenfunctions of the Sturm-Liouville operator POO* + 1pO* corresponding to
the eigenvalues \,,.

Moreover, if R R
$(z) = az® + azx + a, p(z) = bx + b, b#0, (1.7)

then, the quasi-definiteness of u implies [n]a —I—/b\;é 0 and the following equivalences hold
[n]fi—l—g#o, n>0 < Xn;éim, Vn,m>1,n#m <+ XnaéO,Vnz 1.

Theorem 1.3 Letu € P*, be a quasi-definite functional, (P,)n>0 = mopsu and Q%k) = mgkpquka

where [n+ 1]y = [n+1][n+2]...[n+k —1]. The following statements are equivalent:
(a) (Pp)n>0 is q—classical, (b) (lek))nz[) is q—classical, k > 1.

Moreover, if u satisfies the equation ©(¢pu) = tu, degd < 2 and degtp = 1, then (Qq(]k)) is
orthogonal with respect to v®) = H®) ¢ . u, HF) = Hle H ', and it satisfies

O(pFvk)y = p*)y(B)  deg ) <2 degyp®) =1,

where ) = H* ¢ and p*) =+ © Z;:ol H'p, and they are the polynomial solutions of the ¢ — SL
equation
SLWQY = gPeer Q) + pMerQl) = AP, (18)

n
where the polynomials %) and *) and the eigenvalues X;’“) are

o®) = ?*62® + ¢Faz+ a, Y® = (2ka+b)z + (KJa+b), AP =[n]*(2k+n—1]a+0b). (1.9)
Furthermore, in [17, 18] the following result was proven:

Theorem 1.4 Let u € P*, be a quasi-definite functional, (P,)n>0 = mopsu, ¢,¢*, 9 € P, such
that ¢* = q '¢p+ (¢ —1)x1p, deg ¢ < 2, deg d* < 2 and deg+p = 1. Then, the following statements
are equivalent

(a) u and (P,)n,>0 = mopsu are g—classical and O(fu) = tu,

(b) u and (P,)n>0 = mopsu are ¢ ' —classical and ©*(¢*u) = yu.
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(c) There exist a polynomial ¢ € P, deg ¢ < 2 and three sequences of complex numbers ay, by, cy,
cn # 0, such that
POP, :anPn+1+ann+cnPnfla n>1,; (110)

(d) there exist a complex numbers ey, hy, such that

P, =Qn+enQno1+h,Qno2, n>2. (1.11)

(e) There exist a polynomial ¢ € P, degp < 2 and a sequence of complex numbers ry, r, # 0,
n > 1 such that
n ) N n N —1
Pou=r,0"HMg - w), HMWG=T[H"¢, r,=¢5 ] ([2n —i—1a+ b) . n> 1.

i=1 1=1
(1.12)

2 The ¢g—weight function w

2.1 Definition and first properties

In this section we will consider the so-called weight functions for g—classical polynomials. The next
proposition can be proven straightforward (see e.g. [12]).

Proposition 2.1 Let w a function such that if a € domw, aq™' € domw and that satisfies the
difference equation

O (¢w) = qhw = ¢w=qH(¢'w), SPEP, ¢ =q '+ (¢ — )y (2.1)

Then, the following two equations are equivalent
POO* P, + pO* Py = APy, =  O*(¢wOP,) = ghwP, , n > 1. (2.2)

The above proposition allows us to generalize the classical procedure to the g—case for obtaining
almost all the characteristics of the MOPS. The equation (2.1) is usually called the g—Pearson
equation and its solution w is known as the g—weight function and it allows to rewrite the Sturm-
Liuoville equation (1.6) in its self-adjoint form (2.2). Moreover, the weight function w allow us to
obtain the “standard” g—Rodrigues formula and also justify the g—integral representation for the
orthogonality relation. In such a way it is natural to give the following

Definition 2.1 Let u € P*, be a quasi-definite functional satisfying the distributional equation
(1.5), where ¢, € P, degp < 2, degtp =1 and (P,)n>0 = mopsu. We say that w is the g—weight
function associated to u (respectively to (P,)n>0) if w satisfies the equation (2.1) O*(¢w) = qpw.

The last definition allows us to rewrite the ¢ — SC equation (1.8) in its self-adjoint form. In
fact, an straightforward calculations show that, if w®) satisfies the g—Pearson equation

@*(¢(k)w(k)) = qp P w®), (2.3)
where ¢¥) and () are given in (1.9), then (1.8) can be rewritten in its self-adjoint form
0*(pFw®eQk)) = qxgk)w(k)ng) ,n>1,k=0,1,...,n. (2.4)

Proposition 2.2 Let w the solution of (2.1) and w'®) the solution of (2.3). Then,

w. (2.5)
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Proof: We start from the g—Pearson equation (2.3) and rewrite it in its equivalent form ¢*)w(*) =
qH[p®O P Hw®) | where [p]* = ¢=1¢®) 4 (¢ — 1)zp®) = ¢*, for all k € N. Thus, by substituting

w®) =HM ¢ . w in pFwk®) = gHH*Hw®) | we find
P w®) = gH[pF P Hw®) «— HFp(pHep--- H ¢ - w) = qHP*Hep - - - HF pHw <>

¢w = ¢H¢"Hw = 0% (¢w) = qyw,
from where the proposition follows. O

Remark 2.1 Notice that the polynomials (¢*))* and (¢*) %) are very different. In fact, the first
one together with 1/)(’“) are the corresponding polynomials that appear in the q~'—distributional
equation satisfied by the functional v¥), i.e., the functional with respect to which the k—th monic

derivatives Q%k) are orthogonal, (see Proposition 1.4)

O(pFvk)y = pB)y(B) e @* (g v (k) = Ry (R) - (p(R))r — ¥ ke N,

whereas the second one joint with (’([}*)(k) are the polynomial coefficients of the ¢~ — SL equation

(%) (k G)*G)Q* (1/)*) (A ) (k) Q* k) of the n—th ¢ '—derivative Q*Slk) of the polynomials Py,
Q* (k) — n+1 [@ 1" Poyy or the g~ ' —distributional equation satisfied by the functional v*(k),

0*[(¢*)Wv k)] = (p*) BB () B = HERgr vk e N,

i.e., the functional with respect to which the k—th monic derivatives Q*q(lk) are orthogonal.

2.2 Computation of the ¢—weight functions

This section is devoted to obtain the g—weight function associated to all g—classical functionals,
i.e., the quasi-definite functionals corresponding to the MOPS in the widespread sense (u, P,%> #0,
for all n > 0. In fact, Theorem 2.1 and 2.2 will give, in a very natural way, the key for the
classification of all g—classical orthogonal polynomials.

In the following we consider the case when |¢| < 1 (Jg~!| > 1). Also we will use the standard
notation (a;q), = (1 —a)(1 —agq)--- (1 —ag"™ ') for n > 1, (a;q)p = 1 for the g—analogue of the
Pocchammer symbol, and (a;¢)so = [[~((1 — ag™), for the absolutely convergent infinite product
for |g| < 1.

First of all, we will rewrite the ¢g—Pearson equation (2.1)

O*(pw) = qpw = ¢w=qH¢'Hw <= Jw=¢q 'H '¢H 'w, (2.6)
and solve the resulting equation by the recurrent procedure shown in figure 1.

Figure 1. Recurrent schema using the g—dilation.

gw = qH¢*Hu w = Huy ¥
H \
HgHuw = H¢* w = BT gdle’
H
H2pH?2w = H?(qH¢*)H
w— . B @ Y
¢ ¢ ¢
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In the case when w is continuous at 0 and w(0) # 0, taking the limit n — oo, we find, since
limy, 00 H"w = limy,—, oo w(¢™z) = w(0),

. gHe* . gHg* 7 aHg
w = w(0) lim H(*) = w(0) lim H™ = w(0) . (2.7)
$ " UU $
The next step is to obtain an explicit expression for the product H() q%fb* . For doing that we need

a lemma which is interesting in its own right.

Lemma 2.1 If © is an n—th degree polynomial with an independent term w(0) = 1, and zeros
a; € C\{0}, i =1,2,...,n, then
H) 7 = (aflx; Q)w(a51$§ @)oo (aﬁlx; 7)o = (aflxa a51x, S 70771«73; 7)o

is an entire function of x with zeros at a;qg*, i = 1,2,...,n and k > 0. Furthermore, if 7/p is
a rational function such that ©(0) = p(0) # 0 and with non-vanishing zeros of its numerator and
denominator, then,

e T _ (017000l 7 Qoo (a5 7 @)oo _ (017,05 ', 05125 9)oc
P (0 25000y w5 @)oo (b @3 @)oo (by @ by e b 5 0) oo

it is a meromorphic function with zeros at ajg™*, i = 1,2,...,n and k > 0 and poles at qu_l,

j=12,....mandl >0, where a; € C, t =1,2,....,n and by € C, k =1,2,...,m, are the zeros
of the numerator and denominator of /p, respectively.

Proof: The proof is based on the fact that, if 7 is a polynomial of degree n with non vanishing
zeros and 7(0) = 1, then it admits the factorization

T=A(r—a1)(x —az) - (z — ay) =£—1)"Acilra2---anj(1 —a; )1 —ay ) (1 —ay'z).

©(0)=1

Then, H®) 1 = (aflx, a;lx, -+ a, tr; q)), and so, H(®) 7 = (aflx,aglx, - a4, ;5 q)0o- This func-
tion is an entire function due to the Weierstrass Theorem (see e.g. [1, §4.3]). The proof of the
second statement is analogous and the function H(Oo)% is meromorphic because is a quotient of two
entire functions (see e.g. [1, §4.3]). O

Now, if ¢(0) # 0, the above lemma leads us to the following well known result [11]

Theorem 2.1 Let (P,)n>0 = mops u satisfying the q—Sturm-Liouville equation (1.6). If we denote
by a1 and ag the zeros of ¢ and by af and a3 the zeros of ¢* (see Proposition 1.4), and all they are
different from 0, then the following expressions for the q—weight functions w hold

¢ P g—weight function w(z)

(a7 gz, 05 25 ¢)

a*(z — a})(z — a3), a*aja; # 0 | w(z) = ———=
(al I7a2 l’,Q)oo

(a} 'q779)0
(aflxa a§1$; Q)oo
1

a* 40 w(x) =
# ( ) (aflxaaglx;Q)oo

a(x —a1)(z — az), aaras # 0 a*(x —ay), a*ay #0 w(z) =

(a7 gz, 05 25 ¢)
(a1 75 9) o0

a(rz —ay), aay #0 w(z) =
a(z —a1)(r — a2), aaraz #0

a#0 w(z) = (af " gz, 057" 425 ¢) oo
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Proof: Since ¢(z) = @(x — a1)(z — a2) and ¢* = ¢ ¢+ (¢! — Dzyp = @*(x — af)(z — a3), we
have (¢gH@p*)(0) = q¢*(0) = ¢(0), so the polynomials ¢gH¢* and ¢ have the same independent term.
Using the power expansion of the polynomials ¢ and ¢*

¢(z) = ar* + ax + a, ¢*(x) = a*z® + a*z + a*,

we have @* = ¢ 'a+ (¢ ' — 1)/5, a* =q 'a+ (g ' —1)band a* = g~ ', where, /b\, b are the coefficient
of the power expansion of ¢ (see Eq. (1.7)). Thus,

(degp<2=0a=0=a"# 0= deg¢* = 2,

r ~

/I;#—]_L_q :>Zi*7é0:>deg¢*:2,

degp=2=0a#0 B;é—li:degqb*zl,
~ - q
b=— = a" =0
l—q _ a N
b=———=deg¢" =1.
\ \ 1—gq

In all cases we can apply directly the above lemma which immediately leads us to the desired
result. Notice also that all the obtained functions are meromorphic and so, they are continuous
and non-vanishing at x = 0, so we can suppose without any loss of generality that w(0) = 1. O

In the case when ¢(0) = 0, it is easy to see that ¢*(0) = 0. This case requires a more detail
study. In the following we should keep in mind that for the quasi-definiteness of u ¢ #Z 0 and ¢
and 1 should be coprime polynomials (see [18]).

Proposition 2.3 Let u be a gq—classical functional satisfying the distributional equation (1.5) with
¢ = az® +az, [a| + |a| > 0, and ¢ = bz +b, b # 0. Then the following cases, compatible with the
quasi-definiteness of u, appear:

(a) If ¢ =ax?, @ # 0, then, deg ¢* = 2 and its two zeros are different, or deg ¢* = 1.
(b) If ¢ = ax® + ax, aa # 0, then, deg ¢p* =2, or deg ¢* = 1.
(c) If p = ax, a # 0, then, deg ¢* = 2.

Proof:
(a) Since ¢ = az?, then P = br + b, with b # 0, otherwise ¢ divides ¢. Therefore, ¢* = (¢ 'a +
(¢t — 1)b)z%2 + (¢! — 1)br has a non-vanishing coefficient on z. If b # — 1%, then @* # 0 and

deg ¢* = 2 and ¢* has two different zeros one of which is located at the origin. If b= —%q then
deg ¢p* = 1.
The other two cases are proven analogously. O

The next step is to find the g—weight functions for all possible cases according with the above
proposition (remember that ¢(0) = 0 = ¢*(0)). There are two large classes. Class I corresponding
to the case when ¢ and ¢* have non-vanishing term on z and IT when they have a vanishing term
on x.

I. We start with the case when ¢ and ¢* have not-vanishing term on z. In this case there are three
different possibilities (subclasses):

() Blz) = Ar(z — ar), Gay £ 0 and ¢*(x) = P(z — a}), Taf # 0,
(b) ¢(x) = az(x — a1), aay # 0 and ¢*(x) = a*z, a* # 0,
(c) ¢(z) =azx, a #0 and ¢*(z) = a*z(z — a}), a*a} # 0.
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To find the corresponding g—weight functions we will rewrite the quotient gH¢*/¢p = zq
(Hop*)o/xg, where ¢ = xpg and Hop* = x(Hp*)o. In general, ¢o(0) # (H¢p*)o(0), so, in order
to apply a method, similar to the one used to prove Theorem 2.1, we will assume that w can be
rewritten on the form w = |z|*wy, a € C\{0}, where « is a free parameter to be found. An
straightforward calculations show that if w satisfies a ¢g—Pearson equation (2.6) then wy satisfies
the equation ¢powy = aqgHwy(He*)o, where a = ¢“. So,

aq(H¢*)0 @

wo = Hn(wU) a=q, Or «a= Lqu((l),

do
where Log, denotes the principal logarithm on the basis ¢, |¢| < 1. In the following, we will use the
notation @ = —da; and a* = —a*a}. Notice that, with this notation, ¢ = az(z — a1) = az? + ax

and ¢* = @*z(z — o) = a*z? + a*x.
(a) In this case,
aq(Hp*)o . an/a\*a’f(affqu —1) anZz*(l — a{fqu)

_ o

®o aal(aflav -1 a(l—ay

If we choose now, a such that ag(H¢*)o(0) = ¢0(0), i.e., ag’a* = a, or equivalently, o« = Log,(a) =
_ *—1 0.
—2 + Log, 7+, we can apply the Lemma 2.1 to get, wo = wO(O)W, which leads, without
1 yq )oo
any loss of generality, to the following weight function (here we suppose that wq is continuous and

wo(0) # 0)

*—1 ..
w’ o= Logq(a) = -2+ Logq%. (2'8)
a

w(z) = |z

(a1 25 )0
(b) In this case,
aq(He*)o ag’a* 1 a
dall-a'9) o= g s AN
S0,
||

w(r) = , a=TLog,(a) = -2+ Log, (—%) .

(a1 75 9) o0

Finally, in the last case (c), we obtain

— a
w(z) = |zt g2 @)ooy, = Log,(a) = =2 + Log, (—5) .

I1. Let consider the other case, i.e., when ¢ and ¢* have a vanishing term on z. In this case there
are two possibilities:

(i) deg¢ # deg¢* which is divided in two subcases (a) ¢ = az?, ¢* = a*z, and (b) ¢ = ax=,

¢* =a*z?, and

(i) deg¢ = deg ¢*, which also is divided in two subcases (a) ¢ = az?, ¢* = a*z(z — a}), at # 0,
and (b) ¢ = az(z — ay), ¢* = a*z%, a; # 0.

In both cases, the method used in the case I of non-vanishing coefficients can not be used.
(i) In order to solve the problem for case II(i) we will generalize an idea by Héacker [12]. Let us
define the function A%) : [0,00) — R defined by

WO () = Val® 7B g,

which has the following property Hh? = zPhP, or, equivalently, hP(qz) = 2PhP(x), for all > 0.
If we now define the function w = z*h(!), then, for the case II(i)a we have

Hw = Hz*h(V = ¢°z%zhM) = ¢%20 = zHw = ¢“z’w,



10 q— Classical polynomials and the q— Askey and Nikiforov-Uvarov Tableaus

then, comparing this resulting equation with the g—Pearson equation (2.6) for this choice of ¢ and
¢*, az’w = ga*zHw, we deduce that the function

w(z) = |z|*y / 2108, 21, o= -2+ Logq%, >0, (2.9)
a

is the the solution of the g—Pearson equation and so, the corresponding g—weight function.

For the case II(i)b we have, in an analogous way, a similar solution but involving the function
R(=1):

w(w) = 2]V &5 5T o= 34 Log—, x>0, (2.10)
a

(ii) In this case the method developed for the above cases does not work. In fact, if we try to use
the method for the case I, after some straightforward calculations, we arrive to an infinite divergent
product. For this reason we will solve the g—Pearson equation using the equivalent equation
(2.6) in ¢! dilation ¢ 'H™'¢H 'w = ¢*w (2.6), i.e., using a schema similar to the one given in
figure 1 but when the recurrence is solved in the “opposite” direction to obtain the expression
w = H_"wH(_")'flgi*w, which leads to the solution, by taking the limit n — oo, if there exists
the value H"®w = w(0o). In such a way, we have for the case II(ii)a the expression

w=z|%, a>0 , ¢*=a¢j=x@z+a*) , H'¢p=xH "¢)=2z(¢ %ar).

! _Pearson equation takes the form

hence, the ¢~
wdf - |z|%wy = ¢ 2(H§)o - H™'(|2]"w0) = dfwo = ¢~ (H'$)og "H 'wp ,

and its solution is

—a—1/17—1 o —1,,—37
W (0) — H_n’U)S H(—n) q aq (H ¢)0 a:::q H_nwo H(—n) Ci q ELI .
o a*r + a*
Now, choosing the value «, in such a way that a ‘¢ —%a = @*, ie., a = =3 + Logq% we find,
* ( ) h\*x ( ) (i* L Zl*ql
_ -n -n _ —-n -n _ — -n e —
w0(0) = H "uf HO™ =i = H "wgH (1 a*x+a*> —H wOH(l a*g;+a*qi)‘

=0

Obviously the above product is uniformly convergent in any compact subset of the complex plane
that not contains the points {a}¢",n > 0}(J{0}, where af = —a*/a* is the non-vanishing zero
of ¢* (in z = 0 the product diverges to zero). Furthermore, this product converges at oo, so
w(oo) = ¢ # 0, and thus

o9}

—~* N k 1
wiw) = Jalw = clo|* T (1 - sy ) = el B 22 = efaf ———,
n=0 a*r 4 a¥q a*T + (_a*x;q)oo

where a = Log, a%:?’, and which, without any loss of generality, leads to the following expression

for the g—weight function

1 a* a
w(o) =lal" o= = laleg(at/a) . al=—==,  a==3+Log=,  (21)
1 ) [oe]

where e, denotes the g—exponential function [10].
A similar situation happens in the II(ii)b subcase. In this case, we have

1

q"q (H'$)o wme” yon, y-ma 'q ' 'Aq 2 —a)

wo(z) = H "wy HEn o% a*r
0
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3

If we now choose a~'¢ 3@ = a*, we find

wo(w) = H Mg HOW L2 T 0 gy g (1 - 21 = gongg O (1 - 219,
a*x a*x T

which is an absolute and uniformly convergent product in C\{0}. Finally, since w(oo) = ¢ # 0, and
without any loss of generality we find the following expression for the g—weight function w

~

a
w(z) = |z|*(@a/;q)ec , =-3—Log,=,

where aq is the non-vanishing zero of ¢. All the above calculations can be summarize in the
following theorem:

Theorem 2.2 Let (P,),>0 = mops u satisfying the g—Sturm-Liouville equation (1.6). If we denote
by a1 and ay the zeros of ¢ and by af and ab the zeros of ¢* (see Proposition 1.4), and one of them
are equal to 0, then the following expressions for the qg—weight functions w hold

| Case | ¢ | ¢ | w() |
1 ~ -3
II(ii)a a*z(z —a¥), a*af#0 | |z|*——0,, a = Log, 44—
( ) ( 1) 17é | | (ai(/f;Q)oo gq
ax®, a #0 .
II(i)a a*r, a* # 0 ||V 2080 71, a = Log, L
*—1 . .
I(a) a*r(x — af), a*af #0 |x|a7(alilq?’ @)oo , a=Log, ‘“é*z
(a1 25 q)oo
. . o 1 -
I(b) az(z —ay), aa; # 0 a*zr, a* #0 || —— , a = Log,—%% ’
(e 739)c
II(ii)b a*az?, @ #0 |#]* (a14/73¢)oos @ = —Log, %L
I(c) @au(z —a}), @af £0 | 20} gm9)oe, @ = Log, =2
ax, a # 0
II(i)b a2z, A" #0 ||V %84 N a= Logq‘_“’a—:3

3 Applications

In this section we will consider some applications of the above theorems. In fact we will show how the
g—weight functions can be used to give an integral representation for the orthogonality. Another
interesting application is the already mentioned classification of all orthogonal families in the
g—Hahn Tableau (in [23] the orthogonality was not considered). In fact Theorems 2.1 and 2.2 gives
a natural classification of the g—classical orthogonal polynomials. Also by using the ¢g—weights one
can obtain an explicit formula of the polynomials satisfying a Rodrigues-type formula in terms of
the polynomials coefficients ¢ and ¢* from where the hypergeometric representation easily follows.
The last have been done independently in [23] and [6] (see also [5, 20]) in the framework of the
difference equations of hypergeometric type on the non-uniform lattices. Here we will show how
all the g—classical families can be obtained by certain limiting processes from the most general
case of )—Jacobi/Jacobi family. Finally, we will compare the Nikiforov & Uvarov and the ¢—Askey
Tableaus with our g—Hahn Tableau and complete the ¢g—Askey one with new families of orthogonal
polynomials.



12 q— Classical polynomials and the q— Askey and Nikiforov-Uvarov Tableaus

3.1 The ¢—integral representation for the orthogonality

In this section we will show how the ¢g—weight functions and the ¢—SL equation lead to a g—integral
representation for the orthogonality. The technique used here is very common in the theory of
orthogonal polynomials (see e.g. [7, 13, 20]).

First of all we introduce the g—integral of Jackson [10, 25]. This integral is a Riemann sum on
an infinite partition {aq™, n > 0},

/Oaf(:c) dyr = (1 —q)ag;)f(aq")q" : and/abf(:v) dyr = /Obf(x) dyx — /Oaf(x) d,z,

b
s0, it is valid the g—analogue of the Barrow rule (here © F'(z) is continuous at z = 0): / OF (z)dyz =
a

F(b) — F(a), and the rules of integration by parts

b

b b
[ 1@ega)de =11 @) 9(a)| ~a [ o(@0" (@) d
a a
b b b
[ 1@eg@ = 1| - [ Moo (@ dyo
a a
Obviously in the above expressions it is assumed that the function f is defined in the correspond-
ing partition’s points. This Jackson g—integral can be easily generalized to unbounded intervals
and unbounded functions in a similar way as the Riemann integral [10, 25]. Furthermore, the

Riemann-Stieltjes discrete integrals related with the g—classical polynomials can be represented as
g—integrals (see e.g. [17, 19]).

Proposition 3.1 Letw be continuous function in x = 0 satisfying the g— Pearson equation ©*(¢w) =
qpw, equivalent to the distributional equation ©(¢pu) = u and let a, b complex numbers such that

b b
=0, or equivalently H '¢w| =0 (pw = qH(¢*w)) holds. Then,
a

a

the boundary condition ¢*w

b
/ P, (z)Pp(z)w(z)dgz =0, Vn # m, (Pp)n>0 = mopsu.

Proof: The proof is straightforward. We start from the self-adjoint form of the ¢ — SL equations
for the polynomial P, and P,,, respectively:

OH ! ($w)O*Py] = AwPn,  OH(¢w)O*P] = Ay P

If we multiply the first one by P,,, the second one by P,, takes the g—integral over (a,b) and use
the integration by part rules we find

b b b
(A — Am) / WPy Py, dgz = / (WA, Pp) Py, gz — / (WA Pr) Py dgz =
a a a

_ / "o (H_1(¢w)®* Pn)Pm dyz — / ‘o (H—1(¢w)@*Pn) Podgr =

a a

— H™ ()W} [P, P] Z n /b [H (H—1(¢w)®*Pm)®Pn - H(H—1(¢w)®*Pn)®Pm] d,z,

where W7 [Py, P, = P,0*P, — P,0*P,, is the ¢—Wronskian. The first term in the last equa-
tion vanish since the boundary conditions. The second also vanish since H(Hfl(gbw)@*Pm) OFp,
=pwOP,,©PF,. The result follows from the fact that for all n # m, Xn # /A\m O
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Remark 3.1 Notice that the choice of the integration interval (a,b) is conditioned to guarantee
that f: Plwdgx # 0, n > 0, for which, it is enough that w be continuous function and does not
vanish inside the interval of integration. This has a difficulty since, even in the simplest cases, i.e.,
O—families, w has infinite zeros afq™™, n > 1, and infinite poles, aijg~ "™, n > 0. Notice also that
natural values for (a,b) are the roots of ¢* or the roots of (¢~ 'x).

Of special interest is the study of the positive definite case, i.e., the case when [ : P,%wdqx >0
for all n > 0. For doing that we can use the Favard theorem. The detailed study of positive definite
case will be considered in a forthcoming paper.

3.2 Classification of the ¢—classical polynomials

Since the equation (1.5) (and so the Sturm-Liouville equation (2.2)) gives all the information
about the g—classical functional (and then about the corresponding MOPS), it is natural to use
them for classifying the g—classical polynomials. Moreover, all this information is condensed in
the polynomials ¢ and ¢* instead of ¢ and 1 (and more exactly in their zeros) as it is shown
in Theorems 2.1 and 2.2. So it is natural to use the zeros of ¢ and ¢* to clasify all families of
g—classical orthogonal polynomials [17, 19].

In such a way, since ¢(0) = 0 if and only if ¢*(0) = 0, it is natural, in a first step, to classify the
g—classical polynomials into two wide groups: the ()—families, i.e., the families such that ¢(0) # 0
and the O—families, i.e., the ones with ¢(0) = 0. Next, we classify each member in the aforesaid
two wide classes in terms of the degree of the polynomials ¢ and ¢* as well as the multiplicity of
their roots in the case of 0—families. In fact, if ¢ has two simple roots, the polynomials belong to
the 0—Jacobi/— family while if the roots are multiple, then they are 0—Bessel/— family. So, we
have the following scheme for the g—classical OPS:

( 0—Bessel/Jacobi

( )—Jacobi/Jacobi 0—Bessel /Laguerre

()—Jacobi/Laguerre

()—Jacobi/Hermite 0—Jacobi/Jacobi

()—families < 0—families { 0—Jacobi/Laguerre
(—Laguerre/Jacobi 0—Jacobi/Bessel

| 0—Hermite/Jacobi 0—Laguerre/Jacobi

{ 0—Laguerre/Bessel

Notice that in this scheme can not appear the families )—Laguerre/Laguerre, ()—Laguerre/Her-
mite —Hermite/Laguerre and ()—Hermite/Hermite since the connection between ¢ and ¢*, as
well as the 0—Bessel/Bessel case since they do not correspond to a quasi-definite functional (see
Proposition 2.3).

3.2.1 Connection with the Nikiforov-Uvarov and the ¢—Askey Tableaus

Here we will identify our classification (scheme) of the g—classical polynomials with the two well
known schemes by Nikiforov and Uvarov [23] and the g—Askey Tableau [13].

We start with the first one. The Nikiforov-Uvarov Tableau is based on the polynomial solutions
of the second order linear difference equation of hypergeometric type in the non-uniform lattice x(s):

A guln(s)] | Fa(s) [Aulzs)] | Tuale()]
s—0) was) 2 | Aus) | vals)

a(x(s)) Ao + Ayn[z(s)] =0,

TF(s) = £(s) = F(s— 1), AF() = f(s+ 1) — £(s), ynlex(s)] € Pla(s)] (3.1)

z(s) = c1(q)g® + c2(q)g° +¢3(q),q € C,
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where 6(z) and 7(z) are polynomials in z(s) of degree at most 2 and 1, respectively, and A, is a
constant, or, written in its equivalent form

A yn[z(s)] Ayn[z(s)]
J(S)Aa:(s—%) vz (s) +7(s) Azx(s)

+ Anynlz(s)] =0,
(3.2)

o(s) =(x(s)) — 37(x(s)) Az(s — 3), 7(s) = 7(z(s))-

Here P[z(s)] denotes the linear space of polynomials in z(s). Notice that, if z(s) = ¢1¢° = z, i.e.,
we are in the so-called linear exponential lattice, then

Aynlr(s)]

ALIT(S) = @yn(il?) and M — G*yn(ﬂ?), yn(:v) — yn[x(s)]

v(s)

1
Thus, using the fact that Az(s — 3) = ¢ 2 A z(s), the hypergeometric equation (3.2) in the linear
lattice z(s) = c¢1¢® can be rewritten as

0(3)00* Yy (2) + ¢ 27(5)Oyn(T) = —Anq 2yn(2), yn(z) € P,

from where, and using the identity © = z(q¢ — 1)©0* + ©* we arrive to the equation

1

[0+ g2 7(s)2(q — 1)]00%Yn(2) + 47 7(5)0*yn(z) = —Ang ™ 2yn(2),

which is nothing else that the ¢ — SL equation (1.6) where

o(s) = p+a(l—qp=q¢*,  T(5)=q 2P,  An=—q2A,. (3.3)

In other word, the ¢—SL equation (1.6) is a second order linear difference equation of hypergeometric
type in the linear exponential lattice z(s) = ¢1¢®*. The above connection allows us to identify all
the g—classical orthogonal polynomials (in the widespread Hahn’s sense) with the g—polynomials
in the exponential lattice in the Nikiforov et al. approach. In fact, using the explicit expression of
the polynomials o(s) and o(s) + 7(s) A (z — 1) in the exponential lattice [23, Eqgs. (84)-(85) page
241 and Table page 244], we can identify our 12 classes of g—polynomials with the ones given in
[23] (see Table 3.2.1).

In order to identify the g—classical polynomials with the ones given in the g—Askey tableau

[13] we rewrite the ¢ — SL equation (1.6) in the following form:
¢-HP, — (¢ + q2¢*)Pn + q2¢* H'P, = (g — 1)2$2>\nPn-

Then, a simple comparison of the above difference equation with those given in the ¢g— Askey Tableau
allows us to identify some of the families of the ¢g—polynomials given in [13] with the corresponding
g—classical ones, and so, with the ones in the Nikiforov-Uvarov Tableau. This will be given in
Table 3.2.1.

From the above table 3.2.1 we see that the 0—Jacobi/Bessel and 0—Laguerre/Bessel families
lead to new families of orthogonal polynomials. The reason for that they do not appear in the
g—Askey tableau will be considered latter on. Notice also that the class N28 from the Nikiforov-
Uvarov tableau [23, page 244] do not lead to any orthogonal polynomial sequence even in the
widespread sense considered here.

3.3 The Rodrigues formula and hypergeometric representation

For the sake of completeness we will include here the identification of the g—classical polynomials
in terms of the basic hypergeometric series [10] defined by

© Q1,02 -y Qp
r
»\ bibo, b,

where, as before, (a;q); = Hﬁl_:lo(l —aq™).

k(k—1) 1P~ +1
] , (3.4)

o o0 (al;q)k"'(ar;Q)k ok L e
v ) _,; (b1;q)k -+ (bp; @ (63 9)k [( 1)
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Table 3.2.1: Comparison of the Nikiforov-Uvarov, the ¢g—Askey and the g—classical polynomial
Tableaus

g—classical family =~ <= Nikiforov-Uvarov Tableau [23] == ¢—Askey Tableau [13]
()—Jacobi/Jacobi = Eq. (86) page 242 =  The Big g—Jacobi
qg—Hahn
()—Jacobi/Laguerre <= N26 [23, page 244] =  ¢—Meixner
Quantum g—Kravchuk
()—Jacobi/Hermite <= N212 [23, page 244] = Al-Salam-Carlitz II
Discrete ¢! —Hermite II
(—Laguerre/Jacobi <= NO1 [23, page 244] —  Big g—Laguerre
Affine g—Kravchuk
()—Hermite/Jacobi <= N©2 [23, page 244] = Al-Salam-Carlitz I
Discrete ¢g—Hermite
0—Bessel /Jacobi = N24 [23, page 244] = Alternative ¢g—Charlier
0—Bessel/Laguerre <= N211 [23, page 244] = Stieltjes-Wigert
0—Jacobi/Jacobi = N23 [23, page 244] = The Little g—Jacobi
q—Kravchuk
0—Jacobi/Laguerre <= N210 [23, page 244] —  g¢—Laguerre
g—Charlier
0—Jacobi/Bessel = 97 [23, page 244] = new OP family
0—Laguerre/Jacobi <= 95 23, page 244] = Little ¢g—Laguerre (Wall)
0—Laguerre/Bessel <= NQ9 [23, page 244] = new OP family
— NO8 [23, page 244] —

3.3.1 The Rodrigues formula

Let us first obtain the “standard” Rodrigues formula.

Proposition 3.2 Let u, u € P* be a q—classical quasi-definite functional, (P,)n>0 = mopsu, and
w the q—weight function defined by the qg— Pearson equation (2.1). Then,

@*n(H(n)w)

> (3.5)

P, = q_nrn

Proof: The proof of this proposition is straightforward. In fact, using the definition of the w®) we
obtain w®*) = ¢(k=D,(k=1) " thus, using the equation (2.4) we have, for all n > 1,

@*H(H(n)w) = @*ﬂ(w(n)an ) _ @*n 1[@*(¢( ) (n—1) ®Q n—1) ] (2:4)

]

)\(n n— 77,7 n—

A(n 1) An

DB

Finally, using the explicit expression for the coefficient 7, (1.12) the result follows. O
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The Rodrigues formula is very useful for finding the explicit expression of the polynomials P,.
In fact, using the formula

@*nf(l‘) — ﬂ Xn:(_l)qu—nk |:n:| f(qk_":c) |:n:| _ &
I=amem = 1o 7 kl, (6Or(@a)nw

where (“) = n(n2—1), one easily obtains

(’2’) - H™) k—n n—k
P, = q n (_1)kqw77zk n ¢($q )w(q I)
(1—61)”:6”,;::0 [kL
or, equivalently,
r(=1)" < Y] HW(zq M w(q )
P =1 —gram I W L -

k=0
Now, taking into account the g—Pearson equation (2.6)

H —1 *
w qH¢p* w H ¢

we obtain the following explicit expression for the g—classical polynomials in terms of the polyno-
mials ¢ and ¢*:

ra(=1)" < ko (5)+k[n T (o "I i

R =D A I | EC IS | R C0) (36)
q k=0 7 j=0 i=0

This formula is equivalent to the one obtained in [5, Eq. (4.14)], [23, Eq. (33)] and [2, Eq. (2.24)]

for the g—polynomials in the non-uniform lattice z(s) = ¢14°.

3.3.2 The hypergeometric representation

e We start with the )—Jacobi/Jacobi family, i.e., the case when ¢ = a(x — a1)(z — az) and
¢* = a*(x — aY)(x — a3) @*aja2a*aias # 0. The other cases can be obtained in a similar way. Then,

substituting in the above expression we find that the g—classical polynomials becomes

ar* _
¢; —q "+3> :
a

From the last formula it is not easy to see that P,, are polynomials on z of degree exactly equal
n, thus, we will apply to the above equation the transformations (3.2.5) and (3.2.3) given in [10,
page 61]. Notice that we can apply the transformation formula (3.2.5) [10, page 61] because
the polynomials ¢ and g¢* have the same independent term, and then the condition aaias =
ga*ata} is fulfilled. So, the hypergeometric representation of the monic g—classical )—Jacobi/Jacobi

polynomials is
a; q) : (3.7)

Notice that, since ¢ and ¢* are invariant with respect to the change a; <= a2 and a] <= a3, then
we can obtain an equivalent hypergeometric representation
a; q) - (3.8)

P, =

rn(@a1a2)™(z/a1; q)n(z/a2; ¢)n q ", a{:z:_l, a§:1:‘1
3¥9 q" 1

(1= qa" T g e

1

P,(z) = ay(aj/a2; @)n(a3/az; ¢)n ¢ " afasa; tay ¢ wfay
n\T) = * ok —L =1 n_1. 2 a*/a a*/a
(atasa; ay q" ' q)n 1/a2,a5/a2

1

P (x) _ ag(af/al;q)n(ag/al;q)n ” q—n,aikagal— aglqn_l,x/al
! (afaba; lay tqniq)n T at /a1, a/ay
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Notice also that from any of the above two formulas follwos that P, is a polynomial of degree exactly
equal n. Before start with the detailed study of each case let us write another equivalent form for
the )—Jacobi/Jacobi polynomials which can be obtained applying the transformation (I11.12) from
[10, page 241-242] to (3.7):

n
_ a3) (—ad)"(af/az; (0 /ar; @) [ a7" afasa; ay 'q" " at/a
' (afasa; 'ay ' q 1ia)n ’ af /a2, i fax

a q:v/aé) . (3.9)

If we now choose ¢ = aq(z — 1)(bz — ¢) and ¢* = ¢ %(z — aq)(z — cq), then Theorem 2.1 and
Eq. (3.7) gives, for the weight function and the polynomials, respectively
q; Q> )

i.e., the Big g—Jacobi polynomials. If we now choose ¢ = ¢~V ! they becomes the g—Hahn polyno-
mials Qy(x;a,b, N|g) (usually they are written as polynomials in z = ¢~ %, see [13, 18]). Obviously,
if we use instead of formula (3.7) the formulas (3.8) and (3.9) we obtain other representations for
the Big g—Jacobi polynomials.

() = (z/a,2/¢ q)oo

(aq; @)n(cq; @n g ", abg"t, x
T (w3 0,b,¢:9)

3¥2
(abg™*1;q), aq, cq

For the other 11 cases we can do the same, substitute the polynomials ¢ and ¢* in (3.6) and make
the corresponding calculations, but here we will show how, from the g—classical )—Jacobi/Jacobi
polynomials, can be derived all other cases by taking the appropiate limits. A similar study have
been done in [23]. Here we will complete it. We will give the details only in some special “difficult”
cases or when the clarity and the accuracy are required.

e We continue with the g—classical )—Jacobi/Laguerre polynomials. To obtain them we take
the limit a5 — oo. Then, ¢ = a(z — a1)(z — a2) and

’dalag Ealag

q¢* = qa*(z —a7)(z —a3) = qa*a5(z —ay)(w/a; —1) =

A (5 ap) (/a3 1) >~
1 1

*
(I - al)a
where the relation @aias = ga*aya} has been used. In this case and since

o k
lim (atatai'ay' " Yq)e (n—1)k (ﬂ)
* _q

a3 —00 (a5/a2;q)k a

Eq. (3.7) becomes

aia " * —n(n— —n,
Pn(I) = < ;*2> (al/GZ;Q)nq ( 1)2501 ( 1 I/GZ

¥ ay/as

a; q"af/cn) : (3.10)

If we choose now ¢ = (v — 1)(z + be) and ¢* = g~ 2c(x — bq), then we obtain the g—Meixner
polynomials

—n

n? g "z gt
My (236, ¢:q) = (=0)" (bg; Ong " 201 < b |5 ) :
q c
In this case w(z) = %. Putting in the above formulas b = ¢~ ~! and ¢ = —p~! we arrive

to the Quantum g—Kravchuk polynomials K™ (z;p, N; q).

e The next family is the g—classical )—Jacobi/Hermite one. In this case we take the limit
ay,al — oo. Then, ¢ = a(z — a1)(r — a2) and ¢¢p* = @*ajaz, thus (3.7) becomes

Py(r) = (—a2)7"q<g)2¢0 < qinf/GQ

a; q”ag/a1> : (3.11)
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Choosing ¢ = (z — a)(z — 1) and ¢¢* = a we obtain the Al-Salam & Carlitz IT polynomials

Vi (z;q) = (—a)"q_(;)zwo ( q_g’I

If now ¢ = (z —i)(z +14) and g¢* = 1, we arrive to the Discrete g—Hermite polynomials IT hy, (z; q)

- g g " ¢
¢ —q ”) = 1"2¢1 ( "0 -3

and for the weight function we have w(z) = (iz, —iz;¢) o = (—2%;¢*)00 = ([Theo(l + :I:Qq%))_l.

—n

hy(z5q) =1 200 < 7

1T

e The g—classical )—Laguerre/Jacobi polynomials. In this case ay — co. Then, ¢ = —qa*ata%a; (z—
ai) and ¢* = a*(z — a})(z — a3), thus Eq. (3.9) gives

n

Py (7) = (—a§)”q(2>(af/a1;Q)n2801 < q:ﬁ/aj/x
1 1

a; qx/@é)

q;(I)-

The last equality follows from the Jackson transformation formula (see [10, Eq. (IIL.5), page
241]), or, directly, taking the limit in formula (3.8). If we now choose ¢ = —acq(z — 1) and
¢* = q~2(x — aq)(z — cq), we obtain the Big g—Laguerre polynomials

4q; Q>

?7, —n,a I_l
= (aq;q)n(—CQ)"q(2>2so1 ( ! aqq

qinax/alao

_ n( x . * .
= af(af/a1;q)n(a3/a1;9)n3ps ( at /a1, a%/a;

—n
707x

ag,cq

pn(z5a,¢9) = (agq;q)n(cq; q)n3p2 < 7

:1:)
q;,— |-
c
_ (ﬂ:/a,fr/C;q)oo_

Notice that they are nothing else that the Big g—Jacobi when b = 0. Here w(z) = ™

To this class also belong the Kﬁff(:zr;p, N;q). In fact they are Big g—Laguerre polynomials with

parameters ¢ = ¢ V! and ¢ = p.

e The g—classical )—Hermite/Jacobi polynomials. In this case aj,a2 — oo, thus ¢ = gaata}
and ¢* = a*(z — a})(z — a%). Then, from Eq. (3.9) one easily find

Po(z) = ¢{) (—a3) 00, ( q_"»oaf/fv

q; qx/a§> . (3.13)
Now choosing ¢ = a and g¢* = (z —1)(z —a), (3.13) leads to the Al-Salam & Carlitz I polynomials

xq)
aG—1 -
a

In this case the g—weight function takes the form w(z) = (qz/a, qr; q) 0. If we put a = —1, the the
Al-Salam & Carlitz I polynomials becomes the discrete ¢g—Hermite polynomials T Ay, (z; q).

n —n —1
Ur(za)(SC;Q) = (—a)nq(2)2801 ( 1 (,):z:

For the 0—families the situation is more complicate and a new parameter § should be included.
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e To obtain the 0—Bessel/Jacobi polynomials we will take the limit a;,as,a5 — 0. Thus,
= azr” an = a*(z — a¥)z, but now we have a problem takin e limit in the expression
ar? and ¢* = a* )z, but h blem taking the limit in th i
(a’fa’gal_la;lqnfl; q)k, so we will obliged the parameters a1, a2, a5 tend to zero such that aé‘afla;l =

q°, with § a fixed constant such that ¢° = @/(ga*at). Then, taking the limit in Eq. (3.7) we obtain

a) (capyr g " g™t a
Py(z) = MM 0 G qz/a |, 4 = et (3.14)

To this class belongs the Alternative g—Charlier polynomials K, (z;a,q). In fact, putting ¢ = az?
and ¢* = ¢ 2z(1 — z), thus ¢° = —aq and then
q; qa:) .

e For the 0—Bessel/Laguerre polynomials we have the limit a1, a2, a} — 0 and a5 — oo. Thus,
¢ = az? and ¢* = a*(z — a¥)(z — a}) = a*ab(x/al —1)(z — a¥) = Gajasal ‘g (z/ay — 1)(z — a¥).

(—1)”q(g) g ", —aq"
Ko (z;0:q) = ’
n(xaavq) (_aqn,Q)n 21 0

For them we have w(z) = |z|*(z~1;¢)5}, where ¢® = —a/q.

If we now take the limit in such a way that atajas = —¢° we arrive to the function ¢* = ag~—°'z.
In this case Eq. (3.9) immediately gives
—n(n+di—1) n qg" n—+4 ) a
Pa(z) = ¢ =DMe | 7y |6 "), g =3 (3.15)

2z, we have ¢ = —q and we obtain the Stieltjes-Wigert polyno-

a; —:vq”“> :

e The 0—Jacobi/Jacobi polynomials. In this case the limit is ag, a5 — 0 providing that a}/as =
q°, then ¢ = az(z — a1), ¢* = a*z(z — a%) and (3.7) gives

Now, setting ¢ = 22 and ¢* = ¢~
mials

Su(w39) = (=1)"¢ ™ 1501 ( qo

Here w(z) = V%821,

q<2> (—a1)™(¢" @)n q " af/arg" « 5 Gay
P, (x) = 9 q; qr/ay |, ¢ = ——. 3.16
n( ) (a’f/alqé—i—n_l; q)n ¥1 q5 / 1 qa*a’f ( )

Putting ¢ = az(bgr — 1) and ¢* = ¢ %z(z — 1), ¢° = ag, thus

—1 nq(g) aq; q)n 7n,ab n+1
pn(:ls;a,b|q):( ) (ag; q) o[ q

(abg™*1;q)n aq

q; qx) )

which are nothing else that the Little g—Jacobi polynomials. If now we take ¢ = px(1 — z),
¢* = q ?z(x — ¢~ V) we arrive to the following expression

K, (z;p,N;q) =

—nN+(" _
(=1)"q <2>(—pcz]\’“;q)n qa ", —pq"
2¥1 pg

(—=pg™; @)n —pg" !

q;:qu“> :

thats constitutes an alternative definition for the ¢g—Kravchuk polynomials which is equivalent to
the “more” standard one just using the transformation formula (III.7) from [10, page 241]

—-N. —-n n
q 5 q y Ly —
Kn(z;p, N3 q) = 7((_pqn_q))" 32 < 1 N é)q a q) :
9 n I
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Finally, we have w(z) = |z a%, q¢* = a and w(z) = |I|a%’ q® = pg" for the weight

functions of the Little ¢g—Jacobi and ¢g—Kravchuk polynomials, respectively.

e The 0—Jacobi/Laguerre polynomials. In this case we take the limit is as, a3 — 0 and a7 — oo

in such a way that a%/as = —¢°, so ¢ = az(x — ay), ¢* = Ga1q~° "'z = a*z, and then
n,—n(n+i—1) qa", I/al n—+§ J aay
Po(z) = (—a1)"q 201 0 @ —q 4= (3.17)

Putting ¢ = az(z 4+ 1) and ¢* = ¢~2z, then ¢° = —ag, and we obtain the ¢g—Laguerre polynomials
Ly (x;9) = La(z;a5q)

|z|*
(_x; q)oo,

_n? _ -z
Ly(z;a5q) = (=1)"¢"" a™ 201 ( 1 0 a; aq"“) , w(r) =

If we now choose ¢ = z(z — 1) and ¢* = ¢ 2az, we obtain ¢ = ¢/a and then we arrive to the

g—Charlier polynomials

—n

C(w;a59) = (—1)"g™™ a" 291 ( I 0

, T

qn+1 | _
q; — ) ) (/J(il?): (x|7q|)oo’ qa_a 1'

e The 0—Jacobi/Bessel polynomials Here we take the limit is ag, af, a5 — 0 in such a way that
afas/as = ¢°, so ¢ = ax(x — ay), ¢* = a*z> = da;q ‘22, and then (3.7) gives

-n n+i—1
Pn(:c)=q"("”‘l)(qn”‘l/al;q)ﬁlwo(q T

4 xq”) , = prg (3.18)

This family does not appear in the g—Askey Scheme unless they are not a trivial limit of a more

general g—family. We will take the following parameterization ¢ = az(z — b) and ¢* = ¢~ 222

Then, ¢° = abq and we obtain that this 0—Jacobi/Bessel polynomials, denoted by j,(z;a,b)

in(@;0,0) = (ab)"q" (aq"; q); 200 ( g, x/(ab)>, w(z) = |2|%(ba/7; )oor 4% =a g7

They main data are shown in Table 3.3.2.

e The 0—Laguerre/Jacobi polynomials. In this case ag,a5 — 0, a1 — o0, ¢ = —a%/ag, then
¢ = ar = a*afq" 'z, ¢* = a*x(x — a}), and
5 -0 a
P,(z) = (—a’{)”q(z)(—q‘;;q)n%pl ( q_q5 q; xq/a’f) , ¢ = m. (3.19)
1

Putting ¢ = —az and ¢* = ¢ 2z(x — 1), thus ¢° = —aq, and we obtain the Little g—Laguerre or
Wall polynomials

—n

n o 70 « (07
pn(z;alq) = (—1) q(2)(aq; Q)n2p1 < qaq a; qsc) , w(z) =12]"(¢2;¢)%, ¢* = —a.

e Finally, the 0—Laguerre/Bessel family follows from Eq. (3.8) taking the limit a1,a},a5 — 0

and ay — oo providing that a%a%/a; = —¢°, thus ¢ = az = a*¢°*'z, ¢* = a*z? and
n _
Py(z) = (=1)"q" ™0y, < @0 —xq15> , == (3.20)
_ qa
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As the case of 0—Jacobi/Bessel, this case leads to a new family which is not in the ¢g— Askey Tableau.
In this case we will adopt the parameterization ¢ = az = a*az, ¢* = ¢~ 222

z2, ¢° = aq, thus
g; —x/a> ;o w() =[xtV s T g = a/g,

—n

P, (z) =ly(z;a0) = (—a)nqn22900 < 1 7’0

Remark 3.2 Notice that in some examples the q—weight functions looks very different from the
ones given in [13]. Sometimes the reason is the indeterminateness of the associated moment prob-
lem (e.g. the Stieltjes-Wieger polynomials of the q— Laguerre polynomials. Also, because sometimes
instead the q—integrals, discrete sums are used (see e.g. the example of the Little g—Jacobi polyno-
mials in [13]).

Table 3.3.2: The g—classical polynomials j,(z;a,b) and I,(x; a)

P, Jn(x;a,b) In(z;a)
1) azx(x —b) azx
¢~k q721.2 q72$2 ‘
w abg+(l—aq)z aq—z
a(1—q) (a—1)g
b\ “"“[nl(a+q™) —"[n]
An _ g 71170;1 q q1,qn
(‘TZL)JF" _\n n
"n e (D)1 =gy
abg™ (1_qn+aq2n_qn+1) . .
dy (—ag " 1)(1—ag® 1) aq (q +q o ]-)
a?b2¢% 1 (1—g™) (1—ag™~! _
9In - (1,[“1271—1)2(1,aq25)(1,aq2n)—2) 02q3n ! (qn 1)
an aln] 0
ab[n](1—aq™)(1+aq®"
bn — aln]
a2b2q2n71{n](1_aqn) 1_aqn71 e
Cn (1iaq2n71)2(1iaq2n)Elfaq2n72)) a2q2 1[”]
bg™ (1—g™) (1 +ag?™
€n (ffqaq(2n—%)21(fazg+22) aq"(q” — 1)
a3b2q4n—2(17qn)(1iqn—1)
hn (1_aq2n71)2(1_aq2n)(1_aq2n72) 0
abg™ 1 (1=q™ —q* T fag2"+2 . . .
d{n (1_£q2n+1)(1_aq2n+3) ) aq +1 (q +4q 1 1)
a?b2® ! (1—g™) (1—ag™ !
g;z - (1,[“1271)(1,aq2n+1§2(1,aq2n)+2) 02q3n+1 (qn - 1)

Notice that for all 0 < ¢ < 1, the polynomials I, (z;a) never constitutes a positive definite
family since g, < 0 (see the Favard theorem (1.1)). The case if the j,(x;a,b) polynomials is
more complicated. Nevertheless, choosing a = ¢~ it is easy to show that j,(x;a,b) constitute a
finite family (similar to the g—Hahn polynomials) which is positive definite since g, > 0 for all
n =0,1,...,[N/2]. The detailed study of the positive definite cases in dependence of the roots of
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¢ and ¢* will be considered in a forthcoming paper.
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