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2 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov Tableausq�polynomials on the linear exponential lattie x(s) = 1qs. For several surveys on this lattie andtheir orresponding polynomials see [2, 4, 5, 8, 10, 13, 20, 24℄. (see also setion 3.2 from below).Furthermore, we will ompare our lassi�ation (q�Hahn Tableau) with the aforesaid two Shemas.From this omparation we �nd that there are missing families in the q�Askey Shema (one of themis a non-positive de�nite family) and using the results of [18℄ we study them with details. Also theorrespondene of this q�Hahn Shema and the Nikiforov & Uvarov one will be stablished. In suha way a omplete orrespondene between the q�lassial families of the q�Askey and Nikiforov& Uvarov Tableaus for exponential linear latties will be shown.The struture of the paper is as follows. In Setion 1 we introdue some notations and de�nitionsuseful for the next ones. In Setion 2, the q�weight funtions are introdued and omputedfor all q�lassial families. This will allow to lassify all orthogonal polynomial families of theq�Hahn tableau. Finally, in Setion 3, several appliations are onsidered: the lassi�ation of theq�lassial polynomials (q�Hahn Tableau), the integral representation for the orthogonality, thehypergeometri representation of these q�lassial polynomials as well as the detailed study of twonew families of q�polynomials.1 PreliminariesIn this setion we will give a brief survey of the operational alulus and some basi oneptsand results needed for the rest of the work.Let P be the linear spae of polynomial funtions in C with omplex oeÆients and P� beits algebrai dual spae, i.e., P� is the linear spae of all linear appliations u : P ! C . In thefollowing we will refer to the elements of P� as funtionals and we will denote them with bold letters(u; v; : : :).Sine the elements of P� are linear funtionals, it is possible to determine them from theirations on a given basis (Bn)n�0 of P, e.g. the anonial basis of P, (xn)n�0. In general, we willrepresent the ation of a funtional over a polynomial by formula hu; �i; u 2 P� ; � 2 P, andtherefore a funtional is ompletely determined by a sequene of omplex numbers hu; xni = un,n � 0, the so-alled moments of the funtional.De�nition 1.1 Let (Pn)n�0 be a basis sequene of P. We say that (Pn)n�0 is an orthogonalpolynomial sequene (OPS in short), if and only if there exists a funtional u 2 P� suh thathu; PmPni = knÆmn, kn 6= 0; n � 0, where Æmn is the Kroneker delta. If kn > 0 for all n � 0,we say that (Pn)n�0 is a positive de�nite OPS.De�nition 1.2 Let u 2 P� be a funtional. We say that u is a quasi-de�nite funtional if and onlyif there exists a polynomial sequene (Pn)n�0, whih is orthogonal with respet to u. If (Pn)n�0 ispositive de�nite, we say that u is a positive de�nite funtional.De�nition 1.3 Given a polynomial sequene (Pn)n�0, we say that (Pn)n�0 is a moni orthogonalpolynomial sequene (MOPS in short) with respet to u, and we denote it by (Pn)n�0 = mopsu ifand only if Pn(x) = xn + lower degree terms and hu; PmPni = knÆnm ; kn 6= 0 ; n � 0.Also the next theorem will be usefulTheorem 1.1 (Favard Theorem [7℄) Let (Pn)n�0 be a moni polynomial basis sequene. Then,(Pn)n�0 is an MOPS if and only if there exist two sequenes of omplex numbers (dn)n�0 and(gn)n�1, suh that gn 6= 0, n � 1 andxPn = Pn+1 + dnPn + gnPn�1; P�1 = 0 ; P0 = 1; n � 0 ; (1.1)where P�1(x) � 0 and P0(x) � 1. Moreover, the funtional u with respet to whih the polynomials(Pn)n�0 are orthogonal is positive de�nite if and only if (dn)n�0 is a real sequene and gn > 0 forall n � 1.



R. �Alvarez-Nodarse and J. C. Medem 3In the following, we will use the notation:De�nition 1.4 Let � 2 P and a 2 C , a 6= 0. We all the operator Ha : P ! P, Ha�(x) = �(ax),a dilation of ratio a 2 C n f0g.This operator is linear on P and satis�es Ha(��) = Ha� �Ha�. Also notie that for any omplexnumber a 6= 0, Ha � Ha�1 = I, where I is the identity operator on P, i.e., for all a 6= 0, Ha has aninverse operator. In the following we will omit any referene to q in the operators Hq and theirinverse Hq�1 . So, H := Hq, H�1 := Hq�1 .Next, we will de�ne the so alled q�derivative operator [11℄. We will suppose also that jqj 6= 1(although it is possible to weak this ondition).De�nition 1.5 Let � 2 P and q 2 C n f0g, jqj 6= 1. The q�derivative operator �, is the operator� : P! P, de�ned by �� = H� � �Hx� x = H� � �(q � 1)x :The q�1�derivative operator �?, is the operator �? : P! P de�ned by�?� = H�1� � �H�1x� x = H�1� � �(q�1 � 1)x :In this way, �� and �?� will denote the q�derivative and q�1�derivative of �, respetively.The above two operators � and �? are linear operators on P, and�xn = Hxn � xn(q � 1)x = (qn � 1)xn(q � 1)x = [n℄xn�1; n > 0; �1 = 0; (1.2)i.e., �� 2 P. Here [n℄ ; n 2 N, denotes the basi q�number n de�ned by[n℄ = qn � 1q � 1 = 1 + q + : : : + qn�1; n > 0; [0℄ = 0 : (1.3)Also the q�1 numbers [n℄?, de�ned by [n℄? = q�n�1q�1�1 = q1�n[n℄ will be used.Notie that �? is not the inverse of �. In fat they are related by H�? = �; H�1� = �?.The q�derivative satis�es the produt rule �(��) = ��� +H� ��� = H� ��� + ���.De�nition 1.6 Let ! a derivable funtion at x = 0 suh that 8a 2 dom!, aq 2 dom!. Then, wewill de�ne the q�derivative of ! by the expression�! = H! � !Hx� x = H! � !(q � 1)x; x 6= 0; �!(0) = !0(0) : (1.4)De�nition 1.7 Let u 2 P� and � 2 P. We de�ne the ation of a dilation Ha and the q�derivative� on P� by the expressions Ha : P� ! P�, hHau; �i = hu;Ha�i, � : P� ! P�, h�u; �i = �hu;��i,respetively.De�nition 1.8 Let u 2 P� and � 2 P. We de�ne a polynomial modi�ation of a funtional u, thefuntional �u, h�u; �i = hu; ��i; 8 � 2 P.Notie that we use the same notation for the operators on P and P�. Whenever it is not spei�edon whih linear spae an operator ats, it will be understood that it ats on the polynomial spaeP.De�nition 1.9 Let u 2 P� be a quasi-de�nite funtional and (Pn)n�0 = mops(u). We say that uor (Pn)n�0 are q�lassi funtional or MOPS, respetively, if and only if the sequene (�Pn+1)n�0is also orthogonal.



4 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov TableausNotie that in the Hahn de�nition [11℄ q is a real parameter and here, in general, q 2 C n f0g,jqj 6= 1.In the following (Qn)n�0 will denote the sequene of moni q�derivatives of (Pn)n�0, i.e.,Qn = 1[n+1℄Pn+1, for all n � 0.Theorem 1.2 (Medem et al. [17, 18℄) Let u 2 P� be a quasi-de�nite funtional. and (Pn)n�0 =mops(u). Then, the following statements are equivalent:(a) u and (Pn)n�0 are, respetively, a q�lassial funtional and a q�lassial MOPS.(b) There exists a pair of polynomials � and  , deg� � 2, deg = 1, suh that�(�u) =  u : (1.5)() (Pn)n�0 satis�es the q � SL di�erene equation���?Pn +  �?Pn = b�nPn ; n � 0; (1.6)i.e., Pn are the eigenfuntions of the Sturm-Liouville operator ���? + �? orresponding tothe eigenvalues b�n.Moreover, if �(x) = bax2 + �ax+ _a;  (x) = bbx+�b; bb 6= 0; (1.7)then, the quasi-de�niteness of u implies [n℄ba+bb 6= 0 and the following equivalenes hold[n℄ba+bb 6= 0; n � 0 () b�n 6= b�m; 8n;m � 1; n 6= m () b�n 6= 0;8n � 1:Theorem 1.3 Let u 2 P�, be a quasi-de�nite funtional, (Pn)n�0 = mopsu and Q(k)n = 1[n+1℄(k)�kPn+k,where [n+ 1℄(k) � [n+ 1℄[n+ 2℄ : : : [n+ k � 1℄. The following statements are equivalent:(a) (Pn)n�0 is q�lassial, (b) (Q(k)n )n�0 is q�lassial, k � 1.Moreover, if u satis�es the equation �(�u) =  u, deg � � 2 and deg = 1, then (Q(k)n ) isorthogonal with respet to v(k) = H(k)� � u, H(k) =Qki=1Hi�1�, and it satis�es�(�(k)v(k)) =  (k)v(k); deg�(k) � 2 deg (k) = 1;where �(k) = Hk� and  (k) =  +�Pk�1i=0 Hi�, and they are the polynomial solutions of the q�SLequation SL(k)Q(k)n = �(k)��?Q(k)n +  (k)�?Q(k)n = b�(k)n Q(k)n ; (1.8)where the polynomials �(k) and  (k) and the eigenvalues b�(k)n are�(k) = q2kbax2 + qkax+ �a;  (k) = ([2k℄ba+bb)x+ ([k℄a+ b); b�(k)n = [n℄?([2k+n� 1℄ba+bb) : (1.9)Furthermore, in [17, 18℄ the following result was proven:Theorem 1.4 Let u 2 P�, be a quasi-de�nite funtional, (Pn)n�0 = mopsu, �; �?;  2 P, suhthat �? = q�1�+(q�1�1)x , deg� � 2, deg �? � 2 and deg = 1. Then, the following statementsare equivalent(a) u and (Pn)n�0 = mopsu are q�lassial and �(�u) =  u,(b) u and (Pn)n�0 = mopsu are q�1�lassial and �?(�?u) =  u.



R. �Alvarez-Nodarse and J. C. Medem 5() There exist a polynomial � 2 P, deg � � 2 and three sequenes of omplex numbers an; bn; n,n 6= 0, suh that ��Pn = anPn+1 + bnPn + nPn�1; n � 1 ; (1.10)(d) there exist a omplex numbers en; hn, suh thatPn = Qn + enQn�1 + hnQn�2; n � 2 : (1.11)(e) There exist a polynomial � 2 P, deg� � 2 and a sequene of omplex numbers rn, rn 6= 0,n � 1 suh thatPnu = rn�n(H(n)� � u); H(n)� = nYi=1Hi�1� ; rn = q(n2 ) nYi=1 �[2n� i� 1℄ba+bb��1 ; n � 1:(1.12)2 The q�weight funtion !2.1 De�nition and �rst propertiesIn this setion we will onsider the so-alled weight funtions for q�lassial polynomials. The nextproposition an be proven straightforward (see e.g. [12℄).Proposition 2.1 Let ! a funtion suh that if a 2 dom!, aq�1 2 dom! and that satis�es thedi�erene equation�?(�!) = q ! () �! = qH(�?!); �;  2 P; �? = q�1�+ (q�1 � 1)x : (2.1)Then, the following two equations are equivalent���?Pn +  �?Pn = b�nPn ; () �?(�!�Pn) = qb�n!Pn ; n � 1: (2.2)The above proposition allows us to generalize the lassial proedure to the q�ase for obtainingalmost all the harateristis of the MOPS. The equation (2.1) is usually alled the q�Pearsonequation and its solution ! is known as the q�weight funtion and it allows to rewrite the Sturm-Liuoville equation (1.6) in its self-adjoint form (2.2). Moreover, the weight funtion ! allow us toobtain the \standard" q�Rodrigues formula and also justify the q�integral representation for theorthogonality relation. In suh a way it is natural to give the followingDe�nition 2.1 Let u 2 P�, be a quasi-de�nite funtional satisfying the distributional equation(1.5), where �;  2 P, deg � � 2, deg = 1 and (Pn)n�0 = mopsu. We say that ! is the q�weightfuntion assoiated to u (respetively to (Pn)n�0) if ! satis�es the equation (2.1) �?(�!) = q !.The last de�nition allows us to rewrite the q � SL equation (1.8) in its self-adjoint form. Infat, an straightforward alulations show that, if !(k) satis�es the q�Pearson equation�?(�(k)!(k)) = q (k)!(k); (2.3)where �(k) and  (k) are given in (1.9), then (1.8) an be rewritten in its self-adjoint form�?(�(k)!(k)�Q(k)n ) = qb�(k)n !(k)Q(k)n ; n � 1; k = 0; 1; : : : ; n: (2.4)Proposition 2.2 Let ! the solution of (2.1) and !(k) the solution of (2.3). Then,!(k) = �(n�1)!(n�1) = � � � = H(n)� � !; !(0) � !: (2.5)



6 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov TableausProof: We start from the q�Pearson equation (2.3) and rewrite it in its equivalent form �(k)!(k) =qH[�(k)℄?H!(k), where [�(k)℄? = q�1�(k) + (q�1� 1)x (k) = �?, for all k 2 N. Thus, by substituting!(k) = H(n)� � ! in �(k)!(k) = qH�?H!(k), we �nd�(k)!(k) = qH[�(k)℄?H!(k) () Hk�(�H� � � �Hk�1� � !) = qH�?H� � � �Hk�H! ()�! = qH�?H! () �?(�!) = q !;from where the proposition follows. �Remark 2.1 Notie that the polynomials (�(k))? and (�?)(k) are very di�erent. In fat, the �rstone together with  (k) are the orresponding polynomials that appear in the q�1�distributionalequation satis�ed by the funtional v(k), i.e., the funtional with respet to whih the k�th moniderivatives Q(k)n are orthogonal, (see Proposition 1.4)�(�(k)v(k)) =  (k)v(k) () �?(�(k))?v(k) =  (k)v(k); (�(k))? = �?; 8k 2 N;whereas the seond one joint with ( ?)(k) are the polynomial oeÆients of the q�1 � SL equation( ?)(k)�?�Q?(k)n ( ?)(k) = (b�?)(k)n Q?(k)n , of the n�th q�1�derivative Q?(k)n of the polynomials Pn,Q?(k)n = 1[n+1℄?(k) [�?℄nPn+k or the q�1�distributional equation satis�ed by the funtional v?(k),�?[(�?)(k)v?(k)℄ = ( ?)(k)v?(k); (�?)(k) = H�k�?; 8k 2 N;i.e., the funtional with respet to whih the k�th moni derivatives Q?(k)n are orthogonal.2.2 Computation of the q�weight funtionsThis setion is devoted to obtain the q�weight funtion assoiated to all q�lassial funtionals,i.e., the quasi-de�nite funtionals orresponding to the MOPS in the widespread sense 
u; P 2n� 6= 0,for all n � 0. In fat, Theorem 2.1 and 2.2 will give, in a very natural way, the key for thelassi�ation of all q�lassial orthogonal polynomials.In the following we onsider the ase when jqj < 1 (jq�1j > 1). Also we will use the standardnotation (a; q)n = (1 � a)(1 � aq) � � � (1 � aqn�1) for n � 1, (a; q)0 � 1 for the q�analogue of thePohammer symbol, and (a; q)1 =Q1n=0(1� aqn), for the absolutely onvergent in�nite produtfor jqj < 1.First of all, we will rewrite the q�Pearson equation (2.1)�?(�!) = q ! () �! = qH�?H! () �?! = q�1H�1�H�1!; (2.6)and solve the resulting equation by the reurrent proedure shown in �gure 1.Figure 1. Reurrent shema using the q�dilation.

w = Hnw � qH�?� � HqH�?� � : : : � Hn�1 qH�?�| {z }H(n) qH�?� �=Qn�1k=0 q�?(qk+1x)�(qkx) �H2�H2w = H2(qH�?)H3w: : : : : :�������������1 ������R
����������1 ���RH�Hw = H(qH�?)H2w?H w = H2w qH�?� H qH�?�

�w = qH�?Hw -?H w = Hw qH�?�



R. �Alvarez-Nodarse and J. C. Medem 7In the ase when ! is ontinuous at 0 and !(0) 6= 0, taking the limit n ! 1, we �nd, sinelimn!1Hnw = limn!1w(qnx) = w(0),! = !(0) limH(1) qH�?� = !(0) limn!1H(n) qH�?� = !(0) 1Yn=0 qH�?� : (2.7)The next step is to obtain an expliit expression for the produt H(1) qH�?� . For doing that we needa lemma whih is interesting in its own right.Lemma 2.1 If � is an n�th degree polynomial with an independent term �(0) = 1, and zerosai 2 C nf0g, i = 1; 2; : : : ; n, thenH(1)� = (a�11 x; q)1(a�12 x; q)1 � � � (a�1n x; q)1 := (a�11 x; a�12 x; � � � ; a�1n x; q)1;is an entire funtion of x with zeros at aiq�k, i = 1; 2; : : : ; n and k � 0. Furthermore, if �=� isa rational funtion suh that �(0) = �(0) 6= 0 and with non-vanishing zeros of its numerator anddenominator, then,H(1)�� = (a�11 x; q)1(a�12 x; q)1 � � � (a�1n x; q)1(b�11 x; q)1(b�12 x; q)1 � � � (b�1m x; q)1 = (a�11 x; a�12 x; � � � ; a�1n x; q)1(b�11 x; b�12 x; � � � ; b�1m x; q)1 ;it is a meromorphi funtion with zeros at aiq�k, i = 1; 2; : : : ; n and k � 0 and poles at bjq�l,j = 1; 2; : : : ;m and l � 0, where ai 2 C , i = 1; 2; : : : ; n and bk 2 C , k = 1; 2; : : : ;m, are the zerosof the numerator and denominator of �=�, respetively.Proof: The proof is based on the fat that, if � is a polynomial of degree n with non vanishingzeros and �(0) = 1, then it admits the fatorization� = A(x� a1)(x� a2) � � � (x� an) = (�1)nAa1a2 � � � an| {z }�(0)=1 (1� a�11 x)(1� a�12 x) � � � (1� a�1n x):Then, H(k)� = (a�11 x; a�12 x; � � � ; a�1n x; q)k and so, H(1)� = (a�11 x; a�12 x; � � � ; a�1n x; q)1. This fun-tion is an entire funtion due to the Weierstrass Theorem (see e.g. [1, x4.3℄). The proof of theseond statement is analogous and the funtion H(1) �� is meromorphi beause is a quotient of twoentire funtions (see e.g. [1, x4.3℄). �Now, if �(0) 6= 0, the above lemma leads us to the following well known result [11℄Theorem 2.1 Let (Pn)n�0 = mopsu satisfying the q�Sturm-Liouville equation (1.6). If we denoteby a1 and a2 the zeros of � and by a?1 and a?2 the zeros of �? (see Proposition 1.4), and all they aredi�erent from 0, then the following expressions for the q�weight funtions ! hold� �? q�weight funtion !(x)ba?(x� a?1)(x� a?2), ba?a?1a?2 6= 0 !(x) = (a?1�1qx; a?2�1qx; q)1(a�11 x; a�12 x; q)1ba(x� a1)(x� a2), baa1a2 6= 0 �a?(x� a?1), �a?a?1 6= 0 !(x) = (a?1�1qx; q)1(a�11 x; a�12 x; q)1_a? 6= 0 !(x) = 1(a�11 x; a�12 x; q)1�a(x� a1), �aa1 6= 0 !(x) = (a?1�1qx; a?2�1qx; q)1(a�11 x; q)1ba(x� a1)(x� a2), baa1a2 6= 0_a 6= 0 !(x) = (a?1�1qx; a?2�1qx; q)1



8 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov TableausProof: Sine �(x) = ba(x � a1)(x � a2) and �? = q�1� + (q�1 � 1)x = ba?(x � a?1)(x � a?2), wehave (qH�?)(0) = q�?(0) = �(0), so the polynomials qH�? and � have the same independent term.Using the power expansion of the polynomials � and �?�(x) = bax2 + �ax+ _a; �?(x) = ba?x2 + �a?x+ _a?;we have ba? = q�1ba+(q�1�1)bb, �a? = q�1�a+(q�1�1)�b and _a? = q�1 _a, where, bb;�b are the oeÆientof the power expansion of  (see Eq. (1.7)). Thus,8>>>>>>>>>>>>><>>>>>>>>>>>>>:
deg � < 2 =) ba = 0 =) ba? 6= 0 =) deg�? = 2;
deg � = 2 =) ba 6= 08>>>>>>>>><>>>>>>>>>:

bb 6= � ba1� q =) ba? 6= 0 =) deg �? = 2;bb = � ba1� q =) ba? = 08>>><>>>: �b 6= � �a1� q =) deg �? = 1;�b = � �a1� q =) deg �? = 1:In all ases we an apply diretly the above lemma whih immediately leads us to the desiredresult. Notie also that all the obtained funtions are meromorphi and so, they are ontinuousand non-vanishing at x = 0, so we an suppose without any loss of generality that !(0) = 1. �In the ase when �(0) = 0, it is easy to see that �?(0) = 0. This ase requires a more detailstudy. In the following we should keep in mind that for the quasi-de�niteness of u � 6� 0 and �and  should be oprime polynomials (see [18℄).Proposition 2.3 Let u be a q�lassial funtional satisfying the distributional equation (1.5) with� = bax2 + �ax, jbaj + j�aj > 0, and  = bbx+ �b, bb 6= 0. Then the following ases, ompatible with thequasi-de�niteness of u, appear:(a) If � = bax2, ba 6= 0, then, deg �? = 2 and its two zeros are di�erent, or deg �? = 1.(b) If � = bax2 + �ax, ba�a 6= 0, then, deg �? = 2, or deg �? = 1.() If � = �ax, �a 6= 0, then, deg �? = 2.Proof:(a) Sine � = bax2, then  = bbx + �b, with �b 6= 0, otherwise  divides �. Therefore, �? = (q�1ba +(q�1 � 1)bb)x2 + (q�1 � 1)�bx has a non-vanishing oeÆient on x. If bb 6= � ba1�q then ba? 6= 0 anddeg �? = 2 and �? has two di�erent zeros one of whih is loated at the origin. If bb = � ba1�q thendeg �? = 1.The other two ases are proven analogously. �The next step is to �nd the q�weight funtions for all possible ases aording with the aboveproposition (remember that �(0) = 0 = �?(0)). There are two large lasses. Class I orrespondingto the ase when � and �? have non-vanishing term on x and II when they have a vanishing termon x.I. We start with the ase when � and �? have not-vanishing term on x. In this ase there are threedi�erent possibilities (sublasses):(a) �(x) = bax(x� a1), baa1 6= 0 and �?(x) = ba?x(x� a?1), ba?a?1 6= 0,(b) �(x) = bax(x� a1), baa1 6= 0 and �?(x) = �a?x, �a? 6= 0,() �(x) = �ax, �a 6= 0 and �?(x) = ba?x(x� a?1), ba?a?1 6= 0.



R. �Alvarez-Nodarse and J. C. Medem 9To �nd the orresponding q�weight funtions we will rewrite the quotient qH�?=� = xq(H�?)0=x�0, where � = x�0 and H�? = x(H�?)0. In general, �0(0) 6= (H�?)0(0), so, in orderto apply a method, similar to the one used to prove Theorem 2.1, we will assume that ! an berewritten on the form ! = jxj�!0, � 2 C nf0g, where � is a free parameter to be found. Anstraightforward alulations show that if ! satis�es a q�Pearson equation (2.6) then !0 satis�esthe equation �0!0 = aqH!0(H�?)0, where a = q�. So,!0 = Hn(!0)aq(H�?)0�0 ; a = q�; or � = Logq(a);where Logq denotes the prinipal logarithm on the basis q, jqj < 1. In the following, we will use thenotation �a = �baa1 and �a? = �ba?a?1. Notie that, with this notation, � = bax(x � a1) = bax2 + �axand �? = ba?x(x� a?1) = ba?x2 + �a?x.(a) In this ase, aq(H�?)0�0 = aq2ba?a?1(a?1�1qx� 1)baa1(a�11 x� 1) = aq2�a?(1� a?1�1qx)�a(1� a�11 x) :If we hoose now, a suh that aq(H�?)0(0) = �0(0), i.e., aq2�a? = �a, or equivalently, � = Logq(a) =�2 + Logq �a�a? , we an apply the Lemma 2.1 to get, !0 = !0(0) (a?1�1qx;q)1(a�11 x;q)1 , whih leads, withoutany loss of generality, to the following weight funtion (here we suppose that !0 is ontinuous and!0(0) 6= 0) !(x) = jxj� (a?1�1qx; q)1(a�11 x; q)1 ; � = Logq(a) = �2 + Logq �a�a? : (2.8)(b) In this ase,aq(H�?)0�0 = aq2�a?�a(1� a�11 x) =) !0 = !0(0) 1(a�11 x; q)1 ; � = Logq(a) = �2 + Logq �� �a�a?� ;so, !(x) = jxj�(a�11 x; q)1 ; � = Logq(a) = �2 + Logq �� �a�a?� :Finally, in the last ase (), we obtain!(x) = jxj�(a?1�1qx; q)1; � = Logq(a) = �2 + Logq �� �a�a?� :II. Let onsider the other ase, i.e., when � and �? have a vanishing term on x. In this ase thereare two possibilities:(i) deg � 6= deg �? whih is divided in two subases (a) � = bax2, �? = �a?x, and (b) � = �ax,�? = ba?x2, and(ii) deg � = deg �?, whih also is divided in two subases (a) � = bax2, �? = ba?x(x� a?1), a?1 6= 0,and (b) � = bax(x� a1), �? = ba?x2, a1 6= 0.In both ases, the method used in the ase I of non-vanishing oeÆients an not be used.(i) In order to solve the problem for ase II(i) we will generalize an idea by H�aker [12℄. Let usde�ne the funtion h(�) : [0;1)! R de�ned byh(�)(x) =pxlogq x���; � 6= 0;whih has the following property Hh� = x�h� , or, equivalently, h�(qx) = x�h�(x), for all x � 0.If we now de�ne the funtion ! = x�h(1), then, for the ase II(i)a we haveH! = Hx�h(1) = q�x�xh(1) = q�x! =) xH! = q�x2!;



10 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov Tableausthen, omparing this resulting equation with the q�Pearson equation (2.6) for this hoie of � and�?, bax2! = q�a?xH!, we dedue that the funtion!(x) = jxj�pxlogq x�1; � = �2 + Logq ba�a? ; x � 0; (2.9)is the the solution of the q�Pearson equation and so, the orresponding q�weight funtion.For the ase II(i)b we have, in an analogous way, a similar solution but involving the funtionh(�1): !(x) = jxj�qxlogq 1x+1; � = �3 + Logq �aba? ; x � 0: (2.10)(ii) In this ase the method developed for the above ases does not work. In fat, if we try to usethe method for the ase I, after some straightforward alulations, we arrive to an in�nite divergentprodut. For this reason we will solve the q�Pearson equation using the equivalent equation(2.6) in q�1 dilation q�1H�1�H�1! = �?! (2.6), i.e., using a shema similar to the one given in�gure 1 but when the reurrene is solved in the \opposite" diretion to obtain the expression! = H�n!H(�n) q�1H�1��? , whih leads to the solution, by taking the limit n ! 1, if there existsthe value H�1! = !(1). In suh a way, we have for the ase II(ii)a the expression! = jxj�!0 ; � � 0 ; �? = x�?0 = x(ba?x+ �a?) ; H�1� = x(H�1�)0 = x(q�2bax) :hene, the q�1�Pearson equation takes the formx�?0 � jxj�!0 = q�1 � x(H�1�)0 � H�1(jxj�!0) =) �?0!0 = q�1(H�1�)0 q��H�1!0 ;and its solution is!0(0) = H�nw?0 H(�n) q��q�1(H�1�)0�?0 a:=q�= H�n!0 H(�n) a�1q�3baxba?x+ �a? :Now, hoosing the value � , in suh a way that a�1q�3ba = ba?, i.e., � = �3 + Logq baba? we �nd,!0(0) = H�nw?0 H(�n) ba?xba?x+ �a? = H�n!0H(�n)�1� �a?ba?x+ �a?� = H�n!0 nYi=0�1� �a?qiba?x+ �a?qi�:Obviously the above produt is uniformly onvergent in any ompat subset of the omplex planethat not ontains the points fa?1qn; n � 0gSf0g, where a?1 = ��a?=ba? is the non-vanishing zeroof �? (in x = 0 the produt diverges to zero). Furthermore, this produt onverges at 1, so!(1) =  6= 0 , and thus!(x) = jxj�w?0 = jxj� 1Yn=0�1� �a?qnba?x+ �a?qn� = jxj�H(�1) ba?xba?x+ �a? = jxj� 1(� �a?ba?x ; q)1 ;where � = Logq baq�3ba? , and whih, without any loss of generality, leads to the following expressionfor the q�weight funtion!(x) = jxj� 1(a?1=x; q)1 = jxj�eq(a?1=x) ; a?1 = � �a?ba?x; � = �3 + Logq baba? ; (2.11)where eq denotes the q�exponential funtion [10℄.A similar situation happens in the II(ii)b subase. In this ase, we have!0(x) = H�n!0H(�n) q��q�1(H�1�)0�?0 a:=q�= H�n!0H(�n) a�1q�1q�1ba(q�1x� a1)ba?x :



R. �Alvarez-Nodarse and J. C. Medem 11If we now hoose a�1q�3ba = ba?, we �nd!0(x) = H�n!0H(�n)ba?x� a�1q�2baa1ba?x = H�n!0H(�n)�1� ba?qa1ba?x � = H�n!0H(�n)�1� a1qx �;whih is an absolute and uniformly onvergent produt in C nf0g. Finally, sine !(1) =  6= 0, andwithout any loss of generality we �nd the following expression for the q�weight funtion !!(x) = jxj�(a1q=x; q)1 ; � = �3� Logq baba? ;where a1 is the non-vanishing zero of �. All the above alulations an be summarize in thefollowing theorem:Theorem 2.2 Let (Pn)n�0 = mopsu satisfying the q�Sturm-Liouville equation (1.6). If we denoteby a1 and a2 the zeros of � and by a?1 and a?2 the zeros of �? (see Proposition 1.4), and one of themare equal to 0, then the following expressions for the q�weight funtions ! holdCase � �? !(x)II(ii)a ba?x(x� a?1); ba?a?1 6= 0 jxj� 1(a?1=x; q)1 ; � = Logq baq�3ba?bax2, ba 6= 0II(i)a �a?x, �a? 6= 0 jxj�pxlogq x�1; � = Logq baq�2�a?I(a) ba?x(x� a?1), ba?a?1 6= 0 jxj� (a?�11 qx; q)1(a�11 x; q)1 , � = Logq �aq�2�a?I(b) bax(x� a1), baa1 6= 0 �a?x, �a? 6= 0 jxj� 1(a�11 x; q)1 , � = Logq��aq�2�a?II(ii)b ba?x2, ba? 6= 0 jxj�(a1q=x; q)1, � = �Logq baq3ba?I() ba?x(x� a?1), ba?a?1 6= 0 jxj�(a?�11 qx; q)1, � = Logq��aq�2�a?�ax, �a 6= 0II(i)b ba?x2, ba? 6= 0 jxj�pxlogq 1x+1, � = Logq �aq�3ba?3 AppliationsIn this setion we will onsider some appliations of the above theorems. In fat we will show how theq�weight funtions an be used to give an integral representation for the orthogonality. Anotherinteresting appliation is the already mentioned lassi�ation of all orthogonal families in theq�Hahn Tableau (in [23℄ the orthogonality was not onsidered). In fat Theorems 2.1 and 2.2 givesa natural lassi�ation of the q�lassial orthogonal polynomials. Also by using the q�weights onean obtain an expliit formula of the polynomials satisfying a Rodrigues-type formula in terms ofthe polynomials oeÆients � and �? from where the hypergeometri representation easily follows.The last have been done independently in [23℄ and [6℄ (see also [5, 20℄) in the framework of thedi�erene equations of hypergeometri type on the non-uniform latties. Here we will show howall the q�lassial families an be obtained by ertain limiting proesses from the most generalase of ;�Jaobi/Jaobi family. Finally, we will ompare the Nikiforov & Uvarov and the q�AskeyTableaus with our q�Hahn Tableau and omplete the q�Askey one with new families of orthogonalpolynomials.



12 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov Tableaus3.1 The q�integral representation for the orthogonalityIn this setion we will show how the q�weight funtions and the q�SL equation lead to a q�integralrepresentation for the orthogonality. The tehnique used here is very ommon in the theory oforthogonal polynomials (see e.g. [7, 13, 20℄).First of all we introdue the q�integral of Jakson [10, 25℄. This integral is a Riemann sum onan in�nite partition faqn; n � 0g,Z a0 f(x) dqx = (1� q)a 1Xn=0 f(aqn)qn ; andZ ba f(x) dqx = Z b0 f(x) dqx� Z a0 f(x) dqx;so, it is valid the q�analogue of the Barrow rule (here �F (x) is ontinuous at x = 0): Z ba �F (x) dqx =F (b)� F (a), and the rules of integration by partsZ ba f(x)�g(x) dqx = H�1f(x) � g(x)���ba � q Z ba g(x)�?f(x) dqx;Z ba f(x)�g(x) dqx = fg���ba � Z ba Hg(x)�f(x) dqx :Obviously in the above expressions it is assumed that the funtion f is de�ned in the orrespond-ing partition's points. This Jakson q�integral an be easily generalized to unbounded intervalsand unbounded funtions in a similar way as the Riemann integral [10, 25℄. Furthermore, theRiemann-Stieltjes disrete integrals related with the q�lassial polynomials an be represented asq�integrals (see e.g. [17, 19℄).Proposition 3.1 Let ! be ontinuous funtion in x = 0 satisfying the q�Pearson equation �?(�!) =q !, equivalent to the distributional equation �(�u) =  u and let a; b omplex numbers suh thatthe boundary ondition �?!���ba = 0, or equivalently H�1�!���ba = 0 (�w = qH(�?w)) holds. Then,Z ba Pn(x)Pm(x)!(x)dqx = 0; 8n 6= m; (Pn)n�0 = mopsu:Proof: The proof is straightforward. We start from the self-adjoint form of the q � SL equationsfor the polynomial Pn and Pm, respetively:�[H�1(�!)�?Pn℄ = b�n!Pn; �[H�1(�!)�?Pm℄ = b�m!Pm:If we multiply the �rst one by Pm, the seond one by Pn, takes the q�integral over (a; b) and usethe integration by part rules we �nd(b�n � b�m)Z ba !PnPm dqx = Z ba (!b�nPn)Pm dqx� Z ba (!b�mPm)Pn dqx == Z ba ��H�1(�!)�?Pn�Pm dqx� Z ba ��H�1(�!)�?Pn�Pndqx == H�1(�!)W ?q [Pm; Pn℄���ba + Z ba hH�H�1(�!)�?Pm��Pn �H(H�1(�!)�?Pn��Pmi dqx;where W ?q [Pm; Pn℄ = Pm�?Pn � Pn�?Pm is the q�Wronskian. The �rst term in the last equa-tion vanish sine the boundary onditions. The seond also vanish sine H�H�1(�w)�?Pm��Pn=�w�Pm�Pn. The result follows from the fat that for all n 6= m, b�n 6= b�m. �



R. �Alvarez-Nodarse and J. C. Medem 13Remark 3.1 Notie that the hoie of the integration interval (a; b) is onditioned to guaranteethat R ba P 2n!dqx 6= 0, n � 0, for whih, it is enough that ! be ontinuous funtion and does notvanish inside the interval of integration. This has a diÆulty sine, even in the simplest ases, i.e.,;�families, ! has in�nite zeros a?i q�n, n � 1, and in�nite poles, aiq�n, n � 0. Notie also thatnatural values for (a; b) are the roots of �? or the roots of �(q�1x).Of speial interest is the study of the positive de�nite ase, i.e., the ase when R ba P 2n!dqx > 0for all n � 0. For doing that we an use the Favard theorem. The detailed study of positive de�nitease will be onsidered in a forthoming paper.3.2 Classi�ation of the q�lassial polynomialsSine the equation (1.5) (and so the Sturm-Liouville equation (2.2)) gives all the informationabout the q�lassial funtional (and then about the orresponding MOPS), it is natural to usethem for lassifying the q�lassial polynomials. Moreover, all this information is ondensed inthe polynomials � and �? instead of � and  (and more exatly in their zeros) as it is shownin Theorems 2.1 and 2.2. So it is natural to use the zeros of � and �? to lasify all families ofq�lassial orthogonal polynomials [17, 19℄.In suh a way, sine �(0) = 0 if and only if �?(0) = 0, it is natural, in a �rst step, to lassify theq�lassial polynomials into two wide groups: the ;�families, i.e., the families suh that �(0) 6= 0and the 0�families, i.e., the ones with �(0) = 0. Next, we lassify eah member in the aforesaidtwo wide lasses in terms of the degree of the polynomials � and �? as well as the multipliity oftheir roots in the ase of 0�families. In fat, if � has two simple roots, the polynomials belong tothe 0�Jaobi/| family while if the roots are multiple, then they are 0�Bessel/| family. So, wehave the following sheme for the q�lassial OPS:
;�families 8>>>>>>>><>>>>>>>>:

;�Jaobi/Jaobi;�Jaobi/Laguerre;�Jaobi/Hermite;�Laguerre/Jaobi;�Hermite/Jaobi 0�families
8>>>>>>>>>>>><>>>>>>>>>>>>:

0�Bessel/Jaobi0�Bessel/Laguerre0�Jaobi/Jaobi0�Jaobi/Laguerre0�Jaobi/Bessel0�Laguerre/Jaobi0�Laguerre/BesselNotie that in this sheme an not appear the families ;�Laguerre/Laguerre, ;�Laguerre/Her-mite ;�Hermite/Laguerre and ;�Hermite/Hermite sine the onnetion between � and �?, aswell as the 0�Bessel/Bessel ase sine they do not orrespond to a quasi-de�nite funtional (seeProposition 2.3).3.2.1 Connetion with the Nikiforov-Uvarov and the q�Askey TableausHere we will identify our lassi�ation (sheme) of the q�lassial polynomials with the two wellknown shemes by Nikiforov and Uvarov [23℄ and the q�Askey Tableau [13℄.We start with the �rst one. The Nikiforov-Uvarov Tableau is based on the polynomial solutionsof the seond order linear di�erene equation of hypergeometri type in the non-uniform lattie x(s):~�(x(s)) 44x(s� 12)5yn[x(s)℄5x(s) + ~�(x(s))2 �4yn[x(s)℄4x(s) + 5yn[x(s)℄5x(s) �+ �yn[x(s)℄ = 0;5f(s) = f(s)� f(s� 1); 4f(s) = f(s+ 1)� f(s); yn[x(s)℄ 2 P[x(s)℄x(s) = 1(q)qs + 2(q)q�s + 3(q); q 2 C ; (3.1)



14 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov Tableauswhere ~�(x) and ~�(x) are polynomials in x(s) of degree at most 2 and 1, respetively, and �n is aonstant, or, written in its equivalent form�(s) 44x(s� 12)5yn[x(s)℄5x(s) + �(s)4yn[x(s)℄4x(s) + �nyn[x(s)℄ = 0;�(s) = ~�(x(s)) � 12 ~�(x(s))4 x(s� 12); �(s) = ~�(x(s)): (3.2)Here P[x(s)℄ denotes the linear spae of polynomials in x(s). Notie that, if x(s) = 1qs � x, i.e.,we are in the so-alled linear exponential lattie, then4yn[x(s)℄4x(s) = �yn(x) and 5yn[x(s)℄5x(s) = �?yn(x); yn(x) � yn[x(s)℄:Thus, using the fat that 4x(s� 12) = q� 12 4 x(s), the hypergeometri equation (3.2) in the linearlattie x(s) = 1qs an be rewritten as�(s)��?yn(x) + q� 12 �(s)�yn(x) = ��nq� 12 yn(x); yn(x) 2 P;from where, and using the identity � = x(q � 1)��? +�? we arrive to the equation[� + q� 12 �(s)x(q � 1)℄��?yn(x) + q� 12 �(s)�?yn(x) = ��nq� 12 yn(x);whih is nothing else that the q � SL equation (1.6) where�(s) = �+ x(1� q) = q�?; �(s) = q� 12 ; �n = �q 12b�n: (3.3)In other word, the q�SL equation (1.6) is a seond order linear di�erene equation of hypergeometritype in the linear exponential lattie x(s) = 1qs. The above onnetion allows us to identify allthe q�lassial orthogonal polynomials (in the widespread Hahn's sense) with the q�polynomialsin the exponential lattie in the Nikiforov et al. approah. In fat, using the expliit expression ofthe polynomials �(s) and �(s) + �(s)4 (x� 12) in the exponential lattie [23, Eqs. (84)-(85) page241 and Table page 244℄, we an identify our 12 lasses of q�polynomials with the ones given in[23℄ (see Table 3.2.1).In order to identify the q�lassial polynomials with the ones given in the q�Askey tableau[13℄ we rewrite the q � SL equation (1.6) in the following form:� � HPn � (�+ q2�?)Pn + q2�? �H�1Pn = (q � 1)2x2�nPn:Then, a simple omparison of the above di�erene equation with those given in the q�Askey Tableauallows us to identify some of the families of the q�polynomials given in [13℄ with the orrespondingq�lassial ones, and so, with the ones in the Nikiforov-Uvarov Tableau. This will be given inTable 3.2.1.From the above table 3.2.1 we see that the 0�Jaobi/Bessel and 0�Laguerre/Bessel familieslead to new families of orthogonal polynomials. The reason for that they do not appear in theq�Askey tableau will be onsidered latter on. Notie also that the lass No8 from the Nikiforov-Uvarov tableau [23, page 244℄ do not lead to any orthogonal polynomial sequene even in thewidespread sense onsidered here.3.3 The Rodrigues formula and hypergeometri representationFor the sake of ompleteness we will inlude here the identi�ation of the q�lassial polynomialsin terms of the basi hypergeometri series [10℄ de�ned byr'p a1; a2; :::; arb1; b2; :::; bp �����q; z! = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k �(�1)kq k(k�1)2 �p�r+1 ; (3.4)where, as before, (a; q)k =Qk�1m=0(1� aqm).



R. �Alvarez-Nodarse and J. C. Medem 15Table 3.2.1: Comparison of the Nikiforov-Uvarov, the q�Askey and the q�lassial polynomialTableausq�lassial family () Nikiforov-Uvarov Tableau [23℄ =) q�Askey Tableau [13℄;�Jaobi/Jaobi () Eq. (86) page 242 =) The Big q�Jaobiq�Hahn;�Jaobi/Laguerre () No6 [23, page 244℄ =) q�MeixnerQuantum q�Kravhuk;�Jaobi/Hermite () No12 [23, page 244℄ =) Al-Salam-Carlitz IIDisrete q�1�Hermite II;�Laguerre/Jaobi () No1 [23, page 244℄ =) Big q�LaguerreAÆne q�Kravhuk;�Hermite/Jaobi () No2 [23, page 244℄ =) Al-Salam-Carlitz IDisrete q�Hermite0�Bessel/Jaobi () No4 [23, page 244℄ =) Alternative q�Charlier0�Bessel/Laguerre () No11 [23, page 244℄ =) Stieltjes-Wigert0�Jaobi/Jaobi () No3 [23, page 244℄ =) The Little q�Jaobiq�Kravhuk0�Jaobi/Laguerre () No10 [23, page 244℄ =) q�Laguerreq�Charlier0�Jaobi/Bessel () No7 [23, page 244℄ =) new OP family0�Laguerre/Jaobi () No5 [23, page 244℄ =) Little q�Laguerre (Wall)0�Laguerre/Bessel () No9 [23, page 244℄ =) new OP family| No8 [23, page 244℄ |3.3.1 The Rodrigues formulaLet us �rst obtain the \standard" Rodrigues formula.Proposition 3.2 Let u, u 2 P� be a q�lassial quasi-de�nite funtional, (Pn)n�0 = mopsu, and! the q�weight funtion de�ned by the q�Pearson equation (2.1). Then,Pn = q�nrn�?n(H(n)!)! : (3.5)Proof: The proof of this proposition is straightforward. In fat, using the de�nition of the !(k) weobtain !(k) = �(k�1)!(k�1), thus, using the equation (2.4) we have, for all n � 1,�?n(H(n)!) = �?n(!(n)Q(n)0 ) = 1[1℄�?n�1[�?(�(n�1)!(n�1)�Q(n�1)1 ℄ (2:4)== qb�(n�1)1[1℄ �?n�1[!(n�1)Q(n�1)1 ℄ = � � � = qn b�(n�1)1 ���b�n[1℄���[n℄ !Pn:Finally, using the expliit expression for the oeÆient rn (1.12) the result follows. �



16 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov TableausThe Rodrigues formula is very useful for �nding the expliit expression of the polynomials Pn.In fat, using the formula�?nf(x) = q�n2 �+n(1� q)nxn nXk=0(�1)kq k(k+1)2 �nk�nk �qf(qk�nx); �nk �q = (q; q)n(q; q)k(q; q)n�k ;where �n2 � = n(n�1)2 , one easily obtainsPn = q�n2 �rn(1� q)nxn nXk=0(�1)kq k(k+1)2 �nk�nk �qH(n)�(xqk�n)!(qn�kx)!(x) ;or, equivalently, Pn = rn(�1)n(1� q)nxn nXk=0(�1)kq� k2��nk �qH(n)�(xq�k)!(q�kx)!(x) :Now, taking into aount the q�Pearson equation (2.6)H!! = �qH�? () H�1!! = q�?H�1�;we obtain the following expliit expression for the q�lassial polynomials in terms of the polyno-mials � and �?: Pn = rn(�1)n(1� q)nxn nXk=0(�1)kq�k2�+k�nk �q k�1Yi=0 �?(xq�i) n�k�1Yi=0 �(xqi): (3.6)This formula is equivalent to the one obtained in [5, Eq. (4.14)℄, [23, Eq. (33)℄ and [2, Eq. (2.24)℄for the q�polynomials in the non-uniform lattie x(s) = 1qs.3.3.2 The hypergeometri representation� We start with the ;�Jaobi/Jaobi family, i.e., the ase when � = ba(x � a1)(x � a2) and�? = ba?(x�a?1)(x�a?2) ba?a1a2ba?a?1a?2 6= 0. The other ases an be obtained in a similar way. Then,substituting in the above expression we �nd that the q�lassial polynomials beomesPn = rn(baa1a2)n(x=a1; q)n(x=a2; q)n(1� q)nxn 3'2 q�n; a?1x�1; a?2x�1q1�na1x�1; q1�na2x�1 �����q; ba?ba q�n+3! :From the last formula it is not easy to see that Pn are polynomials on x of degree exatly equaln, thus, we will apply to the above equation the transformations (3.2.5) and (3.2.3) given in [10,page 61℄. Notie that we an apply the transformation formula (3.2.5) [10, page 61℄ beausethe polynomials � and q�? have the same independent term, and then the ondition baa1a2 =qba?a?1a?2 is ful�lled. So, the hypergeometri representation of the moni q�lassial ;�Jaobi/Jaobipolynomials isPn(x) = an2 (a?1=a2; q)n(a?2=a2; q)n(a?1a?2a�11 a�12 qn�1; q)n 3'2 q�n; a?1a?2a�11 a�12 qn�1; x=a2a?1=a2; a?2=a2 �����q; q! : (3.7)Notie that, sine � and �? are invariant with respet to the hange a1 () a2 and a?1 () a?2, thenwe an obtain an equivalent hypergeometri representationPn(x) = an2 (a?1=a1; q)n(a?2=a1; q)n(a?1a?2a�11 a�12 qn�1; q)n 3'2 q�n; a?1a?2a�11 a�12 qn�1; x=a1a?1=a1; a?2=a1 �����q; q! : (3.8)



R. �Alvarez-Nodarse and J. C. Medem 17Notie also that from any of the above two formulas follwos that Pn is a polynomial of degree exatlyequal n. Before start with the detailed study of eah ase let us write another equivalent form forthe ;�Jaobi/Jaobi polynomials whih an be obtained applying the transformation (III.12) from[10, page 241-242℄ to (3.7):Pn(x) = q�n2 �(�a?2)n(a?1=a2; q)n(a?1=a1; q)n(a?1a?2a�11 a�12 qn�1; q)n 3'2 q�n; a?1a?2a�11 a�12 qn�1; a?1=xa?1=a2; a?1=a1 �����q; qx=a?2! : (3.9)If we now hoose � = aq(x � 1)(bx � ) and �? = q�2(x � aq)(x � q), then Theorem 2.1 andEq. (3.7) gives, for the weight funtion and the polynomials, respetively!(x) = (x=a; x=; q)1(bx=; x; q)1 ; pn(x; a; b; ; q) = (aq; q)n(q; q)n(abqn+1; q)n 3'2 q�n; abqn+1; xaq; q �����q; q! ;i.e., the Big q�Jaobi polynomials. If we now hoose  = q�N�1 they beomes the q�Hahn polyno-mials Qn(x; a; b;N jq) (usually they are written as polynomials in x = q�s, see [13, 18℄). Obviously,if we use instead of formula (3.7) the formulas (3.8) and (3.9) we obtain other representations forthe Big q�Jaobi polynomials.For the other 11 ases we an do the same, substitute the polynomials � and �? in (3.6) and makethe orresponding alulations, but here we will show how, from the q�lassial ;�Jaobi/Jaobipolynomials, an be derived all other ases by taking the appropiate limits. A similar study havebeen done in [23℄. Here we will omplete it. We will give the details only in some speial \diÆult"ases or when the larity and the auray are required.� We ontinue with the q�lassial ;�Jaobi/Laguerre polynomials. To obtain them we takethe limit a?2 !1. Then, � = ba(x� a1)(x� a2) andq�? = qba?(x�a?1)(x�a?2) = qba?a?2(x�a?1)(x=a?2�1) = baa1a2a?1 (x�a?1)(x=a?2�1)! �baa1a2a?1 (x�a?1);where the relation baa1a2 = qba?a?1a?2 has been used. In this ase and sinelima?2!1 (a?1a?2a�11 a�12 qn�1; q)k(a?2=a2; q)k = q(n�1)k �a?1a1�k ;Eq. (3.7) beomesPn(x) = �a1a2a?1 �n (a?1=a2; q)nq�n(n�1)2'1 q�n; x=a2a?1=a2 �����q; qna?1=a1! : (3.10)If we hoose now � = (x � 1)(x + b) and �? = q�2(x � bq), then we obtain the q�Meixnerpolynomials Mn(x; b; ; q) = (�)n(bq; q)nq�n22'1 q�n; xbq �����q;�qn+1 ! :In this ase !(x) = (x=b;q)1(�x=b;x;q)1 . Putting in the above formulas b = q�N�1 and  = �p�1 we arriveto the Quantum q�Kravhuk polynomials Kqtmn (x; p;N ; q).� The next family is the q�lassial ;�Jaobi/Hermite one. In this ase we take the limita?1; a?2 !1. Then, � = ba(x� a1)(x� a2) and q�? = ba?a1a2, thus (3.7) beomesPn(x) = (�a2)�nq�n2 �2'0 q�n; x=a2| �����q; qna2=a1! : (3.11)



18 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov TableausChoosing � = (x� a)(x� 1) and q�? = a we obtain the Al-Salam & Carlitz II polynomialsV (a)n (x; q) = (�a)nq��n2�2'0 q�n; x0 �����q; qna ! ;If now � = (x� i)(x+ i) and q�? = 1, we arrive to the Disrete q�Hermite polynomials II ehn(x; q)ehn(x; q) = i�n2'0 q�n; ix| �����q;�q�n! = xn2'1 q�n; q�n+10 �����q2;� q2x2! ;and for the weight funtion we have !(x) = (ix;�ix; q)�11 = (�x2; q2)1 = �Q1k=0(1 + x2q2k)��1.� The q�lassial ;�Laguerre/Jaobi polynomials. In this ase a2 !1. Then, � = �qba?a?1a?2a�11 (x�a1) and �? = ba?(x� a?1)(x� a?2), thus Eq. (3.9) givesPn(x) = (�a?2)nq�n2 �(a?1=a1; q)n2'1 q�n; a?1=xa?1=a1 �����q; qx=a?2!= an1 (a?1=a1; q)n(a?2=a1; q)n3'2 q�n; x=a1; 0a?1=a1; a?2=a1 �����q; q! : (3.12)The last equality follows from the Jakson transformation formula (see [10, Eq. (III.5), page241℄), or, diretly, taking the limit in formula (3.8). If we now hoose � = �aq(x � 1) and�? = q�2(x� aq)(x� q), we obtain the Big q�Laguerre polynomialspn(x; a; ; q) = (aq; q)n(q; q)n3'2 q�n; 0; xaq; q �����q; q!= (aq; q)n(�q)nq�n2 �2'1 q�n; aqx�1aq �����q; x! :Notie that they are nothing else that the Big q�Jaobi when b = 0. Here !(x) = (x=a;x=;q)1(x;q)1 .To this lass also belong the Kaffn (x; p;N ; q). In fat they are Big q�Laguerre polynomials withparameters a = q�N�1 and  = p.� The q�lassial ;�Hermite/Jaobi polynomials. In this ase a1; a2 ! 1, thus � = qbaa?1a?2and �? = ba?(x� a?1)(x� a?2). Then, from Eq. (3.9) one easily �ndPn(x) = q�n2 �(�a?2)n2'1 q�n; a?1=x0 �����q; qx=a?2! : (3.13)Now hoosing � = a and q�? = (x�1)(x�a), (3.13) leads to the Al-Salam & Carlitz I polynomialsU (a)n (x; q) = (�a)nq�n2�2'1 q�n; x�10 �����q; x qa ! :In this ase the q�weight funtion takes the form !(x) = (qx=a; qx; q)1. If we put a = �1, the theAl-Salam & Carlitz I polynomials beomes the disrete q�Hermite polynomials I hn(x; q).For the 0�families the situation is more ompliate and a new parameter Æ should be inluded.



R. �Alvarez-Nodarse and J. C. Medem 19� To obtain the 0�Bessel/Jaobi polynomials we will take the limit a1; a2; a?2 ! 0. Thus,� = bax2 and �? = ba?(x � a?1)x, but now we have a problem taking the limit in the expression(a?1a?2a�11 a�12 qn�1; q)k, so we will obliged the parameters a1; a2; a?2 tend to zero suh that a?2a�11 a�12 =qÆ, with Æ a �xed onstant suh that qÆ = ba=(qba?a?1). Then, taking the limit in Eq. (3.7) we obtainPn(x) = q�n2 �(�a?1)n(qn+Æ�1; q)n 2'1 q�n; qn+Æ�10 �����q; qx=a?1! ; qÆ = baqba?a?1 : (3.14)To this lass belongs the Alternative q�Charlier polynomials Kn(x; a; q). In fat, putting � = ax2and �? = q�2x(1� x), thus qÆ = �aq and thenKn(x; a; q) = (�1)nq�n2�(�aqn; q)n 2'1 q�n;�aqn0 �����q; qx! :For them we have !(x) = jxj�(x�1; q)�11 , where q� = �a=q.� For the 0�Bessel/Laguerre polynomials we have the limit a1; a2; a?1 ! 0 and a?2 !1. Thus,� = bax2 and �? = ba?(x� a?1)(x� a?2) = ba?a?2(x=a?2 � 1)(x� a?1) = baa1a2a?1�1q�1(x=a?2 � 1)(x� a?1).If we now take the limit in suh a way that a?1a1a2 = �qÆ we arrive to the funtion �? = baq�Æ�1x.In this ase Eq. (3.9) immediately givesPn(x) = q�n(n+Æ�1)(�1)n1'1 q�n0 �����q; �qn+Æx! ; qÆ = � ba�a?q : (3.15)Now, setting � = x2 and �? = q�2x, we have qÆ = �q and we obtain the Stieltjes-Wigert polyno-mials Sn(x; q) = (�1)nq�n21'1 q�n0 �����q;�xqn+1! :Here !(x) = pxlogq x�1.� The 0�Jaobi/Jaobi polynomials. In this ase the limit is a2; a?2 ! 0 providing that a?2=a2 =qÆ, then � = bax(x� a1), �? = ba?x(x� a?1) and (3.7) givesPn(x) = q�n2 �(�a?1)n(qÆ; q)n(a?1=a1qÆ+n�1; q)n 2'1 q�n; a?1=a1qn+Æ�1qÆ �����q; qx=a?1! ; qÆ = baa1qba?a?1 : (3.16)Putting � = ax(bqx� 1) and �? = q�2x(x� 1), qÆ = aq, thuspn(x; a; bjq) = (�1)nq�n2�(aq; q)n(abqn+1; q)n 2'1 q�n; abqn+1aq �����q; qx! ;whih are nothing else that the Little q�Jaobi polynomials. If now we take � = px(1 � x),�? = q�2x(x� q�N ) we arrive to the following expressionKn(x; p;N ; q) = (�1)nq�nN+�n2 �(�pqN+1; q)n(�pqn; q)n 2'1 q�n;�pqn�pqN+1 �����q;xqN+1! ;thats onstitutes an alternative de�nition for the q�Kravhuk polynomials whih is equivalent tothe \more" standard one just using the transformation formula (III.7) from [10, page 241℄Kn(x; p;N ; q) = (q�N ; q)n(�pqn; q)n 3'2 q�n; x;�pqnq�N ; 0 �����q; q! :



20 q�Classial polynomials and the q�Askey and Nikiforov-Uvarov TableausFinally, we have !(x) = jxj� (qx;q)1(qbx;q)1 , q� = a and !(x) = jxj� (qN+1x;q)1(x;q)1 , q� = pqN for the weightfuntions of the Little q�Jaobi and q�Kravhuk polynomials, respetively.� The 0�Jaobi/Laguerre polynomials. In this ase we take the limit is a2; a?2 ! 0 and a?1 !1in suh a way that a?2=a2 = �qÆ, so � = bax(x� a1), �? = baa1q�Æ�1x = �a?x, and thenPn(x) = (�a1)nq�n(n+Æ�1)2'1 q�n; x=a10 �����q; �qn+Æ! ; qÆ = baa1q�a? : (3.17)Putting � = ax(x+ 1) and �? = q�2x, then qÆ = �aq, and we obtain the q�Laguerre polynomialsL�n(x; q) � Ln(x; a; q)Ln(x; a; q) = (�1)nq�n2a�n 2'1 q�n;�x0 �����q; aqn+1! ; !(x) = jxj�(�x; q)1 ; q� = �a:If we now hoose � = x(x � 1) and �? = q�2ax, we obtain qÆ = q=a and then we arrive to theq�Charlier polynomialsCn(x; a; q) = (�1)nq�n2an 2'1 q�n; x0 �����q;�qn+1a ! ; !(x) = jxj�(x; q)1 ; q� = a�1:� The 0�Jaobi/Bessel polynomials. Here we take the limit is a2; a?1; a?2 ! 0 in suh a way thata?1a?2=a2 = qÆ, so � = bax(x� a1), �? = ba?x2 = baa1q�Æ�1x2, and then (3.7) givesPn(x) = qn(n+Æ�1)(qn+Æ�1=a1; q)�1n 2'0 q�n; qn+Æ�1=a1| �����q; xq1�Æ! ; qÆ = baa1qba? : (3.18)This family does not appear in the q�Askey Sheme unless they are not a trivial limit of a moregeneral q�family. We will take the following parameterization � = ax(x � b) and �? = q�2x2.Then, qÆ = abq and we obtain that this 0�Jaobi/Bessel polynomials, denoted by jn(x; a; b)jn(x; a; b) = (ab)nqn2(aqn; q)�1n 2'0 q�n; aqn| �����q; x=(ab)! ; !(x) = jxj�(bq=x; q)1; q� = a�1q�5:They main data are shown in Table 3.3.2.� The 0�Laguerre/Jaobi polynomials. In this ase a2; a?2 ! 0, a1 ! 1, qÆ = �a?2=a2, then� = �ax = ba?a?1qÆ+1x, �? = ba?x(x� a?1), andPn(x) = (�a?1)nq�n2 �(�qÆ; q)n2'1 q�n; 0�qÆ �����q; xq=a?1! ; qÆ = �aba?a?1q : (3.19)Putting � = �ax and �? = q�2x(x � 1), thus qÆ = �aq, and we obtain the Little q�Laguerre orWall polynomialspn(x; ajq) = (�1)nq�n2�(aq; q)n2'1 q�n; 0aq �����q; qx! ; !(x) = jxj�(qx; q)1; q� = �a:� Finally, the 0�Laguerre/Bessel family follows from Eq. (3.8) taking the limit a1; a?1; a?2 ! 0and a2 !1 providing that a?1a?2=a1 = �qÆ, thus � = �ax = ba?qÆ+1x, �? = ba?x2 andPn(x) = (�1)nqn(n+Æ�1)2'0 q�n; 0| �����q; �xq1�Æ! ; qÆ = �aqba? : (3.20)



R. �Alvarez-Nodarse and J. C. Medem 21As the ase of 0�Jaobi/Bessel, this ase leads to a new family whih is not in the q�Askey Tableau.In this ase we will adopt the parameterization � = �ax = ba?ax, �? = q�2x2, qÆ = aq, thusPn(x) � ln(x; a) = (�a)nqn22'0 q�n; 0| �����q; �x=a! ; !(x) = jxj�pxlogq x�1+1; q� = a=q:Remark 3.2 Notie that in some examples the q�weight funtions looks very di�erent from theones given in [13℄. Sometimes the reason is the indeterminateness of the assoiated moment prob-lem (e.g. the Stieltjes-Wieger polynomials of the q�Laguerre polynomials. Also, beause sometimesinstead the q�integrals, disrete sums are used (see e.g. the example of the Little q�Jaobi polyno-mials in [13℄). Table 3.3.2: The q�lassial polynomials jn(x; a; b) and ln(x; a)Pn jn(x; a; b) ln(x; a)� ax(x � b) ax�? q�2x2 q�2x2 abq+(1�aq)xq(1�q) aq�x(q�1)qb�n � q�n[n℄(a+qn)1�q q�n[n℄1�qrn q�n2 �+n(1�q)n(aqn;q)n q�n2 �+n(1� q)ndn abqn(1�qn+aq2n�qn+1)(1�aq2n�1)(1�aq2n+1) aqn �qn + qn+1 � 1�gn � a2b2q3n�1(1�qn)(1�aqn�1)(1�aq2n�1)2(1�aq2n)(1�aq2n�2) a2q3n�1 (qn � 1)an a[n℄ 0bn � ab[n℄(1�aqn)(1+aq2n)(1�aq2n�1)(1�aq2n+1) a[n℄n a2b2q2n�1[n℄(1�aqn)(1�aqn�1)(1�aq2n�1)2(1�aq2n)(1�aq2n�2) a2q2n�1[n℄en abqn(1�qn)(1+aq2n)(1�aq2n�1)(1�aq1+2n) aqn(qn � 1)hn a3b2q4n�2(1�qn)(1�qn�1)(1�aq2n�1)2(1�aq2n)(1�aq2n�2) 0d0n abqn+1(1�qn�qn+1+aq2n+2)(1�aq2n+1)(1�aq2n+3) aqn+1 �qn + qn+1 � 1�g0n � a2b2q3n+1(1�qn)(1�aqn+1)(1�aq2n)(1�aq2n+1)2(1�aq2n+2) a2q3n+1 (qn � 1)Notie that for all 0 < q < 1, the polynomials ln(x; a) never onstitutes a positive de�nitefamily sine gn < 0 (see the Favard theorem (1.1)). The ase if the jn(x; a; b) polynomials ismore ompliated. Nevertheless, hoosing a = q�N it is easy to show that jn(x; a; b) onstitute a�nite family (similar to the q�Hahn polynomials) whih is positive de�nite sine gn > 0 for alln = 0; 1; : : : ; [N=2℄. The detailed study of the positive de�nite ases in dependene of the roots of
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