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tIn this paper we 
ontinue the study of the q� 
lassi
al (dis
rete) polynomials (in the Hahn'ssense) started in [18℄. Here we will 
ompare our s
heme with the well known q�Askey S
hemeand the Nikiforov-Uvarov Tableau. Also, new families of q�polynomials are introdu
ed.Introdu
tionThe so-
alled q�polynomials 
onstitute a very important and interesting set of spe
ial fun
tionsand more spe
i�
ally of orthogonal polynomials. They appear in several bran
hes of the naturals
ien
es, e.g., 
ontinued fra
tions, Eulerian series, theta fun
tions, ellipti
 fun
tions,...; see [3, 9℄,quantum groups and algebras [14, 15, 25℄, among others (see also [10, 20℄). They have beenintensively studied in the last years by several people (see e.g. [13℄) using several tools. One ofthem is the one reviewed in [13℄ whi
h is based on the basi
 hypergeometri
 series [10℄ and wasdeveloped mainly by the Ameri
an S
hool starting by the works of Andrews and Askey (see e.g.[4℄, the literature on this method is so vast that we are not able to in
lude it here, a very 
ompletelist is given in [13℄) and lead to the so-
alled q�Askey Tableau of hypergeometri
 polynomials[13℄. In other dire
tion, the Russian (former Soviet) s
hool, starting from the works by Nikiforovand Uvarov [21℄ and further developed by Atakishiyev and Suslov (see e.g. [5, 6, 20, 23, 24℄ andreferen
es 
ontained therein), have 
onsidered the di�eren
e analog in non-uniform latti
es of thehypergeometri
 di�erential equation [22℄, from where the hypergeometri
 representation of theq�polynomials follows in a very simple way [5, 23℄. This s
hema leads to the Nikiforov-Uvarovtableau [20, 23℄ for the polynomial solutions of the di�eren
e hypergeometri
 equation on non-uniform latti
es. A spe
ial mention deserves the paper by Atakishiev and Suslov [6℄ where adi�eren
e analog of the well known method of undeterminated 
oeÆ
ients have been developedfor the hypergeometri
 equation on non-uniform latti
es and also give a 
lassi�
ation similar tothe Nikiforov and Uvarov 1991 one but for the q�spe
ial fun
tions (not only for the polynomialssolutions).Our main aims here are two: to 
ontinue the study started in [18℄ using the algebrai
 theorydeveloped by Maroni [16℄ and to 
lassify the q�
lassi
al polynomials and 
ompare with the q�Askeyand Nikiforov & Uvarov Tableaus. In fa
t, in [18℄ we have proven several 
hara
terization ofthe q�
lassi
al polynomials as well as a very simple 
omputational algorithm for �nding theirmain 
hara
teristi
s (e.g. the 
oeÆ
ients of the three-term re
urrent relation, stru
ture relationof Al-Salam Chihara, et
). Going further, we will give here a \very natural" 
lassi�
ation of theq�
lassi
al polynomials introdu
ed by Hahn in his paper [11℄, i.e., we will 
lassify all orthogonalpolynomial sequen
es su
h that their q�di�eren
es, de�ned by �f(x) = f(qx)�f(x)(q�1)x are orthogonalin the widespread sen
e: the q�Hahn Tableau (a �rst step on this in the frame work of theq�Askey tableau was done in [15℄). Noti
e that the aforesaid polynomials are instan
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2 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov Tableausq�polynomials on the linear exponential latti
e x(s) = 
1qs. For several surveys on this latti
e andtheir 
orresponding polynomials see [2, 4, 5, 8, 10, 13, 20, 24℄. (see also se
tion 3.2 from below).Furthermore, we will 
ompare our 
lassi�
ation (q�Hahn Tableau) with the aforesaid two S
hemas.From this 
omparation we �nd that there are missing families in the q�Askey S
hema (one of themis a non-positive de�nite family) and using the results of [18℄ we study them with details. Also the
orresponden
e of this q�Hahn S
hema and the Nikiforov & Uvarov one will be stablished. In su
ha way a 
omplete 
orresponden
e between the q�
lassi
al families of the q�Askey and Nikiforov& Uvarov Tableaus for exponential linear latti
es will be shown.The stru
ture of the paper is as follows. In Se
tion 1 we introdu
e some notations and de�nitionsuseful for the next ones. In Se
tion 2, the q�weight fun
tions are introdu
ed and 
omputedfor all q�
lassi
al families. This will allow to 
lassify all orthogonal polynomial families of theq�Hahn tableau. Finally, in Se
tion 3, several appli
ations are 
onsidered: the 
lassi�
ation of theq�
lassi
al polynomials (q�Hahn Tableau), the integral representation for the orthogonality, thehypergeometri
 representation of these q�
lassi
al polynomials as well as the detailed study of twonew families of q�polynomials.1 PreliminariesIn this se
tion we will give a brief survey of the operational 
al
ulus and some basi
 
on
eptsand results needed for the rest of the work.Let P be the linear spa
e of polynomial fun
tions in C with 
omplex 
oeÆ
ients and P� beits algebrai
 dual spa
e, i.e., P� is the linear spa
e of all linear appli
ations u : P ! C . In thefollowing we will refer to the elements of P� as fun
tionals and we will denote them with bold letters(u; v; : : :).Sin
e the elements of P� are linear fun
tionals, it is possible to determine them from theira
tions on a given basis (Bn)n�0 of P, e.g. the 
anoni
al basis of P, (xn)n�0. In general, we willrepresent the a
tion of a fun
tional over a polynomial by formula hu; �i; u 2 P� ; � 2 P, andtherefore a fun
tional is 
ompletely determined by a sequen
e of 
omplex numbers hu; xni = un,n � 0, the so-
alled moments of the fun
tional.De�nition 1.1 Let (Pn)n�0 be a basis sequen
e of P. We say that (Pn)n�0 is an orthogonalpolynomial sequen
e (OPS in short), if and only if there exists a fun
tional u 2 P� su
h thathu; PmPni = knÆmn, kn 6= 0; n � 0, where Æmn is the Krone
ker delta. If kn > 0 for all n � 0,we say that (Pn)n�0 is a positive de�nite OPS.De�nition 1.2 Let u 2 P� be a fun
tional. We say that u is a quasi-de�nite fun
tional if and onlyif there exists a polynomial sequen
e (Pn)n�0, whi
h is orthogonal with respe
t to u. If (Pn)n�0 ispositive de�nite, we say that u is a positive de�nite fun
tional.De�nition 1.3 Given a polynomial sequen
e (Pn)n�0, we say that (Pn)n�0 is a moni
 orthogonalpolynomial sequen
e (MOPS in short) with respe
t to u, and we denote it by (Pn)n�0 = mopsu ifand only if Pn(x) = xn + lower degree terms and hu; PmPni = knÆnm ; kn 6= 0 ; n � 0.Also the next theorem will be usefulTheorem 1.1 (Favard Theorem [7℄) Let (Pn)n�0 be a moni
 polynomial basis sequen
e. Then,(Pn)n�0 is an MOPS if and only if there exist two sequen
es of 
omplex numbers (dn)n�0 and(gn)n�1, su
h that gn 6= 0, n � 1 andxPn = Pn+1 + dnPn + gnPn�1; P�1 = 0 ; P0 = 1; n � 0 ; (1.1)where P�1(x) � 0 and P0(x) � 1. Moreover, the fun
tional u with respe
t to whi
h the polynomials(Pn)n�0 are orthogonal is positive de�nite if and only if (dn)n�0 is a real sequen
e and gn > 0 forall n � 1.



R. �Alvarez-Nodarse and J. C. Medem 3In the following, we will use the notation:De�nition 1.4 Let � 2 P and a 2 C , a 6= 0. We 
all the operator Ha : P ! P, Ha�(x) = �(ax),a dilation of ratio a 2 C n f0g.This operator is linear on P and satis�es Ha(��) = Ha� �Ha�. Also noti
e that for any 
omplexnumber a 6= 0, Ha � Ha�1 = I, where I is the identity operator on P, i.e., for all a 6= 0, Ha has aninverse operator. In the following we will omit any referen
e to q in the operators Hq and theirinverse Hq�1 . So, H := Hq, H�1 := Hq�1 .Next, we will de�ne the so 
alled q�derivative operator [11℄. We will suppose also that jqj 6= 1(although it is possible to weak this 
ondition).De�nition 1.5 Let � 2 P and q 2 C n f0g, jqj 6= 1. The q�derivative operator �, is the operator� : P! P, de�ned by �� = H� � �Hx� x = H� � �(q � 1)x :The q�1�derivative operator �?, is the operator �? : P! P de�ned by�?� = H�1� � �H�1x� x = H�1� � �(q�1 � 1)x :In this way, �� and �?� will denote the q�derivative and q�1�derivative of �, respe
tively.The above two operators � and �? are linear operators on P, and�xn = Hxn � xn(q � 1)x = (qn � 1)xn(q � 1)x = [n℄xn�1; n > 0; �1 = 0; (1.2)i.e., �� 2 P. Here [n℄ ; n 2 N, denotes the basi
 q�number n de�ned by[n℄ = qn � 1q � 1 = 1 + q + : : : + qn�1; n > 0; [0℄ = 0 : (1.3)Also the q�1 numbers [n℄?, de�ned by [n℄? = q�n�1q�1�1 = q1�n[n℄ will be used.Noti
e that �? is not the inverse of �. In fa
t they are related by H�? = �; H�1� = �?.The q�derivative satis�es the produ
t rule �(��) = ��� +H� ��� = H� ��� + ���.De�nition 1.6 Let ! a derivable fun
tion at x = 0 su
h that 8a 2 dom!, aq 2 dom!. Then, wewill de�ne the q�derivative of ! by the expression�! = H! � !Hx� x = H! � !(q � 1)x; x 6= 0; �!(0) = !0(0) : (1.4)De�nition 1.7 Let u 2 P� and � 2 P. We de�ne the a
tion of a dilation Ha and the q�derivative� on P� by the expressions Ha : P� ! P�, hHau; �i = hu;Ha�i, � : P� ! P�, h�u; �i = �hu;��i,respe
tively.De�nition 1.8 Let u 2 P� and � 2 P. We de�ne a polynomial modi�
ation of a fun
tional u, thefun
tional �u, h�u; �i = hu; ��i; 8 � 2 P.Noti
e that we use the same notation for the operators on P and P�. Whenever it is not spe
i�edon whi
h linear spa
e an operator a
ts, it will be understood that it a
ts on the polynomial spa
eP.De�nition 1.9 Let u 2 P� be a quasi-de�nite fun
tional and (Pn)n�0 = mops(u). We say that uor (Pn)n�0 are q�
lassi
 fun
tional or MOPS, respe
tively, if and only if the sequen
e (�Pn+1)n�0is also orthogonal.



4 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov TableausNoti
e that in the Hahn de�nition [11℄ q is a real parameter and here, in general, q 2 C n f0g,jqj 6= 1.In the following (Qn)n�0 will denote the sequen
e of moni
 q�derivatives of (Pn)n�0, i.e.,Qn = 1[n+1℄Pn+1, for all n � 0.Theorem 1.2 (Medem et al. [17, 18℄) Let u 2 P� be a quasi-de�nite fun
tional. and (Pn)n�0 =mops(u). Then, the following statements are equivalent:(a) u and (Pn)n�0 are, respe
tively, a q�
lassi
al fun
tional and a q�
lassi
al MOPS.(b) There exists a pair of polynomials � and  , deg� � 2, deg = 1, su
h that�(�u) =  u : (1.5)(
) (Pn)n�0 satis�es the q � SL di�eren
e equation���?Pn +  �?Pn = b�nPn ; n � 0; (1.6)i.e., Pn are the eigenfun
tions of the Sturm-Liouville operator ���? + �? 
orresponding tothe eigenvalues b�n.Moreover, if �(x) = bax2 + �ax+ _a;  (x) = bbx+�b; bb 6= 0; (1.7)then, the quasi-de�niteness of u implies [n℄ba+bb 6= 0 and the following equivalen
es hold[n℄ba+bb 6= 0; n � 0 () b�n 6= b�m; 8n;m � 1; n 6= m () b�n 6= 0;8n � 1:Theorem 1.3 Let u 2 P�, be a quasi-de�nite fun
tional, (Pn)n�0 = mopsu and Q(k)n = 1[n+1℄(k)�kPn+k,where [n+ 1℄(k) � [n+ 1℄[n+ 2℄ : : : [n+ k � 1℄. The following statements are equivalent:(a) (Pn)n�0 is q�
lassi
al, (b) (Q(k)n )n�0 is q�
lassi
al, k � 1.Moreover, if u satis�es the equation �(�u) =  u, deg � � 2 and deg = 1, then (Q(k)n ) isorthogonal with respe
t to v(k) = H(k)� � u, H(k) =Qki=1Hi�1�, and it satis�es�(�(k)v(k)) =  (k)v(k); deg�(k) � 2 deg (k) = 1;where �(k) = Hk� and  (k) =  +�Pk�1i=0 Hi�, and they are the polynomial solutions of the q�SLequation SL(k)Q(k)n = �(k)��?Q(k)n +  (k)�?Q(k)n = b�(k)n Q(k)n ; (1.8)where the polynomials �(k) and  (k) and the eigenvalues b�(k)n are�(k) = q2kbax2 + qkax+ �a;  (k) = ([2k℄ba+bb)x+ ([k℄a+ b); b�(k)n = [n℄?([2k+n� 1℄ba+bb) : (1.9)Furthermore, in [17, 18℄ the following result was proven:Theorem 1.4 Let u 2 P�, be a quasi-de�nite fun
tional, (Pn)n�0 = mopsu, �; �?;  2 P, su
hthat �? = q�1�+(q�1�1)x , deg� � 2, deg �? � 2 and deg = 1. Then, the following statementsare equivalent(a) u and (Pn)n�0 = mopsu are q�
lassi
al and �(�u) =  u,(b) u and (Pn)n�0 = mopsu are q�1�
lassi
al and �?(�?u) =  u.



R. �Alvarez-Nodarse and J. C. Medem 5(
) There exist a polynomial � 2 P, deg � � 2 and three sequen
es of 
omplex numbers an; bn; 
n,
n 6= 0, su
h that ��Pn = anPn+1 + bnPn + 
nPn�1; n � 1 ; (1.10)(d) there exist a 
omplex numbers en; hn, su
h thatPn = Qn + enQn�1 + hnQn�2; n � 2 : (1.11)(e) There exist a polynomial � 2 P, deg� � 2 and a sequen
e of 
omplex numbers rn, rn 6= 0,n � 1 su
h thatPnu = rn�n(H(n)� � u); H(n)� = nYi=1Hi�1� ; rn = q(n2 ) nYi=1 �[2n� i� 1℄ba+bb��1 ; n � 1:(1.12)2 The q�weight fun
tion !2.1 De�nition and �rst propertiesIn this se
tion we will 
onsider the so-
alled weight fun
tions for q�
lassi
al polynomials. The nextproposition 
an be proven straightforward (see e.g. [12℄).Proposition 2.1 Let ! a fun
tion su
h that if a 2 dom!, aq�1 2 dom! and that satis�es thedi�eren
e equation�?(�!) = q ! () �! = qH(�?!); �;  2 P; �? = q�1�+ (q�1 � 1)x : (2.1)Then, the following two equations are equivalent���?Pn +  �?Pn = b�nPn ; () �?(�!�Pn) = qb�n!Pn ; n � 1: (2.2)The above proposition allows us to generalize the 
lassi
al pro
edure to the q�
ase for obtainingalmost all the 
hara
teristi
s of the MOPS. The equation (2.1) is usually 
alled the q�Pearsonequation and its solution ! is known as the q�weight fun
tion and it allows to rewrite the Sturm-Liuoville equation (1.6) in its self-adjoint form (2.2). Moreover, the weight fun
tion ! allow us toobtain the \standard" q�Rodrigues formula and also justify the q�integral representation for theorthogonality relation. In su
h a way it is natural to give the followingDe�nition 2.1 Let u 2 P�, be a quasi-de�nite fun
tional satisfying the distributional equation(1.5), where �;  2 P, deg � � 2, deg = 1 and (Pn)n�0 = mopsu. We say that ! is the q�weightfun
tion asso
iated to u (respe
tively to (Pn)n�0) if ! satis�es the equation (2.1) �?(�!) = q !.The last de�nition allows us to rewrite the q � SL equation (1.8) in its self-adjoint form. Infa
t, an straightforward 
al
ulations show that, if !(k) satis�es the q�Pearson equation�?(�(k)!(k)) = q (k)!(k); (2.3)where �(k) and  (k) are given in (1.9), then (1.8) 
an be rewritten in its self-adjoint form�?(�(k)!(k)�Q(k)n ) = qb�(k)n !(k)Q(k)n ; n � 1; k = 0; 1; : : : ; n: (2.4)Proposition 2.2 Let ! the solution of (2.1) and !(k) the solution of (2.3). Then,!(k) = �(n�1)!(n�1) = � � � = H(n)� � !; !(0) � !: (2.5)



6 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov TableausProof: We start from the q�Pearson equation (2.3) and rewrite it in its equivalent form �(k)!(k) =qH[�(k)℄?H!(k), where [�(k)℄? = q�1�(k) + (q�1� 1)x (k) = �?, for all k 2 N. Thus, by substituting!(k) = H(n)� � ! in �(k)!(k) = qH�?H!(k), we �nd�(k)!(k) = qH[�(k)℄?H!(k) () Hk�(�H� � � �Hk�1� � !) = qH�?H� � � �Hk�H! ()�! = qH�?H! () �?(�!) = q !;from where the proposition follows. �Remark 2.1 Noti
e that the polynomials (�(k))? and (�?)(k) are very di�erent. In fa
t, the �rstone together with  (k) are the 
orresponding polynomials that appear in the q�1�distributionalequation satis�ed by the fun
tional v(k), i.e., the fun
tional with respe
t to whi
h the k�th moni
derivatives Q(k)n are orthogonal, (see Proposition 1.4)�(�(k)v(k)) =  (k)v(k) () �?(�(k))?v(k) =  (k)v(k); (�(k))? = �?; 8k 2 N;whereas the se
ond one joint with ( ?)(k) are the polynomial 
oeÆ
ients of the q�1 � SL equation( ?)(k)�?�Q?(k)n ( ?)(k) = (b�?)(k)n Q?(k)n , of the n�th q�1�derivative Q?(k)n of the polynomials Pn,Q?(k)n = 1[n+1℄?(k) [�?℄nPn+k or the q�1�distributional equation satis�ed by the fun
tional v?(k),�?[(�?)(k)v?(k)℄ = ( ?)(k)v?(k); (�?)(k) = H�k�?; 8k 2 N;i.e., the fun
tional with respe
t to whi
h the k�th moni
 derivatives Q?(k)n are orthogonal.2.2 Computation of the q�weight fun
tionsThis se
tion is devoted to obtain the q�weight fun
tion asso
iated to all q�
lassi
al fun
tionals,i.e., the quasi-de�nite fun
tionals 
orresponding to the MOPS in the widespread sense 
u; P 2n� 6= 0,for all n � 0. In fa
t, Theorem 2.1 and 2.2 will give, in a very natural way, the key for the
lassi�
ation of all q�
lassi
al orthogonal polynomials.In the following we 
onsider the 
ase when jqj < 1 (jq�1j > 1). Also we will use the standardnotation (a; q)n = (1 � a)(1 � aq) � � � (1 � aqn�1) for n � 1, (a; q)0 � 1 for the q�analogue of thePo

hammer symbol, and (a; q)1 =Q1n=0(1� aqn), for the absolutely 
onvergent in�nite produ
tfor jqj < 1.First of all, we will rewrite the q�Pearson equation (2.1)�?(�!) = q ! () �! = qH�?H! () �?! = q�1H�1�H�1!; (2.6)and solve the resulting equation by the re
urrent pro
edure shown in �gure 1.Figure 1. Re
urrent s
hema using the q�dilation.

w = Hnw � qH�?� � HqH�?� � : : : � Hn�1 qH�?�| {z }H(n) qH�?� �=Qn�1k=0 q�?(qk+1x)�(qkx) �H2�H2w = H2(qH�?)H3w: : : : : :�������������1 ������R
����������1 ���RH�Hw = H(qH�?)H2w?H w = H2w qH�?� H qH�?�

�w = qH�?Hw -?H w = Hw qH�?�



R. �Alvarez-Nodarse and J. C. Medem 7In the 
ase when ! is 
ontinuous at 0 and !(0) 6= 0, taking the limit n ! 1, we �nd, sin
elimn!1Hnw = limn!1w(qnx) = w(0),! = !(0) limH(1) qH�?� = !(0) limn!1H(n) qH�?� = !(0) 1Yn=0 qH�?� : (2.7)The next step is to obtain an expli
it expression for the produ
t H(1) qH�?� . For doing that we needa lemma whi
h is interesting in its own right.Lemma 2.1 If � is an n�th degree polynomial with an independent term �(0) = 1, and zerosai 2 C nf0g, i = 1; 2; : : : ; n, thenH(1)� = (a�11 x; q)1(a�12 x; q)1 � � � (a�1n x; q)1 := (a�11 x; a�12 x; � � � ; a�1n x; q)1;is an entire fun
tion of x with zeros at aiq�k, i = 1; 2; : : : ; n and k � 0. Furthermore, if �=� isa rational fun
tion su
h that �(0) = �(0) 6= 0 and with non-vanishing zeros of its numerator anddenominator, then,H(1)�� = (a�11 x; q)1(a�12 x; q)1 � � � (a�1n x; q)1(b�11 x; q)1(b�12 x; q)1 � � � (b�1m x; q)1 = (a�11 x; a�12 x; � � � ; a�1n x; q)1(b�11 x; b�12 x; � � � ; b�1m x; q)1 ;it is a meromorphi
 fun
tion with zeros at aiq�k, i = 1; 2; : : : ; n and k � 0 and poles at bjq�l,j = 1; 2; : : : ;m and l � 0, where ai 2 C , i = 1; 2; : : : ; n and bk 2 C , k = 1; 2; : : : ;m, are the zerosof the numerator and denominator of �=�, respe
tively.Proof: The proof is based on the fa
t that, if � is a polynomial of degree n with non vanishingzeros and �(0) = 1, then it admits the fa
torization� = A(x� a1)(x� a2) � � � (x� an) = (�1)nAa1a2 � � � an| {z }�(0)=1 (1� a�11 x)(1� a�12 x) � � � (1� a�1n x):Then, H(k)� = (a�11 x; a�12 x; � � � ; a�1n x; q)k and so, H(1)� = (a�11 x; a�12 x; � � � ; a�1n x; q)1. This fun
-tion is an entire fun
tion due to the Weierstrass Theorem (see e.g. [1, x4.3℄). The proof of these
ond statement is analogous and the fun
tion H(1) �� is meromorphi
 be
ause is a quotient of twoentire fun
tions (see e.g. [1, x4.3℄). �Now, if �(0) 6= 0, the above lemma leads us to the following well known result [11℄Theorem 2.1 Let (Pn)n�0 = mopsu satisfying the q�Sturm-Liouville equation (1.6). If we denoteby a1 and a2 the zeros of � and by a?1 and a?2 the zeros of �? (see Proposition 1.4), and all they aredi�erent from 0, then the following expressions for the q�weight fun
tions ! hold� �? q�weight fun
tion !(x)ba?(x� a?1)(x� a?2), ba?a?1a?2 6= 0 !(x) = (a?1�1qx; a?2�1qx; q)1(a�11 x; a�12 x; q)1ba(x� a1)(x� a2), baa1a2 6= 0 �a?(x� a?1), �a?a?1 6= 0 !(x) = (a?1�1qx; q)1(a�11 x; a�12 x; q)1_a? 6= 0 !(x) = 1(a�11 x; a�12 x; q)1�a(x� a1), �aa1 6= 0 !(x) = (a?1�1qx; a?2�1qx; q)1(a�11 x; q)1ba(x� a1)(x� a2), baa1a2 6= 0_a 6= 0 !(x) = (a?1�1qx; a?2�1qx; q)1



8 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov TableausProof: Sin
e �(x) = ba(x � a1)(x � a2) and �? = q�1� + (q�1 � 1)x = ba?(x � a?1)(x � a?2), wehave (qH�?)(0) = q�?(0) = �(0), so the polynomials qH�? and � have the same independent term.Using the power expansion of the polynomials � and �?�(x) = bax2 + �ax+ _a; �?(x) = ba?x2 + �a?x+ _a?;we have ba? = q�1ba+(q�1�1)bb, �a? = q�1�a+(q�1�1)�b and _a? = q�1 _a, where, bb;�b are the 
oeÆ
ientof the power expansion of  (see Eq. (1.7)). Thus,8>>>>>>>>>>>>><>>>>>>>>>>>>>:
deg � < 2 =) ba = 0 =) ba? 6= 0 =) deg�? = 2;
deg � = 2 =) ba 6= 08>>>>>>>>><>>>>>>>>>:

bb 6= � ba1� q =) ba? 6= 0 =) deg �? = 2;bb = � ba1� q =) ba? = 08>>><>>>: �b 6= � �a1� q =) deg �? = 1;�b = � �a1� q =) deg �? = 1:In all 
ases we 
an apply dire
tly the above lemma whi
h immediately leads us to the desiredresult. Noti
e also that all the obtained fun
tions are meromorphi
 and so, they are 
ontinuousand non-vanishing at x = 0, so we 
an suppose without any loss of generality that !(0) = 1. �In the 
ase when �(0) = 0, it is easy to see that �?(0) = 0. This 
ase requires a more detailstudy. In the following we should keep in mind that for the quasi-de�niteness of u � 6� 0 and �and  should be 
oprime polynomials (see [18℄).Proposition 2.3 Let u be a q�
lassi
al fun
tional satisfying the distributional equation (1.5) with� = bax2 + �ax, jbaj + j�aj > 0, and  = bbx+ �b, bb 6= 0. Then the following 
ases, 
ompatible with thequasi-de�niteness of u, appear:(a) If � = bax2, ba 6= 0, then, deg �? = 2 and its two zeros are di�erent, or deg �? = 1.(b) If � = bax2 + �ax, ba�a 6= 0, then, deg �? = 2, or deg �? = 1.(
) If � = �ax, �a 6= 0, then, deg �? = 2.Proof:(a) Sin
e � = bax2, then  = bbx + �b, with �b 6= 0, otherwise  divides �. Therefore, �? = (q�1ba +(q�1 � 1)bb)x2 + (q�1 � 1)�bx has a non-vanishing 
oeÆ
ient on x. If bb 6= � ba1�q then ba? 6= 0 anddeg �? = 2 and �? has two di�erent zeros one of whi
h is lo
ated at the origin. If bb = � ba1�q thendeg �? = 1.The other two 
ases are proven analogously. �The next step is to �nd the q�weight fun
tions for all possible 
ases a

ording with the aboveproposition (remember that �(0) = 0 = �?(0)). There are two large 
lasses. Class I 
orrespondingto the 
ase when � and �? have non-vanishing term on x and II when they have a vanishing termon x.I. We start with the 
ase when � and �? have not-vanishing term on x. In this 
ase there are threedi�erent possibilities (sub
lasses):(a) �(x) = bax(x� a1), baa1 6= 0 and �?(x) = ba?x(x� a?1), ba?a?1 6= 0,(b) �(x) = bax(x� a1), baa1 6= 0 and �?(x) = �a?x, �a? 6= 0,(
) �(x) = �ax, �a 6= 0 and �?(x) = ba?x(x� a?1), ba?a?1 6= 0.
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orresponding q�weight fun
tions we will rewrite the quotient qH�?=� = xq(H�?)0=x�0, where � = x�0 and H�? = x(H�?)0. In general, �0(0) 6= (H�?)0(0), so, in orderto apply a method, similar to the one used to prove Theorem 2.1, we will assume that ! 
an berewritten on the form ! = jxj�!0, � 2 C nf0g, where � is a free parameter to be found. Anstraightforward 
al
ulations show that if ! satis�es a q�Pearson equation (2.6) then !0 satis�esthe equation �0!0 = aqH!0(H�?)0, where a = q�. So,!0 = Hn(!0)aq(H�?)0�0 ; a = q�; or � = Logq(a);where Logq denotes the prin
ipal logarithm on the basis q, jqj < 1. In the following, we will use thenotation �a = �baa1 and �a? = �ba?a?1. Noti
e that, with this notation, � = bax(x � a1) = bax2 + �axand �? = ba?x(x� a?1) = ba?x2 + �a?x.(a) In this 
ase, aq(H�?)0�0 = aq2ba?a?1(a?1�1qx� 1)baa1(a�11 x� 1) = aq2�a?(1� a?1�1qx)�a(1� a�11 x) :If we 
hoose now, a su
h that aq(H�?)0(0) = �0(0), i.e., aq2�a? = �a, or equivalently, � = Logq(a) =�2 + Logq �a�a? , we 
an apply the Lemma 2.1 to get, !0 = !0(0) (a?1�1qx;q)1(a�11 x;q)1 , whi
h leads, withoutany loss of generality, to the following weight fun
tion (here we suppose that !0 is 
ontinuous and!0(0) 6= 0) !(x) = jxj� (a?1�1qx; q)1(a�11 x; q)1 ; � = Logq(a) = �2 + Logq �a�a? : (2.8)(b) In this 
ase,aq(H�?)0�0 = aq2�a?�a(1� a�11 x) =) !0 = !0(0) 1(a�11 x; q)1 ; � = Logq(a) = �2 + Logq �� �a�a?� ;so, !(x) = jxj�(a�11 x; q)1 ; � = Logq(a) = �2 + Logq �� �a�a?� :Finally, in the last 
ase (
), we obtain!(x) = jxj�(a?1�1qx; q)1; � = Logq(a) = �2 + Logq �� �a�a?� :II. Let 
onsider the other 
ase, i.e., when � and �? have a vanishing term on x. In this 
ase thereare two possibilities:(i) deg � 6= deg �? whi
h is divided in two sub
ases (a) � = bax2, �? = �a?x, and (b) � = �ax,�? = ba?x2, and(ii) deg � = deg �?, whi
h also is divided in two sub
ases (a) � = bax2, �? = ba?x(x� a?1), a?1 6= 0,and (b) � = bax(x� a1), �? = ba?x2, a1 6= 0.In both 
ases, the method used in the 
ase I of non-vanishing 
oeÆ
ients 
an not be used.(i) In order to solve the problem for 
ase II(i) we will generalize an idea by H�a
ker [12℄. Let usde�ne the fun
tion h(�) : [0;1)! R de�ned byh(�)(x) =pxlogq x���; � 6= 0;whi
h has the following property Hh� = x�h� , or, equivalently, h�(qx) = x�h�(x), for all x � 0.If we now de�ne the fun
tion ! = x�h(1), then, for the 
ase II(i)a we haveH! = Hx�h(1) = q�x�xh(1) = q�x! =) xH! = q�x2!;



10 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov Tableausthen, 
omparing this resulting equation with the q�Pearson equation (2.6) for this 
hoi
e of � and�?, bax2! = q�a?xH!, we dedu
e that the fun
tion!(x) = jxj�pxlogq x�1; � = �2 + Logq ba�a? ; x � 0; (2.9)is the the solution of the q�Pearson equation and so, the 
orresponding q�weight fun
tion.For the 
ase II(i)b we have, in an analogous way, a similar solution but involving the fun
tionh(�1): !(x) = jxj�qxlogq 1x+1; � = �3 + Logq �aba? ; x � 0: (2.10)(ii) In this 
ase the method developed for the above 
ases does not work. In fa
t, if we try to usethe method for the 
ase I, after some straightforward 
al
ulations, we arrive to an in�nite divergentprodu
t. For this reason we will solve the q�Pearson equation using the equivalent equation(2.6) in q�1 dilation q�1H�1�H�1! = �?! (2.6), i.e., using a s
hema similar to the one given in�gure 1 but when the re
urren
e is solved in the \opposite" dire
tion to obtain the expression! = H�n!H(�n) q�1H�1��? , whi
h leads to the solution, by taking the limit n ! 1, if there existsthe value H�1! = !(1). In su
h a way, we have for the 
ase II(ii)a the expression! = jxj�!0 ; � � 0 ; �? = x�?0 = x(ba?x+ �a?) ; H�1� = x(H�1�)0 = x(q�2bax) :hen
e, the q�1�Pearson equation takes the formx�?0 � jxj�!0 = q�1 � x(H�1�)0 � H�1(jxj�!0) =) �?0!0 = q�1(H�1�)0 q��H�1!0 ;and its solution is!0(0) = H�nw?0 H(�n) q��q�1(H�1�)0�?0 a:=q�= H�n!0 H(�n) a�1q�3baxba?x+ �a? :Now, 
hoosing the value � , in su
h a way that a�1q�3ba = ba?, i.e., � = �3 + Logq baba? we �nd,!0(0) = H�nw?0 H(�n) ba?xba?x+ �a? = H�n!0H(�n)�1� �a?ba?x+ �a?� = H�n!0 nYi=0�1� �a?qiba?x+ �a?qi�:Obviously the above produ
t is uniformly 
onvergent in any 
ompa
t subset of the 
omplex planethat not 
ontains the points fa?1qn; n � 0gSf0g, where a?1 = ��a?=ba? is the non-vanishing zeroof �? (in x = 0 the produ
t diverges to zero). Furthermore, this produ
t 
onverges at 1, so!(1) = 
 6= 0 , and thus!(x) = jxj�w?0 = 
jxj� 1Yn=0�1� �a?qnba?x+ �a?qn� = 
jxj�H(�1) ba?xba?x+ �a? = 
jxj� 1(� �a?ba?x ; q)1 ;where � = Logq baq�3ba? , and whi
h, without any loss of generality, leads to the following expressionfor the q�weight fun
tion!(x) = jxj� 1(a?1=x; q)1 = jxj�eq(a?1=x) ; a?1 = � �a?ba?x; � = �3 + Logq baba? ; (2.11)where eq denotes the q�exponential fun
tion [10℄.A similar situation happens in the II(ii)b sub
ase. In this 
ase, we have!0(x) = H�n!0H(�n) q��q�1(H�1�)0�?0 a:=q�= H�n!0H(�n) a�1q�1q�1ba(q�1x� a1)ba?x :



R. �Alvarez-Nodarse and J. C. Medem 11If we now 
hoose a�1q�3ba = ba?, we �nd!0(x) = H�n!0H(�n)ba?x� a�1q�2baa1ba?x = H�n!0H(�n)�1� ba?qa1ba?x � = H�n!0H(�n)�1� a1qx �;whi
h is an absolute and uniformly 
onvergent produ
t in C nf0g. Finally, sin
e !(1) = 
 6= 0, andwithout any loss of generality we �nd the following expression for the q�weight fun
tion !!(x) = jxj�(a1q=x; q)1 ; � = �3� Logq baba? ;where a1 is the non-vanishing zero of �. All the above 
al
ulations 
an be summarize in thefollowing theorem:Theorem 2.2 Let (Pn)n�0 = mopsu satisfying the q�Sturm-Liouville equation (1.6). If we denoteby a1 and a2 the zeros of � and by a?1 and a?2 the zeros of �? (see Proposition 1.4), and one of themare equal to 0, then the following expressions for the q�weight fun
tions ! holdCase � �? !(x)II(ii)a ba?x(x� a?1); ba?a?1 6= 0 jxj� 1(a?1=x; q)1 ; � = Logq baq�3ba?bax2, ba 6= 0II(i)a �a?x, �a? 6= 0 jxj�pxlogq x�1; � = Logq baq�2�a?I(a) ba?x(x� a?1), ba?a?1 6= 0 jxj� (a?�11 qx; q)1(a�11 x; q)1 , � = Logq �aq�2�a?I(b) bax(x� a1), baa1 6= 0 �a?x, �a? 6= 0 jxj� 1(a�11 x; q)1 , � = Logq��aq�2�a?II(ii)b ba?x2, ba? 6= 0 jxj�(a1q=x; q)1, � = �Logq baq3ba?I(
) ba?x(x� a?1), ba?a?1 6= 0 jxj�(a?�11 qx; q)1, � = Logq��aq�2�a?�ax, �a 6= 0II(i)b ba?x2, ba? 6= 0 jxj�pxlogq 1x+1, � = Logq �aq�3ba?3 Appli
ationsIn this se
tion we will 
onsider some appli
ations of the above theorems. In fa
t we will show how theq�weight fun
tions 
an be used to give an integral representation for the orthogonality. Anotherinteresting appli
ation is the already mentioned 
lassi�
ation of all orthogonal families in theq�Hahn Tableau (in [23℄ the orthogonality was not 
onsidered). In fa
t Theorems 2.1 and 2.2 givesa natural 
lassi�
ation of the q�
lassi
al orthogonal polynomials. Also by using the q�weights one
an obtain an expli
it formula of the polynomials satisfying a Rodrigues-type formula in terms ofthe polynomials 
oeÆ
ients � and �? from where the hypergeometri
 representation easily follows.The last have been done independently in [23℄ and [6℄ (see also [5, 20℄) in the framework of thedi�eren
e equations of hypergeometri
 type on the non-uniform latti
es. Here we will show howall the q�
lassi
al families 
an be obtained by 
ertain limiting pro
esses from the most general
ase of ;�Ja
obi/Ja
obi family. Finally, we will 
ompare the Nikiforov & Uvarov and the q�AskeyTableaus with our q�Hahn Tableau and 
omplete the q�Askey one with new families of orthogonalpolynomials.



12 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov Tableaus3.1 The q�integral representation for the orthogonalityIn this se
tion we will show how the q�weight fun
tions and the q�SL equation lead to a q�integralrepresentation for the orthogonality. The te
hnique used here is very 
ommon in the theory oforthogonal polynomials (see e.g. [7, 13, 20℄).First of all we introdu
e the q�integral of Ja
kson [10, 25℄. This integral is a Riemann sum onan in�nite partition faqn; n � 0g,Z a0 f(x) dqx = (1� q)a 1Xn=0 f(aqn)qn ; andZ ba f(x) dqx = Z b0 f(x) dqx� Z a0 f(x) dqx;so, it is valid the q�analogue of the Barrow rule (here �F (x) is 
ontinuous at x = 0): Z ba �F (x) dqx =F (b)� F (a), and the rules of integration by partsZ ba f(x)�g(x) dqx = H�1f(x) � g(x)���ba � q Z ba g(x)�?f(x) dqx;Z ba f(x)�g(x) dqx = fg���ba � Z ba Hg(x)�f(x) dqx :Obviously in the above expressions it is assumed that the fun
tion f is de�ned in the 
orrespond-ing partition's points. This Ja
kson q�integral 
an be easily generalized to unbounded intervalsand unbounded fun
tions in a similar way as the Riemann integral [10, 25℄. Furthermore, theRiemann-Stieltjes dis
rete integrals related with the q�
lassi
al polynomials 
an be represented asq�integrals (see e.g. [17, 19℄).Proposition 3.1 Let ! be 
ontinuous fun
tion in x = 0 satisfying the q�Pearson equation �?(�!) =q !, equivalent to the distributional equation �(�u) =  u and let a; b 
omplex numbers su
h thatthe boundary 
ondition �?!���ba = 0, or equivalently H�1�!���ba = 0 (�w = qH(�?w)) holds. Then,Z ba Pn(x)Pm(x)!(x)dqx = 0; 8n 6= m; (Pn)n�0 = mopsu:Proof: The proof is straightforward. We start from the self-adjoint form of the q � SL equationsfor the polynomial Pn and Pm, respe
tively:�[H�1(�!)�?Pn℄ = b�n!Pn; �[H�1(�!)�?Pm℄ = b�m!Pm:If we multiply the �rst one by Pm, the se
ond one by Pn, takes the q�integral over (a; b) and usethe integration by part rules we �nd(b�n � b�m)Z ba !PnPm dqx = Z ba (!b�nPn)Pm dqx� Z ba (!b�mPm)Pn dqx == Z ba ��H�1(�!)�?Pn�Pm dqx� Z ba ��H�1(�!)�?Pn�Pndqx == H�1(�!)W ?q [Pm; Pn℄���ba + Z ba hH�H�1(�!)�?Pm��Pn �H(H�1(�!)�?Pn��Pmi dqx;where W ?q [Pm; Pn℄ = Pm�?Pn � Pn�?Pm is the q�Wronskian. The �rst term in the last equa-tion vanish sin
e the boundary 
onditions. The se
ond also vanish sin
e H�H�1(�w)�?Pm��Pn=�w�Pm�Pn. The result follows from the fa
t that for all n 6= m, b�n 6= b�m. �
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e that the 
hoi
e of the integration interval (a; b) is 
onditioned to guaranteethat R ba P 2n!dqx 6= 0, n � 0, for whi
h, it is enough that ! be 
ontinuous fun
tion and does notvanish inside the interval of integration. This has a diÆ
ulty sin
e, even in the simplest 
ases, i.e.,;�families, ! has in�nite zeros a?i q�n, n � 1, and in�nite poles, aiq�n, n � 0. Noti
e also thatnatural values for (a; b) are the roots of �? or the roots of �(q�1x).Of spe
ial interest is the study of the positive de�nite 
ase, i.e., the 
ase when R ba P 2n!dqx > 0for all n � 0. For doing that we 
an use the Favard theorem. The detailed study of positive de�nite
ase will be 
onsidered in a forth
oming paper.3.2 Classi�
ation of the q�
lassi
al polynomialsSin
e the equation (1.5) (and so the Sturm-Liouville equation (2.2)) gives all the informationabout the q�
lassi
al fun
tional (and then about the 
orresponding MOPS), it is natural to usethem for 
lassifying the q�
lassi
al polynomials. Moreover, all this information is 
ondensed inthe polynomials � and �? instead of � and  (and more exa
tly in their zeros) as it is shownin Theorems 2.1 and 2.2. So it is natural to use the zeros of � and �? to 
lasify all families ofq�
lassi
al orthogonal polynomials [17, 19℄.In su
h a way, sin
e �(0) = 0 if and only if �?(0) = 0, it is natural, in a �rst step, to 
lassify theq�
lassi
al polynomials into two wide groups: the ;�families, i.e., the families su
h that �(0) 6= 0and the 0�families, i.e., the ones with �(0) = 0. Next, we 
lassify ea
h member in the aforesaidtwo wide 
lasses in terms of the degree of the polynomials � and �? as well as the multipli
ity oftheir roots in the 
ase of 0�families. In fa
t, if � has two simple roots, the polynomials belong tothe 0�Ja
obi/| family while if the roots are multiple, then they are 0�Bessel/| family. So, wehave the following s
heme for the q�
lassi
al OPS:
;�families 8>>>>>>>><>>>>>>>>:

;�Ja
obi/Ja
obi;�Ja
obi/Laguerre;�Ja
obi/Hermite;�Laguerre/Ja
obi;�Hermite/Ja
obi 0�families
8>>>>>>>>>>>><>>>>>>>>>>>>:

0�Bessel/Ja
obi0�Bessel/Laguerre0�Ja
obi/Ja
obi0�Ja
obi/Laguerre0�Ja
obi/Bessel0�Laguerre/Ja
obi0�Laguerre/BesselNoti
e that in this s
heme 
an not appear the families ;�Laguerre/Laguerre, ;�Laguerre/Her-mite ;�Hermite/Laguerre and ;�Hermite/Hermite sin
e the 
onne
tion between � and �?, aswell as the 0�Bessel/Bessel 
ase sin
e they do not 
orrespond to a quasi-de�nite fun
tional (seeProposition 2.3).3.2.1 Conne
tion with the Nikiforov-Uvarov and the q�Askey TableausHere we will identify our 
lassi�
ation (s
heme) of the q�
lassi
al polynomials with the two wellknown s
hemes by Nikiforov and Uvarov [23℄ and the q�Askey Tableau [13℄.We start with the �rst one. The Nikiforov-Uvarov Tableau is based on the polynomial solutionsof the se
ond order linear di�eren
e equation of hypergeometri
 type in the non-uniform latti
e x(s):~�(x(s)) 44x(s� 12)5yn[x(s)℄5x(s) + ~�(x(s))2 �4yn[x(s)℄4x(s) + 5yn[x(s)℄5x(s) �+ �yn[x(s)℄ = 0;5f(s) = f(s)� f(s� 1); 4f(s) = f(s+ 1)� f(s); yn[x(s)℄ 2 P[x(s)℄x(s) = 
1(q)qs + 
2(q)q�s + 
3(q); q 2 C ; (3.1)



14 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov Tableauswhere ~�(x) and ~�(x) are polynomials in x(s) of degree at most 2 and 1, respe
tively, and �n is a
onstant, or, written in its equivalent form�(s) 44x(s� 12)5yn[x(s)℄5x(s) + �(s)4yn[x(s)℄4x(s) + �nyn[x(s)℄ = 0;�(s) = ~�(x(s)) � 12 ~�(x(s))4 x(s� 12); �(s) = ~�(x(s)): (3.2)Here P[x(s)℄ denotes the linear spa
e of polynomials in x(s). Noti
e that, if x(s) = 
1qs � x, i.e.,we are in the so-
alled linear exponential latti
e, then4yn[x(s)℄4x(s) = �yn(x) and 5yn[x(s)℄5x(s) = �?yn(x); yn(x) � yn[x(s)℄:Thus, using the fa
t that 4x(s� 12) = q� 12 4 x(s), the hypergeometri
 equation (3.2) in the linearlatti
e x(s) = 
1qs 
an be rewritten as�(s)��?yn(x) + q� 12 �(s)�yn(x) = ��nq� 12 yn(x); yn(x) 2 P;from where, and using the identity � = x(q � 1)��? +�? we arrive to the equation[� + q� 12 �(s)x(q � 1)℄��?yn(x) + q� 12 �(s)�?yn(x) = ��nq� 12 yn(x);whi
h is nothing else that the q � SL equation (1.6) where�(s) = �+ x(1� q) = q�?; �(s) = q� 12 ; �n = �q 12b�n: (3.3)In other word, the q�SL equation (1.6) is a se
ond order linear di�eren
e equation of hypergeometri
type in the linear exponential latti
e x(s) = 
1qs. The above 
onne
tion allows us to identify allthe q�
lassi
al orthogonal polynomials (in the widespread Hahn's sense) with the q�polynomialsin the exponential latti
e in the Nikiforov et al. approa
h. In fa
t, using the expli
it expression ofthe polynomials �(s) and �(s) + �(s)4 (x� 12) in the exponential latti
e [23, Eqs. (84)-(85) page241 and Table page 244℄, we 
an identify our 12 
lasses of q�polynomials with the ones given in[23℄ (see Table 3.2.1).In order to identify the q�
lassi
al polynomials with the ones given in the q�Askey tableau[13℄ we rewrite the q � SL equation (1.6) in the following form:� � HPn � (�+ q2�?)Pn + q2�? �H�1Pn = (q � 1)2x2�nPn:Then, a simple 
omparison of the above di�eren
e equation with those given in the q�Askey Tableauallows us to identify some of the families of the q�polynomials given in [13℄ with the 
orrespondingq�
lassi
al ones, and so, with the ones in the Nikiforov-Uvarov Tableau. This will be given inTable 3.2.1.From the above table 3.2.1 we see that the 0�Ja
obi/Bessel and 0�Laguerre/Bessel familieslead to new families of orthogonal polynomials. The reason for that they do not appear in theq�Askey tableau will be 
onsidered latter on. Noti
e also that the 
lass No8 from the Nikiforov-Uvarov tableau [23, page 244℄ do not lead to any orthogonal polynomial sequen
e even in thewidespread sense 
onsidered here.3.3 The Rodrigues formula and hypergeometri
 representationFor the sake of 
ompleteness we will in
lude here the identi�
ation of the q�
lassi
al polynomialsin terms of the basi
 hypergeometri
 series [10℄ de�ned byr'p a1; a2; :::; arb1; b2; :::; bp �����q; z! = 1Xk=0 (a1; q)k � � � (ar; q)k(b1; q)k � � � (bp; q)k zk(q; q)k �(�1)kq k(k�1)2 �p�r+1 ; (3.4)where, as before, (a; q)k =Qk�1m=0(1� aqm).



R. �Alvarez-Nodarse and J. C. Medem 15Table 3.2.1: Comparison of the Nikiforov-Uvarov, the q�Askey and the q�
lassi
al polynomialTableausq�
lassi
al family () Nikiforov-Uvarov Tableau [23℄ =) q�Askey Tableau [13℄;�Ja
obi/Ja
obi () Eq. (86) page 242 =) The Big q�Ja
obiq�Hahn;�Ja
obi/Laguerre () No6 [23, page 244℄ =) q�MeixnerQuantum q�Krav
huk;�Ja
obi/Hermite () No12 [23, page 244℄ =) Al-Salam-Carlitz IIDis
rete q�1�Hermite II;�Laguerre/Ja
obi () No1 [23, page 244℄ =) Big q�LaguerreAÆne q�Krav
huk;�Hermite/Ja
obi () No2 [23, page 244℄ =) Al-Salam-Carlitz IDis
rete q�Hermite0�Bessel/Ja
obi () No4 [23, page 244℄ =) Alternative q�Charlier0�Bessel/Laguerre () No11 [23, page 244℄ =) Stieltjes-Wigert0�Ja
obi/Ja
obi () No3 [23, page 244℄ =) The Little q�Ja
obiq�Krav
huk0�Ja
obi/Laguerre () No10 [23, page 244℄ =) q�Laguerreq�Charlier0�Ja
obi/Bessel () No7 [23, page 244℄ =) new OP family0�Laguerre/Ja
obi () No5 [23, page 244℄ =) Little q�Laguerre (Wall)0�Laguerre/Bessel () No9 [23, page 244℄ =) new OP family| No8 [23, page 244℄ |3.3.1 The Rodrigues formulaLet us �rst obtain the \standard" Rodrigues formula.Proposition 3.2 Let u, u 2 P� be a q�
lassi
al quasi-de�nite fun
tional, (Pn)n�0 = mopsu, and! the q�weight fun
tion de�ned by the q�Pearson equation (2.1). Then,Pn = q�nrn�?n(H(n)!)! : (3.5)Proof: The proof of this proposition is straightforward. In fa
t, using the de�nition of the !(k) weobtain !(k) = �(k�1)!(k�1), thus, using the equation (2.4) we have, for all n � 1,�?n(H(n)!) = �?n(!(n)Q(n)0 ) = 1[1℄�?n�1[�?(�(n�1)!(n�1)�Q(n�1)1 ℄ (2:4)== qb�(n�1)1[1℄ �?n�1[!(n�1)Q(n�1)1 ℄ = � � � = qn b�(n�1)1 ���b�n[1℄���[n℄ !Pn:Finally, using the expli
it expression for the 
oeÆ
ient rn (1.12) the result follows. �



16 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov TableausThe Rodrigues formula is very useful for �nding the expli
it expression of the polynomials Pn.In fa
t, using the formula�?nf(x) = q�n2 �+n(1� q)nxn nXk=0(�1)kq k(k+1)2 �nk�nk �qf(qk�nx); �nk �q = (q; q)n(q; q)k(q; q)n�k ;where �n2 � = n(n�1)2 , one easily obtainsPn = q�n2 �rn(1� q)nxn nXk=0(�1)kq k(k+1)2 �nk�nk �qH(n)�(xqk�n)!(qn�kx)!(x) ;or, equivalently, Pn = rn(�1)n(1� q)nxn nXk=0(�1)kq� k2��nk �qH(n)�(xq�k)!(q�kx)!(x) :Now, taking into a

ount the q�Pearson equation (2.6)H!! = �qH�? () H�1!! = q�?H�1�;we obtain the following expli
it expression for the q�
lassi
al polynomials in terms of the polyno-mials � and �?: Pn = rn(�1)n(1� q)nxn nXk=0(�1)kq�k2�+k�nk �q k�1Yi=0 �?(xq�i) n�k�1Yi=0 �(xqi): (3.6)This formula is equivalent to the one obtained in [5, Eq. (4.14)℄, [23, Eq. (33)℄ and [2, Eq. (2.24)℄for the q�polynomials in the non-uniform latti
e x(s) = 
1qs.3.3.2 The hypergeometri
 representation� We start with the ;�Ja
obi/Ja
obi family, i.e., the 
ase when � = ba(x � a1)(x � a2) and�? = ba?(x�a?1)(x�a?2) ba?a1a2ba?a?1a?2 6= 0. The other 
ases 
an be obtained in a similar way. Then,substituting in the above expression we �nd that the q�
lassi
al polynomials be
omesPn = rn(baa1a2)n(x=a1; q)n(x=a2; q)n(1� q)nxn 3'2 q�n; a?1x�1; a?2x�1q1�na1x�1; q1�na2x�1 �����q; ba?ba q�n+3! :From the last formula it is not easy to see that Pn are polynomials on x of degree exa
tly equaln, thus, we will apply to the above equation the transformations (3.2.5) and (3.2.3) given in [10,page 61℄. Noti
e that we 
an apply the transformation formula (3.2.5) [10, page 61℄ be
ausethe polynomials � and q�? have the same independent term, and then the 
ondition baa1a2 =qba?a?1a?2 is ful�lled. So, the hypergeometri
 representation of the moni
 q�
lassi
al ;�Ja
obi/Ja
obipolynomials isPn(x) = an2 (a?1=a2; q)n(a?2=a2; q)n(a?1a?2a�11 a�12 qn�1; q)n 3'2 q�n; a?1a?2a�11 a�12 qn�1; x=a2a?1=a2; a?2=a2 �����q; q! : (3.7)Noti
e that, sin
e � and �? are invariant with respe
t to the 
hange a1 () a2 and a?1 () a?2, thenwe 
an obtain an equivalent hypergeometri
 representationPn(x) = an2 (a?1=a1; q)n(a?2=a1; q)n(a?1a?2a�11 a�12 qn�1; q)n 3'2 q�n; a?1a?2a�11 a�12 qn�1; x=a1a?1=a1; a?2=a1 �����q; q! : (3.8)
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e also that from any of the above two formulas follwos that Pn is a polynomial of degree exa
tlyequal n. Before start with the detailed study of ea
h 
ase let us write another equivalent form forthe ;�Ja
obi/Ja
obi polynomials whi
h 
an be obtained applying the transformation (III.12) from[10, page 241-242℄ to (3.7):Pn(x) = q�n2 �(�a?2)n(a?1=a2; q)n(a?1=a1; q)n(a?1a?2a�11 a�12 qn�1; q)n 3'2 q�n; a?1a?2a�11 a�12 qn�1; a?1=xa?1=a2; a?1=a1 �����q; qx=a?2! : (3.9)If we now 
hoose � = aq(x � 1)(bx � 
) and �? = q�2(x � aq)(x � 
q), then Theorem 2.1 andEq. (3.7) gives, for the weight fun
tion and the polynomials, respe
tively!(x) = (x=a; x=
; q)1(bx=
; x; q)1 ; pn(x; a; b; 
; q) = (aq; q)n(
q; q)n(abqn+1; q)n 3'2 q�n; abqn+1; xaq; 
q �����q; q! ;i.e., the Big q�Ja
obi polynomials. If we now 
hoose 
 = q�N�1 they be
omes the q�Hahn polyno-mials Qn(x; a; b;N jq) (usually they are written as polynomials in x = q�s, see [13, 18℄). Obviously,if we use instead of formula (3.7) the formulas (3.8) and (3.9) we obtain other representations forthe Big q�Ja
obi polynomials.For the other 11 
ases we 
an do the same, substitute the polynomials � and �? in (3.6) and makethe 
orresponding 
al
ulations, but here we will show how, from the q�
lassi
al ;�Ja
obi/Ja
obipolynomials, 
an be derived all other 
ases by taking the appropiate limits. A similar study havebeen done in [23℄. Here we will 
omplete it. We will give the details only in some spe
ial \diÆ
ult"
ases or when the 
larity and the a

ura
y are required.� We 
ontinue with the q�
lassi
al ;�Ja
obi/Laguerre polynomials. To obtain them we takethe limit a?2 !1. Then, � = ba(x� a1)(x� a2) andq�? = qba?(x�a?1)(x�a?2) = qba?a?2(x�a?1)(x=a?2�1) = baa1a2a?1 (x�a?1)(x=a?2�1)! �baa1a2a?1 (x�a?1);where the relation baa1a2 = qba?a?1a?2 has been used. In this 
ase and sin
elima?2!1 (a?1a?2a�11 a�12 qn�1; q)k(a?2=a2; q)k = q(n�1)k �a?1a1�k ;Eq. (3.7) be
omesPn(x) = �a1a2a?1 �n (a?1=a2; q)nq�n(n�1)2'1 q�n; x=a2a?1=a2 �����q; qna?1=a1! : (3.10)If we 
hoose now � = (x � 1)(x + b
) and �? = q�2
(x � bq), then we obtain the q�Meixnerpolynomials Mn(x; b; 
; q) = (�
)n(bq; q)nq�n22'1 q�n; xbq �����q;�qn+1
 ! :In this 
ase !(x) = (x=b;q)1(�x=b
;x;q)1 . Putting in the above formulas b = q�N�1 and 
 = �p�1 we arriveto the Quantum q�Krav
huk polynomials Kqtmn (x; p;N ; q).� The next family is the q�
lassi
al ;�Ja
obi/Hermite one. In this 
ase we take the limita?1; a?2 !1. Then, � = ba(x� a1)(x� a2) and q�? = ba?a1a2, thus (3.7) be
omesPn(x) = (�a2)�nq�n2 �2'0 q�n; x=a2| �����q; qna2=a1! : (3.11)



18 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov TableausChoosing � = (x� a)(x� 1) and q�? = a we obtain the Al-Salam & Carlitz II polynomialsV (a)n (x; q) = (�a)nq��n2�2'0 q�n; x0 �����q; qna ! ;If now � = (x� i)(x+ i) and q�? = 1, we arrive to the Dis
rete q�Hermite polynomials II ehn(x; q)ehn(x; q) = i�n2'0 q�n; ix| �����q;�q�n! = xn2'1 q�n; q�n+10 �����q2;� q2x2! ;and for the weight fun
tion we have !(x) = (ix;�ix; q)�11 = (�x2; q2)1 = �Q1k=0(1 + x2q2k)��1.� The q�
lassi
al ;�Laguerre/Ja
obi polynomials. In this 
ase a2 !1. Then, � = �qba?a?1a?2a�11 (x�a1) and �? = ba?(x� a?1)(x� a?2), thus Eq. (3.9) givesPn(x) = (�a?2)nq�n2 �(a?1=a1; q)n2'1 q�n; a?1=xa?1=a1 �����q; qx=a?2!= an1 (a?1=a1; q)n(a?2=a1; q)n3'2 q�n; x=a1; 0a?1=a1; a?2=a1 �����q; q! : (3.12)The last equality follows from the Ja
kson transformation formula (see [10, Eq. (III.5), page241℄), or, dire
tly, taking the limit in formula (3.8). If we now 
hoose � = �a
q(x � 1) and�? = q�2(x� aq)(x� 
q), we obtain the Big q�Laguerre polynomialspn(x; a; 
; q) = (aq; q)n(
q; q)n3'2 q�n; 0; xaq; 
q �����q; q!= (aq; q)n(�
q)nq�n2 �2'1 q�n; aqx�1aq �����q; x
! :Noti
e that they are nothing else that the Big q�Ja
obi when b = 0. Here !(x) = (x=a;x=
;q)1(x;q)1 .To this 
lass also belong the Kaffn (x; p;N ; q). In fa
t they are Big q�Laguerre polynomials withparameters a = q�N�1 and 
 = p.� The q�
lassi
al ;�Hermite/Ja
obi polynomials. In this 
ase a1; a2 ! 1, thus � = qbaa?1a?2and �? = ba?(x� a?1)(x� a?2). Then, from Eq. (3.9) one easily �ndPn(x) = q�n2 �(�a?2)n2'1 q�n; a?1=x0 �����q; qx=a?2! : (3.13)Now 
hoosing � = a and q�? = (x�1)(x�a), (3.13) leads to the Al-Salam & Carlitz I polynomialsU (a)n (x; q) = (�a)nq�n2�2'1 q�n; x�10 �����q; x qa ! :In this 
ase the q�weight fun
tion takes the form !(x) = (qx=a; qx; q)1. If we put a = �1, the theAl-Salam & Carlitz I polynomials be
omes the dis
rete q�Hermite polynomials I hn(x; q).For the 0�families the situation is more 
ompli
ate and a new parameter Æ should be in
luded.



R. �Alvarez-Nodarse and J. C. Medem 19� To obtain the 0�Bessel/Ja
obi polynomials we will take the limit a1; a2; a?2 ! 0. Thus,� = bax2 and �? = ba?(x � a?1)x, but now we have a problem taking the limit in the expression(a?1a?2a�11 a�12 qn�1; q)k, so we will obliged the parameters a1; a2; a?2 tend to zero su
h that a?2a�11 a�12 =qÆ, with Æ a �xed 
onstant su
h that qÆ = ba=(qba?a?1). Then, taking the limit in Eq. (3.7) we obtainPn(x) = q�n2 �(�a?1)n(qn+Æ�1; q)n 2'1 q�n; qn+Æ�10 �����q; qx=a?1! ; qÆ = baqba?a?1 : (3.14)To this 
lass belongs the Alternative q�Charlier polynomials Kn(x; a; q). In fa
t, putting � = ax2and �? = q�2x(1� x), thus qÆ = �aq and thenKn(x; a; q) = (�1)nq�n2�(�aqn; q)n 2'1 q�n;�aqn0 �����q; qx! :For them we have !(x) = jxj�(x�1; q)�11 , where q� = �a=q.� For the 0�Bessel/Laguerre polynomials we have the limit a1; a2; a?1 ! 0 and a?2 !1. Thus,� = bax2 and �? = ba?(x� a?1)(x� a?2) = ba?a?2(x=a?2 � 1)(x� a?1) = baa1a2a?1�1q�1(x=a?2 � 1)(x� a?1).If we now take the limit in su
h a way that a?1a1a2 = �qÆ we arrive to the fun
tion �? = baq�Æ�1x.In this 
ase Eq. (3.9) immediately givesPn(x) = q�n(n+Æ�1)(�1)n1'1 q�n0 �����q; �qn+Æx! ; qÆ = � ba�a?q : (3.15)Now, setting � = x2 and �? = q�2x, we have qÆ = �q and we obtain the Stieltjes-Wigert polyno-mials Sn(x; q) = (�1)nq�n21'1 q�n0 �����q;�xqn+1! :Here !(x) = pxlogq x�1.� The 0�Ja
obi/Ja
obi polynomials. In this 
ase the limit is a2; a?2 ! 0 providing that a?2=a2 =qÆ, then � = bax(x� a1), �? = ba?x(x� a?1) and (3.7) givesPn(x) = q�n2 �(�a?1)n(qÆ; q)n(a?1=a1qÆ+n�1; q)n 2'1 q�n; a?1=a1qn+Æ�1qÆ �����q; qx=a?1! ; qÆ = baa1qba?a?1 : (3.16)Putting � = ax(bqx� 1) and �? = q�2x(x� 1), qÆ = aq, thuspn(x; a; bjq) = (�1)nq�n2�(aq; q)n(abqn+1; q)n 2'1 q�n; abqn+1aq �����q; qx! ;whi
h are nothing else that the Little q�Ja
obi polynomials. If now we take � = px(1 � x),�? = q�2x(x� q�N ) we arrive to the following expressionKn(x; p;N ; q) = (�1)nq�nN+�n2 �(�pqN+1; q)n(�pqn; q)n 2'1 q�n;�pqn�pqN+1 �����q;xqN+1! ;thats 
onstitutes an alternative de�nition for the q�Krav
huk polynomials whi
h is equivalent tothe \more" standard one just using the transformation formula (III.7) from [10, page 241℄Kn(x; p;N ; q) = (q�N ; q)n(�pqn; q)n 3'2 q�n; x;�pqnq�N ; 0 �����q; q! :



20 q�Classi
al polynomials and the q�Askey and Nikiforov-Uvarov TableausFinally, we have !(x) = jxj� (qx;q)1(qbx;q)1 , q� = a and !(x) = jxj� (qN+1x;q)1(x;q)1 , q� = pqN for the weightfun
tions of the Little q�Ja
obi and q�Krav
huk polynomials, respe
tively.� The 0�Ja
obi/Laguerre polynomials. In this 
ase we take the limit is a2; a?2 ! 0 and a?1 !1in su
h a way that a?2=a2 = �qÆ, so � = bax(x� a1), �? = baa1q�Æ�1x = �a?x, and thenPn(x) = (�a1)nq�n(n+Æ�1)2'1 q�n; x=a10 �����q; �qn+Æ! ; qÆ = baa1q�a? : (3.17)Putting � = ax(x+ 1) and �? = q�2x, then qÆ = �aq, and we obtain the q�Laguerre polynomialsL�n(x; q) � Ln(x; a; q)Ln(x; a; q) = (�1)nq�n2a�n 2'1 q�n;�x0 �����q; aqn+1! ; !(x) = jxj�(�x; q)1 ; q� = �a:If we now 
hoose � = x(x � 1) and �? = q�2ax, we obtain qÆ = q=a and then we arrive to theq�Charlier polynomialsCn(x; a; q) = (�1)nq�n2an 2'1 q�n; x0 �����q;�qn+1a ! ; !(x) = jxj�(x; q)1 ; q� = a�1:� The 0�Ja
obi/Bessel polynomials. Here we take the limit is a2; a?1; a?2 ! 0 in su
h a way thata?1a?2=a2 = qÆ, so � = bax(x� a1), �? = ba?x2 = baa1q�Æ�1x2, and then (3.7) givesPn(x) = qn(n+Æ�1)(qn+Æ�1=a1; q)�1n 2'0 q�n; qn+Æ�1=a1| �����q; xq1�Æ! ; qÆ = baa1qba? : (3.18)This family does not appear in the q�Askey S
heme unless they are not a trivial limit of a moregeneral q�family. We will take the following parameterization � = ax(x � b) and �? = q�2x2.Then, qÆ = abq and we obtain that this 0�Ja
obi/Bessel polynomials, denoted by jn(x; a; b)jn(x; a; b) = (ab)nqn2(aqn; q)�1n 2'0 q�n; aqn| �����q; x=(ab)! ; !(x) = jxj�(bq=x; q)1; q� = a�1q�5:They main data are shown in Table 3.3.2.� The 0�Laguerre/Ja
obi polynomials. In this 
ase a2; a?2 ! 0, a1 ! 1, qÆ = �a?2=a2, then� = �ax = ba?a?1qÆ+1x, �? = ba?x(x� a?1), andPn(x) = (�a?1)nq�n2 �(�qÆ; q)n2'1 q�n; 0�qÆ �����q; xq=a?1! ; qÆ = �aba?a?1q : (3.19)Putting � = �ax and �? = q�2x(x � 1), thus qÆ = �aq, and we obtain the Little q�Laguerre orWall polynomialspn(x; ajq) = (�1)nq�n2�(aq; q)n2'1 q�n; 0aq �����q; qx! ; !(x) = jxj�(qx; q)1; q� = �a:� Finally, the 0�Laguerre/Bessel family follows from Eq. (3.8) taking the limit a1; a?1; a?2 ! 0and a2 !1 providing that a?1a?2=a1 = �qÆ, thus � = �ax = ba?qÆ+1x, �? = ba?x2 andPn(x) = (�1)nqn(n+Æ�1)2'0 q�n; 0| �����q; �xq1�Æ! ; qÆ = �aqba? : (3.20)



R. �Alvarez-Nodarse and J. C. Medem 21As the 
ase of 0�Ja
obi/Bessel, this 
ase leads to a new family whi
h is not in the q�Askey Tableau.In this 
ase we will adopt the parameterization � = �ax = ba?ax, �? = q�2x2, qÆ = aq, thusPn(x) � ln(x; a) = (�a)nqn22'0 q�n; 0| �����q; �x=a! ; !(x) = jxj�pxlogq x�1+1; q� = a=q:Remark 3.2 Noti
e that in some examples the q�weight fun
tions looks very di�erent from theones given in [13℄. Sometimes the reason is the indeterminateness of the asso
iated moment prob-lem (e.g. the Stieltjes-Wieger polynomials of the q�Laguerre polynomials. Also, be
ause sometimesinstead the q�integrals, dis
rete sums are used (see e.g. the example of the Little q�Ja
obi polyno-mials in [13℄). Table 3.3.2: The q�
lassi
al polynomials jn(x; a; b) and ln(x; a)Pn jn(x; a; b) ln(x; a)� ax(x � b) ax�? q�2x2 q�2x2 abq+(1�aq)xq(1�q) aq�x(q�1)qb�n � q�n[n℄(a+qn)1�q q�n[n℄1�qrn q�n2 �+n(1�q)n(aqn;q)n q�n2 �+n(1� q)ndn abqn(1�qn+aq2n�qn+1)(1�aq2n�1)(1�aq2n+1) aqn �qn + qn+1 � 1�gn � a2b2q3n�1(1�qn)(1�aqn�1)(1�aq2n�1)2(1�aq2n)(1�aq2n�2) a2q3n�1 (qn � 1)an a[n℄ 0bn � ab[n℄(1�aqn)(1+aq2n)(1�aq2n�1)(1�aq2n+1) a[n℄
n a2b2q2n�1[n℄(1�aqn)(1�aqn�1)(1�aq2n�1)2(1�aq2n)(1�aq2n�2) a2q2n�1[n℄en abqn(1�qn)(1+aq2n)(1�aq2n�1)(1�aq1+2n) aqn(qn � 1)hn a3b2q4n�2(1�qn)(1�qn�1)(1�aq2n�1)2(1�aq2n)(1�aq2n�2) 0d0n abqn+1(1�qn�qn+1+aq2n+2)(1�aq2n+1)(1�aq2n+3) aqn+1 �qn + qn+1 � 1�g0n � a2b2q3n+1(1�qn)(1�aqn+1)(1�aq2n)(1�aq2n+1)2(1�aq2n+2) a2q3n+1 (qn � 1)Noti
e that for all 0 < q < 1, the polynomials ln(x; a) never 
onstitutes a positive de�nitefamily sin
e gn < 0 (see the Favard theorem (1.1)). The 
ase if the jn(x; a; b) polynomials ismore 
ompli
ated. Nevertheless, 
hoosing a = q�N it is easy to show that jn(x; a; b) 
onstitute a�nite family (similar to the q�Hahn polynomials) whi
h is positive de�nite sin
e gn > 0 for alln = 0; 1; : : : ; [N=2℄. The detailed study of the positive de�nite 
ases in dependen
e of the roots of
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al polynomials and the q�Askey and Nikiforov-Uvarov Tableaus� and �? will be 
onsidered in a forth
oming paper.A
knowledgements: This work has been partially supported by the Junta de Andalu
��a (FQM-207), the European proje
t INTAS-93-219-ext and by the Spanish Dire

i�on General de Ense~nanzaSuperior (DGES) grants PB-96-0120-C01-01. We thanks J. S. Dehesa and F. Mar
ell�an for helpfulldi
ussions and remarks.Referen
es[1℄ L. Ahlfors, Complex Analysis. M
Graw-Hill, New York, 1953.[2℄ R. �Alvarez-Nodarse and J. Arves�u, On the q-polynomials in the exponential latti
e x(s) = 
1qs + 
3.Integral Transform. Spe
ial Fun
t. 8 (1999) (In press).[3℄ G. E. Andrews, q-Series: Their Development and Appli
ation in Analysis, Number Theory, Combi-natori
s, Physi
s, and Computer Algebra. Conferen
e Series in Mathemati
s. Number 66. Ameri
anMathemati
al So
iety. Providen
e, Rhode Island, 1986.[4℄ G. E. Andrews and R. Askey, Classi
al orthogonal polynomials. In Polynômes Orthogonaux et Appli-
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