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Abstract

We study the nonexpansivity of reflection mappings in geodesic spaces and apply our find-
ings to the averaged alternating reflection algorithm employed in solving the convex feasibility
problem for two sets in a nonlinear context. We show that weak convergence results from Hilbert
spaces find natural counterparts in spaces of constant curvature. Moreover, in this particular
setting, one obtains strong convergence.

1 Introduction

The convex feasibility problem for two sets consists of finding a point in the intersection of two
nonempty closed and convex sets provided such a point exists. This problem finds remarkable
applications in applied mathematics and various branches of engineering (see, for example, [3,
11, 28, 10]) which have motivated many researchers to focus on methods of solving this problem.
In Hilbert spaces there exists a wide range of algorithms that use metric projections on the sets
in order to obtain sequences of points that converge weakly or in norm (under more restrictive
conditions) to a solution of this problem. One of the most famous algorithms is the alternating
projection method which was developed by von Neumann [30] and was recently adapted to the
setting of CAT(0) spaces by Bacdk, Searston and Sims in [2].

Another class of algorithms considered in this respect is based on reflections instead of projec-
tions. Given a nonempty closed and convex subset A of a Hilbert space H, the reflection of a point
xr € H with respect to A is the image of x by the reflection mapping R4 = 2P4 — I, where Py
stands for the metric projection onto A and I is the identity mapping. In this work we focus on the
averaged alternating reflection (AAR) method employed in solving the convex feasibility problem
for two sets. Suppose A and B are two nonempty closed and convex subsets of a Hilbert space with

nonempty intersection. The AAR method generates the following sequence for a starting point

I+ RAR
xog € H: xp = T"xg, where T' = M. This algorithmic scheme was studied by Bauschke,
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Combettes and Luke in [4, 5] not only in connection with the convex feasibility problem, but also
for finding a best approximation pair of the sets A and B in case their intersection is empty and
such a pair exists. The AAR method was later modified in [6] in order to solve the problem of
finding the projection of a point onto the intersection of two closed and convex sets. In fact, for the
convex feasibility problem, this algorithm is a special case of one described by Lions and Mercier
in [25]. One obtains weak convergence of the sequence (z,) to a fixed point of the mapping 7" and
the projection of this point onto the set B lies in the intersection of A and B.

Here we are interested in studying the AAR method in geodesic spaces. However, several
difficulties arise when considering this algorithm in a nonlinear setting. First of all one needs to
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find an appropriate definition for the reflection mapping. In order to guarantee the existence of
the reflection of a point in the space, we consider spaces with the geodesic extension property.
Moreover, the reflection mapping is not always unique. A second difficulty consists in guaranteeing
certain properties of this mapping. In Hilbert spaces, the proof of the convergence of the AAR
method relies on the nonexpansivity of the reflection mapping which yields the firm nonexpansivity
of the mapping 7.

In this paper we prove that the reflection mapping is nonexpansive in spaces of constant cur-
vature and justify why it fails to be nonexpansive in the broad setting of CAT(0) spaces. We
also analyze the behavior of reflection mappings in slightly more general settings, namely gluings
of model spaces. Likewise, we study the convergence of the AAR method in spaces of constant
curvature proving strong convergence in this case. Furthermore, we include a rate of asymptotic
regularity for the AAR method.

This work is partly motivated by a communication of Tan Searston given during the 10th
International Conference on Fixed Point Theory and its Applications where the problem of studying
the nonexpansivity of the reflection mapping in geodesic spaces was raised.

2 Preliminaries

A metric space (X,d) is said to be a (uniquely) geodesic space if every two points z and y of X
are joined by a (unique) geodesic, i.e., a map c: [0,]] € R — X such that ¢(0) = =, ¢(l) = v,
and d(c(t),c(t')) = |t — ¢/| for all t,t' € [0,1]. The image ¢([0,1]) of a geodesic forms a geodesic
segment which joins x and y and is not necessarily unique. If no confusion arises, we use [z, y] to
denote a geodesic segment joining z and y. A point z in X belongs to a geodesic segment [z, y]
if and only if there exists ¢ € [0, 1] such that d(z,z) = td(z,y) and d(y,z) = (1 — t)d(z,y) and
we write z = (1 — t)x + ty for simplicity. Notice that this point may not be unique. A subset
of X is said to be convex if it contains any geodesic segment that joins every two points of it.
A geodesic triangle A\(z,y, z) consists of three points z,y,z € X (the vertices of A) and three
geodesic segments joining each pair of vertices (the edges of A). A geodesic line in X is a subset of
X isometric to R. A geodesic space has the geodesic extension property if each geodesic segment is
contained in a geodesic line. More on geodesic metric spaces can be found for instance in [7, 27].
The metric d: X x X — R is said to be convez if for any z,y, z € X one has

d(z, (1 —t)y+tz) < (1 —t)d(z,y) + td(z, z) for all ¢t € [0, 1].

A geodesic space (X,d) is Busemann convez (introduced in [9]) if given any pair of geodesics
c1:[0,0;] = X and ¢y : [0,l2] — X one has

d(Cl (tll),CQ(tlg)) < (1 — t)d(01 (0), 62(0)) + td(cl (ll), Cg(lg)) for all t € [O, 1].

It is well-known that Busemann convex spaces are uniquely geodesic and with convex metric.

A very important class of geodesic metric spaces are CAT(k) spaces (where k € R), that is,
metric spaces of curvature uniformly bounded above by k in the sense of Gromov. CAT(k) spaces
are defined in terms of comparisons with the model spaces M;', which are the complete, simply
connected, Riemannian n-manifolds of constant sectional curvature k. Since these model spaces
are of essential importance in this work we give their definition directly as metric spaces and recall
some of their properties. For a thorough treatment of such spaces and related topics the reader
can check [7, 17].

The n-dimensional sphere S™ is the set {z € R"™ : (z | 2) = 1}, where (- | ) is the Euclidean
scalar product. Define d : S x §" — R by assigning to each (z,y) € S™ x S” the unique number



d(z,y) € [0,7] such that cosd(x,y) = (x | y). Then (S™,d) is a metric space called the spherical
space. This is a geodesic space and if d(z,y) < 7 then there is a unique geodesic joining x and
y. Also, balls of radius smaller than 7/2 are convex. The spherical law of cosines states that in a
spherical triangle with vertices x,y, z € S™ and ~y the spherical angle between the geodesic segments
[x,y] and [z, z] we have

cosd(y, z) = cosd(x,y) cosd(x, z) + sind(z,y) sind(x, z) cos 7.

For u,v € R™™!, consider the quadratic form given by (u | v) = —up41vp+1 + > oiq uiv;. The
hyperbolic n-space H" is the set {u = (u1,ug, ..., up+1) € R"1: (u|u) = —1,up11 > 0}. Then H"
is a metric space with the hyperbolic distance d : H” x H” — R assigning to each (z,y) € H" x H"
the unique number d(z,y) > 0 such that coshd(z,y) = —(z | y). The hyperbolic space is uniquely
geodesic and all its balls are convex. The hyperbolic law of cosines states that in a hyperbolic
triangle with vertices z,y,z € H" and v the hyperbolic angle between the geodesic segments [z, y]
and [z, z] we have

coshd(y, z) = coshd(z,y) coshd(x, z) — sinh d(z, y) sinh d(z, z) cos .

Let £ € R and n € N. The classical model spaces M;]' are defined as follows: if £ > 0, M}’ is
obtained from the spherical space S” by multiplying the spherical distance with 1/ Vi if k=0, My
is the n-dimensional Euclidean space E"; and if k& < 0, M}’ is obtained from the hyperbolic space
H" by multiplying the hyperbolic distance with 1/v/—k. The model spaces inherit their geometrical
properties from the three Riemaniann manifolds that define them. Thus, if £ <0, M}’ is uniquely
geodesic, balls are convex and we have a counterpart of the hyperbolic law of cosines. If & > 0,
there is a unique geodesic segment joining x,y € M} if and only if d(z,y) < 7/ Vk. Moreover,
closed balls of radius smaller than 7/(2v/k) are convex and we have a counterpart of the spherical
law of cosines. We denote the diameter of M}' by Dj. More precisely, for k > 0, Dy, = w/ Vk and
for k <0, Dy = oo.

Now we briefly introduce CAT(k) spaces. Let (X,d) be a geodesic space. A k-comparison
triangle for a geodesic triangle A(zy,z9,23) in (X, d) is a triangle A(Z1,Z2,Z3) in M7? such that
dM,f (Zi, zj) = d(x;,x;) for i,j € {1,2,3}. For k fixed, k-comparison triangles of geodesic triangles
(having perimeter less than 2Dy) always exist and are unique up to isometry.

A geodesic triangle A in X is said to satisfy the CAT(k) inequality if, given A a k-comparison
triangle for A, for all z,y € A

d(l‘, y) < dM,f (j7 g)a

where Z,§ € A are the comparison points of z and ¥, respectively.

If £ <0, a CAT(k) space is a geodesic space for which every geodesic triangle satisfies the
CAT(k) inequality. If k > 0, a metric space is called a CAT (k) space if every two points at distance
less than Dy can be joined by a geodesic and every geodesic triangle having perimeter less than
2Dy, satisfies the CAT (k) inequality.

Let X be a metric space and C C X. We define the distance of a point z € X to C by
dist(z,C) = ng(f; d(z,y). The metric projection Pc onto C' is the mapping

Po(z) ={y € C:d(z,y) =dist(z,C)} for every z € X.

The following proposition gathers important properties of the metric projection in the setting
of CAT(0) spaces. In [13], a counterpart of this result was given in the setting of CAT(k) spaces
with k& > 0.



Proposition 2.1 ([7], Proposition 2.4, p. 176). Let X be a complete CAT(0) space, x € X and
C C X nonempty closed and convex. Then the following hold:

1. The metric projection Po(x) of x onto C' is a singleton.
If y € [x, Po(x)], then Po(z) = Po(y).

Ifx ¢ C and y € C with y # Po(x) then ZLp, () (z,y) > /2.

e e

The mapping Pc is a nonexpansive retraction from X onto C. Further, the mapping H :
X x[0,1] — X associating to (z,t) the point at distance td(z, Pc(z)) on the geodesic [z, Po(x)]
18 a continuous homotopy from the identity map of X to Pc.

We give next a concept of convergence in metric spaces. Let (X, d) be a metric space, (z,) C X
a bounded sequence and x € X. The asymptotic radius of (z,) is given by

r((zn)) = inf {limsup d(z,1,) € X}

n—oo

and the asymptotic center of (x,) is the set

A((zp)) = {x € X :limsupd(x,z,) = r((mn))} .
n—oo

The sequence (z,,) in X is said to A-converge to x € X if x is the unique asymptotic center of (uy,)

for every subsequence (u,,) of (z,,). This notion of convergence coincides with the weak convergence

in Hilbert spaces. For more on this topic and other concepts of weak convergence in metric spaces

the reader may see [18, 29, 20, 13, 19].

3 Main results

3.1 Reflecting in geodesic spaces

Let (X, d) be a uniquely geodesic space with the geodesic extension property. Let C' be a nonempty
closed and convex subset of X and suppose the metric projection onto C is well-defined and

singlevalued. The reflection of a point x € X with respect to C' can be any point z in a geodesic

line containing the geodesic segment [z, Pox| for which Pox = * ;— =

If X has no bifurcating geodesics, then geodesics can be extended in a unique way so the
reflection of a point is uniquely determined. Thus, in such a setting, the reflection mapping R¢c
which assigns to each point its reflection is well-defined and singlevalued. Recall that two geodesics
bifurcate if they have a common endpoint and coincide on an interval, but one is not an extension
of the other. Note however that one may also define singlevalued reflection mappings in spaces
failing this property.

We study next the reflection mapping in a nonlinear setting. By [16, Example 22.1], we know
that in the complex Hilbert ball the reflection mapping fails to be nonexpansive which yields that in
CAT(0) spaces this mapping is not necessarily nonexpansive in general. However, in the particular
setting of model spaces, the reflection mapping proves to be nonexpansive. This shows that in
model spaces, as in the case of Hilbert spaces, the metric projection is an averaged mapping with
constant 1/2.



Proposition 3.1. Let k € R and n € N. Suppose C' is a nonempty closed and convex subset of
M} and x,y € M} such that dist(z,C), dist(y,C) < Dy/2. Then,

d(Rcx, Rey) < d(z,y).

Proof. First we consider the case k = —1. For simplicity, denote ¢, = Pcx, ¢, = Poy, ¥’ = Rcx
and y' = Rey. Let v = Z,(z,¢y) and v = Z,, (y, ;). Notice that, by Proposition 2.1, v,7" > /2.
Consider the geodesic triangles A(x, ¢z, ¢y) and A(2’, ¢z, ¢y). By the hyperbolic cosine law we have
that

coshd(z, ¢,) = coshd(z, c;) cosh d(cy, ¢) — sinhd(z, ¢;) sinh d(cy, ¢) cos y

and
coshd(z', ¢;) = coshd(z', ¢;) cosh d(cy, ¢y) — sinhd(z, ¢;) sinh d(cy, ¢) cos(m — 7).

Since d(z,¢;) = d(2’, ¢z) and cos(m — ) > 0, we get coshd(z,c,) > coshd(z',¢,) and thus
d(z,cy) > d(a', cy).

Similarly we get d(y,c,) > d(y/, cz).
Consider now the geodesic triangles A(x, ¢;,y) and A(2/, ¢,,y) and denote § = Z._(x,y). Applying
again the hyperbolic cosine law we obtain that

coshd(x,y) = coshd(z,c;) coshd(cy,y) — sinhd(x, ¢;) sinh d(c,, y) cos 3
and
coshd(z',y) = coshd(x2’, ¢;) cosh d(cz,y) — sinhd(2', ¢;;) sinh d(cy, y) cos(m — ).
Adding these two equalities we get that
coshd(z,y) + coshd(z',y) = 2cosh d(c,, ) cosh d(cy, y). (3.1)
In a similar way we have that
coshd(z',y') + coshd(x,y’) = 2 cosh d(cy, x) cosh d(c, '), (3.2)
coshd(x,y) + coshd(z,y") = 2cosh d(cy, z) cosh d(cy, y), (3.3)
coshd(a',y') + coshd(z', y) = 2cosh d(cy, y) cosh d(c,, z").
Suppose now that d(2’,y’) > d(z,y). From (3.1) and (3.2),
coshd(z',y') + coshd(x,y") = 2 cosh d(c;, x) cosh d(cz, ')
< 2coshd(c,,x)coshd(cy,y)
< coshd(z',y") + cosh d(z',y),
which implies that d(z,y’) < d(z/,y). By using (3.3) and (3.4) in a similar way, we get that

d(xz,y’) > d(2',y), which is a contradiction and thus the result follows. The proof in any other
model space M;' follows similar patterns by using the corresponding law of cosines of each space. [

The above result also holds in the equivalent infinite dimensional spherical and hyperbolic spaces
defined using points in ¢y (see, for instance, H* in [14] and [13, Example 3.4]).

In the sequel, we analyze the reflection mapping in some particular CAT(k) spaces. More
precisely, we consider the gluing of two model spaces M]' and M} (for more details on gluings see
[7, Chapter 1.5]). Note that two spaces of constant curvature can only be glued through geodesic
lines, geodesic segments or singletons. First we consider the gluing of two model spaces by a
singleton. Although the reflection mapping is not uniquely defined in this type of gluing spaces,
there exists a natural way of defining it such that it is nonexpansive.



Proposition 3.2. Let k, k' € R, k # k' and m,n € N. Consider the gluing space (X,d) of M}
and M} through a point 6. Suppose B is a nonempty closed and convexr subset of X and x € X
such that dist(z, B) < min{ Dy, Dy }/2. We define the reflection of a point with respect to B in X
in the following way:

(1) If 6 € B, Rpx = Rp~ywx, where MJP € {M}, M]}} is the model space that contains x and
J
Ry is the reflection in the model space M;’ with respect to B N M;’.
J

(2) If 0 ¢ B, observe that B is strictly contained in just one of the two model spaces that define
the glued space X. Suppose B C M;'. Then,

(2.1) if x € M}, Rpx is the point obtained by reflecting in M) with respect to B;

(2.2) ifx € M}, the reflection is uniquely defined since d(6, Pg@) > 0. Specifically, Rpx is the
point in the geodesic line in M}’ containing [0, Ppl)] such that d(Pgf, Rpx) = d(x, Ppf)
and d(Rpz,0) > d(Rpx, Pp#).

Then Rp is nonexpansive.

Proof. (1) Suppose § € B. We prove that Rp defined as in (1) is nonexpansive. Let z,y € X. The
cases =,y € M;' or x,y € M]} are immediate since Rp reduces to the reflection in model spaces.
Suppose now z € M}’ and y € M;?. Then, Rpx = RBQM]?:U and Rpy = RBlizyy. Consider the
geodesic triangles Ay = A(Rpx, Ppx,0) and Ay = A(x, Pgx,0). Notice that Ay, Ay € M. For
simplicity, we consider k = —1 (the proof for k # —1 follows similar patterns). Since Zp,,(x,0) >
/2, similarly as in the proof of Proposition 3.1, d(6,2) > d(0, Rpx). Likewise, we can see that
d(0,y) > d(0, Rpy). Therefore,

d(RngyRBy) = d(RB:E7 0) + d(ev RBy) < d(x79) + d(y79) = d($7y)7

and the conclusion follows.

(2) Next we suppose that § ¢ B and B C M;'. We prove that Rp defined as in (2) is nonexpansive.
Let z,y € X. As we mentioned before, the case x,y € M} is immediate. Let x,y € M;?. Since
dist(#, B) > 0, we have that Pgx = Pgy = Pgf and so

d(Rpz, Rpy) = |d(z, Ppx) — d(y, Ppy)| = |d(x,0) — d(y,0)| < d(z,y).

Finally, suppose x € M;', y € M;?. As in the previous case, Py = Pgpfl. Consider z = Rp oRpy €
M, where Rpgg is the reflection mapping with respect to the point Pg6 inside M;!. By definition
we have Ppf € [Rpy,z]. Since in a model space geodesics do not bifurcate, the geodesic line
containing [Rpy, Ppf] coincides with the geodesic line containing [Rpy, 6]. Let ¢ be this geodesic
line. Then, by definition of the reflection, z € ¢. Moreover, d(Rpy, Pgf) = d(z, Pg0) > d(Pg0,0)
and d(0, Rpy) > d(Rpy, Pg#). Thus, 0 € [P0, z]. As a consequence,

d(Pg0,y) = d(Pg0, Rpy) = d(Pgb, z) = d(Pg0,0) + d(0, z).

On the other hand, Pz = Pgp# and therefore Rpz = Rpy. Finally, since d(x, z) < d(x,0)+d(z,0) =
d(z,y) — d(y,0) + d(z,0) = d(z,y) and the reflection in M]’ is nonexpansive, we get

d(Rpz, Rpy) = d(Rpx, Rpz) < d(x,2) < d(z,y),

and the result follows. O



Next we see that when gluing two model spaces through a geodesic segment or a geodesic line,
we cannot define the reflection in the gluing in such a way that it is nonexpansive with respect to

every nonempty closed and convex set. To illustrate this fact we consider the particular gluing of
H? and R?.

Example 3.3. Let c: R — R? be the geodesic line in the plane defined by c(t) = (¢,0) and ¢ : R —
H? the geodesic line in the hyperbolic plane defined by ¢'(t) = (0,sinht,cosht). We consider the
gluing of these two model spaces by the correspondence given by the isometry j: ¢(R) — ¢ (R)
defined as j(c(t)) = ' (t) for every t € R.

Let © = (—arccoshyv/2,h) and y = (arccoshv/2,h), where h > 0. Take p = (V22 —1,0,2), with
z>1 and B = {p}.

We see that there exist values of h and z such that d(Rpx, Rpy) > d(z,y) = 2arccoshy/2. Notice
that

d(y,p) = zgﬂg{d(y, c(t)) +d(d(t),p)} = %gﬂg { \/(arccosh\/i —t)? + h? + arccosh(z cosh t)}

Let f(t) = d(y,c(t)) +d((t),p). Then,

£t = zsinht arccoshy/2 — t
V22 cosh’t — 1 \/(arccoshx/i —t)2+h?
Since lim f'(t) = 2, lim f'(t) = —2 and f' is increasing in t, then there exists only one value
t—o00 t——o00

to € R that gives the infimum. Moreover, since f'(0) < 0 and f'(arccoshv/2) > 0, then ty €
(0, arccoshy/2).

By using the symmetry of the space, we see that if ty is the value where the previous infimum is
attained, then —tq is the value that gives d(x,p). Moreover, d(x,p) = d(y,p).

Let d = d(Rpx, Rpy) and  be the hyperbolic angle between the segments [p,c(to)] and [p,c(—to)].
By the hyperbolic cosine law, we have

cosh 2tg = (cosh d(p, ¢ (t9)))? — (sinh d(p, ¢ (t)))? cos v
and
cosh d = (cosh d(z,p))? — (sinhd(z, p))? cos 7.

If we consider for instance h = 1/100 and 1 < z = (v/2 + 15)/16 < /2, then ty ~ 0.8392 and
cosy ~ —0.7991. Consequently, coshd ~ 3.7363 > coshd(x,y) = 3.
The underlying idea in this construction is the fact that geodesics in H? diverge faster than in R2.

Since the previous construction can be easily adapted to the case of gluings through segments,
we also obtain the same conclusion for this type of gluings.

3.2 Convergence results

We begin this section by defining the averaged alternating reflection (AAR) method in the setting
of geodesic spaces. Let (X, d) be a uniquely geodesic space. Given A and B two nonempty closed
and convex subsets of X, suppose that the reflection mappings R4 and Rp are well-defined and
I+ RaR

M. The AAR method

generates the following sequence for a starting point z¢g € X: x,, = T"xq for every n > 1.

singlevalued. Consider the mapping T: X — X defined by T =



We prove next the convergence of the AAR method in the setting of model spaces with k£ < 0
which is an analogue of a weak convergence result in Hilbert spaces [4, Fact 5.9]. Note that we
obtain strong convergence since the model spaces are proper metric spaces (see also [19, Proposition
4.4]; recall that a space is proper if every closed ball is compact).

Theorem 3.4. Let k < 0 and n € N. Suppose A and B are two nonempty closed and convex
subsets of M]' with AN B # (). Let xo € M} and (z,,) be the sequence starting at xo generated by
the AAR method. Then

(1) (zy) converges to some fixed point x of the mapping T and Ppx € AN B.
(2) The “shadow” sequence (Ppxy,) is convergent and its limit belongs to AN B.

Proof. (1) By Proposition 3.1, R4Rp is nonexpansive which yields that 7" is also nonexpansive
because M with k& < 0 is Busemann convex. In addition, Fix(T) # 0 since AN B # (. Thus,
all orbits of T" are bounded. Using [15, Proposition 2] it follows that T is asymptotically regular.
Applying [1, Proposition 6.3], we get that (z,) A—converges to a fixed point of 7', which implies
that (z,) converges to a fixed point of 7. Let x be the limit of (x,). Since x = Tz it follows that

R
r = RpaRpx. Moreover, because Pgxr = HTBm,
RAR R
Ppr = “ATELLIBL _ pyRpr e A,
Hence, Pgx € AN B.
(2) is immediate since the metric projection Pp is continuous in CAT(0) spaces. O

We remark that a similar result holds in the gluing spaces described in Proposition 3.2 (when
k,k" < 0). In H* one obtains an analogous A-convergence result.

In model spaces M;' with k > 0 the mapping 7" used in defining the AAR method may fail to
be nonexpansive as the following example shows.

Example 3.5. Consider the points a = (1,0,0), b = (v/2/2,v/2/2,0) and p = (0,0,1) in the
spherical space S®. Let ¢ € [a,p] and ¢ € [b,p] such that d(a,c) = d(b,c’) = /8. Suppose also
A =a,b] and B = [c,d]. To see that the mapping T is not nonexpansive it is enough to note that
Tc = Pac, Td = Pad, but d(Te,Td) = d(Pac, Pac') = d(a,b) = /4 > d(c, ).

Taking B to be the whole positive octant, we obtain a similar example for the case AN B # ().

However, for model spaces M;' with k > 0 we can prove the result below. Note that the
existence of a convergent subsequence of (x,) already guarantees that AN B # ).

Theorem 3.6. Let k > 0 and n € N. Suppose A and B are two nonempty closed and convex
subsets of M'. Let C' C M}’ be nonempty convex with diam(C) < Dy/2 such that A,B C C' and
RARp(C) CC. Let g € C and (z,,) be the sequence starting at x¢ generated by the AAR method.
Then,

(1) Any convergent subsequence (xy,) of (xy) converges to a fized point x of the mapping T' and
Pgx e AN B.

(2) The “shadow” sequence (Ppxy,) is bounded and each of its cluster points belongs to AN B.



Proof. (1) Since diam(C) < Dy/2, we know that the metric is convex on C. Reasoning as in the
previous theorem, we get that d(zy,xn4+1) — 0 as n — co. Let (x,,) be a convergent subsequence
of (x,) and z be its limit. Since R4Rp is continuous we have RyRpx,, — RaRpz. Besides,
(@n,+1) also tends to z, which implies that = T'x. The fact that Pgz € AN B follows as in the
proof of the previous theorem.

(2) Let (Ppxy,) be a convergent subsequence of (Pgpz,) and y be its limit. We may suppose that
(2y,) is convergent (otherwise consider a convergent subsequence of it) and denote z = klg)go Ty, -

From the continuity of the metric projection Pg, we get that y = Pgx and we are done. O

A more general way of defining the sequence (z,,) would be to use the Krasnoselski-Mann [26, 23]
iteration starting at zg € X:

Tn+1 = (1 - )\n)xn + AnRARana (35)

where (A\,) C [0, 1].

Results similar to Theorems 3.4, 3.6 hold for the sequence (z,,) generated by (3.5) when assuming
for instance that ()\,) is divergent in sum and bounded away by 1. In this case, consider F =
Fix(RaRp) 2 AN B and note that (d(x,,p)) is decreasing for each p € F'. Apply [15, Proposition
2] as above to get that d(z,, RaARpx,) — 0 (if £ < 0, use asymptotic center techniques similar to
those considered in [1, Proposition 6.3] to obtain the convergence of (x,)). Notice that now one
obtains convergence to a fixed point of the mapping RaRp (see also [12]).

We finish this section by giving a rate of asymptotic regularity for the sequence (z;,) generated
by (3.5). Using proof mining methods, Kohlenbach [21] and later Kohlenbach and Leustean [22]
computed exponential (in 1/¢) rates of asymptotic regularity for the Krasnoselski-Mann iteration
in normed and hyperbolic spaces, respectively. The next result which follows from [22, Corollary
3.18] gives an explicit bound on the rate of asymptotic regularity for the sequence (x,).

Theorem 3.7. Let k € R and n € N. Suppose A and B are two nonempty closed and convex

subsets of M with AN B # (. Let C C M} be nonempty convex and of diameter bounded

above by b € (0,Dy/2) such that A,B C C and RARp(C) C C. Assume K € N, K > 2 and
1 1

Vrg € X,Ve > 0,Yn > ®(e,b,K), d(xn,zp41) <€,

where
B(e,b, K) = KM {2beK<M+1>] ,
with
(K —1)(1+20b)
Ke

Thus, the above rate only depends on &, on an upper bound b on the diameter of the set C and on
(\n) via K. Rates of asymptotic regularity for the Krasnoselski-Mann iteration were further studied
and improved by Leustean [24] in the setting of uniformly convex hyperbolic spaces that admit a
modulus of uniform convexity which decreases with respect to the radius. As a consequence, one
gets a quadratic in 1/e rate of asymptotic regularity in CAT(0) spaces for constant A\, = A € (0,1)
[24, Corollary 19]. In particular, these results can be applied in the setting of model spaces M}’
with k& < 0.

M >



4 Appendix: A related property of model spaces

We have seen above that the reflection mapping with respect to nonempty closed and convex subsets
is nonexpansive in the context of model spaces. The property we prove below implies in particular
that the reflection mapping is nonexpansive in all model spaces M} with k£ < 0.

Proposition 4.1. Let k € R, k # 0 and n € N. Consider C C M]' with diam(C) < Dy, and the
points x,y,x’,y',a,b € C for which

1 1 1 1
a:§x+§az/ and b:§y—|—§y'.

Denote by v and~' the angles between the geodesic segments [y, b] and [b,a), [z, a] and [a,b]. Suppose
that
d(a,b) <d((1 =Nz + Aa, (1 =Ny + Ab), for each X € [0,1]. (4.6)

If one of the following holds
(i) d(z,a) =0,
(ii) d(z,a) = d(y,b),
(iii) d(z,a) < d(y,b) and (v < w/2 or~' > 7/2 for k <0), (y>7/2 ory <m/2 for k >0),
then d(z',y') < d(z,y).

Proof. We prove the result for H", the proof for the other model spaces can be obtained by using
the corresponding law of cosines.
For A € (0,1), consider

zx=(1=XNz+Aa and yy=(1—A)y+ \b.

Denote d(z,a) = A and d(y,b) = B.
(i): By the hyperbolic cosine law,

coshd(a,b) < coshd(a,yy) = coshd(a,b) cosh d(yy,b) — sinhd(a,b) sinh d(yy, b) cos~.

Thus,

) cosh ((1-X)B) -1

h <

sinh d(a,b) cosy < Sinh (1= ) B)
Letting A — 1 we obtain that cosy < 0. Using again the hyperbolic cosine law it follows that
coshd(a,y") < coshd(a,y), hence, d(a,y’) < d(a,y).

(ii) or (iii): Apply again the hyperbolic cosine law in the triangles A(a,y,b) and A(a,y’,b) to

obtain that

coshd(a,b).

coshd(a,y) + coshd(a,y’) = 2 cosh d(a, b) cosh B. (4.7)
By the hyperbolic cosine law applied in the triangles A(zy,y,y)) and A(zx, v, yx),
sinh ((2 — A\)B) cosh d(z,y) + sinh (AB) cosh d(x,y') = sinh (2B) cosh d(zx,y»)- (4.8)
Using again the hyperbolic cosine law in the triangles A(a, z,y) and A(zy,z,y),

coshd(a,y) — coshd(z,y)cosh A coshd(xy,y) — coshd(z,y) cosh (AA)
sinh A B sinh (AA) '

10



from where
sinh (AA) cosh d(a,y) + sinh ((1 — A)A) cosh d(x,y) = sinh A cosh d(z,y).
Applying the same reasoning in the triangles A(a,2’,y’) and A(zy,2,y’) we obtain
sinh ((2 — A)A) cosh d(a,y") = sinh A cosh d(z,y’) + sinh ((1 — \)A) cosh d(z', /).
This implies
sinh (AA) sinh ((2 — A)B) (coshd(a, y) + coshd(a,y'))
+ cosh d(a,y") (sinh ((2 — \)A) sinh (AB) — sinh (AA) sinh ((2 — \)B))
+ sinh ((1 — A)A) sinh ((2 — \)B) cosh d(z, y)
= sinh A (sinh ((2 — A\)B) coshd(z,y) + sinh (AB) cosh d(z, y"))
+ sinh ((1 — A\)A) sinh (AB) cosh d(z, /).
Using (4.7) and (4.8) and the fact that coshd(xy,yy) > coshd(a,b) we obtain
2 cosh B cosh d(a, b) (sinh (AA) sinh ((2 — X\)B) — sinh Asinh B)
+ cosh d(a,y') (sinh ((2 — X\)A) sinh (AB) — sinh (AA) sinh ((2 — \)B))
+ sinh ((1 — A)A) sinh ((2 — \)B) cosh d(z, y)
> sinh ((1 — A\)A) sinh (AB) cosh d(2’, /).
Dividing by sinh ((1 — A)A) and letting A — 1,

B
2 (cosh B cosh d(a,b) — cosd(a,y")) (Z sinh A cosh B — cosh A sinh B>

> sinh B (coshd(2',y) — coshd(z,y)) .

Therefore,

B
2sinh d(a, b) cos(m — ) <Z sinh A cosh B — cosh A sinh B> > coshd(a2',y') — coshd(z,y).

In a similar way we obtain that

A
2sinh d(a, b) cos(m — ') <E sinh B cosh A — cosh Bsinh A> > coshd(z',y") — coshd(z,y).

tanh z

Since z is non-increasing, the conclusion follows.

O

Note that when k = 0 the above property is immediate. In fact, in any Hilbert space, it is easy
to see that condition (4.6) already implies that d(z,y") < d(z,y) (see also the so-called property
(S) with b = 1 studied in [8] which is equivalent to this condition in the setting of normed spaces).
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