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Abstract

In this paper we will consider two algorithms which allow us to obtain second order
linear difference equations for certain families of polynomials. The corresponding
algorithms can be implemented in any computer algebra system in order to obtain
explicit expressions of the coefficients of the difference equations.

1 Introduction

In this paper we will describe two algorithms which allow us to find the second order
linear difference equation (SODE) which satisfy certain families of polynomials. We will
consider two different cases. The first case appears when a polynomial 15n is given in
terms of a known polynomial set {P,} by

q(z;n)P,(z) = a(x;n) Py (z) + b(z;n) Py (xz + 1), (1.1)

where ¢, a and b are some known functions which, in general, depend on n, and P, is a
polynomial for which it is known a SODE of the form

o(x;n) AyPp(z) + 7(z;n) A Py(x) + Az;n) Py (x) =0, )
1.2
AF(r) = P(z +1) — F(z), vF(x) = F(z) - F(z ~ 1),

where o, 7 and A are also given functions. The above Eq. can be written in the following
equivalent form

o(z;n)Po(z — 1) — ¢(z;n) Py (z) + p(z5n) Po(z +1) =0, )
1.3
P(xzyn) =o(z;n) +7(z;n),  ¢lx;n) =20(z;n) + 7(z;n) — A(z;n).
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For our purpose it is convenient also to rewrite (1.3) in the form
Y(z;n) A? Py(x) + T(z;n) A Py(z) + Alz;n) P, (z) = 0, (1.4)
where now,
Y(zin) =Yz + Lin), T(z;n) =2¢(x+ 1;n) — ¢z + 1;n),
Alz;n) =o(x+1;n) +¢(z + L;n) — ¢z + 1;n).

An example of polynomials P, satisfying (1.1) are the Krall-type discrete orthogonal
polynomials, firstly studied in [1, 2, 3, 4, 6, 7]. These polynomials are orthogonal with
respect to an inner product (p, q) defined by the bilinear form (z;11 = z; + 1)

b—1 N
(pya) = Y plai) q(zi)p(i) + Y Arp(y) alyr),  Ax > 0.

Ti=a k=1
In other words, these polynomials are obtained via the addition of delta Dirac measures
to a positive definite weight function p [11, 14]. A special emphasis was given to the case
when p is the classical “discrete” weight function corresponding to the classical “discrete”
[12] polynomials of Hahn [3], Meixner [1, 2, 6], Kravchuk [2] and Charlier [2, 7] for which
the coefficients o, 7 and A in (1.2) are polynomials such that o and 7 do not depend of
n, A is a constant, degree(c) < 2 and degree(r) = 1. In all these cases, when one or
two delta Dirac measures (N = 1 or 2) are added to a weight function corresponding
to the Hahn, Meixner, Kravchuk and Charlier polynomials at the ends of the interval
of orthogonality, it is possible to find for the resulting polynomials an expression simi-

lar to (1.1) where P, are the new (Krall-type) polynomials and P, are the classical ones [4].

The second case appears when the polynomial B, is given by

q(z;n)Py(z) = a(z;n)Py(x) 4+ b(z;n) Py (z), (1.5)

where ¢, a and b are some known functions, in general depending on n but now the family
{P,} satisfies the following two “difference-recurrence” relations

a(w;n) & Po(x) = 7(;n) Po(x) 4+ 7(2;1) Py (2), (1.6)

and
o(z;n) A Po(z) = T(z3n) Po(2) + ¥(25n) Pt (2), (1.7)

being o, 7, 7, 7, v and 4 known functions (they should not coincide with the functions
given in (1.2).) If the polynomial set {P,} satisfies a three-term recurrence relation,

TPy (1) = anPpy1(z) + B Pr(x) + o Pr-1(z), (1.8)

then, from the Eq. (1.6) we can easily derive the Eq. (1.7). Here we will suppose that
the both equations, (1.6) and (1.7) are known.

Examples of the case (1.5) are the quasi-orthogonal polynomials [8, 9, 10, 13]. They
are defined by the expression

P,(z) = AP,(z) + BP,_(z), (1.9)



being A, B non-vanishing constants. It is known [9] that, if {P,} is a sequence of poly-
nomials orthogonal with respect to a measure du supported in the real line, i.e.,

(PasPn) = [ Pal@)Pr(@)du(z) =0V #m.

then, the corresponding quasi-orthogonal polynomials P, (z) = AP, (z)+ BP,_1(z) satisfy
the relation o

(P,,Py) =0, if |m—n|>1,
i.e., they constitute a quasi-orthogonal family of order 1 [9]. The quasi-orthogonal poly-

nomials have been used to obtain quadrature and interpolating formulas (see e.g. [9, 15]).

We are interested to find the second order difference equation
a(z;n) Ay Py (z) + 7(x;n) A Po(z) + AMa;n) Pa(z) = 0, (1.10)

which satisfy these new polynomials P, defined in (1.1) and (1.5), finding, explicitly, the
coefficients &, 7 and A, respectively.

The paper is structured as follows. In sections 2 and 3 we describe two algorithms
which allow us to find the SODE for the polynomials P, defined by (1.1) (section 2) and
for the polynomials defined by (1.5) (section 3). Finally, in section 4, two illustrative
examples are worked out.

2 Second order linear difference equation for Krall-type
polynomials.

Here we will describe an algorithm for finding the second order linear difference equation
which satisfy the polynomial P, defined by (1.1). We will prove the following theorem.

Theorem 2.1 Suppose that the polynomials {P,} are defined by (1.1) where the polyno-
mial P, is a solution of a SODE of the form (1.3). Then {]3”} satisfy a SODE of the
form

5(z;n) A 7 Pu(x) + F(230) A Py(z) + Xayn) Py (z) =0, (2.1)

where &, 7 and X are given explicitly in (2.7).

Proof. We start from the fact that the family of polynomials {15”} is expressed in terms
of the other one {P,}, which is a solution of the SODE (1.4), by formula (1.1)

q(z;n) Py (z) = a(z;n) Py (x) + b(z;n) Py (x + 1). (2.2)

The idea is the following: Firstly, we write P,(z + 1) and P,(z — 1) in terms of the
classical ones. To do this we evaluate (2.2) in z + 1 and then we use (1.3) to substitute
the values P,(z — 1) and P,(z + 2). So, we obtain

r(z;n) Bu( + 1) = c(@;n) Py (2) + d(@;n) Pa (2 + 1),
c(zyn) = —o(z + 1;n) b(z + 1;n), (2.3)

d(z;n) = a(x + 1;n)(z + 1;n) + b(x + 1;n)p(z + 1;n),



and _
s(z;n)Po(z — 1) = e(z;n) Pu(z) + fz;n) Pz + 1),

e(z;n) = o(x;n)b(x — 1;n) + a(z — 1;n)p(z;n), (2.4)

flzin) = —a(z — 1;n)Y(z;n).
Then, Eqgs. (2.2-2.4) yield

qg(z;n)Po(z)  a(zin) b(z;n)
r(z;n)Py(z+1) c(z;n) d(z;n) | =0, (2.5)
swm)Pule 1) e(wn) flzin)
where the functions ¢, a and b are given (1.1) as well as ¢, d, e, f, r and s in (2.3) and
(2.4). Expanding the determinant in (2.5) by the first column we get

5(2;n) Po(z — 1) + ¢ () Py (z) + 9 (z) Py (z + 1) =0, (2.6)

where
o(z;n) = s(z;n)a(z;n)d(z;n) — c(z;n)b(z; n)],

bn(7) = q(z5n)[c(z;n) f(z;n) — e(w;n)d(w;n)], (2.7)

Yn(x) = r(z;n)e(z;n)b(z;n) — alz;n) f(z;n)],
or, equivalently,

&(z;n) AV Po(z) + 7(z;n) A Po(x) + A5n) Pa(z) =0, (2.8)

where 7(z;n) = ¢ (z;n) — 6(x;n) and MNz;n) = (z;n) + &(z;n) + d(z;n). [

3 Second order linear difference equation for quasi-ortho-
gonal-type polynomials.

Here we will describe an algorithm for finding the second order linear difference equation
which satisfy the polynomials P, defined by (1.5).

Theorem 3.1 Suppose that the polynomials {P,} are defined by (1.5) where the polyno-
mial P, satisfy the difference-recurrence relations (1.6) and (1.7). Then {P,} satisfy a
SODE of the form

&(z;n) A2 Py(z) + 7(z;n) A By(z) + Aa;n) P (z) = 0, (3.1)
where &, 7 and X are given explicitly in (5.9).
Proof. We start from Eq. (1.5)

q(w; 1) Po () = a(w;n) Py (z) + b(z; 1) P (2), (3:2)



and we will use the properties (1.6)-(1.7) which the family {P, } satisfies. The main idea,
which is a generalization to the one presented in [17], is the following. We apply the
operator A in (3.2)

Aq(w;n) Pa(2) + gz + Lin) A Py(z) =
= [Aa(z;n)] Pp(z) + a(z + 1;n) A Py(z) + [Ab(z;n)] Po—i(z) + b(z + 1;n) A Py (),

and then multiply it by o(z;n)o(z;n — 1)g(z;n) and use (1.6) to eliminate the term
AP,(z), (1.7) (changing n by n—1) for AP,,_1(z), as well as (3.2) for the P, polynomial.
This allows us to rewrite the above equation as a combination of P, and P,,_1,

r(z;n) A Py(z) = c(z;n) Py (z) 4 d(z;n) Py (2), (3.3)
where
r(z;n) = 6(z;n — No(z;n)g(z;n)q(z + 1;n),
c(w;n) = a(z;n — Vo (z;n)[a(z + 1;n)q(z;n) — g(z + 1;n)a(z;n)]+
+q(z;n)[a(z + 1;n)a (x50 — D7(;n) + bz + L;n)o(zn)y(zn — 1)), (3.4)
d(z;n) = a(z;n — Vo(z;n)[b(z + 1;n)g(z;n) — g(z + 1;n)b(z;n) |+
+q(z;n)[a(z + 1;n)5 (z51 — 1)y(z;0) + b + 1;n)o(z;n)7 (251 — 1)].

Analogously, applying the operator A in (3.3) and repeating the same procedure we
obtain _
s(x;n) A? Py(x) = e(z;n) Py (2) + f(250) Py (), (3.5)

where, now,
s(z;n) = &(z;n — Vo (z;n)r(z;n)r(z + 1;n),
e(z;n) = a(z;n — Vo (z;n)[e(z + 1;n)r(z;n) — r(z + 1;n)e(z; n)]+
(s n)e(z + 1;n)a (x5 — D7(zn) + d@ + Gn)o(zn)y(zn — 1), (3.6)
fx3n) = a(z;n — Vo (z;n)[d(z + 1;n)r(z;n) — r(z + 1;n)d(z;n)]+
+r(zsn)e(e + 1;n)a (x50 — V)y(z3n) + dz + 1;n)0(z;0) 7 (z5n — 1)].

As before, the expressions (1.5), (3.3) and (3.5) yield

d@mBy)  alzn) )
r(z;n) A Py(z)  c(zsn) d(zin) | =0, (3.7)
s(zn) A? Pyp(z) e(zsn)  f(zin)

where the functions ¢, a and b are known from expression (1.1), and ¢, d, e, f, r and s can
be found from (3.4) and (3.6). Expanding the determinant in (3.7) by the first column

Gn (1) A% Py(z) 4 7 (2) A Py(z) + A(2) Py (z) = 0, (3.8)



where

on(z) = s(z;n) [a(z;n)d(z;n) — c(z;n)b(z;n)],

Tn(2) = r(z;n)e(z;n)b(z;n) — alz;n) f(z;n)], (3.9)

A (@) = q(z;n)[e(z;n) f(z;n) — e(z;n)d(z;n)],

or, equivalently,
5(x — Lin)Py(z + 1) + [Nz — L;n) — 7(z — 1;n) + 6(z — 1;n)] P, (z)+

+HF(z — 1;n) = 25(z — 1;0)] Py (z — 1) = 0.

In the special case of quasi-orthogonal polynomials (1.9), the equations (1.5), (3.3)
and (3.5) can be rewritten in a more convenient form

g(z;n) =1, a(z;n) = A, b(z;n) =B, r(z;n) =0d(x;n — 1)o(x;n),
c(z;n) = Ag(z;n — 1)7(x;n) + Bo(x;n)y(z;n — 1),
d(z;n) = Ao (x;n — 1)y(x;n) + Bo(z;n)7(z;n — 1).
s(z;n) =a(z;n — Do(z;n)a(z + 1;n — 1)o(z + 1;n),
e(z;n) = c(z + Lyn)r(z;n) —r(z + L;n)e(z;n) + c(z + L;n)a(z;n — 1)7(x;n)+
+d(z + 1;n)o(z;n)y(x;n — 1),
flz;n) =d(z + L;n)r(z;n) — r(z + L;n)d(z;n) + c(z + L;n)a(z;n — 1)y(z;n)+
+d(z + 1;n)o(z;n)T(z;n — 1).
Notice that the quasi-orthogonal polynomials of order k£ given by the linear combina-
tion [13]

n+k
Pyik(z) = Z h;iPi(z), hphpyr #0, h; constant,

where P, is an orthogonal family, can be written, by using the three-term recurrence
relation (1.8) for the P, in the form (1.5) where the coefficients a(z;n) and b(z;n) are
polynomials in z of fixed degree k independent on n.

The two above described algorithms can be implemented, in a very simple way, in any
computer algebra system.

4 Applications.

In this section we will apply the above algorithms to the Meixner-Krall and Quasi-
orthogonal Meixner polynomials, respectively. To find the explicit expressions for the
coefficients &, 7 and A we have used Mathematica [16].



Meixner-Krall polynomials.

These polynomials satisfy the orthogonality relation (1) with N = 1, (a,b) = [0, 00) and
p(x) = WLt v>0and 0 < p < 1. Then, Eq. (1.1) is given by [2] (A = A))

L(y)T(z+1)
’Ya/J'aA — gas Y _ /’Ln(]‘ - /’1/)771(7)77/
Mn (:l?) - Mn ($) + Bn \Y Mn (:L'), B" - An! (1 + A 21;10 (’y)mu:l('l—ﬂ)'v) .

In this case,
o(zin) =z, 7(zn)=(@p-z+py, Mzin)=(1-phn,

and

q(z;n) = o(z;n), a(r;n) =o(x;n)[l + By] — Bpé(z;n), b(z;n) = —Bu(z;n).

Then, Theorem 2.1 gives
&(a:;n)z(l—:n)(Bn’y,u—Bnn—BnQn—i—Bnun—l—BnQ,un—:U—Bna:—i—Bnu:U),
Flosn) = — (ypu) —2Bpyp+ Byyp? — Bu¥? i + Byn+ By’ n— By un — B, pn+
+Buyun+ B2 yun—Byypin — B2 ypin+x+Bpx —px — 2B, + vy pa+
+2Bpypx+ By ptx —2Byypie — Bynxe — By nx + 2B, unx + 2B, unx—

—Bp,pPnz— B2 p?nx — a2 — B, a® 4+ pa’ + 2B, px® — By, p? 22,

:\(x,n) =(-14+pn (1+2Bn+Bn2—Bn,u—Bn2u+Bn'y,u—Bnn—Bn2n+
-I-Bn,un-I-BnQMn—x—Bnac-l-Bn,ux),

which coincide with the result given in [1]. This method also works in the case of the
generalized (Krall-type) Kravchuk Charlier and Hahn polynomials [4, 5].

Quasi-orthogonal Meixner polynomials.

The Quasi-orthogonal Meixner polynomials are defined by
Q' (z) = AM* (z) + BM Y\ (2),
and the classical Meixner polynomials satisfy the Eqs. [12]

n,u(n —1 + 7) M’y,u (:L')

(s 4+ ) £ M) = mpndd () 4 P A,

and
(1w + ) & M () = [(1 = ) —n — py| M () = (1 = )M (=),

which are of type (1.6) and (1.7) where

npmn—1+7)

olzin) =p(z+7), 7(@n) =nu, y(zn) = —— .

’

and

ou(@) = e +79), Tale) = (1 - pa —nyp, Fule) = p— L.



Then, Theorem 3.1 gives
G(zsn) = Ap(— A+ Ap+ Bun) (v +z)—
—B(B,u2n(—1—|—’y+n)('y—|—a:)(1—u)*l+Au(’y+m)(1—'yu—n+a:—u:v)),

F(sn) = 2 (v +2) (L —p—yp—n+pn +x — pz) (A* + AB — 24° — ABp — AByp+ A*p°+
+ABvyu? — ABn — B?un + B?yun + ABp’n + B?>un® + ABx — 2ABux + AB,qu),

Mz;n) = n(y+a)(— A —AB+2A%u + ABu + AByp — A?p® — AByp? + ABn+
+B%un — B%yun — ABu*n — B?un® — ABx + 2ABux — AB/L2:E).

When A =1 and B = 0, a straightforward calculation shows that the above equation
transforms in the SODE

a4y + 1) A% MPM(a) +[(1 — D —n+ 1) + py] & M) +n(l - p)MI*(z) =0,

which is the SODE for the classical Meixner polynomials in the form (1.4). Obviously,
the same can be done for the quasi-orthogonal Kravchuk [2], Charlier [2] and Hahn [3]
polynomials, as well as, for the quasi-orthogonal polynomials of any order k.
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