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For our purpose it is convenient also to rewrite (1.3) in the form�(x;n)42 Pn(x) + T(x;n)4 Pn(x) + �(x;n)Pn(x) = 0; (1.4)where now, �(x;n) =  (x+ 1;n); T (x;n) = 2 (x + 1;n)� �(x+ 1;n);�(x;n) = �(x+ 1;n) +  (x+ 1;n)� �(x+ 1;n):An example of polynomials ePn satisfying (1.1) are the Krall-type discrete orthogonalpolynomials, �rstly studied in [1, 2, 3, 4, 6, 7]. These polynomials are orthogonal withrespect to an inner product (p; q) de�ned by the bilinear form (xi+1 = xi + 1)(p; q) = b�1Xxi=a p(xi) q(xi)�(xi) + NXk=1Akp(yk) q(yk); Ak � 0:In other words, these polynomials are obtained via the addition of delta Dirac measuresto a positive de�nite weight function � [11, 14]. A special emphasis was given to the casewhen � is the classical \discrete" weight function corresponding to the classical \discrete"[12] polynomials of Hahn [3], Meixner [1, 2, 6], Kravchuk [2] and Charlier [2, 7] for whichthe coe�cients �, � and � in (1.2) are polynomials such that � and � do not depend ofn, � is a constant, degree(�) � 2 and degree(�) � 1. In all these cases, when one ortwo delta Dirac measures (N = 1 or 2) are added to a weight function correspondingto the Hahn, Meixner, Kravchuk and Charlier polynomials at the ends of the intervalof orthogonality, it is possible to �nd for the resulting polynomials an expression simi-lar to (1.1) where ePn are the new (Krall-type) polynomials and Pn are the classical ones [4].The second case appears when the polynomial ePn is given byq(x;n) ePn(x) = a(x;n)Pn(x) + b(x;n)Pn�1(x); (1.5)where q, a and b are some known functions, in general depending on n but now the familyfPng satis�es the following two \di�erence-recurrence" relations�(x;n)4 Pn(x) = �(x;n)Pn(x) + (x;n)Pn�1(x); (1.6)and ��(x;n)4 Pn(x) = ��(x;n)Pn(x) + �(x;n)Pn+1(x); (1.7)being �, ��, � , �� ,  and � known functions (they should not coincide with the functionsgiven in (1.2).) If the polynomial set fPng satis�es a three-term recurrence relation,xPn(x) = �nPn+1(x) + �nPn(x) + nPn�1(x); (1.8)then, from the Eq. (1.6) we can easily derive the Eq. (1.7). Here we will suppose thatthe both equations, (1.6) and (1.7) are known.Examples of the case (1.5) are the quasi-orthogonal polynomials [8, 9, 10, 13]. Theyare de�ned by the expression ePn(x) = APn(x) +BPn�1(x); (1.9)2



being A, B non-vanishing constants. It is known [9] that, if fPng is a sequence of poly-nomials orthogonal with respect to a measure d� supported in the real line, i.e.,(Pn; Pm) = Z Pn(x)Pm(x)d�(x) = 0 8n 6= m;then, the corresponding quasi-orthogonal polynomials ePn(x) = APn(x)+BPn�1(x) satisfythe relation ( ePn; ePm) = 0; if jm� nj > 1;i.e., they constitute a quasi-orthogonal family of order 1 [9]. The quasi-orthogonal poly-nomials have been used to obtain quadrature and interpolating formulas (see e.g. [9, 15]).We are interested to �nd the second order di�erence equation~�(x;n)45 ~Pn(x) + ~�(x;n)4 ~Pn(x) + ~�(x;n) ~Pn(x) = 0; (1.10)which satisfy these new polynomials ePn de�ned in (1.1) and (1.5), �nding, explicitly, thecoe�cients e�, e� and e�, respectively.The paper is structured as follows. In sections 2 and 3 we describe two algorithmswhich allow us to �nd the SODE for the polynomials ePn de�ned by (1.1) (section 2) andfor the polynomials de�ned by (1.5) (section 3). Finally, in section 4, two illustrativeexamples are worked out.2 Second order linear di�erence equation for Krall-typepolynomials.Here we will describe an algorithm for �nding the second order linear di�erence equationwhich satisfy the polynomial ePn de�ned by (1.1). We will prove the following theorem.Theorem 2.1 Suppose that the polynomials f ePng are de�ned by (1.1) where the polyno-mial Pn is a solution of a SODE of the form (1.3). Then f ePng satisfy a SODE of theform ~�(x;n)45 ~Pn(x) + ~�(x;n)4 ~Pn(x) + ~�(x;n) ~Pn(x) = 0; (2.1)where ~�, ~� and ~� are given explicitly in (2.7).Proof. We start from the fact that the family of polynomials f ePng is expressed in termsof the other one fPng, which is a solution of the SODE (1.4), by formula (1.1)q(x;n) ePn(x) = a(x;n)Pn(x) + b(x;n)Pn(x+ 1): (2.2)The idea is the following: Firstly, we write ~Pn(x + 1) and ~Pn(x � 1) in terms of theclassical ones. To do this we evaluate (2.2) in x � 1 and then we use (1.3) to substitutethe values Pn(x� 1) and Pn(x+ 2). So, we obtainr(x;n) ~Pn(x+ 1) = c(x;n)Pn(x) + d(x;n)Pn(x+ 1);c(x;n) = ��(x+ 1;n) b(x + 1;n);d(x;n) = a(x+ 1;n) (x + 1;n) + b(x+ 1;n)�(x + 1;n); (2.3)3



and s(x;n) ~Pn(x� 1) = e(x;n)Pn(x) + f(x;n)Pn(x+ 1);e(x;n) = �(x;n)b(x� 1;n) + a(x� 1;n)�(x;n);f(x;n) = �a(x� 1;n) (x;n): (2.4)Then, Eqs. (2.2{2.4) yield������� q(x;n) ~Pn(x) a(x;n) b(x;n)r(x;n) ~Pn(x+ 1) c(x;n) d(x;n)s(x;n) ~Pn(x� 1) e(x;n) f(x;n) ������� = 0 ; (2.5)where the functions q, a and b are given (1.1) as well as c, d, e, f , r and s in (2.3) and(2.4). Expanding the determinant in (2.5) by the �rst column we get~�(x;n) ~Pn(x� 1) + ~�n(x) ~Pn(x) + ~ n(x) ~Pn(x+ 1) = 0; (2.6)where ~�(x;n) = s(x;n)[a(x;n)d(x;n) � c(x;n)b(x;n)];~�n(x) = q(x;n)[c(x;n)f(x;n)� e(x;n)d(x;n)];~ n(x) = r(x;n)[e(x;n)b(x;n) � a(x;n)f(x;n)]; (2.7)or, equivalently, ~�(x;n)45 ~Pn(x) + ~�(x;n)4 ~Pn(x) + ~�(x;n) ~Pn(x) = 0; (2.8)where ~�(x;n) = ~ (x;n)� ~�(x;n) and ~�(x;n) = ~ (x;n) + ~�(x;n) + ~�(x;n).3 Second order linear di�erence equation for quasi-ortho-gonal-type polynomials.Here we will describe an algorithm for �nding the second order linear di�erence equationwhich satisfy the polynomials ePn de�ned by (1.5).Theorem 3.1 Suppose that the polynomials f ePng are de�ned by (1.5) where the polyno-mial Pn satisfy the di�erence-recurrence relations (1.6) and (1.7). Then f ePng satisfy aSODE of the form~�(x;n)42 ~Pn(x) + ~�(x;n)4 ~Pn(x) + ~�(x;n) ~Pn(x) = 0; (3.1)where ~�, ~� and ~� are given explicitly in (3.9).Proof. We start from Eq. (1.5)q(x;n) ePn(x) = a(x;n)Pn(x) + b(x;n)Pn�1(x); (3.2)
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and we will use the properties (1.6)-(1.7) which the family fPng satis�es. The main idea,which is a generalization to the one presented in [17], is the following. We apply theoperator 4 in (3.2)4q(x;n) ePn(x) + q(x+ 1;n)4 ePn(x) == [4a(x;n)]Pn(x) + a(x+ 1;n)4 Pn(x) + [4b(x;n)]Pn�1(x) + b(x+ 1;n)4 Pn�1(x);and then multiply it by �(x;n)��(x;n � 1)q(x;n) and use (1.6) to eliminate the term4Pn(x), (1.7) (changing n by n�1) for 4Pn�1(x), as well as (3.2) for the ePn polynomial.This allows us to rewrite the above equation as a combination of Pn and Pn�1,r(x;n)4 ePn(x) = c(x;n)Pn(x) + d(x;n)Pn�1(x); (3.3)wherer(x;n) = ��(x;n� 1)�(x;n)q(x;n)q(x + 1;n);c(x;n) = ��(x;n� 1)�(x;n)[a(x + 1;n)q(x;n) � q(x+ 1;n)a(x;n)]++q(x;n)[a(x+ 1;n)��(x;n� 1)�(x;n) + b(x+ 1;n)�(x;n)�(x;n� 1)];d(x;n) = ��(x;n� 1)�(x;n)[b(x + 1;n)q(x;n) � q(x+ 1;n)b(x;n)]++q(x;n)[a(x+ 1;n)��(x;n� 1)(x;n) + b(x+ 1;n)�(x;n)�� (x;n� 1)]: (3.4)
Analogously, applying the operator 4 in (3.3) and repeating the same procedure weobtain s(x;n)42 ePn(x) = e(x;n)Pn(x) + f(x;n)Pn�1(x); (3.5)where, now,s(x;n) = ��(x;n� 1)�(x;n)r(x;n)r(x+ 1;n);e(x;n) = ��(x;n� 1)�(x;n)[c(x + 1;n)r(x;n)� r(x+ 1;n)c(x;n)]++r(x;n)[c(x+ 1;n)��(x;n� 1)�(x;n) + d(x+ 1;n)�(x;n)�(x;n� 1)];f(x;n) = ��(x;n� 1)�(x;n)[d(x + 1;n)r(x;n)� r(x+ 1;n)d(x;n)]++r(x;n)[c(x+ 1;n)��(x;n� 1)(x;n) + d(x+ 1;n)�(x;n)�� (x;n� 1)]: (3.6)
As before, the expressions (1.5), (3.3) and (3.5) yield������� q(x;n) ePn(x) a(x;n) b(x;n)r(x;n)4 ePn(x) c(x;n) d(x;n)s(x;n)42 ePn(x) e(x;n) f(x;n) ������� = 0 ; (3.7)where the functions q, a and b are known from expression (1.1), and c, d, e, f , r and s canbe found from (3.4) and (3.6). Expanding the determinant in (3.7) by the �rst columne�n(x)42 ePn(x) + e�n(x)4 ePn(x) + e�n(x) ePn(x) = 0; (3.8)5



where e�n(x) = s(x;n) [a(x;n)d(x;n)� c(x;n)b(x;n)] ;e�n(x) = r(x;n)[e(x;n)b(x;n) � a(x;n)f(x;n)];e�n(x) = q(x;n)[c(x;n)f(x;n) � e(x;n)d(x;n)]; (3.9)or, equivalently,e�(x� 1;n) ePn(x+ 1) + [e�(x� 1;n)� e�(x� 1;n) + e�(x� 1;n)] ePn(x)++[e�(x� 1;n)� 2e�(x� 1;n)] ePn(x� 1) = 0:In the special case of quasi-orthogonal polynomials (1.9), the equations (1.5), (3.3)and (3.5) can be rewritten in a more convenient formq(x;n) = 1; a(x;n) = A; b(x;n) = B; r(x;n) = ��(x;n� 1)�(x;n);c(x;n) = A��(x;n� 1)�(x;n) +B�(x;n)�(x;n� 1);d(x;n) = A��(x;n� 1)(x;n) +B�(x;n)�� (x;n� 1):s(x;n) = ��(x;n� 1)�(x;n)��(x+ 1;n� 1)�(x+ 1;n);e(x;n) = c(x+ 1;n)r(x;n)� r(x + 1;n)c(x;n) + c(x+ 1;n)��(x;n� 1)�(x;n)++d(x+ 1;n)�(x;n)�(x;n� 1);f(x;n) = d(x+ 1;n)r(x;n)� r(x+ 1;n)d(x;n) + c(x + 1;n)��(x;n� 1)(x;n)++d(x+ 1;n)�(x;n)�� (x;n� 1):Notice that the quasi-orthogonal polynomials of order k given by the linear combina-tion [13] ePn+k(x) = n+kXi=n hiPi(x); hnhn+k 6= 0; hi constant;where Pn is an orthogonal family, can be written, by using the three-term recurrencerelation (1.8) for the Pn in the form (1.5) where the coe�cients a(x;n) and b(x;n) arepolynomials in x of �xed degree k independent on n.The two above described algorithms can be implemented, in a very simple way, in anycomputer algebra system.4 Applications.In this section we will apply the above algorithms to the Meixner-Krall and Quasi-orthogonal Meixner polynomials, respectively. To �nd the explicit expressions for thecoe�cients e�, e� and e� we have used Mathematica [16].6



Meixner-Krall polynomials.These polynomials satisfy the orthogonality relation (1) with N = 1, (a; b) = [0;1) and�(x) = �x�(+x)�()�(x+1) ,  > 0 and 0 < � < 1. Then, Eq. (1.1) is given by [2] (A � A1)M;�;An (x) =M;�n (x) +Bn 5M;�n (x); Bn = A �n(1� �)�1()nn!�1 +APn�1m=0 ()m�m(1��)m! � :In this case, �(x;n) = x; �(x;n) = (�� 1)x+ �; �(x;n) = (1� �)n;andq(x;n) = �(x;n); a(x;n) = �(x;n)[1 +Bn]�Bn�(x;n); b(x;n) = �Bn (x;n):Then, Theorem 2.1 gives~�(x;n) = (1� x) �Bn  ��Bn n�Bn2 n+Bn �n+Bn2 �n� x�Bn x+Bn �x� ;~� (x;n) = � ( �)� 2Bn  �+Bn  �2 �Bn 2 �2 +Bn n+Bn2 n�Bn �n�Bn2 �n++Bn  �n+Bn2  �n�Bn  �2 n�Bn2  �2 n+ x+Bn x� �x� 2Bn �x+  �x++2Bn  �x+Bn �2 x� 2Bn  �2 x�Bn nx�Bn2 nx+ 2Bn �nx+ 2Bn2 �nx��Bn �2 nx�Bn2 �2 nx� x2 �Bn x2 + �x2 + 2Bn �x2 �Bn �2 x2;~�(x;n) = (�1 + �) n �1 + 2Bn +Bn2 �Bn ��Bn2 �+Bn  ��Bn n�Bn2 n++Bn �n+Bn2 �n� x�Bn x+ Bn �x� ;which coincide with the result given in [1]. This method also works in the case of thegeneralized (Krall-type) Kravchuk Charlier and Hahn polynomials [4, 5].Quasi-orthogonal Meixner polynomials.The Quasi-orthogonal Meixner polynomials are de�ned byQ;�n (x) = AM;�n (x) +BM;�n�1(x);and the classical Meixner polynomials satisfy the Eqs. [12](�x+ �)4M;�n (x) = n�M;�n (x) + n�(n� 1 + )1� � M;�n�1(x);and (�x+ �)4M;�n (x) = h(1� �)x� n� �iM;�n (x)� (1� �)M;�n+1(x);which are of type (1.6) and (1.7) where�(x;n) = �(x+ ); �(x;n) = n�; (x;n) = n�(n� 1 + )1� � ;and ��n(x) = �(x+ ); ��n(x) = (1� �)x� n�; �n(x) = �� 1:7
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