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1 Introduction.The hypergeometric polynomials of a discrete variable are objects which not only areimportant per se in the framework of the theory of special functions but also they play avery relevant role in numerous physical and mathematical �elds which range from quantummechanics, theory of group representations and probability theory to numerical analysis,the theory of vibrating strings, the study of random walks with discrete time processesand the theory of Sturm-Liouville di�erence equations as pointed out by numerous au-thors [7, 21] and particularly the excellent monograph of A.F. Nikiforov, S.K. Suslov andV.B. Uvarov [41]. This is the case not only for the so-called classical discrete orthogonalpolynomials (Hahn, Meixner, Kravchuk and Charlier) but also for discrete orthogonal setsother than the classical ones; see e.g. [12, 24, 39, 49].The expansion of any arbitrary discrete polynomial rm(x) in series of a general (albeit�xed) set of discrete hypergeometric polynomial fpn(x)g is a matter of great interest, notyet solved save for some particular classical cases, as briey summarized by Askey [8] andGasper [17, 18] up to the middle of seventies and by Ronveaux et al [45, 48], since thenup to now. This is particulary true for the deeper problem of linearization of a productof any two discrete polynomials. Usually, the determination of the expansion coe�cientsin these particular cases required a deep knowledge of special functions and, at times,ingenious induction arguments based in the three-term recurrence relation of the involvedorthogonal polynomials [13, 17, 18, 26, 51, 52]. Only recently, general and widely appli-cable strategies begin to appear [25, 30, 37, 47].Markett [37] for symmetric orthogonal polynomials, has designed a method which be-gins with the three-term recurrence relation of the involved orthogonal polynomial systemto set up a partial di�erence equation for the (orthogonal) polynomial, in case of connec-tion problems, or for the product of two (orthogonal) polynomials, in case of linearizationproblems, to be expanded; then, this equation has to be solved in terms of the initial data.Ronveaux et al. [47, 48] for classical and semiclassical orthogonal polynomials andLewanowicz [30, 34] for classical orthogonal polynomials have proposed alternative, sim-pler techniques of the same type although they require the knowledge of not only therecurrence relation but also the di�erential-di�erence relation or/and the second-orderdi�erence equation, respectively, satis�ed by the polynomials of the orthogonal set of theexpansion problem in consideration. See also [5, 11, 23, 31, 45, 46] for further descriptionand applications of this method in the discrete case, and [19, 32] in the continuous caseas well as [3, 33] for the q-discrete orthogonality. Koepf and Schmersau [25] has proposeda computer-algebra-based method which, starting from the second order di�erence hyper-geometric equation, produces by symbolic means and in a recurrent way the expansioncoe�cients of the classical discrete orthogonal hypergeometric polynomials (CDOHP) interms of the falling factorial polynomials (already obtained analytically by Lesky [28]; seealso [41], [42]) as well as the expansion coe�cients of its corresponding inverse problem.The combination of these two simple expansion problems allows these authors to solvethe connection problems within each speci�c CDOHP set.All these four methods provide the expansion coe�cients via recursion relationships,what is very useful for the symbolic and/or numerical computation of its values. However,in general, these relationships cannot be analytically solved; so that, in practice, closed2



expressions for the expansion coe�cients are only obtained, at times, by symbolic means.The purpose of this paper is to describe a general and constructive approach to solvethe expansion formulas of the typerm(x) = mXn=0 cmnpn(x); (1.1)and rm(x)qj(x) = m+jXn=0 cjmnpn(x); (1.2)where rm(x) and qj(x) are any mth-degree and jth-degree discrete hypergeometric poly-nomials, and fpng denotes an arbitrary set of discrete orthogonal hypergeometric poly-nomials. Expansions of type (1.1) are usually called as connection or projection formulaswhile those of type (1.2) are referred to generalized linearization formulas or modi�ed ex-pansions of Clebsch-Gordan type [43]. Here the name Clebsch-Gordan is attached becauseits structure is similar to the Clebsch-Gordan series for spherical functions [15]. Usuallythe Clebsch-Gordan expansion [15] or linearization relation involves polynomials whichbelongs to the same system (i.e., they are all three Hahn polynomials, or all Meixner,etc). When this is not the case, we referred to modi�ed Clebsch-Gordan expansion orgeneralized linearization [43]. For the sake of completeness and notation, let us also men-tion that expansions (1.1) are called as inversion formulas when the polynomials rm(x)belongs to any of the following non-orthogonal families: the power polynomials fxmg, therising factorials or Pochhammer polynomials f(x)mg and the falling factorials or Stirlingpolynomials fx[m]g.The only prerequisite of our approach is the knowledge of the second order di�erenceequation satis�ed by the involved hypergeometric polynomials. The resulting expansioncoe�cients are given in a compact, analytic, closed and formally simple form in terms ofthe polynomial coe�cients of the corresponding second-order di�erence equation(s). Then,contrary to Market's, Ronveaux et al's and Lewanowicz's methods we do not require infor-mation about any kind of recurrence relation about the involved discrete hypergeometricpolynomials nor we need to solve any partial di�erence equation for the polynomial(s)to be expanded, or \high" order recurrence relation for the connection coe�cients them-selves. Let us also underline that, opposite to Koepf and Schmersau's method, we donot use any symbolic means, as well as we directly provide the expansion coe�cients in asingle step.The structure of the paper is the following. Firstly, in Section 2, we collect the basicbackground [41] used in the rest of the work; namely, the second-order hypergeometricdi�erence equation and its polynomial solutions (called as discrete hypergeometric polyno-mials) as well as the main data of the four classical sets of orthogonal discrete polynomials(Hahn, Meixner, Kravchuk, and Charlier) in the monic form and the principal propertiesof the aforementioned non-orthogonal families f(x)mg and fx[m]g. Then, in Section 3,the coe�cients of the expansion (1.1) are given explicitly in terms of the polynomial co-e�cients of the hypergeometric di�erence equation satis�ed by the orthogonal set fpng.Also, as a consequence of the resulting expression, the inversion formulas associated tothe Pochhammer, Stirling and the power polynomials are fully solved in the subsection3.1 and then they are applied to the four classical discrete orthogonal sets.3



In Section 4 the coe�cients of the linearization formula (1.2) are found in a fullyanalytical way in terms of the polynomial coe�cients of the second-order di�erence hy-pergeometric equations satis�ed by the polynomials pn(x) and qj(x). Notice that fqjgis not necessarily an orthogonal set, neither rm(x) is obliged to have a hypergeomet-ric character, what widely extends the linearization formulas considered in the literature[5, 8, 9, 11, 17, 23, 25, 30, 31, 37, 45, 46, 47, 48]. Indeed, most authors study linearizatonformulas between classical discrete polynomials, usually within the same family (see e.g.[10, 11, 14, 53] save some of them, who �nd a few other formulas which either involvepolynomials of diferent classical families [17, 45] or include one of the aforementionednon-orthogonal families together with polynomials of the same classical system [11]. Thelinearization formulas (1.2) corresponding to the special cases in which rm(x) = (x)m,x[m] and xm, are given in subsection 4.1.In Section 5 the connection problem between discrete hypergeometric polynomials isworked out in detail as the particular case m = 0 of the linearization formula fully solvedin the previous section. The resulting expressions are used to explicitly obtain the con-nection formulas between polynomials of each of the four classical families and betweenall of its possible pairs. This includes also the Hahn system, what we underline becauseno general results of these type can be encountered in the literature.Finally, some concluding remarks and a number of references are given.2 \Discrete" preliminaries.Here we collect the basic background [40, 41] on hypergeometric discrete polynomialsand rising and falling factorials needed in the rest of the work.2.1 The discrete hypergeometric polynomials.Let us consider the second-order di�erence equation of hypergeometric-type [40, 41], i.e.,the equation �(x)54y(x) + �(x)4 y(x) + �y(x) = 0 ; (2.1)where �(x) and �(x) are polynomials of degree not greater than 2 and 1, respectively, and� is a constant. This equation can be written in the self-adjoint form4[�(x)�(x)5 y(x)] + ��(x)y(x) = 0; (2.2)where the function �(x) satis�es the Pearson-type di�erence equation4[�(x)�(x)] = �(x)�(x) : (2.3)The solutions of Eq. (2.1) with� � �n = �n4 �(x)� 12n(n� 1)42 �(x) = �n� 0 � 12n(n� 1)�00; (2.4)are polynomials of degree n, usually called hypergeometric-type \discrete" polynomialsy = yn(x) � pn(x). These polynomials [41] are orthogonal in the interval [a; b� 1] withrespect to the weight function �(x), i.e.,b�1Xxi=a pn(xi)pm(xi)�(xi) = �nmd2n; xi+1 = xi + 1 ; (2.5)4



provided that the following condition�(x)�(x)xk�����x=a;b = 0 ; 8k � 0; (2.6)holds. The square of the norm of the polynomial pn(x) is given [41] byd2n = (�1)nAnnB2n b�n�1Xxi=a �n(xi) = (�1)nanBn b�n�1Xxi=a �n(xi); ; (2.7)where an is the leading coe�cient of the polynomial pn(x),pn(x) = anxn + bnxn�1 + : : : ; (2.8)and Bn is the normalization constant of the Rodrigues-type formulapn(x) = Bn�(x) 5n [�n(x)]; n = 0; 1; 2; ::: ; : (2.9)where �n(x) = �(x+ n) nYm=1�(x+m): (2.10)The use of Eq. (2.9) together with the formula5n[f(x)] = nXk=0(�1)k  nk ! f(x� k); (2.11)allows one to obtain [41] an explicit expression for the polynomials. The symbol  nk !denotes the binomial coe�cients, i.e., nk ! = n!k!(n� k)! :The constants an and Bn are related byan = Bn n�1Yk=0 �� 0 + 12(n+ k � 1)�00� ; a0 = b0 : (2.12)For the k�di�erence derivatives of the polynomials pn(x), it is also ful�lled [41] aRodrigues-type formula 4kPn(x) = AnkBn�k(x) 5n�k [�n(x)]; (2.13)where Ank = n!(n� k)! k�1Ym=0[� 0 + 12 (n+m� 1)�00] � n!(n� k)! akBk ; An0 = 1: (2.14)The most general polynomial solution of the hypergemetric di�erence equation (2.1)corresponds to the case�(x) = A(x� x1)(x� x2); �(x) + �(x) = A(x� �x1)(x� �x2):5



Without loss of generality we will consider the case A = �1 and x1 = 0. In this case, themonic polynomial solutions can be written as follows [2, 42]Pn(x) = (��x1)n(��x2)n(x2 � �x1 � �x2 + n� 1)n 3F2� �n;�x ; x2 � �x1 � �x2 + n� 1��x1; ��x2 ����1�; (2.15)where the generalized hypergeometric function pFq is de�ned bypFq� a1; a2; :::; apb1; b2; :::; bq ����x� = 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k xkk! : (2.16)The four referred families of discrete hypergeometric polynomials are the so-calledclassical discrete orthogonal polynomials: Hahn h�;�n (x;N), Meixner M;�n (x), KravchukKpn(x;N) and Charlier C�n(x), polynomials [40, 41], whose main data in its monic formare shown in Tables 1-2. They can be expresed in terms of the hypergeometric functionsby formulas [41, Section 2.7,p. 49]:h�;�n (x;N) = (1�N)n(� + 1)n(�+ � + n+ 1)n 3F2� �x; �+ � + n+ 1;�n1�N;� + 1 ����1�; (2.17)M;�n (x) = ()n �n(�� 1)n 2F1� �n;�x ����1� 1��; (2.18)Kpn(x;N) = (�p)nN !(N � n)! 2F1� �n;�x�N ����1p�; (2.19)C�n(x) = (��)n 2F0� �n;�x� ����� 1��: (2.20)These expressions immediately follow from the above representation (2.15) and itsdi�erent limits (more details can be found in [41, 42]).2.2 The rising and falling factorials.The rising factorial polynomials or Pochhammer symbols (x)n are de�ned by(x)n = x(x+ 1) � � � (x+ n� 1) � �(x+ n)�(x) ; (2.21)and they have the properties(�x)n = (�1)n�(x+ 1)�(x� n+ 1) ; (x)n(x� 1)n�1 = n+ x� 1x� 1 ; (x)n+k = (x)n(x+ n)k; (2.22)as well as the di�erence equation analogue to the di�erential equation (xn)0 = nxn�1,5(x)n = n(x)n�1: (2.23)The falling factorial polynomials or Stirling polynomials x[n] are polynomials de�nedby x[n] = x(x� 1) � � � (x� n+ 1) � (�1)n(�x)n = �(x+ 1)�(x� n+ 1) (2.24)They satisfy the equations4x[n] = nx[n�1]; 5x[n] = n(x� 1)[n�1]: (2.25)6



Table 1: Main data for monic Hahn and Charlier polynomials.Hahn CharlierPn(x) h�;�n (x;N) C�n (x)(a; b) [0;N � 1] [0;1)�(x) x(N + �� x) x�(x) (� + 1)(N � 1)� (� + � + 2)x �� x�(x) + �(x) (x+ � + 1)(N � 1� x) ��n n(n+ �+ � + 1) n�(x) �(N + �� x)�(� + x+ 1)�(N � x)�(x+ 1) e���x�(x+ 1)�; � � �1 ; n � N � 1 � > 0�n(x) �(N + �� x)�(n+ � + x+ 1)�(N � n� x)�(x+ 1) e���x+n�(x+ 1)Bn (�1)n(�+ � + n+ 1)n (�1)nbn �n2 �2(� + 1)(N � 1) + (n� 1)(� � � + 2N � 2)�+ � + 2n � �n2 (2� + n� 1)d2n n!�(�+ n+ 1)�(� + n+ 1)�(� + � +N + n+ 1)(�+ � + 2n+ 1)(N � n� 1)!�(� + � + n+ 1)(� + � + n+ 1)2n n!�n
Table 2: Main data for monic Meixner and Kravchuk polynomials.Meixner KravchukPn(x) M;�n (x) Kpn(x)(a; b) [0;1) [0;N ]�(x) x x�(x) (� � 1)x+ � Np� x1� p�(x) + �(x) �x+ � � p1� p (x�N)�n (1� �)n n1�p�(x) �x�( + x)�()�(x + 1) N !px(1� p)N�x�(N + 1� x)�(x+ 1) > 0; 0 < � < 1 0 < p < 1, n � N�n(x) �x+n�( + x+ n)�()�(x + 1) N !px+n(1 � p)N�n�x�(N + 1� n� x)�(x+ 1)Bn 1(� � 1)n (�1)n(1 � p)nbn n� + n� 12 1 + �� �� ��� 1� �n[Np+ (n� 1)( 12 � p)]d2n n!()n�n(1� �)+2n n!N !pn(1� p)n(N � n)!7



It is well known that the polynomials x[n] and the xn are closely related one to anotherby the formulas x[n] = nXk=0 s(k)n xk; xn = nXk=0S(k)n x[k] (2.26)where s(k)n and S(k)n are the Stirling numbers of the �rst and second kind respectively [1].Moreover, they satisfy the relationss(k)n+1 = s(k�1)n � ns(k)n ; S(k)n+1 = kS(k)n + S(k�1)n ; 1 � k � n: (2.27)For the Stirling numbers of the second kind S(k)n one has the closed form [1]S(k)n = 1k! kXj=0(�1)k+j  kj ! jn:In particular S(1)n = S(n)n = 1 and S(n�1)n = n2 (n� 1).3 Expansions of a polynomial rm(x).Here we �nd the explicit expression of the coe�cients cmn in the expansion of anarbitrary polynomial rm(x) in series of the orthogonal discrete hypergeometric set fpng,i.e. rm(x) = mXn=0 cmnpn(x) ; (3.1)The expansion coe�cients will be given in terms of the polynomial coe�cients �(x) and�(x) of the di�erence equation (2.1) satis�ed by the polynomials pn(x).Theorem 3.1 The explicit expression of the coe�cients cmn in the expansion (3.1) iscmn = (�1)nBnd2n b�1Xx=a5nrm(x)�(x) n�1Yk=0 �(x� k): (3.2)Proof: Multiplying both sides of Eq. (3.1) by pk(x)�(x), and summing between a andb� 1, the orthogonality relation (2.5) immediately givescmn = 1d2n b�1Xx=a rm(x)pn(x)�(x)dx : (3.3)Use the Rodrigues formula (2.9) for pn(x) givescmn = Bnd2n b�1Xx=a rm(x)5n [�n(x)] dx : (3.4)Using n�times the following formula of summation by partsb�1Xx=a f(x)5 g(x) = f(x)g(x)�����b�1a�1 � b�1Xx=a g(x� 1)5 f(x); (3.5)8



and taking into account the orthogonality condition (2.6) as well as Eqs. (2.6) and (2.23),one obtainscmn = (�1)nBnd2n b�1Xx=a5nrm(x)�n(x� n) = 1n!an b�1Xx=a5nrm(x)�n(x� n)b�n�1Xx=a �n(x) : (3.6)Finally, using the expression of �n(x) as given by (2.10), Eq.(3.6) transforms into thesearched Eq. (3.2).Keeping in mind Eqs. (2.7) and (2.10), one observes that Eq. (3.2) allows us to deter-mine the expansion formula (3.1) directly from the expression rm(x) and the polynomialcoe�cients which characterize the di�erence equation veri�ed by the polynomials fpng.3.1 Expansion of the polynomials (x)m, x[m] and xm.Let us to apply the above equations (3.1) and (3.2) to the special cases rm(x) = (x)mand rm(x) = x[m]. Since5n(x)m = m!(m� n)! (x)m�n; and 5n x[m] = m!(m� n)! (x� n)[m�n];then, (x)m = mXn=0 amnpn(x); amn = (�1)nm!(m� n)!Bnd2n b�1Xx=a(x)m�n�n(x� n) ; (3.7)x[m] = mXn=0 dmnpn(x); dmn = (�1)nm!(m� n)! Bnd2n b�1Xx=a(x� n)[m�n]�n(x� n) : (3.8)To solve the problem xm = mXn=0 emnpn(x); (3.9)we notice thatxm = mXk=0S(k)m x[k] = mXk=0S(k)m kXn=0 dknpn(x) = mXn=0 mXk=ndknS(k)m ! pn(x):Then, emn = mXk=n dknS(k)m : (3.10)The expressions (3.7)-(3.10) complement and extend similar inversion formulas of clas-sical discrete polynomials previously and di�erently found by various authors for the Stir-ling polynomials x[m] in a purely analitical way [17] or recurrently [11, 25, 48, 55]. Weshould also mention here that the inversion problems of type (3.7) and (3.8) can be easilysolved in the classical case by use of the hypergeometric-function representation of thesepolynomials [53]. 9



3.1.1 Application: Inversion problems of classical polynomials.Here we will give the explicit closed expressions for the coe�cients of the inversionformulas (3.7) and (3.8) of the classical discrete polynomials associated to the polynomials(x)m and x[m], respectively. From then and together with Eq. (3.10), the correspondinginversion formulas associated to the polynomials xm follow in a straightforward manner.Charlier Polynomials C�n(x).The use of the inversion formula (3.7) related to (x)m and the main data of the monicCharlier polynomials (see Table 1), as well as formula (A.6), allows us to �nd the corre-sponding expansion coe�cients
amn = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1 m = n = 0�m! 1F1 1�m2 ������ �! m 6= 0; n = 0 mn ! �(m)�(n) 1F1 n�mn ������ �! m 6= 0; n 6= 0 :
For the expansion of x[m], we use Eq. (3.8) and Eq. (A.5), to obtain thatdmn =  mn !�m�n:Meixner polynomials M;�n (x).Analogously, for the monic Meixner polynomials we �nd

amn = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:
1 m = n = 0�m!1� �2F1 1�m ; 1 + 2 ����� ��� 1! m 6= 0; n = 0 mn ! �(m)�(n) 2F1 n�m ; n+ n ����� ��� 1! m 6= 0; n 6= 0 ;

and dmn =  mn ! ( + n)m�n � �1� ��m�n :
10



Kravchuk polynomials Kpn(x;N).For the monic Kravchuk polynomials, we obtain
amn =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
1 m = n = 0Npm! 2F1 1�m ; 1�N2 �����p! m 6= 0; n = 0 mn ! �(m)�(n) 2F1 n�m ; n�Nn �����p! m 6= 0; n 6= 0 ;

and dmn =  mn ! pm�n(N �m+ 1)m�n:Hahn polynomials h�;�n (x;N).Finally, for the monic Hahn polynomials, one has
amn = 8>>>>>>>>>>>><>>>>>>>>>>>>:

1 m = n = 0m!(� + 1)(N � 1)�+ � + 2 3F2� m+ 1; 2 �N; 2 + �2; 2�N � � ����1� m 6= 0; n = 0 mn ! �(m)�(n) 3F2� n�m; 1 + n�N;n+ � + 1n; 2n+ �+ � + 2 ����1� m 6= 0; n 6= 0 ;
and dmn =  mn ! (N �m)m�n(n+ � + 1)m�n(2n+ �+ � + 2)m�n :Some of the above formulas have been found by di�erent authors using di�erent ap-proaches. This is so for the Stirling inversion problems of the Charlier [11, 25, 48, 55],Meixner [25, 48, 55], Kravchuk [25, 48, 55] and Hahn [17] polynomials.4 Expansion of the product of a polynomial rm(x) and ahypergeometric polynomial.Here, we face and solve the modi�ed Clebsch-Gordan linearization problem, whichconsists of �nding the expansion coe�cients cjmn of the relationrm(x)qj(x) = m+jXn=0 cjmnpn(x) ; (4.1)where fpng is a discrete orthogonal set of hypergeometric polynomials which satisfy thedi�erence equation (2.1) and rm(x) and qj(x) are arbitrary polynomials.11



Theorem 4.1 The explicit expression of the coe�cients cjmn in the expansion (4.1) isgiven by cjmn = (�1)nBnd2n b�1Xx=a �n(x� n)5n [rm(x)qj(x)] : (4.2)Proof: In order to �nd explicit formulas for the coe�cients cjmn we can multiply Eq.(4.1) by �(x)pk(x) and summing on x. Then, by using the orthogonality properties of thepolynomials pk(x) we getcjmn = b�1Xx=a qj(x)rm(x)pn(x)�(x)d2n = Bnd2n b�1Xx=a qj(x)rm(x)5n �n(x) : (4.3)Now, the same method that leads to Eq. (3.7) gives us (4.2).In the special case when qj(x) is the jth-degree hypergeometric polynomial satisfyingthe following second-order di�erence equation~�(x)45y + ~�(x)4 y + ~�y = 0; y � qj(x);the following theorem followsTheorem 4.2 The explicit expression of the coe�cients cjmn in the expansion (4.1) isgiven bycjmn = (�1)nBn ~Bjd2n �� k+Xk=k� � nk � ~Ajk b�1Xx=a j�kXl=0(�1)l� j � kl � �n(x� n)~�k(x� k) ~�j(x � k � l)[5n�krm(x� k)] ; (4.4)where k� = max(0; n�m) and k+ = min(n; j).Proof: We will start from Eq. (4.2)cjmn = (�1)nBnd2n b�1Xx=a �n(x� n)5n [rm(x)qj(x)] : (4.5)Applying the Leibniz's rule for the n-th di�erence derivative of a product,5n [f(x)g(x)] = nXk=0 nk ! [5kf(x)][5n�kg(x� k)] ;to rm(x)qj(x), 5n [rm(x)qj(x)] = nXk=0 nk ! [5kqj(x)][5n�krm(x� k)] ; (4.6)together with Eq. (2.9) for the orthogonal polynomial qj(x),5kqj(x) � 4kqj(x� k) = ~Ajk ~Bj~�k(x� k) 5j�k [ ~�j(x� k)] ; (4.7)12



where the parameters ~Bj and ~Akj are de�ned in terms of ~�(x) and ~�(x) as in Eqs. (2.13)and (2.14) respectively and using Eq. (2.23) we �nd the expressioncjmn = (�1)nBn ~Bjd2n nXk=0� nk � ~Ajk b�1Xx=a[5n�krm(x� k)]�n(x� n)~�k(x� k) 5j�k [ ~�j(x� k)] : (4.8)Furthermore, the Rodrigues parameter ~Bj is directly related to the leading coe�cient~aj of the polynomial qj(x) as in Eq. (2.12). Eq. (4.8) can be written ascjmn = (�1)nBn ~Bjd2n k+Xk=k� � nk � ~Ajk b�1Xx=a[5n�krm(x � k)]�n(x� n)~�k(x� k) 5j�k [ ~�j(x � k)] : (4.9)where k� = max(0; n�m) ; k+ = min(n; j) ; (4.10)The use of the explicit expression of 5j�k [ ~�j(x� k)] allows us the �nd the wanted equa-tion (4.4).The expansions considered in the previous Section can be considered as the particularcase j = 0 of the present one. Notice that Bn=d2n and ~Bj ~Ajk can be expressed in termsof the leading coe�cients an and ~aj, respectively, of the polynomials pn(x) and qj(x) bymeans of the Eqs. (2.7), (2.12) and (2.14), respectively.Up to now, to the best of our information, there only exists a formal, recurrent way[11] to evaluate linearization coe�cients. Its application to the simplest case, i.e., to theexpansion of the products of two Charlier polynomials in series of Charlier polynomialsof the same type, leads to a six-term recursive relation for the corresponding linearizationcoe�cients which has not yet been possible to be solved, even not at a hypergeometriclevel by symbolic means (Petrov�sek algorithm [44]). Also , Dunkl [14] for Hahn polyno-mials and Askey and Gasper [10] for Kravchuk polynomials have been able to calculateexplicitly the expansion coe�cients of the Clebsch-Gordan-type or conventional lineariza-tion problems (i.e., those problems which involve polynomials of the same system). Theyare collected in [53].All these results are generalized by means of Eqs. (4.9) or (4.4). In particular, these ex-pressions allow us to explicitly solve not only all Clebsch-Gordan-type expansion problemsof the classical discrete polynomials but also the modi�ed ones which involve polynomialsof any classical system. There are 64 linearization formulas corresponding to the expan-sions of all possible products of pairs of classical discrete polynomials in terms of eachclassical discrete set, which can be described in full detail by using the Eq. (4.4).4.1 Some special cases.Let us apply the above formula for the cases rm(x) = (x)m, rm(x) = x[m] and xm.
13



Corollary 4.1.1 The coe�cients of the expansion(x)mqj(x) = m+jXn=0 cjmnpn(x); (4.11)are given bycjmn = (�1)nBn ~Bjm!d2n k+Xk=k� nk ! ~Ajk(m� n+ k)!�� j�kXl=0(�1)l  j � kl ! b�1Xx=a �n(x� n)~�j(x� k � l)~�k(x� k) (x� k)m�n+k :Corollary 4.1.2 The coe�cient of the expansionx[m]qj(x) = m+jXn=0 djmnpn(x); (4.12)are given bydjmn = (�1)nBn ~Bjm!d2n k+Xk=k� nk ! ~Ajk(m� n+ k)!�� j�kXl=0(�1)l  j � kl ! b�1Xx=a �n(x� n)~�j(x� k � l)~�k(x� k) (x� n)[m�n+k] :Corollary 4.1.3 The coe�cients of the expansionxmqj(x) = m+jXn=0 emnpn(x) (4.13)are given by ejmn = m+jXk=n djknS(k)m :The expressions (4.11)-(4.13) complement and considerably generalize some lineariza-tion formulas of similar type recently found by Belmehdi et al. [11]. Indeed, these authorsfound recurrently the coe�cients of the expansion (4.12) in the cases for which both poly-nomials qj(x) and pn(x) are of the same Charlier, Meixner or Kravchuk character.To conclude this section we will show two simple examples of the linearization problem,which require the use of Theorems 4.1 and 4.2, respectively.4.2 Examples.Firstly, the linearization of a product of two Stirling polynomials x[m]x[j] in terms of theCharlier polynomials x[m]x[j] = m+jXn=0 cm;j;nC�n(x); (4.14)14



is solved by the use of Th. 4.1 to give thatcm;j;n =  mp� j ! pn ! j!(p�m)! �p�n�3F3 p�m� j; p+ 1; 1p� j + 1; p�m+ 1; p� n+ 1 ������ �!; (4.15)where p = max(n;m; j).Next, we apply Th. 4.2 to �nd the solution of the following linearization problemx[m]Cj (x) = m+jXn=0 cm;j;nC�n(x); (4.16)obtainingcm;j;n = jXk=max(0;n�m) jk ! mp� k ! pn ! k! (�)j�k�p�n(p�m)! �3F3 p�m� k; p+ 1; 1p� k + 1; p�m+ 1; p� n+ 1 ������ �!; p = max(n;m; k) : (4.17)This result can be alternatively found by means of Eqs. (4.14) and (4.15) together withEqs. (2.20) and (2.24). Notice the �niteness of the k-summation and the terminatingcharacter of the involved hypergeometric function 3F3.Expressions similar to Eq. (4.16) referred to the rest of classical discrete hypergeo-metric polynomials with the non-orthogonal polynomials x[m] and (x)m may be equallyfound.5 The connection problem between discrete hypergeomet-ric polynomials.A very important particular case of the expansion (4.1) is that corresponding to m = 0,i.e., the connection problem qj(x) = jXn=0 cj0npn(x); (5.1)which has received a lot of attention in the literature [5, 8, 17, 20, 25, 30, 47, 48] but stillnot fully solved for discrete hypergeometric polynomials. Here, this solution immediatlyfollows from the general linearization formulas (4.9) or (4.4), what enable us to �nd easilyconnection coe�cients in terms of a terminating hypergeometric function. The latter isillustrated in Subsection 5.1 for all posible pairs of classical discrete orthogonal hyperge-ometric polynomials.Indeed, one has from Eq. (4.9) with m = 0 that the connection coe�cients arecj0n = (�1)nBn ~Bj ~Ajnd2n b�1Xx=a �n(x� n)~�n(x� n) 5j�n [ ~�j(x� n)] ; (5.2)15



which using (2.11) and (2.14) becomes intocj0n = (�1)nj!(j � n)!Bn ~Bj~Bnd2n b�1Xx=a j�nXk=0 �n(x� n)~�n(x� n)  j � nk ! (�1)k ~�j(x� n� k) : (5.3)The problem (5.1) is also a particular case of the expansion (3.1); namely when thediscrete polynomial rm(x) posesses the hypergeometric character. So, Eq. (5.3) maybe alternatively obtained by the inclusion of that fact in Eq. (3.2). In the case when~�(x) = �(x) and (~a;~b) = (a; b), the corresponding connection problem (5.1) involvesdiscrete hypergeometric polynomials orthogonal in the same interval, and the expansioncoe�ecients given by (3.2) reduce ascj0n = (�1)nBn ~Bj ~Ajnd2n b�1Xx=a j�nXk=0 �(x)~�(x)  j � nk ! (�1)k ~�j(x� n� k) : (5.4)For completeness, let us point out that there is another equivalent expression for theconnection coe�cients cj0n which sometimes is very useful. The general polynomial solu-tion of the equation (2.1) is given by (2.15). Then, the solution for the direct connectionproblem qj(x) = jXk=0 ajkx[k]; (5.5)is given by ajk = (�1)k(��x1)j(��x2)j(x2 � �x1 � �x2 + j � 1)k(�n)k(��x1)k(��x2)k(x2 � �x1 � �x2 + j � 1)jk! : (5.6)This formula inmediately follows from the identity x[k] = (�1)k(x)k and the de�nitionof the generalized hypergeometric function (2.16). Let us also remark that sometimes itis better to use the combination of the above formula with formula (3.8) wo obtain thesearched expansion coe�cients. Notice thatqj(x) = jXk=0 ajkx[k] = jXk=0 ajk kXn=0 dknpn(x) = jXn=00@j�nXk=0 aj k+ndk+nn1A| {z }cj0n pn(x); (5.7)where aj k+n and dk+nn are given by (5.6) and (3.8), respectively. Again here, the co-e�cients cj0n depend only on the coe�cients of the second order di�erence equation ofhypergeometric type (2.1).Finally, let us mention that from Eqs. (5.1)-(5.7) one obtains, as a byproduct, the so-lution for the conventional connection problem; i.e., that associated with the four classicalorthogonal discrete hypergeometric polynomials (Hahn, Meixner, Kravchuk and Charlier).5.1 Application to all possible pairs of classical polynomials.In this section we will provide the formulas connecting the di�erent families of clas-sical hypergeometric discrete polynomials, which generalize results already obtained bydi�erent authors using di�erent approaches, e.g. [5, 17, 25, 30, 48], in particular, the mostgeneral case involving two Hahn polynomials is given (see formula (5.17) from below) fromwhere, the most general connection formula given by Gasper [17, Eq. (4.1), pag. 188] is16



obtained as a particular case.The �rst eight cases can be computed by using (5.3) and the other ones with the helpof (5.7). Notice that if we equate both expressions (3.8) and (5.7) one can obtain di�erentsummation formulas involving terminating hypergeometric series of the type given in theAppendix.5.1.1 Charlier-CharlierFrom formula (5.4) and using the main data of the Charlier polynomials (see Table 1)we �nd for the connection coe�cients between the familiesC�j (x) = jXn=0 cj0nCn(x);the expression cj0n =  jn ! ( � �)j�n: (5.8)5.1.2 Meixner-MeixnerFor the Meixner-Meixner problem we haveM;�j (x) = jXn=0 cj0nM�;�n (x);where cj0n =  jn ! (1� �)n+��j�n�(j + )�(�+ n)(�� 1)j�n �� j�nXk=0(�1)k  j � nk !����k �(n+ k + �)�(n+ k + ) 2F1 n+ k + � ; j + n+ k +  ������!:Using the transformation formula (A.3), the identity  j � nk ! = (�1)k (n� j)kk! as wellas formula (A.4) we �nally obtaincj0n =  jn !� ��� 1�j�n ( + n)j�n 2F1 n� j ; n+ �n+  ������(1� �)�(1� �)!: (5.9)In particular, for the special case � = , Eq. (5.9) becomescj0n =  jn ! ( + n)j�n� � � �(� � 1)(�� 1)�j�n ;The second case corresponds to � = �, then (5.9) becomescj0n =  jn !� ��� 1�j�n ( � �)j�n:17



5.1.3 Kravchuk-Kravchuk.For the Kravchuk-Kravchuk expansion,Kpj (x;N) = jXn=0 cj0nKqn(x;M); j � minfN;Mg;the same procedure used in the Meixner-Meixner case gives uscj0n =  jn ! (M � j + 1)j�n(�p)j�n 2F1 n� j ; n�Nn�M �����qp!: (5.10)In the particular case p = q its reduces tocj0n =  jn ! pj�n(N �M)j�n;and for the case M = Ncj0n =  jn !�pq�j�n (q � p)j�n(N � j + 1)j�n:5.1.4 Meixner-Charlier.In this case we have the expansionM;�j (x) = jXn=0 cj0nC�n (x);withcj0n =  jn ! e���j�n�(j + )(�� 1)j�n j�nXk=0 (�1)k�( + n+ k)  j � nk !����k 1F1 j + m+ k +  ������!:If we use the transformation formula (A.6) and the sumation formula (A.7) we �ndcj0n =  jn !� ��� 1�j�n ( + n)j�n 1F1 n� jn+  ������(1� �)� !: (5.11)5.1.5 Charlier-Meixner.For the Charlier-Meixner expansionC�j (x) = jXn=0 cj0nM;�n (x);one �nds from Eq. (5.4) thatcj0n =  jn ! (��)j�n 2F0 n� j ;  + n{ ����� ��(1� �)!: (5.12)
18



5.1.6 Meixner-Kravchuk.In the Meixner-Kravchuk case,M;�j (x) = jXn=0 cj0nKpn(x;N); j � Nwe �ndcj0n =  jn ! (n+ )j�n� ��� 1�j�n 2F1 n� j ; n�Nn+  �����p(�� 1)� !: (5.13)5.1.7 Kravchuk-Meixner.For the Kravchuk-Meixner connection problem,Kpj (x;N) = jXn=0 cj0nM�;�n (x); j � Nwe havecj0n =  jn ! (N + 1� j)j�n(�p)j�n 2F1 n� j ; n+ �n�N ����� �(� � 1)p!: (5.14)5.1.8 Kravchuk-Charlier.For the Kravchuk-Charlier connection problem,Kpj (x;N) = jXn=0 cj0nC�n(x); j � N;we have cj0n =  jn ! (N + 1� j)j�n(�p)j�n 1F1 n� jn�N ������ �p!: (5.15)5.1.9 Charlier-Kravchuk.For the Charlier-Kravchuk problem,C�j (x) = jXn=0 cj0nKpn(x;N); j � N;we have cj0n =  jn ! (��)j�n 2F0 n� j ; n�N{ ������ p�!: (5.16)5.1.10 Hahn-HahnFor the Hahn-Hahn problem, we use Eq. (5.7). A straightforward study of the problemh;�j (x;M) = jXn=0 cj0n h�;�n (x;N); j � minfN � 1;M � 1g;19



allows us to �ndcj0n =  jn ! (1 + n�M)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n �� 4F3 n� j ; 1 + n�N ; n+ � + 1 ; 1 + j + n+  + �1 + n�M ; n+ �+ 1 ; 2n+ �+ � + 2 �����1!: (5.17)In the particular case N =M (5.17) reduces tocj0n =  jn ! (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n 3F2 n� j ; n+ � + 1 ; 1 + j + n+  + �n+ �+ 1 ; 2n+ �+ � + 2 �����1!:5.1.11 Hahn-CharlierFor the Hahn-Charlier problem,h�+�j (x;N) = jXn=0 cj0nC�n (x); j �M � 1;we �nd thatcj0n = � jn � (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j + �+ �)j�n 2F2 n� j ; 1 + j + n+ �+ �1 + n�N n+ � + 1 ������ �!: (5.18)5.1.12 Charlier-HahnFor the Charlier-Hahn problem,C�j (x) = jXn=0 cj0n h�;�n (x;N); j � N � 1;we �nd thatcj0n =  jn ! (��)j�n 3F1 n� j ; 1 + n�N ; n+ � + 12n+ �+ � + 2 ������ 1�!: (5.19)5.1.13 Hahn-MeixnerFor the Hahn-Meixner problem,h�;�j (x;N) = jXn=0 cj0nM;�n (x); j � N � 1;we �nd that cj0n =  jn ! (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n �� 3F2 n� j ; �+ � + j + n+ 1 ;  + n1 + n�N ; n+ � + 1 ����� ��� 1!: (5.20)
20



5.1.14 Meixner-HahnIn the Meixner-Hahn case,M;�j (x) = jXn=0 cj0n h�;�n (x;N); j � N � 1;we �nd thatcj0n = � jn � � ��� 1�j�n ( + n)j�n3F2 n� j ; 1 + n�N ; n+ � + 1�+ � + 2n+ 2 ;  + n ������� 1� !: (5.21)5.1.15 Hahn-KravchukFor the Hahn-Kravchuk problem,h�;�j (x;N) = jXn=0 cj0nKpn(x;M); j � minfM � 1; Ng;we �nd that cj0n =  jn ! (1 + n�N)j�n(1 + n+ �)j�n(1 + n+ j +  + �)j�n �� 3F2 n� j ; �+ � + j + n+ 1 ; n�M1 + n�N ; n+ � + 1 �����p!: (5.22)5.1.16 Kravchuk-HahnIn the Kravchuk-Hahn case,Kpj (x;M) = jXn=0 cj0n h�;�n (x;N); j � minfN � 1;Mg;we �nd thatcj0n =  jn ! pj�n(n�M)j�n3F2 n� j ; 1 + n�N ; n+ � + 1�+ � + 2n+ 2 ; n�M �����1p!: (5.23)Some of the above connection formulas have been previously found in a di�erent man-ner either analytically [17] or recurrently [5, 20, 25, 30, 48]; at times, the recurrence rela-tion for the expansion coe�cients may be solved by symbolic means. Gasper [17] gave theexplicit solution of the Charlier-Charlier problem as well as the hypergeometric represen-tation of the expansion coe�cients of the Meixner-Meixner, Kravchuk-Kravchuk, Hahn-Hahn (with the same interval of orthogonality), Kravchuk-Charlier, Kravchuk-Meixnerand Kravchuk-Hahn problems; that is, he only considers the seven connection problemswith positive coe�cients. Lewanowicz [30] found recurrently the expansion coe�cientsfor all possible pairs of the Charlier, Meixner and Kravchuk families; however, he is onlyable to lead to an explicit or hypergeometric-function solution in the Charlier-Charlier,Meixner-Charlier and Kravchuk-Charlier cases. Ronveaux et al. [48] are able to alterna-tively solve in a recurrent way the Charlier-Charlier, Charlier-Kravchuk, Charlier-Meixner,Meixner-Meixner, Meixner-Charlier and Kravchuk-Kravchuk cases; however, they are only21



able to �nd an explicit solution in the Charlier-Charlier case, and the hypergeometric-function solution in the Kravchuk-Kravchuk case by symbolic means. To this respect seealso [20]. Finally, Koepf and Schmarsau [25] have found with their computer-algebra-basedmethod the explicit expression for the coe�cients of the connection problem between clas-sical discrete polynomials of the same type for some particular choice of the parameters(for example, they consider polynomials in the same interval of orthogonality or polyno-mials with equal parameters) save in the Charlier case, of course, where they obtained thecomplete solution.It is worth to mention here that the connection coe�cients of the aforementionedsixteen cases may be alternatively obtained by use of general theorems on expansion ofgeneralized hypergeometric functions in series of functions of the same kind [29, 30], suchus those described in [36, x9.1], [16]. Moreover, theorems of similar kind [36, x12.4], [54]may be potentially used to produce recursion formulas for the coe�cients of the aboveexpressions. This hypergeometric approach is being developed by S. Lewanowicz [35].Finally, notice that, since the coe�cients (5.9)-(5.16) are terminating hypergeometricseries of the type 2F1, 1F1 and 2F0, they can be identi�ed with some classical hyperge-ometric polynomials, e.g. the Jacobi, Meixner or Kravchuk (2F1), Laguerre (1F1) andCharlier (2F0) polynomials.Summary and ConclusionsWe have studied� The expansion of a general discrete polynomial rm(x) in series of an arbitrary (albeit�xed) orthogonal set of discrete hypergeometric polynomial fpng, and� The expansion of the product rm(x)qj(x) in series of the orthogonal set fpng, whereqj(x) is any discrete hypergeometric polynomial.The corresponding expansion coe�cients are given in a compact and closed form bymeans of the coe�cients which characterize the second-order di�erence equations satis�edby the involved polynomial(s) as well as the leading coe�cient of their explicit expression.The resulting expressions, which are the main contributions of this work, are given by Eqs.(3.2), (4.9) or (4.4) and (5.3) or (5.7). They allow us to calculate both analytically andsymbolically the expansion coe�cients what is greatly useful to solve very involved math-ematical problems, such us, e.g. some of queuing theory, birth and death processes andcoding theory, and to deeply understand some physical phenomena which often require toobtain the matrix representation of quantum-mechanical observables; the determinationof the corresponding matrix elements makes often use of connection and/or linearizationformulas of the type here considered. Let us point out that our results, specially Eq.(4.9) or (4.4), opens a research avenue to determine practical connection and linearizationformulas for arbitrary discrete hypergeometric polynomials. Its extension to generalizedlinearization expression for products of any number of discrete hypergeometric polynomi-als of great actual interest [23, 27, 31, 38] may be easily carried out.The mathematical usefulness of these general expressions is illustrated by the explicitof the expansion coe�cients of the non-orthogonal families (x)m, x[m] and xm in terms22



of each classical discrete family (Hahn, Meixner, Kravchuk and Charlier). Also the coef-�cients of the expansion of the products (x)mqj(x), x[m]qj(x) and xmqj(x) are found foran arbitrary discrete hypergeometric polynomial. Furthermore, as a nice byproduct, thecomplete solution of the conventional connection problem for all possible pairs of classicalpolynomials (Hahn, Meixner, Kravchuk and Charlier) is given from the same root in aunifying way. Some speci�c cases of this problem can be encountered dispersely in theliterature.Finally, we believe that the constructive approach here presented is a complemen-tary, very useful alternative to the methods of Markett, Ronveaux et al and Lewanowiczto attack succesfully the long-standing connection and linearization problems of discretehypergeometric polynomials. The same approach has been used for hypergeometric poly-nomials of a continuous variable in both connection [50] and linearization [6] problems, aswell as for q-polynomials [4].A Some formulas involving hypergeometric functions.In this section we will enumerate some relations involving hypergeometric functionswhich were useful in order to obtain the results of the paper.Formulas involving 2F1.Special values [1, Chapter 15]2F1 a bc �����1! = �(c)�(c � a� b)�(c� a)�(c� b) ; c 6= 0;�1;�2; :::;<(c � a� b) > 0: (A.1)2F1 a bb �����x! = (1� x)�a 8b 2 IR: (A.2)Linear transformation formulas [22, p. 425]2F1 a bc �����x! = (1� x)�a2F1 a c� bc ����� xx� 1! == (1� x)c�a�b2F1 c� a c� bc �����x!: (A.3)A summation formula [22, Eq. 65.2.2, p. 426]1Xk=0 (a)k(b)kk!(c)k yk2F1 c� a c� bc+ k �����x! = (1� x)a+b�c2F1 a bc �����x+ y � xy!: (A.4)Formulas involving 1F1.Special values [1, Chapter 13]1F1 aa �����x! = ex; 8a 2 IR: (A.5)23
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