brought to you b

On the modules of m-integrable derivations in non-zero characteristic

Luis Narváez Macarro*

Abstract

Let k be a commutative ring and A a commutative k-algebra. Given a positive integer m, or $m = \infty$, we say that a k-linear derivation δ of A is m-integrable if it extends up to a Hasse-Schmidt derivation D = $(\mathrm{Id},D_1=\delta,D_2,\ldots,D_m)$ of A over k of length m. This condition is automatically satisfied for any m under one of the following orthogonal hypotheses: (1) k contains the rational numbers and A is arbitrary, since we can take $D_i = \frac{\delta^i}{i!}$; (2) k is arbitrary and A is a smooth k-algebra. The set of m-integrable derivations of A over k is an A-module which will be denoted by $Ider_k(A; m)$. In this paper we prove that, if A is a finitely presented k-algebra and m is a positive integer, then a k-linear derivation δ of A is m-integrable if and only if the induced derivation $\delta_{\mathfrak{p}}:A_{\mathfrak{p}}\to A_{\mathfrak{p}}$ is m-integrable for each prime ideal $\mathfrak{p}\subset A$. In particular, for any locally finitely presented morphism of schemes $f: X \to S$ and any positive integer m, the S-derivations of X which are locally mintegrable form a quasi-coherent submodule $Ider_S(\mathcal{O}_X; m) \subset Der_S(\mathcal{O}_X)$ such that, for any affine open sets $U = \operatorname{Spec} A \subset X$ and $V = \operatorname{Spec} k \subset X$ S, with $f(U) \subset V$, we have $\Gamma(U, Ider_S(\mathcal{O}_X; m)) = Ider_k(A; m)$ and $Ider_S(\mathcal{O}_X;m)_p = Ider_{\mathcal{O}_{S,f(p)}}(\mathcal{O}_{X,p};m)$ for each $p \in X$. We also give, for each positive integer m, an algorithm to decide whether all derivations are m-integrable or not.

Keywords: derivation; integrable derivation; Hasse-Schmidt derivation;

differential operator

MSC: 14F10; 13N15; 14B05

Introduction

Let us start by recalling the algebraic interpretation of the integration of a vector field. Let X be a complex algebraic variety and χ an algebraic vector field on X, or, equivalently, a \mathbb{C} -derivation $\delta: \mathcal{O}_X \to \mathcal{O}_X$ of the sheaf of regular functions. Let us denote by $X[t] = \mathbb{A}^1_{\mathbb{C}} \times X$, $\mathbb{C}[\varepsilon] = \mathbb{C}[t]/(t^2)$, $X[\varepsilon] = \operatorname{Spec} \mathbb{C}[\varepsilon] \times X$ and $\overline{\delta}: X[\varepsilon] \to X$ the map of schemes determined by (and determining) δ : any section f of \mathcal{O}_X is mapped to the section $f + \delta(f)\varepsilon$ of $\mathcal{O}_X[\varepsilon]$.

If X is nonsingular, we can consider the flow $\Theta: \mathcal{U} \to X^{\mathrm{an}}$ associated with χ^{an} , where $\mathcal{U} \subset X[t]^{\mathrm{an}} = \mathbb{C} \times X^{\mathrm{an}}$ is an open neighbourhood of $\mathcal{X} = \{0\} \times X^{\mathrm{an}}$.

^{*}Partially supported by MTM2007-66929, MTM2010-19298 and FEDER.

It turns out that for any holomorphic (or algebraic) function f on an open set $V \subset X^{\mathrm{an}}$, the function $\Theta^*(f) = f \circ \Theta$ is given by

$$(t,p) \in \Theta^{-1}(V) \subset \mathbb{C} \times X^{\mathrm{an}} \mapsto \sum_{i=0}^{\infty} t^{i} \frac{\delta^{i}(f)}{i!}(p) \in \mathbb{C}$$

for |t| small enough. Hence, the formal completion of Θ along \mathcal{X} , $\widehat{\Theta}: \widehat{\mathcal{U}} = \widehat{X[t]^{\mathrm{an}}} \to X^{\mathrm{an}}$, comes from the purely (formal) algebraic map $\widehat{X[t]} \to X$ associated with the *exponential map* $e^{t\delta}: \mathcal{O}_X \to \mathcal{O}_X[[t]]$ attached to χ (or to δ) defined as

$$e^{t\delta}(f) = \sum_{i=0}^{\infty} t^i \frac{\delta^i(f)}{i!}$$

for any regular function f on some Zariski open set of X.

The exponential map $e^{t\delta}$ is a lifting of δ (it coincides with $\overline{\delta} \mod t^2$) and it can be regarded as the algebraic incarnation of the integration of the vector field χ .

The exponential map of a vector field makes sense not only over the complex numbers, but over any field of characteristic zero, and in fact it also works if X is eventually singular. However, it does not make sense over a field k of positive characteristic.

Nevertheless, the notion of $Hasse-Schmidt\ derivation\$ allows us to define what integrability means for a vector field in such a case (see [1, 9]). Given a commutative ring k and a commutative k-algebra A, a Hasse-Schmidt derivation of A over k (of length ∞) is a sequence $D=(\mathrm{Id},D_1,D_2,D_3,\ldots)$ of k-linear operators of A which appear as the coefficients of a k-algebra map $\Phi:A\to A[[t]]$ such that $\Phi(a)\equiv a\mod t$ for all $a\in A$: $\Phi(a)=a+D_1(a)t+D_2(a)t^2+\cdots$. That property is equivalent to the fact that the D_i satisfy the Leibniz equality:

$$D_0 = \operatorname{Id}, \quad D_i(ab) = \sum_{r+s=i} D_r(a)D_s(b) \quad \forall a, b \in A, \ \forall i \ge 1.$$

A k-linear derivation $\delta: A \to A$ is said to be $(\infty$ -)integrable if there is a Hasse–Schmidt derivation D of A over k (of length ∞) such that $D_1 = \delta$, or in other words, if the k-algebra map $\overline{\delta}: a \in A \mapsto a + \delta(a)\varepsilon \in A[\varepsilon] = A[[t]]/(t^2)$ can be lifted up to a k-algebra map $\Phi: A \to A[[t]]$. The set of k-linear derivations of A which are integrable is a submodule of $\operatorname{Der}_k(A)$, which is denoted by $\operatorname{Ider}_k(A)$.

When A is a smooth k-algebra over an arbitrary commutative ring k or when k contains the rational numbers, any k-linear derivation $\delta: A \to A$ is $(\infty$ -)integrable. The modules $\mathrm{Ider}_k(A)$, and more generally, the Hasse–Schmidt derivations of A over k seem to play an important role among the differential structures in Commutative Algebra and Algebraic Geometry (see [17], [12]). They behave better in positive characteristic than $\mathrm{Der}_k(A)$ (see for instance [11] or [13]) and one expects that they can help to understand (some of) the differences between singularities in zero and non-zero characteristics, but they are difficult to deal with. For instance, it is not clear at all that $(\infty$ -)integrability is a local property (in the sense that can be tested locally at the primes ideals of A).

For a given positive integer m, the m-integrability of a k-linear derivation $\delta: A \to A$ is defined as the existence of a k-algebra map $\Phi: A \to A[[t]]/(t^{m+1})$ lifting the map $\overline{\delta}$ defined above. The set of k-linear derivations of A which are m-integrable is a submodule of $\operatorname{Der}_k(A)$, which is denoted by $\operatorname{Ider}_k(A;m)$. One obviously has $\operatorname{Der}_k(A) = \operatorname{Ider}_k(A;1) \supset \operatorname{Ider}_k(A;2) \supset \operatorname{Ider}_k(A;3) \supset \cdots \supset \operatorname{Ider}_k(A;\infty) = \operatorname{Ider}_k(A)$.

This paper is devoted to the study of the modules $\operatorname{Ider}_k(A; m)$, for $m \geq 1$.

One of the main difficulties when dealing with m-integrability of a derivation is that one cannot proceed step by step: a derivation δ can be (m+r)-integrable, but it may have an intermediate m-integral $D = (\mathrm{Id}, D_1 = \delta, D_2, \ldots, D_m)$ which does not extends up to a Hasse–Schmidt derivation of length (n+r) (cf. Example 3.7 in [12]).

Our main results are the following:

(I) If A is a finitely presented k-algebra and m is a positive integer, then the property of being m-integrable for a k-derivation δ of A is a local property, i.e. δ is m-integrable if and only if the induced derivation $\delta_{\mathfrak{p}}: A_{\mathfrak{p}} \to A_{\mathfrak{p}}$ is m-integrable for each prime ideal $\mathfrak{p} \subset A$. As a consequence, for any locally finitely presented morphism of schemes $f: X \to S$ and any positive integer m, the S-derivations of X which are locally m-integrable form a quasi-coherent submodule $Ider_S(\mathfrak{O}_X;m) \subset Der_S(\mathfrak{O}_X)$ such that, for any affine open sets $U = \operatorname{Spec} A \subset X$ and $V = \operatorname{Spec} k \subset S$, with $f(U) \subset V$, we have $\Gamma(U, Ider_S(\mathfrak{O}_X;m)) = \operatorname{Ider}_k(A;m)$ and $Ider_S(\mathfrak{O}_X;m)_p = \operatorname{Ider}_{\mathfrak{O}_{S,f(p)}}(\mathfrak{O}_{X,p};m)$ for each $p \in X$ (see Theorem (2.3.6) and Corollary (2.3.7)). We have then a decreasing sequence of quasi-coherent modules

$$Der_S(\mathcal{O}_X) = Ider_S(\mathcal{O}_X; 1) \supset Ider_S(\mathcal{O}_X; 2) \supset Ider_S(\mathcal{O}_X; 3) \supset \cdots$$

and all the quotients $\operatorname{Der}_S(\mathfrak{O}_X)/\operatorname{Ider}_S(\mathfrak{O}_X;m)$ are supported by the non-smoothness locus of $f:X\to S$.

(II) For a given k-algebra A and for any positive integer m, there is a constructive procedure to see whether <u>all</u> k-derivations of A are m-integrable or not. In particular, if A and k are "computable" rings, then the above procedure becomes an effective algorithm (although of exponential complexity with respect to m) to decide whether the equality $\operatorname{Ider}_k(A;m) = \operatorname{Der}_k(A)$ is true or not (see 2.5).

Let us now comment on the content of this paper.

In section 1 we review the notion of Hasse–Schmidt derivation and its basic properties. We study logarithmic Hasse–Schmidt derivations with respect to an ideal I of some ambient algebra A and their relationship with Hasse–Schmidt derivations of the quotient A/I. In the last part we focus on the description of Hasse–Schmidt derivations on polynomial or power series algebras.

Section 2 contains the main results of this paper. First, we define m-integrability and logarithmic m-integrability and give a characterization of (m+1)-integrability for a Hasse–Schmidt derivation of length m. In section 2.2 we give some criteria for a derivation to be integrable, based on and extending previous results of [9] and [15]. Next, we study the behaviour of m-integrability under localization, for finite m, and prove (I) above. In the last part we prove the results needed to justify procedure (II) above.

In Section 3 we first compute some concrete examples and illustrate the nonlinear equations one encounters when computing systems of generators of the modules $\operatorname{Ider}_k(A;m)$. In the second part we state some questions, which seem to be important for understanding the relationship between the modules of m-integrable derivations and singularities.

I would like to thank Herwig Hauser and Orlando Villamayor for many helpful and inspiring discussions, and also Herwig Hauser for proposing the last two examples in section 3. I would also like to thank Herwig Hauser and Eleonore Faber for some comments and suggestions on a previous version of this paper.

1 Notations and preliminaries

1.1 Notations

Throughout the paper we will use the following notations:

- -) k will be a commutative ring and A a commutative k-algebra.
- -) $\mathbb{N}_+ := \{ n \in \mathbb{N} \mid n \ge 1 \}, \overline{\mathbb{N}} := \mathbb{N} \cup \{ \infty \}, \overline{\mathbb{N}}_+ := \mathbb{N}_+ \cup \{ \infty \}.$
- -) If $n \in \mathbb{N}_+$, $[n] := \{0, 1, \dots, n\}$, $[n]_+ := [n] \cap \mathbb{N}_+$ and $[\infty] := \mathbb{N}$.
- -) If $n \in \mathbb{N}_+$, $A_n := A[[t]]/(t^{n+1})$ and $A_{\infty} = A[[t]]$. Each A_n is an augmented A-algebra, the augmentation ideal $\ker(A_n \to A)$ being generated by t.
- -) For $n \in \overline{\mathbb{N}}_+$ and $m \in [n]_+$, let us denote by $\pi_{nm} : A_n \to A_m$ the natural epimorphism of augmented A-algebras.
- -) If $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, supp $\alpha = \{r \in \{1, \dots, d\} \mid \alpha_r \neq 0\}$ and $|\alpha| := \alpha_1 + \dots + \alpha_d$.
- -) The ring of k-linear differential operators of A will be denoted by $\operatorname{Diff}_{A/k}$ (see [5]).
- -) For $A = k[x_1, \ldots, x_d]$ or $A = k[[x_1, \ldots, x_d]]$, we will denote by $\partial_r : A \to A$ the partial derivative with respect to x_r .

1.2 Hasse-Schmidt derivations

In this section we remind the definition and basic facts of Hasse–Schmidt derivations (see [6],[10], §27, and [14], [17], [12] for more recent references). We also introduce the basic constructions that will be used throughout the paper.

(1.2.1) DEFINITION. A Hasse–Schmidt derivation of A (over k) of length $n \ge 1$ (resp. of length ∞) is a sequence $D = (D_i)_{i \in [n]}$ of k-linear maps $D_i : A \longrightarrow A$, satisfying the conditions:

$$D_0 = \operatorname{Id}_A, \quad D_i(xy) = \sum_{r+s=i} D_r(x)D_s(y)$$

for all $x, y \in A$ and for all $i \in [n]$. We denote by $HS_k(A; n)$ the set of all Hasse–Schmidt derivations of A (over k) of length $n \in \overline{\mathbb{N}}$ and $HS_k(A) = HS_k(A; \infty)$.

(1.2.2) The D_1 component of any Hasse-Schmidt derivation $D \in HS_k(A; n)$ is a k-derivation of A. More generally, the D_i component is a k-linear differential operator of order $\leq i$ with $D_i(1) = 0$ for $i = 1, \ldots, n$.

(1.2.3) Any Hasse–Schmidt derivation $D \in \mathrm{HS}_k(A;n)$ is determined by the k-algebra homomorphism $\Phi_D: A \to A_n$ defined by $\Phi_D(a) = \sum_{i=0}^n D_i(a)t^i$ and satisfying $\Phi_D(a) \equiv a \mod t$. The k-algebra homomorphism Φ_D can be uniquely extended to a k-algebra automorphism $\widetilde{\Phi}_D: A_n \to A_n$ with $\widetilde{\Phi}_D(t) = t$:

$$\widetilde{\Phi}_D\left(\sum_{i=0}^n a_i t^i\right) = \sum_{i=0}^n \Phi(a_i) t^i.$$

So, there is a bijection between $\operatorname{HS}_k(A;n)$ and the subgroup of $\operatorname{Aut}_{k-\operatorname{alg}}(A_n)$ consisting of the automorphisms $\widetilde{\Phi}$ satisfying $\widetilde{\Phi}(a) \equiv a \mod t$ for all $a \in A$ and $\widetilde{\Phi}(t) = t$. In particular, $\operatorname{HS}_k(A;n)$ inherits a canonical group structure which is explicitly given by $D \circ D' = D''$ with $D''_l = \sum_{i+j=l} D_i \circ D'_j$, the identity element of $\operatorname{HS}_k(A;n)$ being $(\operatorname{Id}_A,0,0,\ldots)$. It is clear that the map $(Id_A,D_1) \in \operatorname{HS}_k(A;1) \mapsto D_1 \in \operatorname{Der}_k(A)$ is an isomorphism of groups, where we consider the addition as internal operation in $\operatorname{Der}_k(A)$.

(1.2.4) For any $a \in A$ and any $D \in \operatorname{HS}_k(A; n)$, the sequence $a \bullet D$ defined by $(a \bullet D)_i = a^i D_i$, $i \in [n]$, is again a Hasse–Schmidt derivation of A over k of length n and $\Phi_{a \bullet D}(b)(t) = \Phi_D(b)(at)$ for all $b \in A$. We have $(aa') \bullet D = a \bullet (a' \bullet D)$, $1 \bullet D = D$ and $0 \bullet D =$ the identity element.

(1.2.5) For $1 \leq m \leq n \in \overline{\mathbb{N}}$, let us denote by $\tau_{nm} : \mathrm{HS}_k(A;n) \to \mathrm{HS}_k(A;m)$ the truncation map defined in the obvious way. One has $\Phi_{\tau_{nm}D} = \pi_{nm} \circ \Phi_D$. Truncation maps are group homomorphisms and they satisfy $\tau_{nm}(a \bullet D) = a \bullet \tau_{nm}D$. It is clear that the group $\mathrm{HS}_k(A;\infty)$ is the inverse limit of the groups $\mathrm{HS}_k(A;m)$, $m \in \mathbb{N}$.

(1.2.6) DEFINITION. Let $q \geq 1$ be an integer or $q = \infty$, and $D \in HS_k(A;q)$. For each integer $m \geq 1$ we define D[m] as the Hasse-Schmidt derivation (over k) of length mq determined by the k-algebra map obtained by composing the following maps:

$$A \xrightarrow{\Phi_D} A_q = A[[t]]/(t^{q+1}) \xrightarrow{\overline{t} \mapsto \overline{t}^m} A_{mq} = A[[t]]/(t^{mq+1}).$$

In the case q = 1 and $D = (Id_A, \delta)$, we simply denote $\delta[m] := D[m]$.

If
$$D = (\mathrm{Id}_A, D_1, D_2, \dots) \in \mathrm{HS}_k(A; q)$$
, then

$$D[m] = (\mathrm{Id}_A, 0, \dots, 0, D_1, 0, \dots, 0, D_2, 0, \dots) \in \mathrm{HS}_k(A; mq).$$

The map $D \in \mathrm{HS}_k(A;q) \mapsto D[m] \in \mathrm{HS}_k(A;qm)$ is a group homomorphism and we have $(a^m \bullet D)[m] = a \bullet D[m]$, $(\tau_{qq'}D)[m] = \tau_{qm,q'm}(D[m])$ for $a \in A, 1 \le q' \le q$.

(1.2.7) DEFINITION. For each $n \in \overline{\mathbb{N}}_+$ and each $E \in HS_k(A;n)$, we denote $\ell(E) = 0$ if $E_1 \neq 0$, $\ell(E) = n$ if E is the identity and $\ell(E) = maximun$ of the $r \in [n]$ such that $E_1 = \cdots = E_r = 0$ otherwise.

(1.2.8) DEFINITION. Let $I \subset A$ be an ideal and $m \in \overline{\mathbb{N}}_+$. We say that:

1) A k-derivation $\delta: A \to A$ is I-logarithmic if $\delta(I) \subset I$. The set of k-linear derivations of A which are I-logarithmic is denoted by $\operatorname{Der}_k(\log I)$.

2) A Hasse-Schmidt derivation $D \in \operatorname{HS}_k(A;m)$ is called I-logarithmic if $D_i(I) \subset I$ for any $i \in [m]$. The set of Hasse-Schmidt derivations $D \in \operatorname{HS}_k(A;m)$ which are I-logarithmic is denoted by $\operatorname{HS}_k(\log I;m)$. When $m = \infty$ it will be simply denoted by $\operatorname{HS}_k(\log I)$.

The set $\operatorname{Der}_k(\log I)$ is obviously a A-submodule of $\operatorname{Der}_k(A)$. Any $\delta \in \operatorname{Der}_k(\log I)$ gives rise to a unique $\overline{\delta} \in \operatorname{Der}_k(A/I)$ satisfying $\overline{\delta} \circ \pi = \pi \circ \delta$, where $\pi: A \to A/I$ is the natural projection. Moreover, if $A = k[x_1, \ldots, x_d]$ or $A = k[[x_1, \ldots, x_d]]$, the sequence of A-modules

$$0 \to I \operatorname{Der}_k(A) \xrightarrow{\operatorname{incl.}} \operatorname{Der}_k(\log I) \xrightarrow{\delta \mapsto \overline{\delta}} \operatorname{Der}_k(A/I) \to 0$$

is exact.

(1.2.9) In the same vein, the set $\operatorname{HS}_k(\log I;m)$ is a subgroup of $\operatorname{HS}_k(A;m)$ and we have $A \bullet \operatorname{HS}_k(\log I;m) \subset \operatorname{HS}_k(\log I;m)$, $\operatorname{HS}_k(\log I;m)[n] \subset \operatorname{HS}_k(\log I;mn)$, $n \in \mathbb{N}$. A $D \in \operatorname{HS}_k(A;m)$ is I-logarithmic if and only if its corresponding k-algebra homomorphism $\Phi_D: A \to A_m$ satisfies $\Phi_D(I) \subset I_m := \ker \pi_m$, where $\pi_m: A_m \to (A/I)_m$ is the natural projection¹. Moreover, a I-logarithmic Hasse–Schmidt derivation $D \in \operatorname{HS}_k(\log I;m)$ gives rise to a unique $\overline{D} \in \operatorname{HS}_k(A/I;m)$ such that $\overline{D}_i \circ \pi = \pi \circ D_i$ for all $i \in [m]$, and the following diagram is commutative

$$A \xrightarrow{\Phi_D} A_m$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi_m}$$

$$A/I \xrightarrow{\Phi_{\overline{D}}} (A/I)_m.$$

The map $\Pi_m: D \in \mathrm{HS}_k(\log I; m) \to \overline{D} \in \mathrm{HS}_k(A/I; m)$ is clearly a homomorphism of groups and $\Pi_m(a \bullet D) = \pi(a) \bullet \Pi_m(D)$. So, its kernel contains the subgroup $I \bullet \mathrm{HS}_k(A; m)$ generated by the $a \bullet E$, with $a \in I$ and $E \in \mathrm{HS}_k(A; m)$. It is also clear that $\tau_{mn} \circ \Pi_m = \Pi_n \circ \tau_{mn}$ and $(\Pi_m D)[n] = \Pi_{mn}(D[n])$.

(1.2.10) Let $S \subset A$ be a multiplicative set. For each k-linear differential operator $P: A \to A$, let us denote by $\widetilde{P}: S^{-1}A \to S^{-1}A$ its canonical extension. We know that the map $P \in \operatorname{Diff}_{A/k} \mapsto \widetilde{P} \in \operatorname{Diff}_{S^{-1}A/k}$ is a ring homomorphism. Let $m \geq 1$ be an integer or $m = \infty$ and $\mathfrak{a} \subset A$ an ideal. Here is a summary of the basic facts of the behaviour of Hasse-Schmidt derivations under localization:

-) For any $D = (D_i) \in \mathrm{HS}_k(A; m)$, the sequence $\widetilde{D} := (\widetilde{D_i})$ is a Hasse-Schmidt derivation of $S^{-1}A$ (over k of length m) and the following diagram is commutative

$$A \xrightarrow{\Phi_D} A_m \downarrow_{\text{can.}} \downarrow_{\text{can.}}$$

$$S^{-1}A \xrightarrow{\Phi_{\widetilde{D}}} (S^{-1}A)_m.$$

Moreover, if D is \mathfrak{a} -logarithmic, then \widetilde{D} is $(S^{-1}\mathfrak{a})$ -logarithmic.

Observe that $\ker \pi_m = IA_m$ when I is finitely generated or m is finite.

-) The map $\Theta_m: D \in \mathrm{HS}_k(A;m) \to \widetilde{D} \in \mathrm{HS}_k(S^{-1}A;m)$ is a group homomorphism, $\Theta_m(a \bullet D) = \frac{a}{1} \bullet \Theta_m(D)$ and the following diagram is commutative:

$$\operatorname{HS}_{k}(\log \mathfrak{a}; m) \xrightarrow{\Theta_{m}} \operatorname{HS}_{k}(\log(S^{-1}\mathfrak{a}); m)$$

$$\downarrow^{\Pi_{m}} \qquad \downarrow^{\Pi_{m}}$$

$$\operatorname{HS}_{k}(A/\mathfrak{a}; m) \xrightarrow{\Theta_{m}} \operatorname{HS}_{k}(S^{-1}A/S^{-1}\mathfrak{a}; m).$$

Moreover, $\tau_{mn} \circ \Theta_m = \Theta_n \circ \tau_{mn}$ and $(\Theta_m D)[n] = \Theta_{mn}(D[n])$.

The extension of Hasse–Schmidt derivations to rings of fractions is a particular case of the formally étale extensions (cf. [8] and [15], th. 1.5).

1.3 Hasse–Schmidt derivations of polynomial or formal power series algebras

Throughout this section we assume that $A = k[x_1, \ldots, x_d]$ or $A = k[[x_1, \ldots, x_d]]$. The Taylor differential operators $\Delta^{(\alpha)}: A \to A, \ \alpha \in \mathbb{N}^d$, are defined by:

$$g(x_1 + T_1, \dots, x_d + T_d) = \sum \Delta^{(\alpha)}(g)T^{\alpha}, \quad \forall g \in A.$$

It is well known that $\{\Delta^{(\alpha)}\}_{|\alpha|\leq i}$ is a basis of the left (resp. right) A-module of k-linear differential operators of A of order $\leq i$. So, if $D\in \mathrm{HS}_k(A;m)$, there are unique $C^i_{\alpha}\in A,\ \alpha\in\mathbb{N}^d,\ 0< i\leq |\alpha|\in[m]_+,\ \text{such that}\ D_i=\sum_{0<|\alpha|\leq i}C^i_{\alpha}\Delta^{(\alpha)},\ i\in[m]_+.$ On the other hand, there are unique $c_{ri}\in A,\ i\in[m]_+,\ 1\leq r\leq d,$ such that

$$\Phi_D(x_r) = x_r + \sum_{i=1}^m c_{ri} t^i, \quad 1 \le r \le d.$$

In fact, any system of $c_{ri} \in A$, $i \in [m]_+$, $1 \le r \le d$, determines uniquely such a homomorphism of k-algebras $A \to A_m$ and so a Hasse–Schmidt derivation $D \in \mathrm{HS}_k(A;m)$.

The following proposition gives the relationship between the C^i_{α} and the c_{ri} above. Its proof does not contain any surprise and it is left up to the reader.

(1.3.1) Proposition. With the above notations, the following properties hold:

1)
$$c_{ri} = D_i(x_r) = C_{e_r}^i$$
, with $e_r = (0, \dots, 1, \dots, 0)$, for all $i \in [m]_+$, $r = 1, \dots, d$.

$$C_{\alpha}^{i} = \sum_{\substack{\{\varepsilon_{r}\}_{r \in \text{supp }\alpha} \\ \varepsilon_{r} \geq \alpha_{r}, |\varepsilon| = i}} \left(\prod_{r \in \text{supp }\alpha} \left(\sum_{\substack{\beta_{1} + \dots + \beta_{\alpha_{r}} = \varepsilon_{r} \\ \beta_{k} > 0}} \prod_{k=1}^{\alpha_{r}} c_{r,\beta_{k}} \right) \right)$$

for all $\alpha \in \mathbb{N}^d$, $|\alpha| \in [m]_+$, $0 < i \le |\alpha|$.

The above proposition is a particular case of Theorem 2.8 in [3]. For the sake of completeness we include, without proof, the following result.

- (1.3.2) PROPOSITION. Let $C_{\alpha}^i \in A$, $\alpha \in \mathbb{N}^d$, $0 < i \le |\alpha| \in [m]_+$, be a system of elements of A and define $D_0 = \operatorname{Id}_A$, $D_i = \sum_{0 < |\alpha| \le i} C_{\alpha}^i \Delta^{(\alpha)}$, $i \in [m]_+$. The following properties are equivalent:
 - (a) The sequence $D = (D_i)_{i \in [m]}$ is a Hasse-Schmidt derivation of A over k of length m.
 - (b) For all $i \in [m], i \geq 2$, for all $\varrho \in \mathbb{N}^d$ with $2 \leq |\varrho| \leq i$ and for all $\beta, \gamma \in \mathbb{N}^d$ with $\varrho = \beta + \gamma$, $|\beta|, |\gamma| > 0$ we have $C^i_{\varrho} = \sum_{j} C^j_{\beta} C^l_{\gamma}$, where the summation indexes are the (j,l) with $j \geq |\beta|, l \geq |\gamma|$ and j+l=i.

Let us notice that, if the equivalent properties of the preceding proposition hold, then the C^i_{α} with $2 \leq |\alpha| \leq i$ are determined by the C^j_{β} with $1 \leq |\beta| \leq j \leq i-1$. This applies in particular to the symbol of the D_i , $\sigma(D_i) = \sum_{|\alpha|=i} C^i_{\alpha} \xi^{\alpha}$, which only depend on D_1 (compare with Proposition 2.6 in [12]).

(1.3.3) Definition. The Taylor Hasse-Schmidt derivations of A are the

$$\Delta^{(s)} := (\mathrm{Id}_A, \Delta_1^{(s)}, \Delta_2^{(s)}, \Delta_3^{(s)}, \dots) \in \mathrm{HS}_k(A), \quad 1 \le s \le d,$$

where
$$\Delta_i^{(s)} = \Delta^{(0,\dots,i_i,\dots,0)}$$
 for each $i \geq 1$.

(1.3.4) PROPOSITION. Assume that $R = k[x_1, \ldots, x_d]$, $S \subset R$ is a multiplicative set and $A = S^{-1}R$ or $A = k[[x_1, \ldots, x_d]]$. For any ideal $I \subset A$, the group homomorphisms $\Pi_m : \mathrm{HS}_k(\log I; m) \to \mathrm{HS}_k(A/I; m)$, $m \in \overline{\mathbb{N}}$, (see (1.2.9)) are surjective.

PROOF. Let us prove the proposition in the case $A = S^{-1}R$, the case $A = k[[x_1, \ldots, x_d]]$ being completely similar. Let us call $\sigma: R \to A, \pi: A \to A/I, \pi_m: A_m \to (A/I)_m$ the canonical maps and let $E \in HS_k(A/I; m)$ be any Hasse–Schmidt derivation. Let $a_{ri} \in A$ be elements such that

$$\Phi_E(\pi(\sigma(x_r))) = \pi(\sigma(x_r)) + \sum_{i \in [m]} \pi(a_{ri})t^i \in (A/I)_m, \quad r = 1, \dots, d,$$

and let $\Psi: R \to A_m$ be the k-algebra map defined by

$$\Psi(x_r) = \sigma(x_r) + \sum_{i \in [m]} a_{ri}t^i \in A_m, \quad r = 1, \dots, d.$$

Since $\Psi(f) \equiv \sigma(f) \mod t$ for each $f \in R$, we deduce that $\Psi(s)$ is invertible for all $s \in S$ and the map Ψ induces $\widetilde{\Psi}: A \to A_m$. It is clear that $\widetilde{\Psi}(a) \equiv a \mod t$ for each $a \in A$ and $\pi_m \circ \widetilde{\Psi} = \Phi_E \circ \pi$. So, $\widetilde{\Psi}$ induces a *I*-logarithmic Hasse-Schmidt derivation $D \in \operatorname{HS}_k(\log I; m)$ such that $\Pi_m(D) = E$ (see (1.2.9)). Q.E.D.

(1.3.5) Proposition. Assume that $R = k[x_1, \ldots, x_d]$, $S \subset R$ is a multiplicative set and let $\mathfrak{a} \subset R$ be a finitely generated ideal. For any (finite) integer $m \geq 1$, the map

$$(s,D) \in S \times \mathrm{HS}_k(\log \mathfrak{a};m) \mapsto \frac{1}{s} \bullet \Theta_m(D) \in \mathrm{HS}_k(\log(S^{-1}\mathfrak{a});m)$$

is surjective.

PROOF. Let $E \in \mathrm{HS}_k(\log(S^{-1}\mathfrak{a}); m)$ be any $(S^{-1}\mathfrak{a})$ -logarithmic Hasse–Schmidt derivation. Since m is finite, there are $a_{ij} \in R$, $1 \le i = 1 \le d$, $1 \le j \le m$ and $\sigma \in S$ such that

$$\Phi_E\left(\frac{x_i}{1}\right) = \frac{x_i}{1} + \left(\frac{a_{i1}}{\sigma}\right)t + \dots + \left(\frac{a_{im}}{\sigma}\right)t^m \in (S^{-1}R)_m, \quad i = 1, \dots, d.$$

Let us consider the k-algebra map $\Phi^0: R \to R_m$ given by

$$\Phi^{0}(x_{i}) = x_{i} + a_{i1}t + \sigma a_{i2}t^{2} + \dots + \sigma^{m-1}a_{im}t^{m} \in R_{m}, \quad i = 1, \dots, d$$

and the corresponding Hasse-Schmidt derivation $D^0 \in \operatorname{HS}_k(R;m)$ with $\Phi^0 = \Phi_{D^0}$. It is clear that $\binom{\sigma}{1} \bullet E = \Theta_m(D^0)$. Let $f_1, \ldots, f_u \in \mathfrak{a}$ be a finite system of generators. Since $\Theta_m(D^0)$ is $(S^{-1}\mathfrak{a})$ -logarithmic, we deduce the existence of a $\tau \in S$ such that $\tau \Phi_{D^0}(f_l) \in A_m\mathfrak{a}$ for all $l = 1, \ldots, u$. So, $D := \tau \bullet D^0$ is \mathfrak{a} -logarithmic and $E = \left(\frac{1}{\sigma\tau}\right) \bullet \Theta_m(D)$. Q.E.D.

Proposition (1.3.5) is false for $m = \infty$, as shown for instance in example 1.4 in [15].

(1.3.6) COROLLARY. Assume that A is a finitely presented k-algebra and let $T \subset A$ be a multiplicative set. Then, for any (finite) integer $m \geq 1$, the map

$$(t, E) \in T \times \mathrm{HS}_k(A; m) \mapsto \frac{1}{t} \bullet \Theta_m(E) \in \mathrm{HS}_k(T^{-1}A; m)$$

is surjective.

PROOF. We may assume that $A = R/\mathfrak{a}$ with $R = k[x_1, \ldots, x_d]$ and $\mathfrak{a} \subset R$ a finitely generated ideal. Denote by $\pi: R \to A$ the natural projection and $S = \pi^{-1}(T)$. We have $T^{-1}A = S^{-1}R/S^{-1}\mathfrak{a}$. Let us look at the following commutative diagram

$$\begin{split} S \times \mathrm{HS}_k(\log \mathfrak{a}; m) & \longrightarrow \mathrm{HS}_k(\log(S^{-1}\mathfrak{a}); m) \\ \downarrow^{\pi \times \Pi_m} & \downarrow^{\Pi_m} \\ T \times \mathrm{HS}_k(A; m) & \longrightarrow \mathrm{HS}_k(T^{-1}A; m). \end{split}$$

The vertical arrows are surjective by Proposition (1.3.4). To conclude, we apply Proposition (1.3.5). Q.E.D.

2 Integrability

2.1 Integrable Hasse–Schmidt derivations

In this subsection, A will be again an arbitrary k-algebra.

(2.1.1) DEFINITION. (Cf. [1, 9]) We say that a k-derivation $\delta: A \to A$ is n-integrable (over k), with $n \in \overline{\mathbb{N}}$, if there is a Hasse-Schmidt derivation $D \in \mathrm{HS}_k(A; n)$ such that $D_1 = \delta$. A such D will be called a n-integral of δ . The set of n-integrable k-derivations of A is denoted by $\mathrm{Ider}_k(A; n)$. We simply say that δ is integrable if it is ∞ -integrable and we denote $\mathrm{Ider}_k(A) = \mathrm{Ider}_k(A; \infty)$.

More generally, we say that a Hasse-Schmidt derivation $D' \in HS_k(A; m)$ is n-integrable (over k), with $m, n \in \overline{\mathbb{N}}, n \geq m$, if there is a Hasse-Schmidt derivation $D \in HS_k(A; n)$ such that $\tau_{nm}D = D'$. A such D will be called a n-integral of D'. The set of n-integrable Hasse-Schmidt derivations of A over k of length m is denoted by $IHS_k(A; m; n)$. We simply say that D' is integrable if it is ∞ -integrable and we denote $IHS_k(A; m) = IHS_k(A; m; \infty)$.

It is clear that the $\operatorname{Ider}_k(A;n)$ are A-submodules of $\operatorname{Der}_k(A)$, $\operatorname{Der}_k(A) = \operatorname{Ider}_k(A;1) \supset \operatorname{Ider}_k(A;2) \supset \operatorname{Ider}_k(A;3) \supset \cdots$ and

$$Ider_k(A) \subset \bigcap_{n \in \mathbb{N}_+} Ider_k(A; n). \tag{1}$$

It is also clear that the $IHS_k(A; m; n)$ are subgroups of $IHS_k(A; m)$, stable by the \bullet operation, $IHS_k(A; m) = IHS_k(A; m; m) \supset IHS_k(A; m; m + 1) \supset \cdots$ and

$$IHS_k(A; m) \subset \bigcap_{n \ge m} IHS_k(A; m; n).$$
 (2)

- (2.1.2) EXAMPLE. (1) Let $n \geq 1$ be an integer. If n! is invertible in A, then any k-derivation δ of A is n-integrable: we can take $D \in \mathrm{HS}_k(A;n)$ defined by $D_i = \frac{\delta^i}{i!}$ for $i = 0, \ldots, n$. In the case $n = \infty$, if $\mathbb{Q} \subset A$, one proves in a similar way that any k-derivation of A is integrable.
- (2) If A is 0-smooth (i.e. formally smooth for the discrete topologies) k-algebra, then any k-derivation of A is integrable (cf. [10], Theorem 27.1).
- (2.1.3) Remark. A particularly important case of example (2.1.2) is $A = k[x_1, \ldots, x_d]$ or $A = k[[x_1, \ldots, x_d]]$. In this case we can do better than in example (2.1.2) and even exhibit a special integral for each $D \in \mathrm{HS}_k(A;m)$, $m \in \mathbb{N}_+$. Namely, consider the Hasse–Schmidt derivation $\varepsilon(D) \in \mathrm{HS}_k(A)$ determined by the k-algebra map $A = k[x_1, \ldots, x_d] \to A[[t]]$ sending each x_r to $\sum_{i \in [m]} D_i(x_r) t^i \in A[[t]]$. In other words, if $\varepsilon(D) = (D_i')_{i \in \mathbb{N}}$, then $D_i' = D_i$ for all $i \in [m]$ and $D_i'(x_r) = 0$ for all i > m and all $r = 1, \ldots, d$. It is clear that $\varepsilon(\mathrm{Id}_A, \partial_s)$ coincides with the "Taylor Hasse-Schmidt derivation" $\Delta^{(s)}$ defined in (1.3.3).

Definition (2.1.1) admits the following obvious logarithmic version.

- (2.1.4) DEFINITION. Let $I \subset A$ be an ideal and $n \in \overline{\mathbb{N}}$. We say that:
 - 1) A I-logarithmic derivation $\delta \in \operatorname{Der}_k(\log I)$ is I-logarithmically n-integrable if there is a $D \in \operatorname{HS}_k(\log I; n)$ such that $D_1 = \delta$. A such D will be called a I-logarithmic n-integral of δ . The set of I-logarithmic k-linear derivations of A which are I-logarithmically n-integrable will be denoted by $\operatorname{Ider}_k(\log I; n)$. When $n = \infty$ it will be simply denoted by $\operatorname{Ider}_k(\log I)$.
 - 2) A I-logarithmic Hasse–Schmidt derivation $D' \in \operatorname{HS}_k(\log I; m)$, with $m \leq n$, is I-logarithmically n-integrable if there is a $D \in \operatorname{HS}_k(\log I; n)$ such that $\tau_{nm}D = D'$. A such D will be called a I-logarithmic n-integral of D'. The set of I-logarithmically n-integrable I-logarithmic Hasse-Schmidt derivations of A over k of length m will be denoted by $\operatorname{IHS}_k(\log I; m; n)$. When $n = \infty$ it will be simply denoted by $\operatorname{IHS}_k(\log I; m)$.

It is clear that the $\operatorname{Ider}_k(\log I; n)$ are A-submodules of $\operatorname{Der}_k(\log I)$ and $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; 1) \supset \operatorname{Ider}_k(\log I; 2) \supset \cdots$

$$\operatorname{Ider}_{k}(\log I) \subset \bigcap_{n \in \mathbb{N}_{+}} \operatorname{Ider}_{k}(\log I; n). \tag{3}$$

It is also clear that the $IHS_k(\log I; m; n)$ are subgroups of $IHS_k(\log I; m)$, stable by the \bullet operation, $IHS_k(\log I; m) = IHS_k(\log I; m; m) \supset IHS_k(\log I; m; m + 1) \supset \cdots$ and

$$IHS_k(\log I; m) \subset \bigcap_{n \ge m} IHS_k(\log I; m; n). \tag{4}$$

The inclusions (3) and (4) seem not to be equalities in general (see question (3.6.1)). Nevertheless, we have the following proposition.

- (2.1.5) Proposition. The following properties hold:
 - 1) Let $n \geq 1$ be an integer. If any k-derivation of A is n-integrable, then any Hasse-Schmidt derivation $D \in HS_k(A; m)$ is also n-integrable, for all $m \leq n$.
 - 2) If any k-derivation is n-integrable for all integers $n \geq 1$, then any Hasse–Schmidt derivation $D \in \mathrm{HS}_k(A;m)$ is also ∞ -integrable, for all integers $m \geq 1$.

PROOF. For 1) we can mimic the proof of Proposition 1.4 in [12] by using Theorem 2.8 in [3] (see Remark 1.5 in [12]). For 2), we apply 1) and we obtain a sequence $E^n \in \mathrm{HS}_k(A;n), n \geq m$, with $E^m = D$ and $\tau_{n+1,n}E^{n+1} = E^n$ for all $n \geq m$. It is clear that the inverse limit of the E^n (see (1.2.5)) is a ∞ -integral of D. Q.E.D.

(2.1.6) LEMMA. Assume that $R = k[x_1, \ldots, x_d]$, $S \subset R$ is a multiplicative set and $A = S^{-1}R$ or $A = k[[x_1, \ldots, x_d]]$. Let $I \subset A$ be an ideal and $n \geq 1$ an integer. Then, any Hasse–Schmidt derivation D in the kernel of the group homomorphism Π_n (see (1.2.9)) is I-logarithmically $(\infty$ -)integrable.

PROOF. Let us prove the proposition in the case $A = S^{-1}R$, the case $A = k[[x_1, \ldots, x_d]]$ being completely similar. Denote by $\widetilde{\delta_r}: A \to A$ the induced derivation by the partial derivative $\partial_r: R \to R$. We proceed by decreasing induction on $\ell(D)$ (see Definition (1.2.7)). If $\ell(D) = n$, then D is the identity and the result is clear. Let m be an integer with $0 \le m < n$ and suppose that any $D' \in \ker \Pi_n$ with $m+1 \le \ell(D')$ is I-logarithmically integrable, and let $D \in \ker \Pi_n$ with $\ell(D) = m$, i.e. D has the form $(\mathrm{Id}_A, 0, \ldots, 0, D_{m+1}, \ldots, D_n)$ with $D_{m+1} \ne 0$, and so D_{m+1} must be a k-derivation. Since $D \in \ker \Pi_n$, we deduce that $D_i(A) \subset I$ for all i. In particular, there are $a_1, \ldots, a_d \in I$ such that $D_{m+1} = \sum_{r=1}^d a_r \widetilde{\delta_r}$.

The *I*-logarithmic Hasse-Schmidt derivation $E = (a_1 \bullet \widetilde{\Delta^{(1)}}) \circ \cdots \circ (a_d \bullet \widetilde{\Delta^{(d)}}) \in \ker \Pi_{\infty}$ is an $(\infty$ -)integral of D_{m+1} . Let us consider $D' = D \circ (\tau_{\infty n} E[m+1])^{-1} \in \ker \Pi_n$. It is clear that $\ell(D') \geq m+1$ and, by induction hypothesis, D' is *I*-logarithmically integrable. We conclude that $D = D' \circ (\tau_{\infty n} E[m+1])$ is also *I*-logarithmically integrable. Q.E.D.

- (2.1.7) Remark. The proof of the above lemma shows that $\ker \Pi_n$ is generated by the n-truncations of the $(a \bullet E)[m]$, with $a \in I$, $E \in \mathrm{HS}_k(A)$, $m \in [n]$. In fact, for $n = \infty$ we obtain that $\ker \Pi_\infty$ is the closure of subgroup of $\mathrm{HS}_k(\log I)$ generated by the $(a \bullet E)[m]$, with $a \in I$, $E \in \mathrm{HS}_k(A)$ and $m \in \mathbb{N}_+$, where we consider in $\mathrm{HS}_k(A)$ the inverse limit topology of the discrete topologies in the $\mathrm{HS}_k(A;m)$, $m \in \mathbb{N}$ (see (1.2.5)). Namely, for $D \in \ker \Pi_\infty$, by the same procedure as in the proof of the lemma we construct inductively a sequence $E^q = (a_1^q \bullet \widehat{\Delta^{(1)}}) \circ \cdots \circ (a_d^q \bullet \widehat{\Delta^{(d)}}), \ q \geq 1, \ a_r^s \in I$, such that $\ell(D \circ (F^q)^{-1}) \geq q$, where $F^q = E^q[q] \circ \cdots \circ E^1[1]$. So $D \circ (F^q)^{-1}$ tends to the identity element as $q \to \infty$ and D is the limit of F^q as $q \to \infty$.
- (2.1.8) PROPOSITION. Assume that $R = k[x_1, \ldots, x_d]$, $S \subset R$ is a multiplicative set and $A = S^{-1}R$ or $A = k[[x_1, \ldots, x_d]]$. Let $I \subset A$ be an ideal, $m \ge 1$ an integer, $n \in \overline{\mathbb{N}}$ with $n \ge m$ and $E \in \mathrm{HS}_k(A/I;m)$. The following properties are equivalent:
 - (a) E is n-integrable.
 - (b) Any $D \in HS_k(\log I; m)$ with $\overline{D} = E$ is I-logarithmically n-integrable.
 - (c) There is a $D \in HS_k(\log I; m)$ with $\overline{D} = E$ which is I-logarithmically n-integrable.

PROOF. The implication (b) \Rightarrow (c) is an obvious consequence of Proposition (1.3.4) and (c) \Rightarrow (a) comes from (1.2.9). For the remaining implication (a) \Rightarrow (b), let $Z \in \mathrm{HS}_k(A/I;n)$ be an n-integral of E and let $D \in \mathrm{HS}_k(\log I;m)$ be a logarithmic Hasse-Schmidt derivation with $\overline{D} = E$. From Proposition (1.3.4), there is a $U \in \mathrm{HS}_k(\log I;n)$ such that $\overline{U} = Z$. Since $\overline{\tau_{nm}U} = \tau_{nm}\overline{U} = \tau_{nm}Z = E = \overline{D}$, we have $D \circ (\tau_{nm}U)^{-1} \in \ker \Pi_m$ and so, by Lemma (2.1.6), we deduce that D is I-logarithmically n-integrable. Q.E.D.

- (2.1.9) COROLLARY. Under the hypotheses of Proposition (2.1.8), the map $\Pi_m : \mathrm{IHS}_k(\log I; m; n) \to \mathrm{IHS}_k(A/I; m; n)$ is surjective.
- (2.1.10) COROLLARY. Under the hypotheses of Proposition (2.1.8), the following properties are equivalent:
 - (a) $IHS_k(A/I; m; n) = HS_k(A/I; m)$.
 - (b) $IHS_k(\log I; m; n) = HS_k(\log I; m)$.

PROOF. It is a straightforward consequence of the proposition. Q.E.D.

(2.1.11) EXAMPLE. (Normal crossings) Let us take $f = \prod_{i=1}^{e} x_i \in A = k[x_1, \dots, x_d]$ and $I = (f) \subset A$. The A-module $\mathrm{Ider}_k(\log I)$ is generated by

$$\{x_1\partial_1,\ldots,x_e\partial_e,\partial_{e+1},\ldots,\partial_d\}$$

and any of these I-logarithmic derivations are integrable I-logarithmically, since $\Delta^{(j)}, x_i \bullet \Delta^{(i)} \in \mathrm{HS}_k(\log I)$ for $i = 1, \ldots, e$ and $j = e + 1, \ldots, n$. In particular $\mathrm{Ider}_k(\log I) = \mathrm{Der}_k(\log I)$ and $\mathrm{Ider}_k(A/I) = \mathrm{Der}_k(A/I)$.

- (2.1.12) PROPOSITION. Let A be an arbitrary k-algebra, $I \subset A$ an ideal with generators f_l , $l \in L$, and $n \geq 1$ an integer. Let $D \in \operatorname{HS}_k(\log I; n)$ be a I-logarithmic Hasse–Schmidt derivation and assume that D is (n+1)-integrable and let $(\operatorname{Id}_A, D_1, \ldots, D_n, D_{n+1}) \in \operatorname{HS}_k(A; n+1)$ be an (n+1)-integral of D. The following properties are equivalent:
 - (a) D is I-logarithmically (n+1)-integrable.
 - (b) There is a derivation $\delta \in \operatorname{Der}_k(A)$ such that $D_{n+1}(f_l) + \delta(f_l) \in I$ for all $l \in I$.

PROOF. It comes from the fact that any other (n+1)-integral of D must be of the form $(\mathrm{Id}_A, D_1, \ldots, D_n, D_{n+1} + \delta)$ with $\delta \in \mathrm{Der}_k(A)$. Q.E.D.

- (2.1.13) COROLLARY. Assume that $A = k[x_1, \ldots, x_d]$ or $A = k[[x_1, \ldots, x_d]]$. Let $I = (f_1, \ldots, f_p) \subset A$ be an ideal and $n \ge 1$ an integer. Let $D \in \mathrm{HS}_k(\log I; n)$ be a I-logarithmic Hasse-Schmidt derivation and let us consider its integral $D' = \varepsilon(D)$ (see remark (2.1.3)). The following properties are equivalent:
 - (a) D is I-logarithmically (n+1)-integrable.
 - (b) There are $\alpha_r, a_{st} \in A$, r = 1, ..., d, s, t = 1, ..., p, such that

$$D'_{n+1}(f_s) = \alpha_1 (f_s)'_{x_1} + \dots + \alpha_d (f_s)'_{x_d} + a_{s1}f_1 + \dots + a_{sp}f_p \quad \forall s = 1, \dots, p.$$

Moreover, if (b) holds, an explicit I-logarithmic (n+1)-integral of D is given by $(\mathrm{Id}_A, D_1, \ldots, D_n, D'_{n+1} - \delta)$, with $\delta = \sum_{r=1}^d \alpha_r \partial_r$.

- (2.1.14) REMARK. (1) In the case of a "computable" base ring k (for instance, any finitely generated extension of \mathbb{Z}, \mathbb{Q} or of any finite field) and a finitely presented k-algebra A, Proposition (2.1.8) and Corollary (2.1.13) give an effective way to decide whether a given Hasse–Schmidt derivation $D \in \mathrm{HS}_k(A;n)$ of finite length n is (n+1)-integrable or not and, if yes, to compute an explicit (n+1)-integral of D.
- (2) Nevertheless, the question of deciding whether a given Hasse–Schmidt derivation $D \in \mathrm{HS}_k(A;n)$ of finite length n is (n+r)-integrable or not, with $r \geq 2$, is much more involved. First of all, we cannot proceed "step by step", since D can be (n+r)-integrable and simultaneously admit an (n+1)-integral which is not (n+r)-integrable (cf. example 3.7 in [12]). On the other hand, the condition of (n+r)-integrability of $D, r \geq 2$, gives rise to nonlinear equations which seem not obvious to treat in general with the currently available methods, either theoretical or computational (see for instance Lemmas (3.1.1), (3.3.3), (3.5.5)).
- (3) The following example is a very particular case of a general result, but it also serves to illustrate the nonlinear nature of integrability and the difficulties that come from: Let $A = k[x_1, \ldots, x_d]$, $f \in A$, I = (f) and $\delta = \sum_{r=1}^d a_r \partial_r$ any k-derivation of A. The following properties are equivalent:
 - (a) δ is a *I*-logarithmic derivation and it is *I*-logarithmically 2-integrable.

(b)
$$\sum_{r=1}^{d} f'_{x_r} a_r \in I$$
 and $\sum_{|\alpha|=2} \Delta^{(\alpha)}(f) \underline{a}^{\alpha} \in (f, f'_{x_1}, \dots, f'_{x_d}).$

So, in order to compute a system of generators of the A-module $\operatorname{Ider}_k(\log I; 2)$, we have to deal with nonlinear homogeneous equations of degree 2 (see examples in sections 3.1, 3.3).

2.2 Jacobians and integrability

Let k be an arbitrary (commutative) ring and assume that $R = k[x_1, \ldots, x_d]$ or $R = k[[x_1, \ldots, x_d]]$. Let $I = (f_1, \ldots, f_u) \subset R$ be a finitely generated ideal and A = R/I. For each $e = 1, \ldots, \min\{d, u\}$ let J_e^0 be the ideal generated by all the $e \times e$ minors of the Jacobian matrix $(\partial f_j/\partial x_i)$, and $J_e = (J_e^0 + I)/I$. We have $J_1 \supset J_2 \supset \cdots$. Let c be the maximum index e with $J_e \neq 0$ (or equivalently with $J_e^0 \nsubseteq I$), in case it exists. The ideal J_c only depends on the k-algebra A and is called the A are smallest non-zero Fitting ideal of the module of A-differentials A (see [7]).

(2.2.1) PROPOSITION. Under the above hypotheses, any $\delta \in \operatorname{Der}_k(\log I) \cap (J_c^0 + I) \operatorname{Der}_k(R)$ is I-logarithmically integrable.

PROOF. The proof follows the same lines that the proof of Theorem 11 in [9]. Let us write $J^0 = J_c^0$. Since $I\operatorname{Der}_k(R) \subset \operatorname{Ider}_k(\log I)$, we can assume that $\delta = \sum_{r=1}^d c_{r1} \partial_r$ with $c_{r1} \in J^0$. Let us consider $D^1 = (\operatorname{Id}_A, \delta) \in \operatorname{HS}_k(\log I; 1)$ and $E^1 = \varepsilon(D^1) \in \operatorname{HS}_k(R; \infty)$ (see (2.1.3)). We have that $E_2^1 = \sum_{|\alpha|=2} \left(\prod_{r=1}^d c_{r1}^{\alpha_r}\right) \Delta^{(\alpha)} \in (J^0)^2 \operatorname{Diff}_{R/k}$, and so $E_2^1(f_j) \in (J^0)^2$ for all $j = 1, \ldots, u$. From Lemma (2.2.2) there is $(c_{12}, \ldots, c_{d2}) \in R^d$, with $c_{r2} \in J^0$, such that

$$(c_{12},\ldots,c_{d2})((\partial f_i/\partial x_i)_{i,j}) \equiv (E_2^1(f_1),\ldots,E_2^1(f_u)) \mod I,$$

i.e. $E_2^1(f_j) - \sum_{r=1}^d c_{r2}(f_j)'_{x_r} \in I$, and so we deduce that D^1 is I-logarithmically 2-integrable, an I-logarithmic 2-integral being $D^2 = (\mathrm{Id}_A, \delta, D_2^2)$ with $D_2^2 = E_2^1 - \sum_{r=1}^d c_{r2}\partial_r \in J^0 \operatorname{Diff}_{R/k}$ (see Corollary (2.1.13)).

Assume that we have found a $D^m=(\operatorname{Id}_A,\delta,D_2^2,\ldots,D_m^m)\in\operatorname{HS}_k(\log I;m)$ with $D_s^s\in J^0\operatorname{Diff}_{R/k},\ s=1,\ldots,m,$ hence with $c_{rs}:=D_s^s(x_r)\in J^0,\ r=1,\ldots,d.$ Let us consider $E^m=\varepsilon(D^m)\in\operatorname{HS}_k(R;\infty).$ From Proposition (1.3.1), 2) we deduce that $E_{m+1}^m\in (J^0)^2\operatorname{Diff}_{A/k}$ and so $E_{m+1}^m(f_j)\in (J^0)^2$ for all $j=1,\ldots,u.$ From Lemma (2.2.2), there is $(c_{1,m+1},\ldots,c_{d,m+1})\in R^d$, with $c_{r,m+1}\in J^0$, such that

$$(c_{1,m+1},\ldots,c_{d,m+1})((\partial f_j/\partial x_i)_{i,j}) \equiv (E_{m+1}^m(f_1),\ldots,E_{m+1}^m(f_u)) \mod I,$$

i.e. $E_{m+1}^m(f_j) - \sum_{r=1}^d c_{r,m+1}(f_j)'_{x_r} \in I$, and so we deduce again that D^m is I-logarithmically m+1-integrable, an I-logarithmic (m+1)-integral being $D^{m+1} = (\operatorname{Id}_A, \delta, D_2^2, \ldots, \underline{D}_{m+1}^m, D_{m+1}^{m+1})$ with $D_{m+1}^{m+1} = E_{m+1}^m - \sum_{r=1}^d c_{r,m+1} \partial_r \in J^0 \operatorname{Diff}_{R/k}$ (see Corollary (2.1.13)).

In that way, we construct inductively the D_m^m , $m \geq 2$, such that $(\mathrm{Id}_A, \delta, D_2^2, \dots) \in \mathrm{HS}_k(\log I; \infty)$ and so δ is I-logarithmically integrable. Q.E.D.

(2.2.2) LEMMA. Let $\mathbf{X} = (X_{ij})$, i = 1, ..., d, j = 1, ..., u, be variables, $W = \mathbb{Z}[\mathbf{X}]$, $\mathfrak{a}_e \subset W$ the ideal generated by the $e \times e$ minors of \mathbf{X} and $U = W/\mathfrak{a}_{c+1}$.

Then, for each $c \times c$ minor μ of \mathbf{X} and for each j = 1, ..., u, the system

$$(u_1,\ldots,u_d)\mathbf{X}=(0,\ldots,0,\stackrel{j}{\mu},0,\ldots,0)$$

has a solution in U.

PROOF. We know that U is an integral domain (cf. [2], Theorem (2.10) and Remark (2.12)). Denote by K its field of fractions and by $\pi:W\to U$ the natural projection. The lemma is an easy consequence of the fact that the matrix $\pi(\mathbf{X})\otimes K$ has rank c. Q.E.D.

The following corollary of Proposition (2.2.1) generalizes Theorem 11 in [9], which was only stated and proved for k a perfect field.

(2.2.3) COROLLARY. Under the above hypotheses, we have

$$J_{A/k} \subset \operatorname{ann}_A \left(\operatorname{Der}_k(A) / \operatorname{Ider}_k(A) \right).$$

The proof of the following result is similar to the proof of Proposition (2.2.1).

(2.2.4) PROPOSITION. Let $f \in R$, I = (f), and $J^0 = (f'_{x_1}, \ldots, f'_{x_d})$ the gradient ideal. If $\delta : R \to R$ is a I-logarithmic k-derivation with $\delta \in J^0 \operatorname{Der}_k(R)$, then δ admits a I-logarithmic integral $D \in \operatorname{HS}_k(\log I)$ with $D_i(f) = 0$ for all i > 1. In particular, if $\delta(f) = 0$, the integral D can be taken with $\Phi_D(f) = f$.

(2.2.5) We quote here Theorem 1.2 in [15]: Let $I \subset A = k[x_1, \ldots, x_d]$ be an ideal generated by quasi-homogeneous polynomials with respect to the weights $w(x_r) \geq 0$. Then, the Euler vector field $\chi = \sum_{r=0}^d w(x_r) \partial_r$ is I-logarithmically (∞ -)integrable. In fact, a I-logarithmic integral of χ is the Hasse–Schmidt derivation associated with the map $A \to A[[t]]$ given by

$$x_r \mapsto x_r \left(\frac{1}{1-t}\right)^{w(x_r)}, \quad r = 1, \dots, d.$$

(2.2.6) PROPOSITION. Let $f \in A = k[x_1, \ldots, x_d]$ be a quasi-homogeneous polynomial with respect to the weights $w(x_r) > 0$ and $I = (f) \subset A$. Assume that the weight of f is a unit in k and that all the partial derivatives of f are non-zero and form a regular sequence. Then $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I)$.

PROOF. From the hypotheses we deduce that the A-module $\operatorname{Der}_k(\log I)$ is generated by the Euler vector field χ and the crossed derivations $\theta_{rs} = f'_{x_s} \partial_r - f'_{x_r} \partial_s$, $1 \leq r < s \leq d$. But χ is I-logarithmically integrable by (2.2.5) and θ_{rs} is I-logarithmically integrable by Proposition (2.2.1). Q.E.D.

2.3 Behaviour of integrability under localization

Throughout this section, k will be an arbitrary commutative ring.

The proof of the following proposition is clear from (1.2.10).

(2.3.1) PROPOSITION. Let A be a k-algebra, $S \subset A$ a multiplicative set, $\mathfrak{a} \subset A$ be an ideal, $m \geq 1$ an integer, $n \in \overline{\mathbb{N}}$ with $n \geq m$ and $D \in \mathrm{HS}_k(\log \mathfrak{a}; m)$. If D \mathfrak{a} -logarithmically n-integrable, then $\widetilde{D} \in \mathrm{HS}_k(S^{-1}A; m)$ is $(S^{-1}\mathfrak{a})$ -logarithmically

m-integrable. In particular, the map Θ_m sends $IHS_k(\log \mathfrak{a}; m; n)$ to $IHS_k(\log(S^{-1}\mathfrak{a}); m; n)$.

The two following propositions are straightforward consequences of Proposition (1.3.5) and Corollary (1.3.6) respectively.

(2.3.2) PROPOSITION. Assume that $A = k[x_1, \ldots, x_d]$ and let $S \subset A$ be a multiplicative set and $\mathfrak{a} = (f_1, \ldots, f_u) \subset A$ be a finitely generated ideal. Then, for any integers $m \geq q \geq 1$, the map

$$(s,F) \in S \times \mathrm{IHS}_k(\log \mathfrak{a};q;m) \mapsto \frac{1}{s} \bullet \Theta_q(F) \in \mathrm{IHS}_k(\log(S^{-1}\mathfrak{a});q;m)$$

is surjective.

(2.3.3) PROPOSITION. Assume that A is a finitely presented k-algebra and let $T \subset A$ be a multiplicative set. Then, for any integers $m \geq q \geq 1$ the map

$$(t,G) \in T \times \mathrm{IHS}_k(A;q;m) \mapsto \frac{1}{t} \bullet \Theta_q(G) \in \mathrm{IHS}_k(T^{-1}A;q;m)$$

is surjective.

Proposition (2.3.3) can be also obtained form Proposition (2.3.2) and Corollary (2.1.9).

(2.3.4) COROLLARY. Assume that $A = k[x_1, \ldots, x_d]$ and let $S \subset A$ be a multiplicative set, $\mathfrak{a} = (f_1, \ldots, f_u) \subset A$ be a finitely generated ideal. Then, for any integer $m \geq 1$ the canonical map

$$\frac{\delta}{s} \in S^{-1} \operatorname{Ider}_k(\log \mathfrak{a}; m) \mapsto \frac{1}{s} \widetilde{\delta} \in \operatorname{Ider}_k(\log(S^{-1}\mathfrak{a}); m)$$

is an isomorphism of $(S^{-1}A)$ -modules.

PROOF. The injectivity is a consequence of the fact that, under the above assumptions, the canonical map $S^{-1}\operatorname{Der}_k(A) \to \operatorname{Der}_k(S^{-1}A)$ is an isomorphism. The surjectivity is given by Proposition (2.3.2) in the case q=1. Q.E.D.

(2.3.5) COROLLARY. Assume that A is a finitely presented k-algebra and let $T \subset A$ be a multiplicative set. Then, for any integer $m \geq 1$ the canonical map

$$T^{-1}\operatorname{Ider}_k(A;m) \to \operatorname{Ider}_k(T^{-1}A;m)$$

is an isomorphism of $(T^{-1}A)$ -modules.

PROOF. The injectivity goes as in the proof of Corollary (2.3.4). The surjectivity is given by Proposition (2.3.3) in the case q = 1. Q.E.D.

- (2.3.6) THEOREM. Assume that A is a finitely presented k-algebra, $m \ge 1$ is an integer and let $\delta \in \operatorname{Der}_k(A)$. The following properties are equivalent:
 - (a) $\delta \in \operatorname{Ider}_k(A; m)$.
 - (b) $\delta_{\mathfrak{p}} \in \operatorname{Ider}_k(A_{\mathfrak{p}}; m)$ for all $\mathfrak{p} \in \operatorname{Spec} A$.
 - (c) $\delta_{\mathfrak{m}} \in \operatorname{Ider}_k(A_{\mathfrak{m}}; m)$ for all $\mathfrak{m} \in \operatorname{Specmax} A$.

PROOF. The implication (a) \Rightarrow (b) is a consequence of Proposition (2.3.1). The implication (b) \Rightarrow (c) is obvious. For the remaining implication (c) \Rightarrow (a), assume that property (c) holds. Then, by Corollary (2.3.5), for each $\mathfrak{m} \in \operatorname{Specmax} A$ there is a $f^{\mathfrak{m}} \in A - \mathfrak{m}$ and a $\zeta^{\mathfrak{m}} \in \operatorname{Ider}_k(A; m)$ such that $f^{\mathfrak{m}} \delta_{\mathfrak{m}} = (\zeta^{\mathfrak{m}})_{\mathfrak{m}}$, and so there is a $g^{\mathfrak{m}} \in A - \mathfrak{m}$ such that $g^{\mathfrak{m}} f^{\mathfrak{m}} \delta = g^{\mathfrak{m}} \zeta^{\mathfrak{m}}$. Since the ideal generated by the $g^{\mathfrak{m}} f^{\mathfrak{m}}$, $\mathfrak{m} \in \operatorname{Specmax} A$, must be the total ideal, we deduce the existence of a finite number of $\mathfrak{m}_i \in \operatorname{Specmax} A$ and $a_i \in A$, $1 \leq i \leq n$, such that $1 = a_1 g_1 f_1 + \cdots + a_n g_n f_n$, with $f_i = f^{\mathfrak{m}_i}$, $g_i = g^{\mathfrak{m}_i}$, and so

$$\delta = \sum_{i=1}^{n} a_i g_i f_i \delta = \sum_{i=1}^{n} a_i g_i \zeta^{\mathfrak{m}_i}$$

is m-integrable. Q.E.D.

(2.3.7) COROLLARY. Let $f: X \to S$ be a locally finitely presented morphism of schemes. For each integer $n \geq 1$ there is a quasi-coherent sub-sheaf $Ider_S(\mathcal{O}_X; n) \subset Der_S(\mathcal{O}_X)$ such that, for any affine open sets $U = \operatorname{Spec} A \subset X$ and $V = \operatorname{Spec} k \subset S$, with $f(U) \subset V$, we have $\Gamma(U, Ider_S(\mathcal{O}_X; n)) = \operatorname{Ider}_k(A; n)$ and $Ider_S(\mathcal{O}_X; n)_p = \operatorname{Ider}_{\mathcal{O}_{S,f(p)}}(\mathcal{O}_{X,p}; n)$ for each $p \in X$. Moreover, if S is locally noetherian, then $Ider_S(\mathcal{O}_X; n)$ is a coherent sheaf.

PROOF. For each open set $U \subset X$, we define

$$\Gamma(U, Ider_S(\mathcal{O}_X; n)) = \{ \delta \in \Gamma(U, Der_S(\mathcal{O}_X)) \mid \delta_p \in Ider_{\mathcal{O}_{S, f(p)}}(\mathcal{O}_{X, p}; n) \ \forall p \in U \}.$$

The behaviour of $Ider_S(\mathcal{O}_X; n)$ on affine open sets and its quasi-coherence is a straightforward consequence of Theorem (2.3.6). Q.E.D.

2.4 Testing the integrability of derivations

In this section k will be an arbitrary commutative ring and A an arbitrary k-algebra.

(2.4.1) DEFINITION. Let $n \geq m > 1$ be integers and $D \in HS_k(A;n)$. We say that D is m-sparse if $D_i = 0$ whenever $i \notin \mathbb{N}m$. We say that D is weakly m-sparse if $\tau_{n,qm}D$ is m-sparse, where $q = \lfloor \frac{n}{m} \rfloor$. The set of m-sparse (resp. weakly m-sparse) Hasse-Schmidt derivations in $HS_k(A;n)$ will be denoted by $HS_k^{m-sp}(A;n)$ (res. $HS_k^{m-wsp}(A;n)$).

The proof of the following proposition is easy and its proof is left up to the reader.

- (2.4.2) PROPOSITION. Let $n \ge m > 1$ be integers, $q = \lfloor \frac{n}{m} \rfloor$ and r = n qm. The following properties hold:
 - 1) $\operatorname{HS}_k^{m-sp}(A;n)$ and $\operatorname{HS}_k^{m-wsp}(A;n)$ are subgroups of $\operatorname{HS}_k(A;n)$.
 - 2) For any $D \in \mathrm{HS}_k(A;q)$ and any $\underline{\delta} = (\delta_1, \dots, \delta_r) \in \mathrm{Der}_k(A)^r$, the sequence

$$\Theta(D,\underline{\delta}) = (\mathrm{Id}_A,0,\ldots,0, \overset{\underbrace{m}}{D_1},0,\ldots,0, \overset{2m}{D_2},0,\ldots,0, \overset{qm}{D_q}, \overset{qm+1}{\delta_1},\ldots,\overset{n}{\delta_r})$$

is a weakly m-sparse Hasse-Schmidt derivation of A (over k) of length n and the map $\Theta: \mathrm{HS}_k(A;q) \times \mathrm{Der}_k(A)^r \to \mathrm{HS}_k^{m-wsp}(A;n)$ is an isomorphism of groups.

- (2.4.3) THEOREM. Let $n \ge 1$ be an integer. The following assertions hold:
 - 1) If n is odd and $\operatorname{Ider}_k(A;q) = \operatorname{Der}_k(A)$, with $q = \frac{n+1}{2}$, then any $D \in \operatorname{HS}_k(A;n)$ with $D_1 = 0$ is (n+1)-integrable.
 - 2) If n is even and $\operatorname{Ider}_k(A;p) = \operatorname{Der}_k(A)$, with $p = \lfloor \frac{n+1}{3} \rfloor$, then any $D \in \operatorname{HS}_k(A;n)$ with $D_1 = 0$ is (n+1)-integrable.

PROOF. 1) Since $D_1 = 0$ we have $1 \le \ell(D) \le n$. If n = 1, then D is the identity and the result is clear. Assume $n \ge 3$ and so $q \ge 2$. Let us proceed by decreasing induction on $\ell(D)$. If $\ell(D) = n$ then D is the identity and the result is clear. Let m be an integer with $1 \le m < n$ and suppose that any $D' \in \mathrm{HS}_k(A;n)$ with $m+1 \le \ell(D')$ is (n+1)-integrable. Let $D \in \mathrm{HS}_k(A;n)$ be a Hasse–Schmidt derivation with $\ell(D) = m$, i.e.

$$D = (\mathrm{Id}_A, 0, \dots, 0, D_{m+1}, \dots, D_n)$$
 with $D_{m+1} \neq 0$.

Since $\tau_{n,m+1}D$ is (m+1)-sparse, we can apply Proposition (2.4.2), 2) and deduce that D_{m+1} is a derivation and so, by hypothesis, it must be q-integrable. Let $E \in \mathrm{HS}_k(A;q)$ be a q-integral of D_{m+1} . We have that $q(m+1) \geq 2q = n+1$ and so $F = \tau_{q(m+1),n}(E[m+1])$ is (n+1)-integrable, an (n+1)-integral being $\tau_{q(m+1),n+1}(E[m+1])$, and has the form

$$F = (\mathrm{Id}_A, 0, \dots, 0, D_{m+1}, 0, \dots, F_n).$$

It is clear that for $D' = F^{-1} \circ D$ we have $D'_1 = \cdots = D'_{m+1} = 0$, and so $\ell(D') \geq m+1$. The induction hypothesis implies that D' is (n+1)-integrable and we conclude that $D = F \circ D'$ is also (n+1)-integrable.

2) If n=2, then $D=(\mathrm{Id}_A,0,D_2)$ and obviously $(\mathrm{Id}_A,0,D_2,0)$ is a 3-integral of D. Assume that n is even ≥ 4 , and let us write $n=2q, q\geq 2$, and n+1=3p+r with $0\leq r<3, p\geq 1$. Since $\tau_{n3}D$ is weakly 2-sparse, we deduce that D_3 must be a derivation (see Proposition (2.4.2)) and so, by hypothesis, it is p-integrable. Let $E^3\in \mathrm{HS}_k(A;p)$ be a p-integral of D_3 . It is clear that (see Proposition (2.4.2))

$$F^{3} = (\mathrm{Id}_{A}, 0, 0, E_{1}^{3}, 0, 0, E_{2}^{3}, 0, \dots, 0, E_{p}^{3}, 0, 0)$$

is a (3p+2)-integral of $E^3[3]$, and since $3p+2 \geq n+1$, $G^3 = \tau_{3p+2,n}F^3$ is (n+1)-integrable and $(G^3)^{-1} \circ D$ has the form $(\mathrm{Id}_A,0,D_2,0,\ldots)$. Assume that we have found $G^3,G^5,\ldots,G^{2s-1} \in \mathrm{HS}_k(A;n)$, all of them

Assume that we have found $G^3, G^5, \ldots, G^{2s-1} \in \operatorname{HS}_k(A; n)$, all of them (n+1)-integrable, with $3 \leq 2s-1 < n$, such that $(G^{2s-1})^{-1} \circ \cdots \circ (G^3)^{-1} \circ D$ has the form

$$D' = (\mathrm{Id}_A, 0, D'_2, 0, D'_4, 0, \dots, 0, D'_{2s}, D'_{2s+1}, \dots, D'_n).$$

If 2s = n, we already have what we are looking for. If 2s < n, then D'_{2s+1} is a derivation (see Proposition (2.4.2)) and so, by hypothesis, it is *p*-integrable. Let $E^{2s+1} \in \mathrm{HS}_k(A;p)$ be a *p*-integral of D'_{2s+1} . Let us consider $F^{2s+1} = \mathbb{E}[P]$

 $E^{2s+1}[2s+1] \in \mathrm{HS}_k(A; p(2s+1))$. Since $p(2s+1) \ge 5p \ge 3p+2 \ge n+1$, $G^{2s+1} := \tau_{p(2s+1),n} F^{2s+1}$ is (n+1)-integrable and $(G^{2s+1})^{-1} \circ D'$ has the form

$$D'' = (\mathrm{Id}_A, 0, D_2'', 0, D_4'', 0, \dots, 0, D_{2s}'', 0, D_{2s+2}'', \dots, D_n'').$$

We conclude with the existence of $G^3, G^5, \ldots, G^{n-1} \in \operatorname{HS}_k(A; n)$, all of them (n+1)-integrable, such that $H = (G^{n-1})^{-1} \circ G^{n-3} \cdots \circ (G^3)^{-1} \circ D \in \operatorname{HS}_k(A; n)$ (n=2q) is 2-sparse. From Proposition (2.4.2) again we deduce that H is (n+1)-integrable, and so D is also (n+1)-integrable. Q.E.D.

(2.4.4) Definition. For each integer $n \ge 1$, let us define

$$\rho(n) = \left\{ \begin{array}{ll} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \left\lfloor \frac{n+1}{3} \right\rfloor & \text{if } n \text{ is even.} \end{array} \right.$$

Notice that $\rho(n) < n$ for all $n \ge 2$.

(2.4.5) COROLLARY. Let $n \ge 1$ be an integer, and assume that $\operatorname{Ider}_k(A; \rho(n)) = \operatorname{Der}_k(A)$. Then, for any n-integrable derivation $\delta \in \operatorname{Ider}_k(A; n)$, the following properties are equivalent:

- (a) Any n-integral of δ is (n+1)-integrable.
- (b) There is an n-integral of δ which is (n+1)-integrable.

PROOF. Assume that $E \in HS_k(A; n+1)$ is an (n+1)-integral of δ and let $D \in HS_k(A; n)$ be any n-integral of δ . The 1-component of $F = D \circ (\tau_{n+1,n} E)^{-1}$ vanishes and so, by Theorem (2.4.3), F is (n+1)-integrable. We deduce that $D = F \circ \tau_{n+1,n} E$ is also (n+1)-integrable. Q.E.D.

2.5 Algorithms

Let k be a "computable" base ring k (for instance, any finitely generated extension of \mathbb{Z}, \mathbb{Q} or of any finite field), $f_1, \ldots, f_p \in A = k[x_1, \ldots, x_d]$ and $I = (f_1, \ldots, f_p)$. The starting point is the computation of a system of generators $\{\delta^1, \ldots, \delta^q\}$ of $\operatorname{Der}_k(\log I)$.

The following algorithm decides whether the equality

$$\operatorname{Der}_k(\log I) \stackrel{?}{=} \operatorname{Ider}_k(\log I; 2) \quad \left(\Leftrightarrow \operatorname{Der}_k(A/I) \stackrel{?}{=} \operatorname{Ider}_k(A/I; 2) \right)$$

is true or not, and if yes, returns a 2-integral for each generator of $\operatorname{Der}_k(\log I)$.

ALGORITHM-1:

Step 1: For each j = 1, ..., q, apply Corollary (2.1.13) as explained in remark (2.1.14), (1) to decide whether δ^j is I-logarithmically 2-integrable or not, and if yes to compute a I-logarithmic 2-integral $D^{j,2}$ of δ^j .

- **Step 2:** (Y) If the answer in Step 1 is YES for all j = 1, ..., q, then save the I-logarithmic 2-integrals $D^{1,2}, ..., D^{q,2}$ and answer "THE EQUALITY $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; 2)$ IS TRUE".
 - (N) If the answer in step 1 is NOT for some j = 1, ..., q, then answer "THE EQUALITY $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; 2)$ IS FALSE".

Assume that we have an ALGORITHM–(N-1) to decide whether the equality $\,$

$$\operatorname{Der}_k(\log I) \stackrel{?}{=} \operatorname{Ider}_k(\log I; N) \quad \left(\Leftrightarrow \operatorname{Der}_k(A/I) \stackrel{?}{=} \operatorname{Ider}_k) A/I; N) \right)$$

is true or not, and if yes, to compute an N-integral for each generator of $\operatorname{Der}_k(\log I)$.

ALGORITHM-N:

- Step 1: Apply ALGORITHM-(N-1), and if the answer is NOT, then STOP and answer "THE EQUALITY $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; N+1)$ IS FALSE". If the answer to ALGORITHM-(N-1) is YES, keep the computed I-logarithmic N-integrals $D^{1,N}, \ldots, D^{q,N}$ of $\delta^1, \ldots, \delta^q$ and go to step 2.
- **Step 2:** For each $j=1,\ldots,q$, apply Corollary (2.1.13) as explained in remark (2.1.14), (1) to decide whether $D^{j,N}$ is *I*-logarithmically (N+1)-integrable or not, and if yes to compute a *I*-logarithmic (N+1)-integral $D^{j,N+1}$ of $D^{j,N}$.
- **Step 3:** (Y) If the answer in Step 2 is YES for all $j=1,\ldots,q$, then save the I-logarithmic (N+1)-integrals $D^{1,N+1},\ldots,D^{q,N+1}$ and answer "THE EQUALITY $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; N+1)$ IS TRUE".

 (N) If the answer in Step 2 is NOT for some $j=1,\ldots,q$, then answer "THE EQUALITY $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; N+1)$ IS FALSE".

Corollary (2.4.5) is the key point for the correctness of Step 3, (N).

3 Examples and questions

We have used Macaulay 2 [4] for the preliminary computations needed in the following examples.

3.1 The cusp $x^2 + y^3$ in characteristic 2 or 3

Let k be a base ring containing the field \mathbb{F}_p , p > 0, and $f = x^2 + y^3 \in R = k[x,y]$. Let I = (f) and A = k[x,y]/I. The computation of $\mathrm{Ider}_k(A;\infty)$ has been treated in [9], example 5. Here we are interested in the computation of $\mathrm{Ider}_k(A;m)$, $m \geq 2$.

Let start with p=2. Then the Jacobian ideal of f is $J=(y^2,f)=(x^2,y^2)$.

The module $\operatorname{Der}_k(\log I)$ is free with basis $\{\partial_x, f\partial_y\}$. It is clear that $f\partial_y$ is I-logarithmically $(\infty$ -)integrable. Let $g \in R$ be a polynomial. From Corollary (2.1.13), we have that $g\partial_x$ is I-logarithmically 2-integrable if and only if $g^2 \in J$.

Since $\{g \in R \mid g^2 \in J\} = (x, y)$, we deduce that $\{x\partial_x, y\partial_x, f\partial_y\}$ is a system of generators of $\mathrm{Ider}_k(\log I; 2)$.

The derivation $x\partial_x$ is the Euler vector field for the weights w(x) = 3, w(y) = 2. From (2.2.5) we know that $x\partial_x$ is *I*-logarithmically (∞ -)integrable.

Let $c \in R$ be an arbitrary polynomial and $\delta = cy\partial_x$. A *I*-logarithmic 2-integral of δ is determined by the k-algebra map

$$p(x,y) \in R \mapsto p(x + cyt, y + c^2t^2) + (t^3) \in R_3 = R[[t]]/(t^3).$$

Since the coefficient of t^3 in $f(x + cyt, y + c^2t^2)$ is 0, we deduce that δ is I-logarithmically 3-integrable and so $Ider_k(\log I;3) = Ider_k(\log I;2)$. A generic I-logarithmic 2-integral of δ is determined by the k-algebra map

$$p(x,y) \in R \mapsto p(x + cyt + dt^2, y - c^2t^2) + (t^3) \in R_3,$$

with $d \in R$, and a generic *I*-logarithmic 3-integral of δ is determined by the k-algebra map

$$p(x,y) \in R \mapsto p(x + cyt + dt^2 + et^3, y + c^2t^2) + (t^4) \in R_4$$

with $d, e \in R$. The coefficient of t^4 in $f(x + cyt + dt^2 + et^3, y + c^2t^2)$ is $d^2 + yc^4$, and so, the following conditions are equivalent:

- (a) δ is *I*-logarithmically 4-integrable.
- (b) There is a $d \in R$ such that $d^2 + yc^4 \in J$.

The proof of the following lemma is easy:

(3.1.1) LEMMA. The set $\Gamma := \{c \in R \mid \exists d \in R, \ d^2 + yc^4 \in J\}$ is the ideal generated by x, y.

As a consequence of the lemma we deduce that $\{x\partial_x, y^2\partial_x, f\partial_y\}$ is a system of generators of $\mathrm{Ider}_k(\log I; 4)$. But $y^2\partial_x$ is I-logarithmically $(\infty$ -)integrable after Proposition (2.2.1), and so

$$\operatorname{Der}_{k}(A) = \langle \overline{\partial_{x}} \rangle \supseteq \operatorname{Ider}_{k}(A; 2) = \langle \overline{x} \overline{\partial_{x}}, \overline{y} \overline{\partial_{x}} \rangle = \operatorname{Ider}_{k}(A; 3) \supseteq \operatorname{Ider}_{k}(A; 4) = \langle \overline{x} \overline{\partial_{x}}, \overline{y^{2}} \overline{\partial_{x}} \rangle = \operatorname{Ider}_{k}(A; 5) = \cdots = \operatorname{Ider}_{k}(A; \infty).$$

In particular, we have

$$\operatorname{ann}_{A}\left(\operatorname{Der}_{k}(A)/\operatorname{Ider}_{k}(A;2)\right) = (\overline{x},\overline{y}) = \sqrt{\overline{J}} \supseteq \operatorname{ann}_{A}\left(\operatorname{Der}_{k}(A)/\operatorname{Ider}_{k}(A;\infty)\right) = (\overline{x},\overline{y}^{2}) \supseteq \overline{J} = (\overline{x}^{2},\overline{y}^{2}).$$

Let us now compute the case p = 3. The Jacobian ideal of f is $J = (x, f) = (x, y^3)$. In a similar way to the preceding case, we obtain that:

- -) $\operatorname{Der}_k(\log I) = \langle f \partial_x, \partial_y \rangle$.
- -) Since 2 is invertible in k we have $\operatorname{Der}_k(\log I) = \operatorname{Ider}_k(\log I; 2)$.
- -) $\operatorname{Ider}_{k}(\log I; 3) = \langle x \partial_{u}, y \partial_{u}, f \partial_{x} \rangle$.

- -) $\operatorname{Ider}_k(\log I; 3) = \operatorname{Ider}_k(\log I; \infty)$.
- -) $\operatorname{Der}_k(A) = \langle \overline{\partial_y} \rangle = \operatorname{Ider}_k(A; 2) \supseteq \operatorname{Ider}_k(A; 3) = \langle \overline{x} \overline{\partial_y}, \overline{y} \overline{\partial_y} \rangle = \operatorname{Ider}_k(A; 4) = \cdots = \operatorname{Ider}_k(A; \infty)$ and $\operatorname{ann}_A(\operatorname{Der}_k(A) / \operatorname{Ider}_k(A; \infty)) = (\overline{x}, \overline{y}) = \sqrt{J_{A/k}}$.

Let us notice that for the cusp in characteristics $\neq 2,3$ we can apply Proposition (2.2.6) and obtain that any derivation is integrable.

3.2 The cusp $x^2 + y^3$ over the integers

Assume that $k = \mathbb{Z}$ and $f = x^2 + y^3 \in R = \mathbb{Z}[x,y]$. Let I = (f) and $A = \mathbb{Z}[x,y]/I$. The Jacobian ideal of f is $J = (2x,3y^2,f) = (2x,3y^2,x^2,y^3)$. The I-logarithmic derivations of R are generated by $\delta_1 = 3x\partial_x + 2y\partial_y$, $\delta_2 = 3y^2\partial_x - 2x\partial_y$, $f\partial_x$ and $f\partial_y$. The first derivation δ_1 is the Euler vector field for the weights w(x) = 3, w(y) = 2. As in 3.1, δ_1 is I-logarithmically integrable. For the second derivation δ_2 , we apply Proposition (2.2.1) and we deduce that it is also I-logarithmically integrable. So this is an example of a non-smooth \mathbb{Z} -algebra A for which any derivation is integrable.

3.3 The cusp $3x^2 + 2y^3$ over the integers

Assume that $k = \mathbb{Z}$ and $f = 3x^2 + 2y^3 \in R = \mathbb{Z}[x,y]$. Let I = (f) and $A = \mathbb{Z}[x,y]/I$. The Jacobian ideal of f is $J = (6x,6y^2,f) = (6x,6y^2,3x^2,2y^3)$. The I-logarithmic derivations of R are generated by $\delta_1 = 3x\partial_x + 2y\partial_y$ and $\delta_2 = -y^2\partial_x + x\partial_y$, which in fact form a basis (we can say that "f is a free divisor" of R). As in 3.1, δ_1 is the Euler vector field for the weights w(x) = 3, w(y) = 2 and so it is I-logarithmically integrable.

Let us study the integrability of $a\delta_2$, $a \in R$. The coefficient of t^2 in $f(x-ay^2t, y+axt)$ is $a^2(3y^4+6x^2y)$. Since $6x^2 \in J$, this coefficient belongs to J if and only if $3a^2y^4 \in J$, i.e. $a^2 \in J: 3y^4$.

(3.3.1) Lemma.

- (a) $J:3y^4=(2,x^2)$.
- (b) $\{a \in R \mid a^2 \in (2, x^2)\} = (2, x).$

(3.3.2) COROLLARY. The R-module $\operatorname{Ider}_{\mathbb{Z}}(\log I; 2)$ is generated by $\{\delta_1, 2\delta_2, x\delta_2\}$ and so $\operatorname{ann}_A(\operatorname{Der}_{\mathbb{Z}}(A)/\operatorname{Ider}_{\mathbb{Z}}(A; 2)) = (2, x)$.

Let us study the 3-integrability of

$$(2b+cx)\delta_2 = -y^2(2b+cx)\partial_x + (2b+cx)x\partial_y, \quad b, c \in R.$$

Let us write a=2b+cx. The coefficient of t^2 in $f(x-y^2(2b+cx)t, y+(2b+cx)xt)$ is $A(2y^3)+B(3x^2)$ with $A=6b(b+cx)y, B=c^2y^4+2a^2y$, which can be expressed as

$$(A-B)xf'_x + (A-B)yf'_y + (3B-2A)f.$$

Hence, the coefficient of t^2 in

$$f(x - y^{2}(2b + cx)t + (B - A)xt^{2}, y + (2b + cx)xt + (B - A)yt^{2})$$

is (3B-2A)f and the reduction mod t^3 of the \mathbb{Z} -algebra map

$$\Psi^{(2)}: p(x,y) \in R \mapsto p(x-y^2(2b+cx)t + (B-A)xt^2, y + (2b+cx)xt + (B-A)yt^2) \in R[[t]]$$

is *I*-logarithmic and gives rise to a *I*-logarithmic 2-integral of $a\delta_2$. So, the reduction mod t^3 of the \mathbb{Z} -algebra map $\Psi_q^{(2)}: R \to R[[t]]$ given by

$$x \mapsto x - y^2(2b + cx)t + [(B - A)x + 3dx - ey^2]t^2,$$

 $y \mapsto y + (2b + cx)xt + [(B - A)y + 2dy + ex]t^2$

is the associated map to a generic *I*-logarithmic 2-integral of $a\delta_2$. Moreover, the coefficient of t^2 in $\Psi_g^{(2)}(f)$ is (3B-2A+6d)f.

The coefficient of t^3 in $\Psi_g^{(2)}(f)$ is $6x^2y^6c^3+12xy^6bc^2+12x^4y^3c^3+36x^3y^3bc^2+2x^6c^3+36x^2y^3b^2c+12x^5bc^2+24xy^3b^3+24x^4b^2c+6xy^4ce+16x^3b^3+6x^2y^2cd+12y^4be+12x^3yce+12xy^2bd+24x^2ybe$, and it belongs to J if and only if

$$2x^6c^3 + 16x^3b^3 \in J \Leftrightarrow x^3c^3 + 8b^3 \in (J:2x^3).$$

(3.3.3) Lemma. With the above notations, the following assertions hold:

(a)
$$J: 2x^3 = (3, y^3)$$
.

(b)
$$x^3c^3 + 8b^3 \in (J:2x^3) \Leftrightarrow a^3 \in (J:2x^3) \Leftrightarrow a \in (3,y)$$
.

(3.3.4) COROLLARY. The I-logarithmic derivation $a\delta_2$ is I-logarithmically 3-integrable if and only if $a \in (2, x) \cap (3, y) = (6, 3x, 2y, xy)$, and so the R-module $\operatorname{Ider}_{\mathbb{Z}}(\log I; 3)$ is generated by $\{\delta_1, 6\delta_2, 3x\delta_2, 2y\delta_2, xy\delta_2\}$ and

$$\operatorname{ann}_A\left(\operatorname{Der}_{\mathbb{Z}}(A)/\operatorname{Ider}_{\mathbb{Z}}(A;3)\right) = (2,\overline{x}) \cap (3,\overline{y}),$$

$$\operatorname{ann}_A\left(\operatorname{Der}_{\mathbb{Z}}(A;2)/\operatorname{Ider}_{\mathbb{Z}}(A;3)\right) = (3,\overline{y}).$$

The following lemma cannot be deduced directly from Proposition (2.2.1). Its proof proceeds by induction and it is left up to the reader.

(3.3.5) LEMMA. Let $a \in (2, x) \cap (3, y)$. There are sequences $a_i, b_i \in R$, $i \geq 2$, such that the \mathbb{Z} -algebra map

$$\Psi: p(x,y) \in R \mapsto p\left(x - ay^2t + \sum_{i=2}^{\infty} a_i t^i, y + axt + \sum_{i=2}^{\infty} b_i t^i\right) \in R[[t]]$$

is I-logarithmic, i.e. $\Psi(f) \in R[[t]]f$.

(3.3.6) Corollary. We have

$$\operatorname{Ider}_{\mathbb{Z}}(A;3) = \operatorname{Ider}_{\mathbb{Z}}(A;4) = \cdots = \operatorname{Ider}_{\mathbb{Z}}(A),$$

and so

$$\operatorname{ann}_A\left(\operatorname{Der}_{\mathbb{Z}}(A)/\operatorname{Ider}_{\mathbb{Z}}(A)\right)=(2,\overline{x})\cap(3,\overline{y})\supsetneq\sqrt{J_{A/\mathbb{Z}}}=(3\overline{x},2\overline{y}).$$

The following two examples have been proposed by Herwig Hauser.

3.4 The surface $x_3^2 + x_1(x_1 + x_2)^2 = 0$ in characteristic 2

Let k be a field of characteristic 2, $f = x_3^2 + x_1(x_1 + x_2)^2 \in R = k[x_1, x_2, x_3]$, I = (f) and A = R/I. The Jacobian ideal is $J = (\ell^2, f) = (\ell^2, x_3^2)$ with $\ell = x_1 + x_2$, and $\sqrt{J} = (\ell, x_3)$. A system of generators of $\operatorname{Der}_k(\log I)$ mod. $f \operatorname{Der}_k(R)$ is $\{\partial_2, \partial_3\}$.

- (3.4.1) Lemma. Let $\alpha, \beta \in R$ and $\delta = \alpha \partial_2 + \beta \partial_3$. The following conditions are equivalent:
 - (a) δ is I-logarithmically 2-integrable.
 - (b) $x_1 \alpha^2 + \beta^2 \in J$.
- (3.4.2) LEMMA. The module $\{(\alpha, \beta) \in R^2 \mid x_1\alpha^2 + \beta^2 \in J\}$ is generated by $(x_3, 0), (\ell, 0), (0, x_3), (0, \ell)$.
- (3.4.3) COROLLARY. A system of generators of $\operatorname{Ider}_k(\log I; 2) \mod f \operatorname{Der}_k(R)$ is $\{x_3\partial_2, \ell\partial_2, x_3\partial_3, \ell\partial_3\}$.
- (3.4.4) Proposition. $\operatorname{Ider}_k(A; 2) = \operatorname{Ider}_k(A)$.

PROOF. We need to prove that $x_3\partial_2, \ell\partial_2, x_3\partial_3, \ell\partial_3$ are *I*-logarithmically integrable.

The derivation $x_3\partial_3$ is the Euler vector field for the weights $w(x_1) = w(x_2) = 2$, $w(x_3) = 3$. From (2.2.5) we deduce that $x_3\partial_3$ is *I*-logarithmically integrable.

The derivation $\ell \partial_3$ is *I*-logarithmically integrable since $f(x_1+t^2, x_2+t^2, x_3+\ell t) = \cdots = f \in R[t] \subset R[[t]]$ and so a *I*-logarithmic integral of $\ell \partial_3$ is given by the *k*-algebra map $R \to R[[t]]$ determined by

$$x_1 \mapsto x_1 + t^2$$
, $x_2 \mapsto x_2 + t^2$, $x_3 \mapsto x_3 + \ell t$.

For the derivation $x_3\partial_2$ let us write $W(t) = \frac{x_1^2t^2}{1-x_1t^2} \in (t^2)R[[t]]$ and consider the homomorphism of k-algebras $\Psi: R \to R[[t]]$ given by:

$$x_1 \mapsto x_1 + W(t), \quad x_2 \mapsto x_2 + x_3t + W(t), \quad x_3 \mapsto x_3.$$

We have $\Psi(f) = f(x_1 + W, x_2 + x_3t + W, x_3) = \dots = \left(\frac{1}{1 - x_1 t^2}\right) f$ and so Ψ gives rise to a *I*-logarithmic integral of $x_3 \partial_2$.

For the derivation $\ell \partial_2$ let us write $V(t) = \frac{x_1 t^2}{1 - t^2} \in (t^2) R[[t]]$ and consider the homomorphism of k-algebras $\Psi: R \to R[[t]]$ given by:

$$x_1 \mapsto x_1 + V(t), \quad x_2 \mapsto x_2 + \ell t + V(t), \quad x_3 \mapsto x_3.$$

We have $\Psi(f) = f(x_1 + V, x_2 + \ell t + V, x_3) = \cdots = f$ and so Ψ gives rise to a I-logarithmic integral of $\ell \partial_2$. Q.E.D.

In this example the descending chain of modules of integrable derivations stabilizes from N=2:

$$\operatorname{Der}_k(A) = \operatorname{Ider}_k(A; 1) \supset \operatorname{Ider}_k(A; 2) = \operatorname{Ider}_k(A; 3) = \cdots = \operatorname{Ider}_k(A; \infty)$$

and

$$\operatorname{ann}_A\left(\operatorname{Der}_k(A)/\operatorname{Ider}_k(A;\infty)\right) = (\ell, x_3) = \sqrt{J}/I.$$

3.5 The surface $x_3^2 + x_1x_2(x_1 + x_2)^2 = 0$ in characteristic 2

Let k be a field of characteristic 2, $f=x_3^2+x_1x_2(x_1+x_2)^2\in R=k[x_1,x_2,x_3],$ I=(f) and A=R/I. The Jacobian ideal is $J=(x_2\ell^2,x_1\ell^2,f)=(x_2\ell^2,x_1\ell^2,x_3^2)$ with $\ell=x_1+x_2$. It is clear that $\sqrt{J}=(\ell,x_3)$. The module $\mathrm{Der}_k(\log I)$ is generated mod. $f\,\mathrm{Der}_k(R)$ by $\partial_3,\ \varepsilon=x_1\partial_1+x_2\partial_2$ and $\eta=x_1^2\ell^2\partial_1+x_3^2\partial_2$ $(\partial_3(f)=\varepsilon(f)=0,\eta(f)=x_1\ell^2f)$. Since ε is the Euler vector field for the weights $w(x_1)=w(x_2)=1,w(x_3)=2$, we deduce from (2.2.5) that ε is I-logarithmically integrable. From Proposition (2.2.1) we also deduce that η is I-logarithmically integrable.

To find a system of generators of $\operatorname{Ider}_k(\log I; 2)$ we need the conditions on $a \in R$ which guarantee that $a\partial_3$ is I-logarithmically 2-integrable. The coefficient of t^2 in $f(x_1, x_2, x_3 + at) = f + a^2t^2$ is a^2 , and so $a\partial_3$ is I-logarithmically 2-integrable if and only if $a^2 \in J$.

(3.5.1) LEMMA.
$$\{a \in R | a^2 \in J\} = (x_3, x_1 \ell, x_2 \ell).$$

(3.5.2) COROLLARY. A system of generators of $\operatorname{Ider}_k(\log I; 2)$ mod. $f\operatorname{Der}_k(R)$ is $\{x_3\partial_3, x_1\ell\partial_3, x_2\ell\partial_3, \varepsilon, \eta\}$. In particular we have

$$\operatorname{ann}_A\left(\operatorname{Der}_k(A)/\operatorname{Ider}_k(A;2)\right) = (\overline{x_3}, \overline{x_2}\overline{\ell}, \overline{x_1}\overline{\ell}).$$

The following lemma is a very particular case of a general result.

(3.5.3) Lemma. Any Hasse-Schmidt derivation $E \in HS_k(A; 2)$ is 3-integrable.

PROOF. Since 3 is invertible in k, we can consider the differential operator $E_3 = E_1 E_2 - \frac{1}{3} E_1^3$ and check that $(\mathrm{Id}_A, E_1, E_2, E_3)$ is a Hasse–Schmidt derivation. Q.E.D.

As a consequence of the above lemma we have $\operatorname{Ider}_k(A;2) = \operatorname{Ider}_k(A;3)$.

Let us see the conditions for $a\partial_3$, with $a = \alpha x_3 + \beta x_1 \ell + \gamma x_2 \ell$, $\alpha, \beta, \gamma \in R$, to be *I*-logarithmically 4-integrable. The algebra map associated with a general *I*-logarithmic 3-integral of $a\partial_3$ is $\Psi^{(3)}: R \to R_3$ given by:

$$x_1 \mapsto x_1 + (\alpha^2 x_1 + \gamma^2 x_2 + B_1 x_1 + C_1 x_1^2 \ell^2) t^2 + (B_2 x_1 + C_2 x_1^2 \ell^2) t^3,$$

$$x_2 \mapsto x_2 + (\beta^2 x_1 + B_1 x_2 + C_1 x_3^2) t^2 + (B_2 x_2 + C_2 x_3^2) t^3,$$

$$x_3 \mapsto x_3 + (\alpha x_3 + \beta x_1 \ell + \gamma x_2 \ell)t + A_1 t^2 + A_2 t^3$$

with $A_2, B_2, C_2 \in R$, and let $\Psi_0^{(4)}: R \to R_4$ be the obvious lifting of $\Psi^{(3)}$. The coefficient mod J of t^4 in the expression of $\Psi_0^{(4)}(f)$, is $x_1x_2^3(\alpha + \beta + \gamma)^4 + A_1^2$. So, we have proved the following lemma.

- (3.5.4) Lemma. With the above notations, the following assertions are equivalent:
 - (a) The logarithmic derivation $a\partial_3$, with $a = \alpha x_3 + \beta x_1 \ell + \gamma x_2 \ell$, is I-logarithmically 4-integrable.
 - (b) There is $A_1 \in R$ such that $x_1 x_2^3 (\alpha + \beta + \gamma)^4 + A_1^2 \in J$, or, equivalently, $x_1 x_2^3 (\alpha + \beta + \gamma)^4 \in J + R^2$.

(3.5.5) LEMMA. We have $\{\varphi \in R \mid x_1 x_2^3 \varphi^4 \in J + R^2\} = (x_3, \ell)$.

PROOF. Let us write $\mathfrak{A} = \{ \varphi \in R \mid x_1 x_2^3 \varphi^4 \in J + R^2 \}$. It is clear that $x_3, \ell \in \mathfrak{A}$, since $x_3^4 \in J$ and $x_1 x_2^3 \ell^4 \in J$. Let φ be an element in \mathfrak{A} and let us write $\varphi = qx_3 + \varphi_1(x_1, x_2)$, with $q \in R$ and $\varphi_1(x_1, x_2) \in \mathfrak{A}$. We have

$$x_1 x_2^3 \varphi_1^4 = U(x_1, x_2) x_1 \ell^2 + V(x_1, x_2) x_2 \ell^2 + P(x_1, x_2)^2.$$

By taking derivatives with respect to x_1 we obtain $x_2^3 \varphi_1^4 = U'_{x_1} x_1 \ell^2 + U \ell^2 + V'_{x_1} x_2 \ell^2$ and so ℓ divides φ_1 . We conclude that $\mathfrak{A} = (x_3, \ell)$. Q.E.D.

As a consequence of the above lemma and the fact that (x_3, ℓ) is a prime ideal, the condition $x_1x_2^3(\alpha+\beta+\gamma)^4 \in J+R^2$ is equivalent to $\alpha+\beta+\gamma \in (x_3, \ell)$, i.e. to $\alpha = \alpha_1x_3 + \alpha_2\ell + \beta + \gamma$ and so $a = \cdots = \alpha_1x_3^2 + \alpha_2x_3\ell + \beta(x_3 + x_1\ell) + \gamma(x_3 + x_2\ell)$. We conclude with the following corollary.

(3.5.6) COROLLARY. A system of generators of $\operatorname{Ider}_k(\log I; 4) \mod f \operatorname{Der}_k(R)$ is $\{x_3^2\partial_3, x_3\ell\partial_3, (x_3+x_1\ell)\partial_3, (x_3+x_2\ell)\partial_3, \varepsilon, \eta\}$. In particular we have

$$\begin{aligned} \operatorname{ann}_A\left(\operatorname{Der}_k(A)/\operatorname{Ider}_k(A;2)\right) &= (\overline{x_3}, \overline{x_2}\overline{\ell}, \overline{x_1}\overline{\ell}), \\ \operatorname{ann}_A\left(\operatorname{Der}_k(A)/\operatorname{Ider}_k(A;4)\right) &= (\overline{x_3}^2, \overline{x_3}\overline{\ell}, \overline{x_3} + \overline{x_2}\overline{\ell}, \overline{x_3} + \overline{x_1}\overline{\ell}), \\ \operatorname{ann}_A\left(\operatorname{Ider}_k(A;2)/\operatorname{Ider}_k(A;4)\right) &= (\overline{x_3}, \overline{\ell}) \end{aligned}$$

and all the inclusions

$$J_{A/k}\subset (\overline{x_3}^2,\overline{x_3}\overline{\ell},\overline{x_3}+\overline{x_2}\overline{\ell},\overline{x_3}+\overline{x_1}\overline{\ell})\subset (\overline{x_3},\overline{x_2}\overline{\ell},\overline{x_1}\overline{\ell})\subset (\overline{x_3},\overline{\ell})=\sqrt{J_{A/k}}$$

are strict.

From Proposition (2.2.1) we deduce that $x_3^2 \partial_3$ is *I*-logarithmically integrable.

(3.5.7) Lemma. The derivation $x_3\ell\partial_3$ is I-logarithmically integrable.

PROOF. Let us write $\delta = x_3 \ell \partial_3$ and $D = (x_3 \ell) \bullet \Delta^{(3)}$. We have $\Phi_D(f) = f + (x_3 \ell)^2 t^2$ and $(x_3 \ell)^2 = f'_{x_1} f'_{x_2} + \ell^2 f = x_1 x_2 \ell^4 + \ell^2 f$. Let us also write $S = k[x_1, x_2]$ and $\mathfrak{b} = (f'_{x_1}, f'_{x_2}) = (x_2 \ell^2, x_1 \ell^2) \subset S$.

We are going to construct inductively a sequence of differential operators $E_m^m \in \mathfrak{b} \operatorname{Diff}_{S/k}, \ m \geq 1$, with $E_1^1 = 0$, $E_2^2(f) = x_1 x_2 \ell^4$, $E_m^m(f) = 0$ for all $m \geq 3$ and such that $(\operatorname{Id}, E_1^1, E_2^2, E_3^3, \ldots)$ is a Hasse-Schmidt derivation of length ∞ .

For
$$m=2$$
, let us take $E_2^2=f'_{x_2}\partial_1$.

Assume that we have already found a Hasse–Schmidt derivation $E^m = (\mathrm{Id}, E_1^1, \ldots, E_m^m) \in \mathrm{HS}_k(S; m)$ with the required properties. Let us consider $F^m = \varepsilon(E^m) \in \mathrm{HS}_k(S; \infty)$. From Proposition (1.3.1), 2) we deduce that $F_{m+1}^m \in \mathfrak{b}^2 \operatorname{Diff}_{S/k}$ and so $F_{m+1}^m(f) \in \mathfrak{b}^2$. Hence, there are $\alpha, \beta \in \mathfrak{b}$ such that $F_{m+1}^m(f) = \alpha f'_{x_1} + \beta f'_{x_2}$ and consequently we can take $E_{m+1}^{m+1} = F_{m+1}^m - (\alpha \partial_1 + \beta \partial_2)$

Once the Hasse–Schmidt derivation $E=(\mathrm{Id},0,E_2^2,E_3^3,\dots)\in \mathrm{HS}_k(S;\infty)$ has been constructed, we extend it in the obvious way to the ring R (we keep the same name E for the extension). We have $\Phi_{D\circ E}(f)=\widetilde{\Phi}_D\left(\Phi_E(f)\right)=\widetilde{\Phi}_D\left(f+x_1x_2\ell^4t^2\right)=\Phi_D(f)+\Phi_D(x_1x_2\ell^4)t^2=f+(x_3\ell)^2t^2+x_1x_2\ell^4t^2=(1+\ell^2t^2)f$ and so $D\circ E$ is a I-logarithmic integral of δ . Q.E.D.

The proof of the following lemma is due to M. Mérida.

(3.5.8) LEMMA. The derivations $(x_3+x_1\ell)\partial_3$ and $(x_3+x_2\ell)\partial_3$ are I-logarithmically integrable.

PROOF. By symmetry, it is enough to consider the case $(x_3 + x_1 \ell)\partial_3$, for which the logarithmic integrability is a consequence of the fact that the map $\Psi: R \to R[[t]]$ given by:

$$\begin{array}{rcl} x_1 & \mapsto & x_1 + x_1 V, \\ x_2 & \mapsto & x_2 + x_1 V, \\ x_3 & \mapsto & x_3 + (x_3 + x_1 \ell) t + x_3 V, \end{array}$$

with $V = \sum_{i=1}^{\infty} t^{2^i}$, is *I*-logarithmic. Namely, since $t^2 = V^2 + V$, we have

$$\begin{split} f(x_1+x_1V,x_2+x_1V,x_3+(x_3+x_1\ell)t+x_3V) = \\ (x_3+(x_3+x_1\ell)t+x_3V)^2 + (x_1+x_1V)(x_2+x_1V)\ell^2 = \\ x_3^2 + (x_3^2+x_1^2\ell^2)t^2 + x_3^2V^2 + (x_1x_2+x_1^2V+x_1x_2V+x_1^2V^2)\ell^2 = \\ x_3^2 + (x_3^2+x_1^2\ell^2)t^2 + x_3^2V^2 + (x_1x_2+x_1^2t^2+x_1x_2V)\ell^2 = \\ x_3^2 + x_3^2t^2 + x_3^2V^2 + (x_1x_2+x_1x_2V)\ell^2 = f + x_3^2t^2 + x_3^2V^2 + x_1x_2V\ell^2 = \\ f + x_3^2V + x_1x_2V\ell^2 = (1+V)f. \end{split}$$

Q.E.D.

(3.5.9) COROLLARY. $\operatorname{Ider}_k(A;4) = \operatorname{Ider}_k(A)$.

3.6 Some questions

(3.6.1) QUESTION. Assume that $R = k[x_1, \ldots, x_d]$, $S \subset R$ is a multiplicative set and $A = S^{-1}R$ or $A = k[[x_1, \ldots, x_d]]$. Let $I \subset A$ be an ideal, $m \ge 1$ an integer, $D \in \mathrm{HS}_k(\log I; m)$ and $E = \overline{D} \in \mathrm{HS}_k(A/I; m)$. Let us consider the following properties:

- (a) D is I-logarithmically n-integrable for all integers $n \ge m$ (or equivalently, E is n-integrable for all integers $n \ge m$).
- (b) D is I-logarithmically ∞ -integrable (or equivalently E is ∞ -integrable).

Under which hypotheses on k and on I are properties (a) and (b) equivalent for any $D \in \mathrm{HS}_k(\log I; m)$? Are they equivalent if k is a field or the ring of integers and I is arbitrary?

Notice that this question is the same as asking whether the inclusion in 3 (or in 1 for m = 1) is an equality or not.

(3.6.2) QUESTION. The proofs of propositions (2.3.2) and (2.3.3) do not work for $m=\infty$ and, presumably, these propositions are not true for $m=\infty$ without additional finiteness hypotheses on k. Let us notice that if the maps in Proposition (2.3.3) are surjective for $m=\infty$, then the localization conjecture for the Hasse–Schmidt algebra stated in [16] is true.

- (3.6.3) QUESTION. For any finitely presented k-algebra A, find an algorithm for deciding whether a given $\delta \in \operatorname{Der}_k(A)$ is m-integrable or not.
- (3.6.4) QUESTION. For any finitely presented k-algebra A, find an algorithm to obtain a system of generators of $\operatorname{Ider}_k(A; m)$, $m \geq 2$.
- (3.6.5) QUESTION. Assume that the base ring k is a field of positive characteristic or \mathbb{Z} , or perhaps a more general noetherian ring, and A a finitely generated k-algebra. Is there an integer $n \geq 1$ such that $\operatorname{Ider}_k(A;n) = \operatorname{Ider}_k(A;2)$? Or at least, is the descending chain of A-modules $\operatorname{Ider}_k(A;1) \supset \operatorname{Ider}_k(A;2) \supset \operatorname{Ider}_k(A;3) \supset \cdots$ stationary?
- (3.6.6) QUESTION. Assume that the base ring k is a field of positive characteristic or \mathbb{Z} , or perhaps a more general noetherian ring. Is there an integer $m \gg 1$, possibly depending on d and e or other numerical invariants, such that

$$\operatorname{Ider}_k(A; m) = \operatorname{Der}_k(A) \quad \Rightarrow \quad \operatorname{Ider}_k(A) = \operatorname{Der}_k(A)$$

for every quotient ring $A = k[x_1, \dots, x_d]/I$ with dim A = e?

(3.6.7) QUESTION. Assume that the base ring k is a field of positive characteristic or \mathbb{Z} , or perhaps a more general noetherian ring, A a local noetherian k-algebra and $\delta: A \to A$ a k-derivation. Under which hypotheses the m-integrability of $\hat{\delta}: \hat{A} \to \hat{A}$ implies the m-integrability of δ ?

References

- [1] W.C. Brown. On the embedding of derivations of finite rank into derivations of infinite rank. Osaka J. Math. 15 (1978), 381–389.
- [2] W. Bruns and U. Vetter. Determinantal Rings. Lecture Notes in Math. 1327. Springer-Verlag, Berlin, Heidelberg, 1988.
- [3] M. Fernández-Lebrón and L. Narváez-Macarro. Hasse-Schmidt derivations and coefficient fields in positive characteristics. *J. Algebra* 265 (1) (2003), 200–210.
- [4] D. R. Grayson and M. E. Stillman. Macaulay 2. Available at http://www.math.uiuc.edu/Macaulay2/.
- [5] A. Grothendieck and J. Dieudonné. Eléments de Géométrie Algébrique IV: Etude locale des schémas et de morphismes de schémas (Quatrième Partie), volume 32 of Inst. Hautes Études Sci. Publ. Math., Press Univ. de France, Paris, 1967.
- [6] H. Hasse and F. K. Schmidt. Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. J. Reine U. Angew. Math. 177 (1937), 223-239.
- [7] J. Lipman. On the Jacobian ideal of the module of differentials. *Proc. Amer. Math. Soc.* 21 (1969), 422–426.

- [8] G. Másson. Differential Operators and Étale Extensions. Ph.D. Thesis, Massachusetts Institute of Technology, 1991.
- [9] H. Matsumura. Integrable derivations. Nagoya Math. J. 87 (1982), 227–245.
- [10] H. Matsumura. Commutative Ring Theory. Vol. 8 of Cambridge studies in advanced mathematics, Cambridge Univ. Press, Cambridge, 1986.
- [11] S. Molinelli. Sul modulo delle derivazioni integrabili in caractteristica positiva. Ann. Mat. Pura Appl. 121 (1979), 25–38.
- [12] L. Narváez Macarro. Hasse–Schmidt derivations, divided powers and differential smoothness. Ann. Inst. Fourier (Grenoble) 59 (7) (2009), 2979–3014.
- [13] A. Seidenberg. Derivations and integral closure. *Pacific J. Math.* 16 (1) (1966), 167–173.
- [14] W.N. Traves. Differential Operators and Nakai's Conjecture. PhD Thesis, Department of Mathematics, University of Toronto, 1998.
- [15] W.N. Traves: Tight Closure and Differential Simplicity. J. of Algebra 228 (2000), 457–476.
- [16] W.N. Traves: Localization of the Hasse-Schmidt Algebra Canad. Math. Bull. 46 (2) (2003), 304–309.
- [17] P. Vojta. Jets via Hasse–Schmidt derivations. In "Diophantine geometry", CRM Series, vol. 4, Ed. Norm., Pisa, 2007, 335–361.

Departamento de Álgebra & Instituto de Matemáticas (IMUS) Facultad de Matemáticas, Universidad de Sevilla

P.O. Box 1160, 41080 Sevilla, Spain.

E-mail: narvaez@algebra.us.es