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On the modules of m-integrable derivations in

non-zero characteristic

Luis Narváez Macarro∗

Abstract

Let k be a commutative ring and A a commutative k-algebra. Given
a positive integer m, or m = ∞, we say that a k-linear derivation δ of
A is m-integrable if it extends up to a Hasse–Schmidt derivation D =
(Id, D1 = δ,D2, . . . , Dm) of A over k of length m. This condition is
automatically satisfied for any m under one of the following orthogonal
hypotheses: (1) k contains the rational numbers and A is arbitrary, since

we can take Di = δi

i!
; (2) k is arbitrary and A is a smooth k-algebra.

The set of m-integrable derivations of A over k is an A-module which
will be denoted by Iderk(A;m). In this paper we prove that, if A is a
finitely presented k-algebra and m is a positive integer, then a k-linear
derivation δ of A is m-integrable if and only if the induced derivation
δp : Ap → Ap is m-integrable for each prime ideal p ⊂ A. In particu-
lar, for any locally finitely presented morphism of schemes f : X → S

and any positive integer m, the S-derivations of X which are locally m-
integrable form a quasi-coherent submodule IderS(OX ;m) ⊂ DerS(OX)
such that, for any affine open sets U = SpecA ⊂ X and V = Spec k ⊂

S, with f(U) ⊂ V , we have Γ(U, IderS(OX ;m)) = Iderk(A;m) and
IderS(OX ;m)p = IderOS,f(p)

(OX,p;m) for each p ∈ X. We also give,
for each positive integer m, an algorithm to decide whether all derivations
are m-integrable or not.

Keywords: derivation; integrable derivation; Hasse–Schmidt derivation;
differential operator
MSC: 14F10; 13N15; 14B05

Introduction

Let us start by recalling the algebraic interpretation of the integration of a vector
field. Let X be a complex algebraic variety and χ an algebraic vector field on X ,
or, equivalently, a C-derivation δ : OX → OX of the sheaf of regular functions.
Let us denote by X [t] = A1

C
× X , C[ε] = C[t]/(t2), X [ε] = SpecC[ε] × X and

δ : X [ε] → X the map of schemes determined by (and determining) δ: any
section f of OX is mapped to the section f + δ(f)ε of OX [ε].

If X is nonsingular, we can consider the flow Θ : U → Xan associated with
χan, where U ⊂ X [t]an = C×Xan is an open neighbourhood of X = {0}×Xan.

∗Partially supported by MTM2007-66929, MTM2010-19298 and FEDER.
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It turns out that for any holomorphic (or algebraic) function f on an open set
V ⊂ Xan, the function Θ∗(f) = f ◦Θ is given by

(t, p) ∈ Θ−1(V ) ⊂ C×Xan 7→
∞∑

i=0

ti
δi(f)

i!
(p) ∈ C

for |t| small enough. Hence, the formal completion of Θ along X , Θ̂ : Û =

X̂ [t]an → Xan, comes from the purely (formal) algebraic map X̂ [t] → X as-
sociated with the exponential map etδ : OX → OX [[t]] attached to χ (or to δ)
defined as

etδ(f) =

∞∑

i=0

ti
δi(f)

i!

for any regular function f on some Zariski open set of X .

The exponential map etδ is a lifting of δ (it coincides with δ mod t2) and
it can be regarded as the algebraic incarnation of the integration of the vector
field χ.

The exponential map of a vector field makes sense not only over the complex
numbers, but over any field of characteristic zero, and in fact it also works if X
is eventually singular. However, it does not make sense over a field k of positive
characteristic.

Nevertheless, the notion of Hasse–Schmidt derivation allows us to define
what integrability means for a vector field in such a case (see [1, 9]). Given a
commutative ring k and a commutative k-algebraA, a Hasse–Schmidt derivation
of A over k (of length ∞) is a sequence D = (Id, D1, D2, D3, . . . ) of k-linear
operators of A which appear as the coefficients of a k-algebra map Φ : A → A[[t]]
such that Φ(a) ≡ a mod t for all a ∈ A: Φ(a) = a + D1(a)t +D2(a)t

2 + · · · .
That property is equivalent to the fact that the Di satisfy the Leibniz equality:

D0 = Id, Di(ab) =
∑

r+s=i

Dr(a)Ds(b) ∀a, b ∈ A, ∀i ≥ 1.

A k-linear derivation δ : A → A is said to be (∞-)integrable if there is a Hasse–
Schmidt derivation D of A over k (of length ∞) such that D1 = δ, or in other
words, if the k-algebra map δ : a ∈ A 7→ a + δ(a)ε ∈ A[ε] = A[[t]]/(t2) can be
lifted up to a k-algebra map Φ : A → A[[t]]. The set of k-linear derivations of A
which are integrable is a submodule of Derk(A), which is denoted by Iderk(A).

When A is a smooth k-algebra over an arbitrary commutative ring k or
when k contains the rational numbers, any k-linear derivation δ : A → A is
(∞-)integrable. The modules Iderk(A), and more generally, the Hasse–Schmidt
derivations of A over k seem to play an important role among the differential
structures in Commutative Algebra and Algebraic Geometry (see [17], [12]).
They behave better in positive characteristic than Derk(A) (see for instance
[11] or [13]) and one expects that they can help to understand (some of) the
differences between singularities in zero and non-zero characteristics, but they
are difficult to deal with. For instance, it is not clear at all that (∞-)integrability
is a local property (in the sense that can be tested locally at the primes ideals
of A).
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For a given positive integer m, the m-integrability of a k-linear derivation
δ : A → A is defined as the existence of a k-algebra map Φ : A → A[[t]]/(tm+1)
lifting the map δ defined above. The set of k-linear derivations of A which
are m-integrable is a submodule of Derk(A), which is denoted by Iderk(A;m).
One obviously has Derk(A) = Iderk(A; 1) ⊃ Iderk(A; 2) ⊃ Iderk(A; 3) ⊃ · · · ⊃
Iderk(A;∞) = Iderk(A).

This paper is devoted to the study of the modules Iderk(A;m), for m ≥ 1.

One of the main difficulties when dealing with m-integrability of a derivation
is that one cannot proceed step by step: a derivation δ can be (m+r)-integrable,
but it may have an intermediate m-integralD = (Id, D1 = δ,D2, . . . , Dm) which
does not extends up to a Hasse–Schmidt derivation of length (n+r) (cf. Example
3.7 in [12]).

Our main results are the following:

(I) If A is a finitely presented k-algebra and m is a positive integer, then the
property of being m-integrable for a k-derivation δ of A is a local property,
i.e. δ is m-integrable if and only if the induced derivation δp : Ap → Ap

is m-integrable for each prime ideal p ⊂ A. As a consequence, for any lo-
cally finitely presented morphism of schemes f : X → S and any positive
integer m, the S-derivations of X which are locally m-integrable form a quasi-
coherent submodule IderS(OX ;m) ⊂ DerS(OX) such that, for any affine open
sets U = SpecA ⊂ X and V = Spec k ⊂ S, with f(U) ⊂ V , we have
Γ(U, IderS(OX ;m)) = Iderk(A;m) and IderS(OX ;m)p = IderOS,f(p)

(OX,p;m)
for each p ∈ X (see Theorem (2.3.6) and Corollary (2.3.7)). We have then a
decreasing sequence of quasi-coherent modules

DerS(OX) = IderS(OX ; 1) ⊃ IderS(OX ; 2) ⊃ IderS(OX ; 3) ⊃ · · ·

and all the quotientsDerS(OX)/ IderS(OX ;m) are supported by the non-smooth-
ness locus of f : X → S.

(II) For a given k-algebraA and for any positive integerm, there is a constructive
procedure to see whether all k-derivations of A are m-integrable or not. In
particular, if A and k are “computable” rings, then the above procedure becomes
an effective algorithm (although of exponential complexity with respect to m)
to decide whether the equality Iderk(A;m) = Derk(A) is true or not (see 2.5).

Let us now comment on the content of this paper.

In section 1 we review the notion of Hasse–Schmidt derivation and its basic
properties. We study logarithmic Hasse–Schmidt derivations with respect to an
ideal I of some ambient algebra A and their relationship with Hasse–Schmidt
derivations of the quotient A/I. In the last part we focus on the description of
Hasse–Schmidt derivations on polynomial or power series algebras.

Section 2 contains the main results of this paper. First, we define m-
integrability and logarithmic m-integrability and give a characterization of (m+
1)-integrability for a Hasse–Schmidt derivation of length m. In section 2.2 we
give some criteria for a derivation to be integrable, based on and extending pre-
vious results of [9] and [15]. Next, we study the behaviour of m-integrability
under localization, for finite m, and prove (I) above. In the last part we prove
the results needed to justify procedure (II) above.
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In Section 3 we first compute some concrete examples and illustrate the
nonlinear equations one encounters when computing systems of generators of
the modules Iderk(A;m). In the second part we state some questions, which
seem to be important for understanding the relationship between the modules
of m-integrable derivations and singularities.

I would like to thank Herwig Hauser and Orlando Villamayor for many
helpful and inspiring discussions, and also Herwig Hauser for proposing the
last two examples in section 3. I would also like to thank Herwig Hauser and
Eleonore Faber for some comments and suggestions on a previous version of this
paper.

1 Notations and preliminaries

1.1 Notations

Throughout the paper we will use the following notations:

-) k will be a commutative ring and A a commutative k-algebra.

-) N+ := {n ∈ N | n ≥ 1}, N := N ∪ {∞}, N+ := N+ ∪ {∞}.
-) If n ∈ N+, [n] := {0, 1, . . . , n}, [n]+ := [n] ∩ N+ and [∞] := N.

-) If n ∈ N+, An := A[[t]]/(tn+1) and A∞ = A[[t]]. Each An is an augmented
A-algebra, the augmentation ideal ker(An → A) being generated by t.

-) For n ∈ N+ and m ∈ [n]+, let us denote by πnm : An → Am the natural
epimorphism of augmented A-algebras.

-) If α = (α1, . . . , αd) ∈ Nd, suppα = {r ∈ {1, . . . , d} | αr 6= 0} and |α| :=
α1 + · · ·+ αd.

-) The ring of k-linear differential operators of A will be denoted by DiffA/k (see
[5]).

-) For A = k[x1, . . . , xd] or A = k[[x1, . . . , xd]], we will denote by ∂r : A → A
the partial derivative with respect to xr .

1.2 Hasse-Schmidt derivations

In this section we remind the definition and basic facts of Hasse–Schmidt deriva-
tions (see [6],[10], §27, and [14], [17], [12] for more recent references). We also
introduce the basic constructions that will be used throughout the paper.

(1.2.1) Definition. A Hasse–Schmidt derivation of A (over k) of length n ≥ 1
(resp. of length ∞) is a sequence D = (Di)i∈[n] of k-linear maps Di : A −→ A,
satisfying the conditions:

D0 = IdA, Di(xy) =
∑

r+s=i

Dr(x)Ds(y)

for all x, y ∈ A and for all i ∈ [n]. We denote by HSk(A;n) the set of all Hasse–
Schmidt derivations of A (over k) of length n ∈ N and HSk(A) = HSk(A;∞).

(1.2.2) The D1 component of any Hasse-Schmidt derivation D ∈ HSk(A;n) is
a k-derivation of A. More generally, the Di component is a k-linear differential
operator of order ≤ i with Di(1) = 0 for i = 1, . . . , n.
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(1.2.3) Any Hasse–Schmidt derivation D ∈ HSk(A;n) is determined by the
k-algebra homomorphism ΦD : A → An defined by ΦD(a) =

∑n
i=0 Di(a)t

i and
satisfying ΦD(a) ≡ a mod t. The k-algebra homomorphism ΦD can be uniquely

extended to a k-algebra automorphism Φ̃D : An → An with Φ̃D(t) = t:

Φ̃D

(
n∑

i=0

ait
i

)
=

n∑

i=0

Φ(ai)t
i.

So, there is a bijection between HSk(A;n) and the subgroup of Autk−alg(An)

consisting of the automorphisms Φ̃ satisfying Φ̃(a) ≡ a mod t for all a ∈ A and

Φ̃(t) = t. In particular, HSk(A;n) inherits a canonical group structure which
is explicitly given by D ◦D′ = D′′ with D′′

l =
∑

i+j=l Di ◦D
′
j , the identity

element of HSk(A;n) being (IdA, 0, 0, . . . ). It is clear that the map (IdA, D1) ∈
HSk(A; 1) 7→ D1 ∈ Derk(A) is an isomorphism of groups, where we consider the
addition as internal operation in Derk(A).

(1.2.4) For any a ∈ A and any D ∈ HSk(A;n), the sequence a•D defined by
(a•D)i = aiDi, i ∈ [n], is again a Hasse–Schmidt derivation of A over k of length
n and Φa•D(b)(t) = ΦD(b)(at) for all b ∈ A. We have (aa′)•D = a•(a′ •D),
1•D = D and 0•D = the identity element.

(1.2.5) For 1 ≤ m ≤ n ∈ N, let us denote by τnm : HSk(A;n) → HSk(A;m) the
truncation map defined in the obvious way. One has ΦτnmD = πnm ◦ΦD. Trun-
cation maps are group homomorphisms and they satisfy τnm(a•D) = a•τnmD.
It is clear that the group HSk(A;∞) is the inverse limit of the groups HSk(A;m),
m ∈ N.

(1.2.6) Definition. Let q ≥ 1 be an integer or q = ∞, and D ∈ HSk(A; q).
For each integer m ≥ 1 we define D[m] as the Hasse–Schmidt derivation (over
k) of length mq determined by the k-algebra map obtained by composing the
following maps:

A
ΦD−−→ Aq = A[[t]]/(tq+1)

t 7→t
m

−−−−→ Amq = A[[t]]/(tmq+1).

In the case q = 1 and D = (IdA, δ), we simply denote δ[m] := D[m].

If D = (IdA, D1, D2, . . . ) ∈ HSk(A; q), then

D[m] = (IdA, 0, . . . , 0,

m
︸︷︷︸

D1 , 0, . . . , 0,

2m
︸︷︷︸

D2 , 0, . . . ) ∈ HSk(A;mq).

The map D ∈ HSk(A; q) 7→ D[m] ∈ HSk(A; qm) is a group homomorphism and
we have (am • D)[m] = a • D[m], (τqq′D)[m] = τqm,q′m(D[m]) for a ∈ A, 1 ≤
q′ ≤ q.

(1.2.7) Definition. For each n ∈ N+ and each E ∈ HSk(A;n), we denote
ℓ(E) = 0 if E1 6= 0, ℓ(E) = n if E is the identity and ℓ(E) = maximun of the
r ∈ [n] such that E1 = · · · = Er = 0 otherwise.

(1.2.8) Definition. Let I ⊂ A be an ideal and m ∈ N+. We say that:

1) A k-derivation δ : A → A is I-logarithmic if δ(I) ⊂ I. The set of k-linear
derivations of A which are I-logarithmic is denoted by Derk(log I).
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2) A Hasse–Schmidt derivation D ∈ HSk(A;m) is called I-logarithmic if
Di(I) ⊂ I for any i ∈ [m]. The set of Hasse–Schmidt derivations D ∈
HSk(A;m) which are I-logarithmic is denoted by HSk(log I;m). When
m = ∞ it will be simply denoted by HSk(log I).

The set Derk(log I) is obviously a A-submodule of Derk(A). Any δ ∈
Derk(log I) gives rise to a unique δ ∈ Derk(A/I) satisfying δ ◦π = π ◦ δ, where
π : A → A/I is the natural projection. Moreover, if A = k[x1, . . . , xd] or
A = k[[x1, . . . , xd]], the sequence of A-modules

0 → I Derk(A)
incl.−−−→ Derk(log I)

δ 7→δ−−−→ Derk(A/I) → 0

is exact.

(1.2.9) In the same vein, the set HSk(log I;m) is a subgroup of HSk(A;m) and
we have A• HSk(log I;m) ⊂ HSk(log I;m), HSk(log I;m)[n] ⊂ HSk(log I;mn),
n ∈ N. A D ∈ HSk(A;m) is I-logarithmic if and only if its corresponding k-
algebra homomorphism ΦD : A → Am satisfies ΦD(I) ⊂ Im := kerπm, where
πm : Am → (A/I)m is the natural projection1. Moreover, a I-logarithmic
Hasse–Schmidt derivationD ∈ HSk(log I;m) gives rise to a uniqueD ∈ HSk(A/I;m)
such that Di ◦π = π ◦Di for all i ∈ [m], and the following diagram is commuta-
tive

A
ΦD

//

π

��

Am

πm

��

A/I
Φ

D
// (A/I)m .

The map Πm : D ∈ HSk(log I;m) → D ∈ HSk(A/I;m) is clearly a homomor-
phism of groups and Πm(a•D) = π(a)•Πm(D). So, its kernel contains the
subgroup I • HSk(A;m) generated by the a•E, with a ∈ I and E ∈ HSk(A;m).
It is also clear that τmn ◦Πm = Πn ◦ τmn and (ΠmD)[n] = Πmn(D[n]).

(1.2.10) Let S ⊂ A be a multiplicative set. For each k-linear differential opera-

tor P : A → A, let us denote by P̃ : S−1A → S−1A its canonical extension. We
know that the map P ∈ DiffA/k 7→ P̃ ∈ DiffS−1A/k is a ring homomorphism.
Let m ≥ 1 be an integer or m = ∞ and a ⊂ A an ideal. Here is a summary of
the basic facts of the behaviour of Hasse-Schmidt derivations under localization:

-) For any D = (Di) ∈ HSk(A;m), the sequence D̃ := (D̃i) is a Hasse-Schmidt
derivation of S−1A (over k of length m) and the following diagram is commu-
tative

A
ΦD

//

can.

��

Am

can.

��

S−1A
Φ

D̃
// (S−1A)m.

Moreover, if D is a-logarithmic, then D̃ is (S−1a)-logarithmic.

1Observe that ker πm = IAm when I is finitely generated or m is finite.
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-) The map Θm : D ∈ HSk(A;m) → D̃ ∈ HSk(S
−1A;m) is a group homomor-

phism, Θm(a•D) = a
1 •Θm(D) and the following diagram is commutative:

HSk(log a;m)
Θm

//

Πm

��

HSk(log(S
−1a);m)

Πm

��

HSk(A/a;m)
Θm
// HSk(S

−1A/S−1a;m).

Moreover, τmn ◦Θm = Θn ◦ τmn and (ΘmD)[n] = Θmn(D[n]).

The extension of Hasse–Schmidt derivations to rings of fractions is a partic-
ular case of the formally étale extensions (cf. [8] and [15], th. 1.5).

1.3 Hasse–Schmidt derivations of polynomial or formal

power series algebras

Throughout this section we assume that A = k[x1, . . . , xd] or A = k[[x1, . . . , xd]].
The Taylor differential operators ∆(α) : A → A, α ∈ Nd, are defined by:

g(x1 + T1, . . . , xd + Td) =
∑

∆(α)(g)Tα, ∀g ∈ A.

It is well known that {∆(α)}|α|≤i is a basis of the left (resp. right) A-module of
k-linear differential operators of A of order ≤ i. So, if D ∈ HSk(A;m), there are
unique Ci

α ∈ A, α ∈ Nd, 0 < i ≤ |α| ∈ [m]+, such that Di =
∑

0<|α|≤iC
i
α∆

(α),

i ∈ [m]+. On the other hand, there are unique cri ∈ A, i ∈ [m]+, 1 ≤ r ≤ d,
such that

ΦD(xr) = xr +
m∑

i=1

crit
i, 1 ≤ r ≤ d.

In fact, any system of cri ∈ A, i ∈ [m]+, 1 ≤ r ≤ d, determines uniquely such
a homomorphism of k-algebras A → Am and so a Hasse–Schmidt derivation
D ∈ HSk(A;m).

The following proposition gives the relationship between the Ci
α and the cri

above. Its proof does not contain any surprise and it is left up to the reader.

(1.3.1) Proposition. With the above notations, the following properties hold:

1) cri = Di(xr) = Ci
er , with er = (0, . . . ,

r
︸︷︷︸

1 , . . . , 0), for all i ∈ [m]+, r =
1, . . . , d.

2)

Ci
α =

∑

{εr}r∈supp α

εr≥αr ,|ε|=i




∏

r∈suppα




∑

β1+···+βαr=εr
βk>0

αr∏

k=1

cr,βk







for all α ∈ Nd, |α| ∈ [m]+, 0 < i ≤ |α|.

The above proposition is a particular case of Theorem 2.8 in [3]. For the
sake of completeness we include, without proof, the following result.
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(1.3.2) Proposition. Let Ci
α ∈ A, α ∈ Nd, 0 < i ≤ |α| ∈ [m]+, be a system

of elements of A and define D0 = IdA, Di =
∑

0<|α|≤iC
i
α∆

(α), i ∈ [m]+. The
following properties are equivalent:

(a) The sequence D = (Di)i∈[m] is a Hasse–Schmidt derivation of A over k
of length m.

(b) For all i ∈ [m], i ≥ 2, for all ̺ ∈ Nd with 2 ≤ |̺| ≤ i and for all β, γ ∈ Nd

with ̺ = β+ γ, |β|, |γ| > 0 we have Ci
̺ =

∑
Cj

βC
l
γ , where the summation

indexes are the (j, l) with j ≥ |β|, l ≥ |γ| and j + l = i.

Let us notice that, if the equivalent properties of the preceding proposition
hold, then the Ci

α with 2 ≤ |α| ≤ i are determined by the Cj
β with 1 ≤ |β| ≤ j ≤

i− 1. This applies in particular to the symbol of the Di, σ(Di) =
∑

|α|=iC
i
αξ

α,

which only depend on D1 (compare with Proposition 2.6 in [12]).

(1.3.3) Definition. The Taylor Hasse-Schmidt derivations of A are the

∆(s) := (IdA,∆
(s)
1 ,∆

(s)
2 ,∆

(s)
3 , . . . ) ∈ HSk(A), 1 ≤ s ≤ d,

where ∆
(s)
i = ∆(0,...,

s
︸︷︷︸
i ,...,0) for each i ≥ 1.

(1.3.4) Proposition. Assume that R = k[x1, . . . , xd], S ⊂ R is a multiplica-
tive set and A = S−1R or A = k[[x1, . . . , xd]]. For any ideal I ⊂ A, the group
homomorphisms Πm : HSk(log I;m) → HSk(A/I;m), m ∈ N, (see (1.2.9)) are
surjective.

Proof. Let us prove the proposition in the case A = S−1R, the case A =
k[[x1, . . . , xd]] being completely similar. Let us call σ : R → A, π : A →
A/I, πm : Am → (A/I)m the canonical maps and let E ∈ HSk(A/I;m) be
any Hasse–Schmidt derivation. Let ari ∈ A be elements such that

ΦE(π(σ(xr))) = π(σ(xr)) +
∑

i∈[m]

π(ari)t
i ∈ (A/I)m, r = 1, . . . , d,

and let Ψ : R → Am be the k-algebra map defined by

Ψ(xr) = σ(xr) +
∑

i∈[m]

arit
i ∈ Am, r = 1, . . . , d.

Since Ψ(f) ≡ σ(f) mod t for each f ∈ R, we deduce that Ψ(s) is invertible for

all s ∈ S and the map Ψ induces Ψ̃ : A → Am. It is clear that Ψ̃(a) ≡ a mod t

for each a ∈ A and πm ◦ Ψ̃ = ΦE ◦π. So, Ψ̃ induces a I-logarithmic Hasse-
Schmidt derivation D ∈ HSk(log I;m) such that Πm(D) = E (see (1.2.9)).
Q.E.D.

(1.3.5) Proposition. Assume that R = k[x1, . . . , xd], S ⊂ R is a multiplica-
tive set and let a ⊂ R be a finitely generated ideal. For any (finite) integer
m ≥ 1, the map

(s,D) ∈ S ×HSk(log a;m) 7→ 1

s
•Θm(D) ∈ HSk(log(S

−1a);m)

8



is surjective.

Proof. Let E ∈ HSk(log(S
−1a);m) be any (S−1a)-logarithmic Hasse–Schmidt

derivation. Since m is finite, there are aij ∈ R, 1 ≤ i = 1 ≤ d, 1 ≤ j ≤ m and
σ ∈ S such that

ΦE

(xi

1

)
=

xi

1
+
(ai1

σ

)
t+ · · ·+

(aim
σ

)
tm ∈ (S−1R)m, i = 1, . . . , d.

Let us consider the k-algebra map Φ0 : R → Rm given by

Φ0(xi) = xi + ai1t+ σai2t
2 + · · ·+ σm−1aimtm ∈ Rm, i = 1, . . . , d

and the corresponding Hasse-Schmidt derivation D0 ∈ HSk(R;m) with Φ0 =
ΦD0 . It is clear that

(
σ
1

)
•E = Θm(D0). Let f1, . . . , fu ∈ a be a finite system

of generators. Since Θm(D0) is (S−1a)-logarithmic, we deduce the existence of
a τ ∈ S such that τΦD0(fl) ∈ Ama for all l = 1, . . . , u. So, D := τ •D0 is
a-logarithmic and E =

(
1
στ

)
•Θm(D). Q.E.D.

Proposition (1.3.5) is false for m = ∞, as shown for instance in example 1.4
in [15].

(1.3.6) Corollary. Assume that A is a finitely presented k-algebra and let
T ⊂ A be a multiplicative set. Then, for any (finite) integer m ≥ 1, the map

(t, E) ∈ T ×HSk(A;m) 7→ 1

t
•Θm(E) ∈ HSk(T

−1A;m)

is surjective.

Proof. We may assume that A = R/a with R = k[x1, . . . , xd] and a ⊂ R
a finitely generated ideal. Denote by π : R → A the natural projection and
S = π−1(T ). We have T−1A = S−1R/S−1a. Let us look at the following
commutative diagram

S ×HSk(log a;m) //

π×Πm

��

HSk(log(S
−1a);m)

Πm

��

T ×HSk(A;m) // HSk(T
−1A;m).

The vertical arrows are surjective by Proposition (1.3.4). To conclude, we apply
Proposition (1.3.5). Q.E.D.

2 Integrability

2.1 Integrable Hasse–Schmidt derivations

In this subsection, A will be again an arbitrary k-algebra.

(2.1.1) Definition. (Cf. [1, 9]) We say that a k-derivation δ : A → A
is n-integrable (over k), with n ∈ N, if there is a Hasse–Schmidt derivation
D ∈ HSk(A;n) such that D1 = δ. A such D will be called a n-integral of δ. The
set of n-integrable k-derivations of A is denoted by Iderk(A;n). We simply say
that δ is integrable if it is ∞-integrable and we denote Iderk(A) = Iderk(A;∞).
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More generally, we say that a Hasse–Schmidt derivation D′ ∈ HSk(A;m) is n-
integrable (over k), with m,n ∈ N, n ≥ m, if there is a Hasse–Schmidt deriva-
tion D ∈ HSk(A;n) such that τnmD = D′. A such D will be called a n-integral
of D′. The set of n-integrable Hasse–Schmidt derivations of A over k of length
m is denoted by IHSk(A;m;n). We simply say that D′ is integrable if it is
∞-integrable and we denote IHSk(A;m) = IHSk(A;m;∞).

It is clear that the Iderk(A;n) are A-submodules of Derk(A), Derk(A) =
Iderk(A; 1) ⊃ Iderk(A; 2) ⊃ Iderk(A; 3) ⊃ · · · and

Iderk(A) ⊂
⋂

n∈N+

Iderk(A;n). (1)

It is also clear that the IHSk(A;m;n) are subgroups of IHSk(A;m), stable by
the • operation, IHSk(A;m) = IHSk(A;m;m) ⊃ IHSk(A;m;m+ 1) ⊃ · · · and

IHSk(A;m) ⊂
⋂

n≥m

IHSk(A;m;n). (2)

(2.1.2) Example. (1) Let n ≥ 1 be an integer. If n! is invertible in A, then
any k-derivation δ of A is n-integrable: we can take D ∈ HSk(A;n) defined by

Di =
δi

i! for i = 0, . . . , n. In the case n = ∞, if Q ⊂ A, one proves in a similar
way that any k-derivation of A is integrable.

(2) If A is 0-smooth (i.e. formally smooth for the discrete topologies) k-algebra,
then any k-derivation of A is integrable (cf. [10], Theorem 27.1).

(2.1.3) Remark. A particularly important case of example (2.1.2) is A =
k[x1, . . . , xd] or A = k[[x1, . . . , xd]]. In this case we can do better than in
example (2.1.2) and even exhibit a special integral for each D ∈ HSk(A;m),
m ∈ N+. Namely, consider the Hasse–Schmidt derivation ε(D) ∈ HSk(A) de-
termined by the k-algebra map A = k[x1, . . . , xd] → A[[t]] sending each xr to∑

i∈[m]Di(xr)t
i ∈ A[[t]]. In other words, if ε(D) = (D′

i)i∈N, then D′
i = Di for

all i ∈ [m] and D′
i(xr) = 0 for all i > m and all r = 1, . . . , d. It is clear that

ε(IdA, ∂s) coincides with the “Taylor Hasse-Schmidt derivation” ∆(s) defined in
(1.3.3).

Definition (2.1.1) admits the following obvious logarihtmic version.

(2.1.4) Definition. Let I ⊂ A be an ideal and n ∈ N. We say that:

1) A I-logarithmic derivation δ ∈ Derk(log I) is I-logarithmically n-integrable
if there is a D ∈ HSk(log I;n) such that D1 = δ. A such D will be
called a I-logarithmic n-integral of δ. The set of I-logarithmic k-linear
derivations of A which are I-logarithmically n-integrable will be denoted
by Iderk(log I;n). When n = ∞ it will be simply denoted by Iderk(log I).

2) A I-logarithmic Hasse–Schmidt derivation D′ ∈ HSk(log I;m), with m ≤
n, is I-logarithmically n-integrable if there is a D ∈ HSk(log I;n) such
that τnmD = D′. A such D will be called a I-logarithmic n-integral of
D′. The set of I-logarithmically n-integrable I-logarithmic Hasse-Schmidt
derivations of A over k of length m will be denoted by IHSk(log I;m;n).
When n = ∞ it will be simply denoted by IHSk(log I;m).
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It is clear that the Iderk(log I;n) areA-submodules of Derk(log I) and Derk(log I) =
Iderk(log I; 1) ⊃ Iderk(log I; 2) ⊃ · · ·

Iderk(log I) ⊂
⋂

n∈N+

Iderk(log I;n). (3)

It is also clear that the IHSk(log I;m;n) are subgroups of IHSk(log I;m), stable
by the • operation, IHSk(log I;m) = IHSk(log I;m;m) ⊃ IHSk(log I;m;m +
1) ⊃ · · · and

IHSk(log I;m) ⊂
⋂

n≥m

IHSk(log I;m;n). (4)

The inclusions (3) and (4) seem not to be equalities in general (see question
(3.6.1)). Nevertheless, we have the following proposition.

(2.1.5) Proposition. The following properties hold:

1) Let n ≥ 1 be an integer. If any k-derivation of A is n-integrable, then
any Hasse–Schmidt derivation D ∈ HSk(A;m) is also n-integrable, for all
m ≤ n.

2) If any k-derivation is n-integrable for all integers n ≥ 1, then any Hasse–
Schmidt derivation D ∈ HSk(A;m) is also ∞-integrable, for all integers
m ≥ 1.

Proof. For 1) we can mimic the proof of Proposition 1.4 in [12] by using
Theorem 2.8 in [3] (see Remark 1.5 in [12]). For 2), we apply 1) and we obtain
a sequence En ∈ HSk(A;n), n ≥ m, with Em = D and τn+1,nE

n+1 = En for all
n ≥ m. It is clear that the inverse limit of the En (see (1.2.5)) is a ∞-integral
of D. Q.E.D.

(2.1.6) Lemma. Assume that R = k[x1, . . . , xd], S ⊂ R is a multiplicative
set and A = S−1R or A = k[[x1, . . . , xd]]. Let I ⊂ A be an ideal and n ≥ 1
an integer. Then, any Hasse–Schmidt derivation D in the kernel of the group
homomorphism Πn (see (1.2.9)) is I-logarithmically (∞-)integrable.

Proof. Let us prove the proposition in the case A = S−1R, the case A =
k[[x1, . . . , xd]] being completely similar. Denote by δ̃r : A → A the induced
derivation by the partial derivative ∂r : R → R. We proceed by decreasing
induction on ℓ(D) (see Definition (1.2.7)). If ℓ(D) = n, then D is the identity
and the result is clear. Let m be an integer with 0 ≤ m < n and suppose that
any D′ ∈ kerΠn with m + 1 ≤ ℓ(D′) is I-logarithmically integrable, and let
D ∈ kerΠn with ℓ(D) = m, i.e. D has the form (IdA, 0, . . . , 0, Dm+1, . . . , Dn)
with Dm+1 6= 0, and so Dm+1 must be a k-derivation. Since D ∈ kerΠn, we
deduce that Di(A) ⊂ I for all i. In particular, there are a1, . . . , ad ∈ I such that

Dm+1 =
∑d

r=1 ar δ̃r.

The I-logarithmic Hasse-Schmidt derivation E = (a1•∆̃(1)) ◦ · · · ◦ (ad •∆̃(d))
∈ kerΠ∞ is an (∞-)integral of Dm+1. Let us consider D′ = D ◦ (τ∞nE[m +
1])−1 ∈ kerΠn. It is clear that ℓ(D′) ≥ m + 1 and, by induction hypothesis,
D′ is I-logarithmically integrable. We conclude that D = D′

◦ (τ∞nE[m+1]) is
also I-logarithmically integrable. Q.E.D.
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(2.1.7) Remark. The proof of the above lemma shows that kerΠn is generated
by the n-truncations of the (a•E)[m], with a ∈ I, E ∈ HSk(A), m ∈ [n]. In
fact, for n = ∞ we obtain that kerΠ∞ is the closure of subgroup of HSk(log I)
generated by the (a•E)[m], with a ∈ I, E ∈ HSk(A) and m ∈ N+, where
we consider in HSk(A) the inverse limit topology of the discrete topologies in
the HSk(A;m), m ∈ N (see (1.2.5)). Namely, for D ∈ kerΠ∞, by the same
procedure as in the proof of the lemma we construct inductively a sequence

Eq = (aq1 •∆̃(1)) ◦ · · · ◦ (aqd •∆̃(d)), q ≥ 1, asr ∈ I, such that ℓ(D ◦ (F q)−1) ≥ q,
where F q = Eq[q] ◦ · · · ◦E1[1]. So D ◦ (F q)−1 tends to the identity element as
q → ∞ and D is the limit of F q as q → ∞.

(2.1.8) Proposition. Assume that R = k[x1, . . . , xd], S ⊂ R is a multiplica-
tive set and A = S−1R or A = k[[x1, . . . , xd]]. Let I ⊂ A be an ideal, m ≥ 1 an
integer, n ∈ N with n ≥ m and E ∈ HSk(A/I;m). The following properties are
equivalent:

(a) E is n-integrable.

(b) Any D ∈ HSk(log I;m) with D = E is I-logarithmically n-integrable.

(c) There is a D ∈ HSk(log I;m) with D = E which is I-logarithmically n-
integrable.

Proof. The implication (b) ⇒ (c) is an obvious consequence of Proposition
(1.3.4) and (c) ⇒ (a) comes from (1.2.9). For the remaining implication (a) ⇒
(b), let Z ∈ HSk(A/I;n) be an n-integral of E and let D ∈ HSk(log I;m) be a
logarithmic Hasse-Schmidt derivation with D = E. From Proposition (1.3.4),
there is a U ∈ HSk(log I;n) such that U = Z. Since τnmU = τnmU = τnmZ =
E = D, we have D ◦ (τnmU)−1 ∈ kerΠm and so, by Lemma (2.1.6), we deduce
that D is I-logarithmically n-integrable. Q.E.D.

(2.1.9) Corollary. Under the hypotheses of Proposition (2.1.8), the map
Πm : IHSk(log I;m;n) → IHSk(A/I;m;n) is surjective.

(2.1.10) Corollary. Under the hypotheses of Proposition (2.1.8), the follow-
ing properties are equivalent:

(a) IHSk(A/I;m;n) = HSk(A/I;m).

(b) IHSk(log I;m;n) = HSk(log I;m).

Proof. It is a straightforward consequence of the proposition. Q.E.D.

(2.1.11) Example. (Normal crossings) Let us take f =
e∏

i=1

xi ∈ A =

k[x1, . . . , xd] and I = (f) ⊂ A. The A-module Iderk(log I) is generated by

{x1∂1, . . . , xe∂e, ∂e+1, . . . , ∂d}

and any of these I-logarithmic derivations are integrable I-logarithmically, since
∆(j), xi •∆(i) ∈ HSk(log I) for i = 1, . . . , e and j = e + 1, . . . , n. In particular
Iderk(log I) = Derk(log I) and Iderk(A/I) = Derk(A/I).
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(2.1.12) Proposition. Let A be an arbitrary k-algebra, I ⊂ A an ideal with
generators fl, l ∈ L, and n ≥ 1 an integer. Let D ∈ HSk(log I;n) be a I-
logarithmic Hasse–Schmidt derivation and assume that D is (n + 1)-integrable
and let (IdA, D1, . . . , Dn, Dn+1) ∈ HSk(A;n + 1) be an (n + 1)-integral of D.
The following properties are equivalent:

(a) D is I-logarithmically (n+ 1)-integrable.

(b) There is a derivation δ ∈ Derk(A) such that Dn+1(fl) + δ(fl) ∈ I for all
l ∈ L

Proof. It comes from the fact that any other (n + 1)-integral of D must be
of the form (IdA, D1, . . . , Dn, Dn+1 + δ) with δ ∈ Derk(A). Q.E.D.

(2.1.13) Corollary. Assume that A = k[x1, . . . , xd] or A = k[[x1, . . . , xd]].
Let I = (f1, . . . , fp) ⊂ A be an ideal and n ≥ 1 an integer. Let D ∈ HSk(log I;n)
be a I-logarithmic Hasse–Schmidt derivation and let us consider its integral
D′ = ε(D) (see remark (2.1.3)). The following properties are equivalent:

(a) D is I-logarithmically (n+ 1)-integrable.

(b) There are αr, ast ∈ A, r = 1, . . . , d, s, t = 1, . . . , p, such that

D′
n+1(fs) = α1 (fs)

′
x1
+ · · ·+αd (fs)

′
xd

+as1f1+ · · ·+aspfp ∀s = 1, . . . , p.

Moreover, if (b) holds, an explicit I-logarithmic (n + 1)-integral of D is given

by (IdA, D1, . . . , Dn, D
′
n+1 − δ), with δ =

∑d
r=1 αr∂r.

(2.1.14) Remark. (1) In the case of a “computable” base ring k (for instance,
any finitely generated extension of Z,Q or of any finite field) and a finitely pre-
sented k-algebra A, Proposition (2.1.8) and Corollary (2.1.13) give an effective
way to decide whether a given Hasse–Schmidt derivation D ∈ HSk(A;n) of fi-
nite length n is (n + 1)-integrable or not and, if yes, to compute an explicit
(n+ 1)-integral of D.

(2) Nevertheless, the question of deciding whether a given Hasse–Schmidt deriva-
tion D ∈ HSk(A;n) of finite length n is (n + r)-integrable or not, with r ≥ 2,
is much more involved. First of all, we cannot proceed “step by step”, since D
can be (n+ r)-integrable and simultaneously admit an (n+1)-integral which is
not (n+ r)-integrable (cf. example 3.7 in [12]). On the other hand, the condi-
tion of (n+ r)-integrability of D, r ≥ 2, gives rise to nonlinear equations which
seem not obvious to treat in general with the currently available methods, either
theoretical or computational (see for instance Lemmas (3.1.1), (3.3.3), (3.5.5)).

(3) The following example is a very particular case of a general result, but it
also serves to illustrate the nonlinear nature of integrability and the difficulties
that come from: Let A = k[x1, . . . , xd], f ∈ A, I = (f) and δ =

∑d
r=1 ar∂r any

k-derivation of A. The following properties are equivalent:

(a) δ is a I-logarithmic derivation and it is I-logarithmically 2-integrable.

(b)
∑d

r=1 f
′
xr
ar ∈ I and

∑
|α|=2∆

(α)(f) aα ∈ (f, f ′
x1
, . . . , f ′

xd
).
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So, in order to compute a system of generators of the A-module Iderk(log I; 2),
we have to deal with nonlinear homogeneous equations of degree 2 (see examples
in sections 3.1, 3.3).

2.2 Jacobians and integrability

Let k be an arbitrary (commutative) ring and assume that R = k[x1, . . . , xd] or
R = k[[x1, . . . , xd]]. Let I = (f1, . . . , fu) ⊂ R be a finitely generated ideal and
A = R/I. For each e = 1, . . . ,min{d, u} let J0

e be the ideal generated by all the
e × e minors of the Jacobian matrix (∂fj/∂xi), and Je = (J0

e + I)/I. We have
J1 ⊃ J2 ⊃ · · · . Let c be the maximum index e with Je 6= 0 (or equivalently
with J0

e * I), in case it exists. The ideal Jc only depends on the k-algebra A
and is called the Jacobian ideal of A over k and denoted by JA/k. It is nothing
else but the smallest non-zero Fitting ideal of the module of k-differentials ΩA/k

(see [7]).

(2.2.1) Proposition. Under the above hypotheses, any δ ∈ Derk(log I)∩(J0
c +

I)Derk(R) is I-logarithmically integrable.

Proof. The proof follows the same lines that the proof of Theorem 11
in [9]. Let us write J0 = J0

c . Since I Derk(R) ⊂ Iderk(log I), we can as-

sume that δ =
∑d

r=1 cr1∂r with cr1 ∈ J0. Let us consider D1 = (IdA, δ) ∈
HSk(log I; 1) and E1 = ε(D1) ∈ HSk(R;∞) (see (2.1.3)). We have that E1

2 =∑
|α|=2

(∏d
r=1 c

αr

r1

)
∆(α) ∈ (J0)2 DiffR/k, and so E1

2 (fj) ∈ (J0)2 for all j =

1, . . . , u. From Lemma (2.2.2) there is (c12, . . . , cd2) ∈ Rd, with cr2 ∈ J0, such
that

(c12, . . . , cd2) ((∂fj/∂xi)i,j) ≡ (E1
2 (f1), . . . , E

1
2(fu)) mod I,

i.e. E1
2(fj)−

∑d
r=1 cr2(fj)

′
xr

∈ I, and so we deduce that D1 is I-logarithmically
2-integrable, an I-logarithmic 2-integral being D2 = (IdA, δ,D

2
2) with D2

2 =

E1
2 −∑d

r=1 cr2∂r ∈ J0 DiffR/k (see Corollary (2.1.13)).

Assume that we have found a Dm = (IdA, δ,D
2
2, . . . , D

m
m) ∈ HSk(log I;m)

with Ds
s ∈ J0 DiffR/k, s = 1, . . . ,m, hence with crs := Ds

s(xr) ∈ J0, r =
1, . . . , d. Let us consider Em = ε(Dm) ∈ HSk(R;∞). From Proposition (1.3.1),
2) we deduce that Em

m+1 ∈ (J0)2 DiffA/k and so Em
m+1(fj) ∈ (J0)2 for all j =

1, . . . , u. From Lemma (2.2.2), there is (c1,m+1, . . . , cd,m+1) ∈ Rd, with cr,m+1 ∈
J0, such that

(c1,m+1, . . . , cd,m+1) ((∂fj/∂xi)i,j) ≡ (Em
m+1(f1), . . . , E

m
m+1(fu)) mod I,

i.e. Em
m+1(fj) −

∑d
r=1 cr,m+1(fj)

′
xr

∈ I, and so we deduce again that Dm is I-
logarithmicallym+1-integrable, an I-logarithmic (m+1)-integral beingDm+1 =

(IdA, δ,D
2
2, . . . , D

m
m, Dm+1

m+1) with Dm+1
m+1 = Em

m+1 −
∑d

r=1 cr,m+1∂r ∈ J0 DiffR/k

(see Corollary (2.1.13)).

In that way, we construct inductively theDm
m,m ≥ 2, such that (IdA, δ,D

2
2, . . . ) ∈

HSk(log I;∞) and so δ is I-logarithmically integrable. Q.E.D.

(2.2.2) Lemma. Let X = (Xij), i = 1, . . . , d, j = 1, . . . , u, be variables, W =
Z[X], ae ⊂ W the ideal generated by the e × e minors of X and U = W/ac+1.
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Then, for each c× c minor µ of X and for each j = 1, . . . , u, the system

(u1, . . . , ud)X = (0, . . . , 0,

j
︸︷︷︸
µ , 0, . . . , 0)

has a solution in U .

Proof. We know that U is an integral domain (cf. [2], Theorem (2.10) and
Remark (2.12)). Denote by K its field of fractions and by π : W → U the
natural projection. The lemma is an easy consequence of the fact that the
matrix π(X) ⊗K has rank c. Q.E.D.

The following corollary of Proposition (2.2.1) generalizes Theorem 11 in [9],
which was only stated and proved for k a perfect field.

(2.2.3) Corollary. Under the above hypotheses, we have

JA/k ⊂ annA (Derk(A)/ Iderk(A)) .

The proof of the following result is similar to the proof of Proposition (2.2.1).

(2.2.4) Proposition. Let f ∈ R, I = (f), and J0 = (f ′
x1
, . . . , f ′

xd
) the gradient

ideal. If δ : R → R is a I-logarithmic k-derivation with δ ∈ J0 Derk(R), then δ
admits a I-logarithmic integral D ∈ HSk(log I) with Di(f) = 0 for all i > 1. In
particular, if δ(f) = 0, the integral D can be taken with ΦD(f) = f .

(2.2.5) We quote here Theorem 1.2 in [15]: Let I ⊂ A = k[x1, . . . , xd] be an
ideal generated by quasi-homogeneous polynomials with respect to the weights
w(xr) ≥ 0. Then, the Euler vector field χ =

∑d
r=0w(xr)∂r is I-logarithmically

(∞-)integrable. In fact, a I-logarithmic integral of χ is the Hasse–Schmidt
derivation associated with the map A → A[[t]] given by

xr 7→ xr

(
1

1−t

)w(xr)

, r = 1, . . . , d.

(2.2.6) Proposition. Let f ∈ A = k[x1, . . . , xd] be a quasi-homogeneous
polynomial with respect to the weights w(xr) > 0 and I = (f) ⊂ A. Assume
that the weight of f is a unit in k and that all the partial derivatives of f are
non-zero and form a regular sequence. Then Derk(log I) = Iderk(log I).

Proof. From the hypotheses we deduce that the A-module Derk(log I) is
generated by the Euler vector field χ and the crossed derivations θrs = f ′

xs
∂r −

f ′
xr
∂s, 1 ≤ r < s ≤ d. But χ is I-logarithmically integrable by (2.2.5) and θrs is

I-logarithmically integrable by Proposition (2.2.1). Q.E.D.

2.3 Behaviour of integrability under localization

Throughout this section, k will be an arbitrary commutative ring.

The proof of the following proposition is clear from (1.2.10).

(2.3.1) Proposition. Let A be a k-algebra, S ⊂ A a multiplicative set, a ⊂ A
be an ideal, m ≥ 1 an integer, n ∈ N with n ≥ m and D ∈ HSk(log a;m). If D a-

logarithmically n-integrable, then D̃ ∈ HSk(S
−1A;m) is (S−1a)-logarithmically
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m-integrable. In particular, the map Θm sends IHSk(log a;m;n) to IHSk(log(S
−1a);m;n).

The two following propositions are straightforward consequences of Propo-
sition (1.3.5) and Corollary (1.3.6) respectively.

(2.3.2) Proposition. Assume that A = k[x1, . . . , xd] and let S ⊂ A be a
multiplicative set and a = (f1, . . . , fu) ⊂ A be a finitely generated ideal. Then,
for any integers m ≥ q ≥ 1, the map

(s, F ) ∈ S × IHSk(log a; q;m) 7→ 1

s
•Θq(F ) ∈ IHSk(log(S

−1a); q;m)

is surjective.

(2.3.3) Proposition. Assume that A is a finitely presented k-algebra and let
T ⊂ A be a multiplicative set. Then, for any integers m ≥ q ≥ 1 the map

(t, G) ∈ T × IHSk(A; q;m) 7→ 1

t
•Θq(G) ∈ IHSk(T

−1A; q;m)

is surjective.

Proposition (2.3.3) can be also obtained form Proposition (2.3.2) and Corol-
lary (2.1.9).

(2.3.4) Corollary. Assume that A = k[x1, . . . , xd] and let S ⊂ A be a
multiplicative set, a = (f1, . . . , fu) ⊂ A be a finitely generated ideal. Then, for
any integer m ≥ 1 the canonical map

δ

s
∈ S−1 Iderk(log a;m) 7→ 1

s
δ̃ ∈ Iderk(log(S

−1a);m)

is an isomorphism of (S−1A)-modules.

Proof. The injectivity is a consequence of the fact that, under the above as-
sumptions, the canonical map S−1 Derk(A) → Derk(S

−1A) is an isomorphism.
The surjectivity is given by Proposition (2.3.2) in the case q = 1. Q.E.D.

(2.3.5) Corollary. Assume that A is a finitely presented k-algebra and let
T ⊂ A be a multiplicative set. Then, for any integer m ≥ 1 the canonical map

T−1 Iderk(A;m) → Iderk(T
−1A;m)

is an isomorphism of (T−1A)-modules.

Proof. The injectivity goes as in the proof of Corollary (2.3.4). The surjec-
tivity is given by Proposition (2.3.3) in the case q = 1. Q.E.D.

(2.3.6) Theorem. Assume that A is a finitely presented k-algebra, m ≥ 1 is
an integer and let δ ∈ Derk(A). The following properties are equivalent:

(a) δ ∈ Iderk(A;m).

(b) δp ∈ Iderk(Ap;m) for all p ∈ SpecA.

(c) δm ∈ Iderk(Am;m) for all m ∈ SpecmaxA.
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Proof. The implication (a) ⇒ (b) is a consequence of Proposition (2.3.1).
The implication (b) ⇒ (c) is obvious. For the remaining implication (c) ⇒
(a), assume that property (c) holds. Then, by Corollary (2.3.5), for each m ∈
SpecmaxA there is a fm ∈ A − m and a ζm ∈ Iderk(A;m) such that fmδm =
(ζm)

m
, and so there is a gm ∈ A−m such that gmfmδ = gmζm. Since the ideal

generated by the gmfm, m ∈ SpecmaxA, must be the total ideal, we deduce the
existence of a finite number of mi ∈ SpecmaxA and ai ∈ A, 1 ≤ i ≤ n, such
that 1 = a1g1f1 + · · ·+ angnfn, with fi = fmi , gi = gmi, and so

δ =

n∑

i=1

aigifiδ =

n∑

i=1

aigiζ
mi

is m-integrable. Q.E.D.

(2.3.7) Corollary. Let f : X → S be a locally finitely presented mor-
phism of schemes. For each integer n ≥ 1 there is a quasi-coherent sub-sheaf
IderS(OX ;n) ⊂ DerS(OX) such that, for any affine open sets U = SpecA ⊂ X
and V = Spec k ⊂ S, with f(U) ⊂ V , we have Γ(U, IderS(OX ;n)) = Iderk(A;n)
and IderS(OX ;n)p = IderOS,f(p)

(OX,p;n) for each p ∈ X. Moreover, if S is lo-
cally noetherian, then IderS(OX ;n) is a coherent sheaf.

Proof. For each open set U ⊂ X , we define

Γ(U, IderS(OX ;n)) = {δ ∈ Γ(U,DerS(OX)) | δp ∈ IderOS,f(p)
(OX,p;n) ∀p ∈ U}.

The behaviour of IderS(OX ;n) on affine open sets and its quasi-coherence is a
straightforward consequence of Theorem (2.3.6). Q.E.D.

2.4 Testing the integrability of derivations

In this section k will be an arbitrary commutative ring and A an arbitrary
k-algebra.

(2.4.1) Definition. Let n ≥ m > 1 be integers and D ∈ HSk(A;n). We
say that D is m-sparse if Di = 0 whenever i /∈ Nm. We say that D is weakly
m-sparse if τn,qmD is m-sparse, where q =

⌊
n
m

⌋
. The set of m-sparse (resp.

weakly m-sparse) Hasse–Schmidt derivations in HSk(A;n) will be denoted by
HSm−sp

k (A;n) (res. HSm−wsp
k (A;n)).

The proof of the following proposition is easy and its proof is left up to the
reader.

(2.4.2) Proposition. Let n ≥ m > 1 be integers, q =
⌊
n
m

⌋
and r = n − qm.

The following properties hold:

1) HSm−sp
k (A;n) and HSm−wsp

k (A;n) are subgroups of HSk(A;n).

2) For any D ∈ HSk(A; q) and any δ = (δ1, . . . , δr) ∈ Derk(A)
r, the sequence

Θ(D, δ) = (IdA, 0, . . . , 0,

m
︸︷︷︸

D1 , 0, . . . , 0,

2m
︸︷︷︸

D2 , 0, . . . , 0,

qm
︸︷︷︸

Dq ,

qm + 1
︸ ︷︷ ︸

δ1 , . . . ,

n
︸︷︷︸

δr )

is a weakly m-sparse Hasse–Schmidt derivation of A (over k) of length n
and the map Θ : HSk(A; q) × Derk(A)

r → HSm−wsp
k (A;n) is an isomor-

phism of groups.
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(2.4.3) Theorem. Let n ≥ 1 be an integer. The following assertions hold:

1) If n is odd and Iderk(A; q) = Derk(A), with q = n+1
2 , then any D ∈

HSk(A;n) with D1 = 0 is (n+ 1)-integrable.

2) If n is even and Iderk(A; p) = Derk(A), with p =
⌊
n+1
3

⌋
, then any D ∈

HSk(A;n) with D1 = 0 is (n+ 1)-integrable.

Proof. 1) Since D1 = 0 we have 1 ≤ ℓ(D) ≤ n. If n = 1, then D is the
identity and the result is clear. Assume n ≥ 3 and so q ≥ 2. Let us proceed
by decreasing induction on ℓ(D). If ℓ(D) = n then D is the identity and the
result is clear. Let m be an integer with 1 ≤ m < n and suppose that any
D′ ∈ HSk(A;n) with m + 1 ≤ ℓ(D′) is (n + 1)-integrable. Let D ∈ HSk(A;n)
be a Hasse–Schmidt derivation with ℓ(D) = m, i.e.

D = (IdA, 0, . . . , 0, Dm+1, . . . , Dn) with Dm+1 6= 0.

Since τn,m+1D is (m+1)-sparse, we can apply Proposition (2.4.2), 2) and deduce
that Dm+1 is a derivation and so, by hypothesis, it must be q-integrable. Let
E ∈ HSk(A; q) be a q-integral of Dm+1. We have that q(m + 1) ≥ 2q = n + 1
and so F = τq(m+1),n(E[m+ 1]) is (n+ 1)-integrable, an (n+ 1)-integral being
τq(m+1),n+1(E[m+ 1]), and has the form

F = (IdA, 0, . . . , 0,

m + 1
︸ ︷︷ ︸

Dm+1, 0, . . . , Fn).

It is clear that for D′ = F−1
◦D we have D′

1 = · · · = D′
m+1 = 0, and so

ℓ(D′) ≥ m+ 1. The induction hypothesis implies that D′ is (n + 1)-integrable
and we conclude that D = F ◦D′ is also (n+ 1)-integrable.

2) If n = 2, then D = (IdA, 0, D2) and obviously (IdA, 0, D2, 0) is a 3-integral of
D. Assume that n is even ≥ 4, and let us write n = 2q, q ≥ 2, and n+1 = 3p+r
with 0 ≤ r < 3, p ≥ 1. Since τn3D is weakly 2-sparse, we deduce thatD3 must be
a derivation (see Proposition (2.4.2)) and so, by hypothesis, it is p-integrable.
Let E3 ∈ HSk(A; p) be a p-integral of D3. It is clear that (see Proposition
(2.4.2))

F 3 = (IdA, 0, 0,

3
︸︷︷︸

E3
1 , 0, 0,

6
︸︷︷︸

E3
2 , 0, . . . , 0,

3p
︸︷︷︸

E3
p , 0, 0)

is a (3p + 2)-integral of E3[3], and since 3p + 2 ≥ n + 1, G3 = τ3p+2,nF
3 is

(n+ 1)-integrable and (G3)−1
◦D has the form (IdA, 0, D2, 0, . . . ).

Assume that we have found G3, G5, . . . , G2s−1 ∈ HSk(A;n), all of them
(n + 1)-integrable, with 3 ≤ 2s − 1 < n, such that (G2s−1)−1

◦ · · · ◦ (G3)−1
◦D

has the form

D′ = (IdA, 0,

2
︸︷︷︸

D′
2 , 0,

4
︸︷︷︸

D′
4 , 0, . . . , 0,

2s
︸︷︷︸

D′
2s, D

′
2s+1, . . . , D

′
n).

If 2s = n, we already have what we are looking for. If 2s < n, then D′
2s+1 is

a derivation (see Proposition (2.4.2)) and so, by hypothesis, it is p-integrable.
Let E2s+1 ∈ HSk(A; p) be a p-integral of D′

2s+1. Let us consider F 2s+1 =
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E2s+1[2s + 1] ∈ HSk(A; p(2s + 1)). Since p(2s + 1) ≥ 5p ≥ 3p + 2 ≥ n + 1,
G2s+1 := τp(2s+1),nF

2s+1 is (n+ 1)-integrable and (G2s+1)−1
◦D′ has the form

D′′ = (IdA, 0,

2
︸︷︷︸

D′′
2 , 0,

4
︸︷︷︸

D′′
4 , 0, . . . , 0,

2s
︸︷︷︸

D′′
2s, 0,

2s + 2
︸ ︷︷ ︸

D′′
2s+2, . . . , D

′′
n).

We conclude with the existence of G3, G5, . . . , Gn−1 ∈ HSk(A;n), all of them
(n+1)-integrable, such that H = (Gn−1)−1

◦Gn−3 · · · ◦ (G3)−1
◦D ∈ HSk(A;n)

(n = 2q) is 2-sparse. From Proposition (2.4.2) again we deduce that H is
(n+ 1)-integrable, and so D is also (n+ 1)-integrable. Q.E.D.

(2.4.4) Definition. For each integer n ≥ 1, let us define

ρ(n) =

{
n+1
2 if n is odd⌊
n+1
3

⌋
if n is even.

Notice that ρ(n) < n for all n ≥ 2.

(2.4.5) Corollary. Let n ≥ 1 be an integer, and assume that Iderk(A; ρ(n)) =
Derk(A). Then, for any n-integrable derivation δ ∈ Iderk(A;n), the following
properties are equivalent:

(a) Any n-integral of δ is (n+ 1)-integrable.

(b) There is an n-integral of δ which is (n+ 1)-integrable.

Proof. Assume that E ∈ HSk(A;n + 1) is an (n + 1)-integral of δ and let
D ∈ HSk(A;n) be any n-integral of δ. The 1-component of F = D ◦ (τn+1,nE)−1

vanishes and so, by Theorem (2.4.3), F is (n + 1)-integrable. We deduce that
D = F ◦ τn+1,nE is also (n+ 1)-integrable. Q.E.D.

2.5 Algorithms

Let k be a “computable” base ring k (for instance, any finitely generated
extension of Z,Q or of any finite field), f1, . . . , fp ∈ A = k[x1, . . . , xd] and
I = (f1, . . . , fp). The starting point is the computation of a system of genera-
tors {δ1, . . . , δq} of Derk(log I).

The following algorithm decides whether the equality

Derk(log I)
?
= Iderk(log I; 2)

(
⇔ Derk(A/I)

?
= Iderk(A/I; 2)

)

is true or not, and if yes, returns a 2-integral for each generator of Derk(log I).

ALGORITHM–1:

Step 1: For each j = 1, . . . , q, apply Corollary (2.1.13) as explained in remark
(2.1.14), (1) to decide whether δj is I-logaritmically 2-integrable or not,
and if yes to compute a I-logarithmic 2-integral Dj,2 of δj .
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Step 2: (Y) If the answer in Step 1 is YES for all j = 1, . . . , q, then save the
I-logarithmic 2-integrals D1,2, . . . , Dq,2 and answer “THE EQUALITY
Derk(log I) = Iderk(log I; 2) IS TRUE”.
(N) If the answer in step 1 is NOT for some j = 1, . . . , q, then answer
“THE EQUALITY Derk(log I) = Iderk(log I; 2) IS FALSE”.

Assume that we have anALGORITHM–(N-1) to decide whether the equal-
ity

Derk(log I)
?
= Iderk(log I;N)

(
⇔ Derk(A/I)

?
= Iderk)A/I;N)

)

is true or not, and if yes, to compute an N -integral for each generator of
Derk(log I).

ALGORITHM–N:

Step 1: Apply ALGORITHM–(N-1), and if the answer is NOT, then STOP
and answer “THE EQUALITY Derk(log I) = Iderk(log I;N+1) IS FALSE”.
If the answer to ALGORITHM–(N-1) is YES, keep the computed I-
logarithmic N -integrals D1,N , . . . , Dq,N of δ1, . . . , δq and go to step 2.

Step 2: For each j = 1, . . . , q, apply Corollary (2.1.13) as explained in remark
(2.1.14), (1) to decide whether Dj,N is I-logaritmically (N +1)-integrable
or not, and if yes to compute a I-logarithmic (N + 1)-integral Dj,N+1 of
Dj,N .

Step 3: (Y) If the answer in Step 2 is YES for all j = 1, . . . , q, then save
the I-logarithmic (N+1)-integrals D1,N+1, . . . , Dq,N+1 and answer “THE
EQUALITY Derk(log I) = Iderk(log I;N + 1) IS TRUE”.
(N) If the answer in Step 2 is NOT for some j = 1, . . . , q, then answer
“THE EQUALITY Derk(log I) = Iderk(log I;N + 1) IS FALSE”.

Corollary (2.4.5) is the key point for the correctness of Step 3, (N).

3 Examples and questions

We have used Macaulay 2 [4] for the preliminary computations needed in the
following examples.

3.1 The cusp x
2 + y

3 in characteristic 2 or 3

Let k be a base ring containing the field Fp, p > 0, and f = x2 + y3 ∈ R =
k[x, y]. Let I = (f) and A = k[x, y]/I. The computation of Iderk(A;∞) has
been treated in [9], example 5. Here we are interested in the computation of
Iderk(A;m), m ≥ 2.

Let start with p = 2. Then the Jacobian ideal of f is J = (y2, f) = (x2, y2).

The module Derk(log I) is free with basis {∂x, f∂y}. It is clear that f∂y is
I-logarithmically (∞-)integrable. Let g ∈ R be a polynomial. From Corollary
(2.1.13), we have that g∂x is I-logarithmically 2-integrable if and only if g2 ∈ J .
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Since {g ∈ R | g2 ∈ J} = (x, y), we deduce that {x∂x, y∂x, f∂y} is a system of
generators of Iderk(log I; 2).

The derivation x∂x is the Euler vector field for the weights w(x) = 3, w(y) =
2. From (2.2.5) we know that x∂x is I-logarithmically (∞-)integrable.

Let c ∈ R be an arbitrary polynomial and δ = cy∂x. A I-logarithmic 2-
integral of δ is determined by the k-algebra map

p(x, y) ∈ R 7→ p(x+ cyt, y + c2t2) + (t3) ∈ R3 = R[[t]]/(t3).

Since the coefficient of t3 in f(x + cyt, y + c2t2) is 0, we deduce that δ is I-
logarithmically 3-integrable and so Iderk(log I; 3) = Iderk(log I; 2). A generic
I-logarithmic 2-integral of δ is determined by the k-algebra map

p(x, y) ∈ R 7→ p(x+ cyt+ dt2, y − c2t2) + (t3) ∈ R3,

with d ∈ R, and a generic I-logarithmic 3-integral of δ is determined by the
k-algebra map

p(x, y) ∈ R 7→ p(x+ cyt+ dt2 + et3, y + c2t2) + (t4) ∈ R4,

with d, e ∈ R. The coefficient of t4 in f(x+ cyt+ dt2 + et3, y+ c2t2) is d2 + yc4,
and so, the following conditions are equivalent:

(a) δ is I-logarithmically 4-integrable.

(b) There is a d ∈ R such that d2 + yc4 ∈ J .

The proof of the following lemma is easy:

(3.1.1) Lemma. The set Γ := {c ∈ R | ∃d ∈ R, d2 + yc4 ∈ J} is the ideal
generated by x, y.

As a consequence of the lemma we deduce that {x∂x, y2∂x, f∂y} is a system
of generators of Iderk(log I; 4). But y2∂x is I-logarithmically (∞-)integrable
after Proposition (2.2.1), and so

Derk(A) = 〈∂x〉 ! Iderk(A; 2) = 〈x∂x, y∂x〉 = Iderk(A; 3) !

Iderk(A; 4) = 〈x∂x, y2∂x〉 = Iderk(A; 5) = · · · = Iderk(A;∞).

In particular, we have

annA (Derk(A)/ Iderk(A; 2)) = (x, y) =
√
J !

annA (Derk(A)/ Iderk(A;∞)) = (x, y2) ! J = (x2, y2).

Let us now compute the case p = 3. The Jacobian ideal of f is J = (x, f) =
(x, y3). In a similar way to the preceding case, we obtain that:

-) Derk(log I) = 〈f∂x, ∂y〉.

-) Since 2 is invertible in k we have Derk(log I) = Iderk(log I; 2).

-) Iderk(log I; 3) = 〈x∂y, y∂y, f∂x〉.
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-) Iderk(log I; 3) = Iderk(log I;∞).

-) Derk(A) = 〈∂y〉 = Iderk(A; 2) ! Iderk(A; 3) = 〈x∂y , y∂y〉 = Iderk(A; 4) =
· · · = Iderk(A;∞) and annA (Derk(A)/ Iderk(A;∞)) = (x, y) =

√
JA/k.

Let us notice that for the cusp in characteristics 6= 2, 3 we can apply Propo-
sition (2.2.6) and obtain that any derivation is integrable.

3.2 The cusp x
2 + y

3 over the integers

Assume that k = Z and f = x2 + y3 ∈ R = Z[x, y]. Let I = (f) and A =
Z[x, y]/I. The Jacobian ideal of f is J = (2x, 3y2, f) = (2x, 3y2, x2, y3). The
I-logarithmic derivations of R are generated by δ1 = 3x∂x+2y∂y, δ2 = 3y2∂x−
2x∂y, f∂x and f∂y. The first derivation δ1 is the Euler vector field for the
weights w(x) = 3, w(y) = 2. As in 3.1, δ1 is I-logarithmically integrable. For
the second derivation δ2, we apply Proposition (2.2.1) and we deduce that it
is also I-logarithmically integrable. So this is an example of a non-smooth
Z-algebra A for which any derivation is integrable.

3.3 The cusp 3x2 + 2y3 over the integers

Assume that k = Z and f = 3x2 + 2y3 ∈ R = Z[x, y]. Let I = (f) and
A = Z[x, y]/I. The Jacobian ideal of f is J = (6x, 6y2, f) = (6x, 6y2, 3x2, 2y3).
The I-logarithmic derivations of R are generated by δ1 = 3x∂x + 2y∂y and
δ2 = −y2∂x+x∂y, which in fact form a basis (we can say that “f is a free divisor”
of R). As in 3.1, δ1 is the Euler vector field for the weights w(x) = 3, w(y) = 2
and so it is I-logarithmically integrable.

Let us study the integrability of aδ2, a ∈ R. The coefficient of t2 in f(x −
ay2t, y + axt) is a2(3y4 + 6x2y). Since 6x2 ∈ J , this coefficient belongs to J if
and only if 3a2y4 ∈ J , i.e. a2 ∈ J : 3y4.

(3.3.1) Lemma.

(a) J : 3y4 = (2, x2).

(b) {a ∈ R | a2 ∈ (2, x2)} = (2, x).

(3.3.2) Corollary. The R-module IderZ(log I; 2) is generated by {δ1, 2δ2, xδ2}
and so annA (DerZ(A)/ IderZ(A; 2)) = (2, x).

Let us study the 3-integrability of

(2b+ cx)δ2 = −y2(2b+ cx)∂x + (2b+ cx)x∂y , b, c ∈ R.

Let us write a = 2b+cx. The coefficient of t2 in f(x−y2(2b+cx)t, y+(2b+cx)xt)
is A(2y3)+B(3x2) with A = 6b(b+cx)y,B = c2y4+2a2y, which can be expressed
as

(A−B)xf ′
x + (A−B)yf ′

y + (3B − 2A)f.

Hence, the coefficient of t2 in

f(x− y2(2b+ cx)t+ (B −A)xt2, y + (2b+ cx)xt+ (B −A)yt2)
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is (3B − 2A)f and the reduction mod t3 of the Z-algebra map

Ψ(2) : p(x, y) ∈ R 7→ p(x−y2(2b+cx)t+(B−A)xt2, y+(2b+cx)xt+(B−A)yt2) ∈ R[[t]]

is I-logarithmic and gives rise to a I-logarithmic 2-integral of aδ2. So, the

reduction mod t3 of the Z-algebra map Ψ
(2)
g : R → R[[t]] given by

x 7→ x− y2(2b+ cx)t+ [(B −A)x + 3dx− ey2]t2,

y 7→ y + (2b+ cx)xt+ [(B −A)y + 2dy + ex]t2

is the associated map to a generic I-logarithmic 2-integral of aδ2. Moreover, the

coefficient of t2 in Ψ
(2)
g (f) is (3B − 2A+ 6d)f .

The coefficient of t3 in Ψ
(2)
g (f) is 6x2y6c3+12xy6bc2+12x4y3c3+36x3y3bc2+

2x6c3+36x2y3b2c+12x5bc2+24xy3b3+24x4b2c+6xy4ce+16x3b3+6x2y2cd+
12y4be+ 12x3yce+ 12xy2bd+ 24x2ybe, and it belongs to J if and only if

2x6c3 + 16x3b3 ∈ J ⇔ x3c3 + 8b3 ∈ (J : 2x3).

(3.3.3) Lemma. With the above notations, the following assertions hold:

(a) J : 2x3 = (3, y3).

(b) x3c3 + 8b3 ∈ (J : 2x3) ⇔ a3 ∈ (J : 2x3) ⇔ a ∈ (3, y).

(3.3.4) Corollary. The I-logarithmic derivation aδ2 is I-logarithmically 3-
integrable if and only if a ∈ (2, x)∩ (3, y) = (6, 3x, 2y, xy), and so the R-module
IderZ(log I; 3) is generated by {δ1, 6δ2, 3xδ2, 2yδ2, xyδ2} and

annA (DerZ(A)/ IderZ(A; 3)) = (2, x) ∩ (3, y),

annA (DerZ(A; 2)/ IderZ(A; 3)) = (3, y).

The following lemma cannot be deduced directly from Proposition (2.2.1).
Its proof proceeds by induction and it is left up to the reader.

(3.3.5) Lemma. Let a ∈ (2, x) ∩ (3, y). There are sequences ai, bi ∈ R, i ≥ 2,
such that the Z-algebra map

Ψ : p(x, y) ∈ R 7→ p

(
x− ay2t+

∞∑

i=2

ait
i, y + axt+

∞∑

i=2

bit
i

)
∈ R[[t]]

is I-logarithmic, i.e. Ψ(f) ∈ R[[t]]f .

(3.3.6) Corollary. We have

IderZ(A; 3) = IderZ(A; 4) = · · · = IderZ(A),

and so

annA (DerZ(A)/ IderZ(A)) = (2, x) ∩ (3, y) )
√
JA/Z = (3x, 2y).

The following two examples have been proposed by Herwig Hauser.
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3.4 The surface x
2
3 + x1(x1 + x2)

2 = 0 in characteristic 2

Let k be a field of characteristic 2, f = x2
3 + x1(x1 + x2)

2 ∈ R = k[x1, x2, x3],
I = (f) and A = R/I. The Jacobian ideal is J = (ℓ2, f) = (ℓ2, x2

3) with
ℓ = x1 + x2, and

√
J = (ℓ, x3). A system of generators of Derk(log I) mod.

f Derk(R) is {∂2, ∂3}.

(3.4.1) Lemma. Let α, β ∈ R and δ = α∂2 + β∂3. The following conditions
are equivalent:

(a) δ is I-logarithmically 2-integrable.

(b) x1α
2 + β2 ∈ J .

(3.4.2) Lemma. The module {(α, β) ∈ R2 | x1α
2 + β2 ∈ J} is generated by

(x3, 0), (ℓ, 0), (0, x3), (0, ℓ).

(3.4.3) Corollary. A system of generators of Iderk(log I; 2) mod f Derk(R)
is {x3∂2, ℓ∂2, x3∂3, ℓ∂3}.

(3.4.4) Proposition. Iderk(A; 2) = Iderk(A).

Proof. We need to prove that x3∂2, ℓ∂2, x3∂3, ℓ∂3 are I-logarithmically inte-
grable.

The derivation x3∂3 is the Euler vector field for the weights w(x1) = w(x2) =
2, w(x3) = 3. From (2.2.5) we deduce that x3∂3 is I-logarithmically integrable.

The derivation ℓ∂3 is I-logarithmically integrable since f(x1+t2, x2+t2, x3+
ℓt) = · · · = f ∈ R[t] ⊂ R[[t]] and so a I-logarithmic integral of ℓ∂3 is given by
the k-algebra map R → R[[t]] determined by

x1 7→ x1 + t2, x2 7→ x2 + t2, x3 7→ x3 + ℓt.

For the derivation x3∂2 let us write W (t) =
x2
1t

2

1−x1t2
∈ (t2)R[[t]] and consider

the homomorphism of k-algebras Ψ : R → R[[t]] given by:

x1 7→ x1 +W (t), x2 7→ x2 + x3t+W (t), x3 7→ x3.

We have Ψ(f) = f(x1 +W,x2 +x3t+W,x3) = · · · =
(

1
1−x1t2

)
f and so Ψ gives

rise to a I-logarithmic integral of x3∂2.

For the derivation ℓ∂2 let us write V (t) = x1t
2

1−t2 ∈ (t2)R[[t]] and consider the
homomorphism of k-algebras Ψ : R → R[[t]] given by:

x1 7→ x1 + V (t), x2 7→ x2 + ℓt+ V (t), x3 7→ x3.

We have Ψ(f) = f(x1 + V, x2 + ℓt + V, x3) = · · · = f and so Ψ gives rise to a
I-logarithmic integral of ℓ∂2. Q.E.D.

In this example the descending chain of modules of integrable derivations
stabilizes from N = 2:

Derk(A) = Iderk(A; 1) ⊃ Iderk(A; 2) = Iderk(A; 3) = · · · = Iderk(A;∞)

and
annA (Derk(A)/ Iderk(A;∞)) = (ℓ, x3) =

√
J/I.
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3.5 The surface x
2
3 + x1x2(x1 + x2)

2 = 0 in characteristic 2

Let k be a field of characteristic 2, f = x2
3 + x1x2(x1 + x2)

2 ∈ R = k[x1, x2, x3],
I = (f) and A = R/I. The Jacobian ideal is J = (x2ℓ

2, x1ℓ
2, f) = (x2ℓ

2, x1ℓ
2, x2

3)
with ℓ = x1 + x2. It is clear that

√
J = (ℓ, x3). The module Derk(log I) is

generated mod. f Derk(R) by ∂3, ε = x1∂1 + x2∂2 and η = x2
1ℓ

2∂1 + x2
3∂2

(∂3(f) = ε(f) = 0, η(f) = x1ℓ
2f). Since ε is the Euler vector field for the

weights w(x1) = w(x2) = 1, w(x3) = 2, we deduce from (2.2.5) that ε is I-
logarithmically integrable. From Proposition (2.2.1) we also deduce that η is
I-logarithmically integrable.

To find a system of generators of Iderk(log I; 2) we need the conditions on
a ∈ R which guarantee that a∂3 is I-logarithmically 2-integrable. The coefficient
of t2 in f(x1, x2, x3 + at) = f + a2t2 is a2, and so a∂3 is I-logarithmically 2-
integrable if and only if a2 ∈ J .

(3.5.1) Lemma. {a ∈ R|a2 ∈ J} = (x3, x1ℓ, x2ℓ).

(3.5.2) Corollary. A system of generators of Iderk(log I; 2) mod. f Derk(R)
is {x3∂3, x1ℓ∂3, x2ℓ∂3, ε, η}. In particular we have

annA (Derk(A)/ Iderk(A; 2)) = (x3, x2ℓ, x1ℓ).

The following lemma is a very particular case of a general result.

(3.5.3) Lemma. Any Hasse–Schmidt derivation E ∈ HSk(A; 2) is 3-integrable.

Proof. Since 3 is invertible in k, we can consider the differential operator E3 =
E1E2 − 1

3E
3
1 and check that (IdA, E1, E2, E3) is a Hasse–Schmidt derivation.

Q.E.D.

As a consequence of the above lemma we have Iderk(A; 2) = Iderk(A; 3).

Let us see the conditions for a∂3, with a = αx3 + βx1ℓ + γx2ℓ, α, β, γ ∈ R,
to be I-logarithmically 4-integrable. The algebra map associated with a general
I-logarithmic 3-integral of a∂3 is Ψ(3) : R → R3 given by:

x1 7→ x1 + (α2x1 + γ2x2 +B1x1 + C1x
2
1ℓ

2)t2 + (B2x1 + C2x
2
1ℓ

2)t3,

x2 7→ x2 + (β2x1 +B1x2 + C1x
2
3)t

2 + (B2x2 + C2x
2
3)t

3,

x3 7→ x3 + (αx3 + βx1ℓ+ γx2ℓ)t+A1t
2 + A2t

3

with A2, B2, C2 ∈ R, and let Ψ
(4)
0 : R → R4 be the obvious lifting of Ψ(3). The

coefficient mod J of t4 in the expression of Ψ
(4)
0 (f), is x1x

3
2(α+ β + γ)4 +A2

1.
So, we have proved the following lemma.

(3.5.4) Lemma. With the above notations, the following assertions are equiv-
alent:

(a) The logarithmic derivation a∂3, with a = αx3+βx1ℓ+γx2ℓ, is I-logarithmically
4-integrable.

(b) There is A1 ∈ R such that x1x
3
2(α + β + γ)4 + A2

1 ∈ J , or, equivalently,
x1x

3
2(α+ β + γ)4 ∈ J +R2.
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(3.5.5) Lemma. We have {ϕ ∈ R | x1x
3
2ϕ

4 ∈ J +R2} = (x3, ℓ).

Proof. Let us write A = {ϕ ∈ R | x1x
3
2ϕ

4 ∈ J + R2}. It is clear that
x3, ℓ ∈ A, since x4

3 ∈ J and x1x
3
2ℓ

4 ∈ J . Let ϕ be an element in A and let us
write ϕ = qx3 + ϕ1(x1, x2), with q ∈ R and ϕ1(x1, x2) ∈ A. We have

x1x
3
2ϕ

4
1 = U(x1, x2)x1ℓ

2 + V (x1, x2)x2ℓ
2 + P (x1, x2)

2.

By taking derivatives with respect to x1 we obtain x3
2ϕ

4
1 = U ′

x1
x1ℓ

2 + Uℓ2 +
V ′
x1
x2ℓ

2 and so ℓ divides ϕ1. We conclude that A = (x3, ℓ). Q.E.D.

As a consequence of the above lemma and the fact that (x3, ℓ) is a prime
ideal, the condition x1x

3
2(α+β+γ)4 ∈ J+R2 is equivalent to α+β+γ ∈ (x3, ℓ),

i.e. to α = α1x3 + α2ℓ+ β + γ and so a = · · · = α1x
2
3 + α2x3ℓ+ β(x3 + x1ℓ) +

γ(x3 + x2ℓ). We conclude with the following corollary.

(3.5.6) Corollary. A system of generators of Iderk(log I; 4) mod f Derk(R)
is {x2

3∂3, x3ℓ∂3, (x3 + x1ℓ)∂3, (x3 + x2ℓ)∂3, ε, η}. In particular we have

annA (Derk(A)/ Iderk(A; 2)) = (x3, x2ℓ, x1ℓ),

annA (Derk(A)/ Iderk(A; 4)) = (x3
2, x3ℓ, x3 + x2ℓ, x3 + x1ℓ),

annA (Iderk(A; 2)/ Iderk(A; 4)) = (x3, ℓ)

and all the inclusions

JA/k ⊂ (x3
2, x3ℓ, x3 + x2ℓ, x3 + x1ℓ) ⊂ (x3, x2ℓ, x1ℓ) ⊂ (x3, ℓ) =

√
JA/k

are strict.

From Proposition (2.2.1) we deduce that x2
3∂3 is I-logarithmically integrable.

(3.5.7) Lemma. The derivation x3ℓ∂3 is I-logarithmically integrable.

Proof. Let us write δ = x3ℓ∂3 and D = (x3ℓ)•∆(3). We have ΦD(f) =
f + (x3ℓ)

2t2 and (x3ℓ)
2 = f ′

x1
f ′
x2

+ ℓ2f = x1x2ℓ
4 + ℓ2f . Let us also write

S = k[x1, x2] and b = (f ′
x1
, f ′

x2
) = (x2ℓ

2, x1ℓ
2) ⊂ S.

We are going to construct inductively a sequence of differential operators
Em

m ∈ bDiffS/k, m ≥ 1, with E1
1 = 0, E2

2(f) = x1x2ℓ
4, Em

m(f) = 0 for all m ≥ 3
and such that (Id, E1

1 , E
2
2 , E

3
3 , . . . ) is a Hasse-Schmidt derivation of length ∞.

For m = 2, let us take E2
2 = f ′

x2
∂1.

Assume that we have already found a Hasse–Schmidt derivation Em =
(Id, E1

1 , . . . , E
m
m) ∈ HSk(S;m) with the required properties. Let us consider

Fm = ε(Em) ∈ HSk(S;∞). From Proposition (1.3.1), 2) we deduce that
Fm
m+1 ∈ b2DiffS/k and so Fm

m+1(f) ∈ b2. Hence, there are α, β ∈ b such

that Fm
m+1(f) = αf ′

x1
+ βf ′

x2
and consequently we can take Em+1

m+1 = Fm
m+1 −

(α∂1 + β∂2)

Once the Hasse–Schmidt derivation E = (Id, 0, E2
2 , E

3
3 , . . . ) ∈ HSk(S;∞)

has been constructed, we extend it in the obvious way to the ring R (we keep

the same name E for the extension). We have ΦD ◦E(f) = Φ̃D (ΦE(f)) =

Φ̃D

(
f + x1x2ℓ

4t2
)
= ΦD(f) + ΦD(x1x2ℓ

4)t2 = f + (x3ℓ)
2t2 + x1x2ℓ

4t2 = (1 +
ℓ2t2)f and so D ◦E is a I-logarithmic integral of δ. Q.E.D.

The proof of the following lemma is due to M. Mérida.
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(3.5.8) Lemma. The derivations (x3+x1ℓ)∂3 and (x3+x2ℓ)∂3 are I-logarithmically
integrable.

Proof. By symmetry, it is enough to consider the case (x3 + x1ℓ)∂3, for
which the logarithmic integrability is a consequence of the fact that the map
Ψ : R → R[[t]] given by:

x1 7→ x1 + x1V,

x2 7→ x2 + x1V,

x3 7→ x3 + (x3 + x1ℓ)t+ x3V,

with V =
∞∑

i=1

t2
i

, is I-logarithmic. Namely, since t2 = V 2 + V , we have

f(x1 + x1V, x2 + x1V, x3 + (x3 + x1ℓ)t+ x3V ) =

(x3 + (x3 + x1ℓ)t+ x3V )2 + (x1 + x1V )(x2 + x1V )ℓ2 =

x2
3 + (x2

3 + x2
1ℓ

2)t2 + x2
3V

2 + (x1x2 + x2
1V + x1x2V + x2

1V
2)ℓ2 =

x2
3 + (x2

3 + x2
1ℓ

2)t2 + x2
3V

2 + (x1x2 + x2
1t

2 + x1x2V )ℓ2 =

x2
3 + x2

3t
2 + x2

3V
2 + (x1x2 + x1x2V )ℓ2 = f + x2

3t
2 + x2

3V
2 + x1x2V ℓ2 =

f + x2
3V + x1x2V ℓ2 = (1 + V )f.

Q.E.D.

(3.5.9) Corollary. Iderk(A; 4) = Iderk(A).

3.6 Some questions

(3.6.1) Question. Assume that R = k[x1, . . . , xd], S ⊂ R is a multiplicative
set and A = S−1R or A = k[[x1, . . . , xd]]. Let I ⊂ A be an ideal, m ≥ 1 an
integer, D ∈ HSk(log I;m) and E = D ∈ HSk(A/I;m). Let us consider the
following properties:

(a) D is I-logarithmically n-integrable for all integers n ≥ m (or equivalently,
E is n-integrable for all integers n ≥ m).

(b) D is I-logarithmically ∞-integrable (or equivalently E is ∞-integrable).

Under which hypotheses on k and on I are properties (a) and (b) equivalent for
any D ∈ HSk(log I;m)? Are they equivalent if k is a field or the ring of integers
and I is arbitrary?

Notice that this question is the same as asking whether the inclusion in 3
(or in 1 for m = 1) is an equality or not.

(3.6.2) Question. The proofs of propositions (2.3.2) and (2.3.3) do not work
for m = ∞ and, presumably, these propositions are not true for m = ∞ without
additional finiteness hypotheses on k. Let us notice that if the maps in Propo-
sition (2.3.3) are surjective for m = ∞, then the localization conjecture for the
Hasse–Schmidt algebra stated in [16] is true.
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(3.6.3) Question. For any finitely presented k-algebra A, find an algorithm
for deciding whether a given δ ∈ Derk(A) is m-integrable or not.

(3.6.4) Question. For any finitely presented k-algebra A, find an algorithm
to obtain a system of generators of Iderk(A;m), m ≥ 2.

(3.6.5) Question. Assume that the base ring k is a field of positive character-
istic or Z, or perhaps a more general noetherian ring, and A a finitely generated
k-algebra. Is there an integer n ≥ 1 such that Iderk(A;n) = Iderk(A;∞)?
Or at least, is the descending chain of A-modules Iderk(A; 1) ⊃ Iderk(A; 2) ⊃
Iderk(A; 3) ⊃ · · · stationary?

(3.6.6) Question. Assume that the base ring k is a field of positive char-
acteristic or Z, or perhaps a more general noetherian ring. Is there an integer
m ≫ 1, possibly depending on d and e or other numerical invariants, such that

Iderk(A;m) = Derk(A) ⇒ Iderk(A) = Derk(A)

for every quotient ring A = k[x1, . . . , xd]/I with dimA = e?

(3.6.7) Question. Assume that the base ring k is a field of positive charac-
teristic or Z, or perhaps a more general noetherian ring, A a local noetherian
k-algebra and δ : A → A a k-derivation. Under which hypotheses the m-
integrability of δ̂ : Â → Â implies the m-integrability of δ?
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