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OPTIMAL EXPONENTS IN WEIGHTED ESTIMATES

WITHOUT EXAMPLES

TERESA LUQUE, CARLOS PÉREZ, AND EZEQUIEL RELA

Abstract. We present a general approach for proving the optimality
of the exponents on weighted estimates. We show that if an operator T
satisfies a bound like

‖T‖Lp(w) ≤ c [w]βAp
w ∈ Ap,

then the optimal lower bound for β is closely related to the asymptotic
behaviour of the unweighted Lp norm ‖T‖Lp(Rn) as p goes to 1 and +∞,
which is related to Yano’s classical extrapolation theorem. By combin-
ing these results with the known weighted inequalities, we derive the
sharpness of the exponents, without building any specific example, for
a wide class of operators including maximal-type, Calderón–Zygmund
and fractional operators. In particular, we obtain a lower bound for the
best possible exponent for Bochner-Riesz multipliers. We also present
a new result concerning a continuum family of maximal operators on
the scale of logarithmic Orlicz functions. Further, our method allows to
consider in a unified way maximal operators defined over very general
Muckenhoupt bases.

1. Introduction and statement of the main result

1.1. Introduction. A main problem in modern Harmonic Analysis is the
study of sharp norm inequalities for some of the classical operators on
weighted Lebesgue spaces Lp(w), 1 < p < ∞. The usual examples include
the Hardy–Littlewood maximal operator, the Hilbert transform and more
general Calderón-Zygmund operators (C–Z operators). Here w denotes a
non–negative, locally integrable function, that is a weight. The class of
weights for which these operators T are bounded on Lp(w) were identified
in [Muc72] and in the later works [HMW73], [CF74]. This class consists of
the Muckenhoupt Ap weights defined by the condition

[w]Ap := sup
Q

(

1

|Q|

∫

Q
w(y) dy

)(

1

|Q|

∫

Q
w(y)1−p′ dy

)p−1

< ∞,
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where the supremum is taken over all the cubes Q in R
n, 1 < p < ∞ and as

usual p′ stands for the dual exponent of p satisfying 1/p + 1/p′ = 1.
Given any of these operators T , the first part of this problem is to look

for quantitative bounds of the norm ‖T‖Lp(w) in terms of the Ap constant
of the weight. Then, the following step is to find the sharp dependence,
typically with respect to the power of [w]Ap . In recent years, the answer to
this last question has let a fruitful activity and development of new tools in
Harmonic Analysis.

The first classical example is the case of the Hardy–Littlewood maximal
function defined as

Mf(x) = sup
x∈Q

−

∫

Q
|f(y)| dy,

where the supremum is taken over all cubes containing the point x and
with sides parallel to the coordinate axes. As usual, we denote by −

∫

A f the
average of the function f over the set A. It is well known that if M is the
maximal function, then

(1.1) ‖M‖Lp(w) ≤ c [w]
1

p−1

Ap
, w ∈ Ap,

and the exponent is sharp, namely 1
p−1 cannot be replaced with 1−ε

p−1 , ε > 0.

This is due to Buckley [Buc93].
Similarly S. Petermichl showed in [Pet08] that

(1.2) ‖T‖Lp(w) ≤ c [w]
max{1, 1

p−1
}

Ap
, w ∈ Ap

is sharp when T is any Riesz transform. In each of these papers, the opti-
mality of the exponent is shown by exhibiting specific examples adapted to
the operator under analysis. In the case of Riesz transform, the examples
are specific for the range 1 < p < 2 and then, the sharpness for large p is
obtained by duality.

Similar weighted estimates are known to be true for other classical op-
erators, such as commutators [b, T ] of C–Z operators and BMO functions,
the dyadic square function Sd, vector valued maximal operators M q for

1 ≤ p, q ≤ ∞, Bochner-Riesz multipliers Bλ and fractional integrals Iα. In
the case of sharp bounds with respect to the power of the Ap constant of the
weight w, the sharpness is always proved by constructing specific examples
for each operator.

1.2. Main results. The main purpose of this article is to present a new ap-
proach to test sharpness of weighted estimates. We provide a very general
scheme that can be applied to most of the classical operators in Harmonic
Analysis. In particular, we show that there is no need to build such ex-
amples and that the sharpness is intimately related to the unweighted Lp

norm behaviour of the operator T as p gets close to the endpoint p = 1
and p = ∞. The key ingredient is an application of the so called Rubio de
Francia’s iteration algorithm. This is a basic but powerful technique that



OPTIMALITY WITHOUT EXAMPLES 3

was fruitful since it was first applied to factorization of weights and extrap-
olation. In particular, we will be using some ideas from the new proof of the
extrapolation theorem from [Duo11] and also from [CUMP11].

To illustrate the aim of the next definition, consider the following example.
Let H be the Hilbert transform. Then, it is known that the size of its kernel
implies that the unweighted Lp norm satisfies

(1.3) ‖H‖Lp(Rn) ∼ O(
1

p− 1
).

This condition is a particular case of the classical Yano condition related to
the well known Yano’s extrapolation theorem as shown in [Yan51] (see also
[dG81, p. 61, Theorem 3.5.1] for more details and [Car00] for a generalization
of these ideas). In particular, the above condition allows to prove endpoint
boundedness properties for the operator in appropriate L logL spaces at
local level. However, the relevant feature for our purpose is that the operator
norm blows up with order 1 and no less. Influenced by this condition we give
a precise definition which tries to capture this endpoint order by looking at
the asymptotic behaviour of the Lp norm of a general operator T .

Definition 1.1. Given a bounded operator T on Lp(Rn) for 1 < p < ∞, we
define αT to be the “endpoint order” of T as follows:

(1.4) αT =: sup{α ≥ 0 : ∀ε > 0, lim sup
p→1

(p − 1)α−ε‖T‖Lp(Rn) = ∞}.

The analogue of (1.4) for p large is the following. Let γT be defined as
follows

(1.5) γT =: sup{γ ≥ 0 : ∀ε > 0, lim sup
p→∞

‖T‖Lp(Rn)

pγ−ε
= ∞}.

This definition may have appeared previously in the literature but we are
not aware of it.

Now we can state our main result.

Theorem 1.2. Let T be an operator (not necessarily linear). Suppose fur-
ther that for some 1 < p0 < ∞ and for any w ∈ Ap0

(1.6) ‖T‖Lp0 (w) ≤ c [w]βAp0
.

Then β ≥ max
{

γT ;
αT

p0−1

}

.

The novelty here is that we can exhibit a close connection between the
weighted estimate and the unweighted behaviour of the operator at the
endpoints p = 1 and p = ∞. This result can be applied to the known
inequalities (1.1) and (1.2) to derive the sharpness without building any
particular example for each operator.

In addition, we can observe that this is a sort of template suitable for any
operator. Indeed, as an application we can derive the optimal exponent that
one could expect in a weighted estimate for a maximal operator associated
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to a generic Muckenhoupt basis. Note that in this latter case it is not
even possible to have an example working for a general basis. However, our
method allow us to avoid the use of examples and deal with all the bases at
once.

We also obtain new results for a class of maximal functions defined in
terms of Orlicz averages. For Φλ(t) = t log(e + t)λ, λ ∈ [0,∞), we prove
new weighted estimates for the Orlicz maximal operator MΦλ

which, in ad-
dition, are sharp as a consequence of Theorem 1.2. We remit to Section
4.2 for the precise definitions of these operators which can be seen as con-
tinuous versions of the iterated Hardy-Littlewood maximal functions. This
continuity is reflected in the exponent of the weighted estimates proved in
Theorem 4.2. The operators MΦλ

are special cases of more general Or-
licz maximal operators MΦ introduced in [Pér95b] to study sharp sufficient
“bump” type conditions for the so called two-weight problem for the Hardy-
Littlewood maximal operator. Similar conditions were also considered in
the two weight context for fractional integrals in [Pér94a] and very recently
in the context of Calderón–Zygmund operators [Ler13] where it is used to
solve the so called “bump conjecture”. The special case of MΦλ

was used in
[Pér94b] to derive very sharp two weight estimate of the form (w,MΦε(w)),

‖Tf‖L1,∞(w) ≤ cε,T

∫

Rn

|f(x)|ML(log L)ǫ(w)(x) dx, w ≥ 0.

where T is any Calderón–Zygmund operator and where ε > 0 is arbitrarily
small. Similar sharp estimates where also obtained in the case p > 1.

Even in the case where it is not known a sharp weighted estimate, we
obtain a lower bound for the exponent of the Ap constant. This is the case
of Bochner-Riesz multipliers treated in Section 3, Corollary 3.3.

1.3. Outline. This article is organized as follows. In Section 2 we prove
the main result. Then, in Section 3 we show how to derive the sharpness of
some known weighted estimates for Calderón–Zygmund operators with large
kernels. We also exhibit lower bounds for the optimal exponent in the case
of Bochner–Riesz multipliers. In Section 4 we study maximal type operators
and dyadic square functions. In Section 5 we obtain results for fractional
integral operators by using similar ideas and off-diagonal extrapolation tech-
niques. Finally, in Section 6 our method is used to obtain optimal exponents
in the case of maximal functions defined over general Muckenhoupt bases.

2. Proof of Theorem 1.2

We present here the proof of the main results. The key tool is the Rubio
de Francia’s iteration scheme or algorithm to produce A1 weights with a
precise control of the constant of the weight and the main underlying idea
comes from extrapolation theory. The same ideas that we use here were
already used to prove sharp weighted estimates for the Hilbert transform
with A1 weights in [FP97]. A more precise and general version was obtained
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recently in [Duo11]. We remark that the first part of the proof, namely the
proof of inequality (2.1) below, is a consequence of the extrapolation result
from [Duo11] (see Theorem 3.1, first inequality of (3.2), p. 1889). We choose
to include the proof for the sake of completeness. For our inequality (2.4),
which is the analogue for large p, we perform a slightly different proof.

Proof of Theorem 1.2. We first consider the bound β ≥ αT
p0−1 . The first step

is to prove the following inequality, which can be seen as an unweighted
Coifman-Fefferman type inequality relating the operator T to the Hardy–
Littlewood maximal function. We have that

(2.1) ‖T‖Lp(Rn) ≤ c ‖M‖
β(p0−p)
Lp(Rn) 1 < p < p0.

Lets start by defining, for 1 < p < p0, the operator R as follows:

R(h) =

∞
∑

k=0

1

2k
Mk(h)

‖M‖kLp(Rn)

Then we have
(A) h ≤ R(h)

(B) ‖R(h)‖Lp(Rn) ≤ 2 ‖h‖Lp(Rn)

(C) [R(h)]A1 ≤ 2 ‖M‖Lp(Rn)

To verify (2.1), consider 1 < p < p0 and apply Holder’s inequality to
obtain

‖T (f)‖Lp(Rn) =
(

∫

Rn

|Tf |p (Rf)
−(p0−p) p

p0 (Rf)
(p0−p) p

p0 dx
)1/p

≤
(

∫

Rn

|Tf |p0 (Rf)−(p0−p) dx
)1/p0 (

∫

Rn

(Rf)p dx
)

p0−p
pp0

For clarity in the exposition, we denote w := (Rf)−(p0−p). Then, by the
key hypothesis (1.6) together with properties (A) and (B) of the Rubio de
Francia’s algorithm, we have that

‖T (f)‖Lp(Rn) ≤ c [w]βAp0

(

∫

Rn

|f |p0 w dx
)1/p0

‖f‖
p0−p
p0

Lp(Rn)

≤ c [w]βAp0

(

∫

Rn

|f |p dx
)1/p0

‖f‖
1− p

p0

Lp(Rn)

= c [w]βAp0
‖f‖Lp(Rn)

= c [w1−p′0 ]
β(p0−1)
Ap′

0

‖f‖Lp(Rn)
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since [w]Aq = [w1−q′ ]q−1
Aq′

. Now, since p0−p
p0−1 < 1 we can use Jensen’s inequal-

ity to compute the constant of the weight as follows

[w1−p′0 ]Ap′
0
= [(Rf)

p0−p
p0−1 ]Ap′

0
≤ [R(f)]

p0−p
p0−1

Ap′0

≤ [R(f)]
p0−p
p0−1

A1

Finally, by making use of property (C), we conclude that

‖T (f)‖Lp(Rn) ≤ c ‖M‖
β(p0−p)
Lp(Rn) ‖f‖Lp(Rn),

which clearly implies (2.1). Once we have proved the key inequality (2.1), we
can relate the exponent on the weighted estimate to the endpoint order of T .
To that end, we will use the known asymptotic behaviour of the unweighted
Lp norm of the maximal function. It is well known that when p is close to
1, there is a dimensional constant c such that

(2.2) ‖M‖Lp(Rn) ≤ c
1

p− 1
.

Then, for p close to 1, we obtain

(2.3) ‖T‖Lp(Rn) ≤ c (p − 1)−β(p0−p) ≤ c (p − 1)−β(p0−1)

Therefore, multiplying by (p−1)αT−ε, using the definition of αT and taking
upper limits we have,

+∞ = lim sup
p→1

(p− 1)αT−ε‖T‖Lp(Rn) ≤ c lim sup
p→1

(p − 1)αT−ε−β(p0−1).

This last inequality implies that β ≥ αT
p0−1 , so we conclude the first part of

the proof of the theorem.
For the proof of the other inequality, β ≥ γT , we follow the same line of

ideas, but with a twist involving the dual space Lp′(Rn). Fix p, p > p0. We
perform the iteration technique R′ as before changing p with p′:

R′(h) =
∞
∑

k=0

1

2k
Mk(h)

‖M‖k
Lp′ (Rn)

Then we have
(A’) h ≤ R′(h)

(B’) ‖R′(h)‖Lp′ (Rn) ≤ 2 ‖h‖Lp′ (Rn)

(C’) [R′(h)]A1 ≤ 2 ‖M‖Lp′ (Rn)
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Fix f ∈ Lp(Rn). By duality there exists a non-negative function h ∈

Lp′(Rn), ‖h‖Lp′ (Rn) = 1, such that,

‖Tf‖Lp(Rn) =

∫

Rn

|Tf(x)|h(x) dx

≤

∫

Rn

|Tf |(R′h)
p−p0

p0(p−1) h
p(p0−1)
p0(p−1) dx

≤

(∫

Rn

|Tf |p0(R′h)
p−p0
p−1 dx

)1/p0 (∫

Rn

hp
′

dx

)1/p′0

=

(∫

Rn

|Tf |p0(R′h)
p−p0
p−1 dx

)1/p0

.

Now we use the key hypothesis (1.6) and Hölder’s inequality to obtain

‖Tf‖Lp(Rn) ≤ c [(R′h)
p−p0
p−1 ]βAp0

(∫

Rn

|f |p0(R′h)
p−p0
p−1 dx

)1/p0

≤ c [(R′h)
p−p0
p−1 ]βAp0

(∫

Rn

|f |pdx

)1/p (∫

Rn

(R′h)p
′

dx

)
1
p′

p−p0
p0(p−1)

≤ c [(R′h)
p−p0
p−1 ]βAp0

(∫

Rn

|f |pdx

)1/p

by (B’) .

≤ c [R′h]
β

p−p0
p−1

Ap0

(∫

Rn

|f |pdx

)1/p

by Jensen’s

≤ c ‖M‖
β

p−p0
p−1

Lp′ (Rn)

(∫

Rn

|f |pdx

)1/p

by (C’).

Hence,

(2.4) ‖T‖Lp(Rn) ≤ c ‖M‖
β

p−p0
p−1

Lp′ (Rn)
p > p0.

This estimate is similar and, somehow dual, to (2.1). To finish the proof
we recall that, for large p, namely p > p1 > p0, we have the asymptotic
estimate, ‖M‖p′ ≈

1
p′−1 ≤ p. Therefore, we have that

‖T‖Lp(Rn) ≤ c pβ
p−p0
p−1 ≤ c pβ

since p > p1 > p0 > 1. As before, dividing by pγT−ε and taking upper limits,
we obtain

+∞ = lim sup
p→∞

‖T‖Lp(Rn)

pγT−ε
≤ c lim sup

p→∞
pβ−γT+ε.

This last inequality implies that β ≥ γT , so we conclude the proof of the
theorem.

�
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2.1. Two remarks on sharpening the sharp bounds. In the previous
section, we showed how to prove sharp weighted bound avoiding the use of
specific examples. We studied sharpness with respect to the power of the
Ap constant of the weight. However, there are several further improvements
that can be made. First, we will consider mixed Ap − A∞ bounds in the
spirit of [HP] (see also [HPR12], and [LM]). We also show refined estimates
beyond the scale of power functions.

2.1.1. Mixed bounds. Here we address the problem of finding sharp “mixed
bounds”. More precisely, it was shown in [HP] that the maximal function
satisfies

(2.5) ‖M‖Lp(w) ≤ c [w]
1
p

Ap
[σ]

1
p

A∞
w ∈ Ap.

where σ = σp = w1−p′ and where

[σ]A∞
:= sup

Q

1

σ(Q)

∫

Q
M(χQσ)dx

is the Fujii-Wilson A∞’s constant which is much smaller than the usual
(Hrushev) A∞ constant defined in terms of the exponential average. Esti-
mate (2.5) was proved in [HP] and it was used to improve the A2 theorem
from [Hyt12]. A better argument for proving (2.5) was obtained in [HPR12].
In addition, let us remark that in [PR] there is a new proof of this result
which avoids completely the use of the delicate reverse Hölder property of
A∞ weights.

We have the following corollary of Theorem 1.2.

Corollary 2.1. Let T be an operator (not necessarily linear). Let w ∈ Ap0

for some 1 < p0 < ∞, and recall that σ = w1−p′0 . Suppose further that

(2.6) ‖T‖Lp0 (w) ≤ c [w]β1

Ap0
[σ]β2

A∞
.

Then β1 +
β2

p0−1 ≥ max
{

γT ;
αT

p0−1

}

.

Proof. The proof of this variant reduces to a simple observation based on
the duality properties of Muckenhoupt weights. More precisely, for any Ap

weight and any pair of positive exponents β1 and β2, we have that

[w]β1

Ap
[w1−p′ ]β2

A∞
≤ [w]β1

Ap
[w1−p′ ]β2

Ap′
= [w]β1

Ap
[w]

β2
p−1

Ap
= [w]

β1+
β2
p−1

Ap
.

By Theorem 1.2, we conclude that β1 +
β2

p0−1 ≥ max
{

γT ;
αT

p0−1

}

. �

Note that this result implies that we cannot consider in (2.5) smaller
exponents. The same argument can be used to show the sharpness of mixed
bounds for C–Z operators. For a given C–Z operator T satisfying some size
condition on the kernel (see condition (3.5) below) we have that αT = 1.
Therefore, any pair of exponents (β1, β2) lying on the sharpness line defined
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by β1(p−1)+β2 = 1 is sharp. We cannot replace any of them with a smaller
quantity. For example, for any T it is proved in [HP] that

(2.7) ‖T‖Lp(w) ≤ c [w]
2/p
Ap

[σ]
2/p−1
A∞

for any p ∈ (1, 2] and any w ∈ Ap. We conclude that this pair of exponents is
sharp although this does not mean that it is the best possible result. Indeed,
by moving along the sharpness line, we can balance the exponents replacing
some power of [w]Ap by the corresponding power of [w]A∞

. Clearly, the best
bounds are those involving a larger power in the A∞ fraction of the weight.

In the case of commutators, we have from [HP] that, for 1 < p ≤ 2,

‖[b, T ]‖Lp(w) ≤ c [w]
4/p
Ap

[σ]
4/p−2
A∞

.

The exponent of this result is also sharp because the commutator satisfies
that α[b,T ] = 2.

2.2. Beyond power functions. We start this section by recalling that
from Buckley’s original example one can conclude that inequality (1.1) is
sharp for arbitrary perturbations. Our method also allows to conclude the
same perturbation result. More precisely, suppose that for some p0 ∈ (1,∞)
and for some non-decreasing function ϕ : [1,∞) → [0,∞) such that

lim
t→∞

ϕ(t)

t
1

p0−1

= 0

we have that, for any w ∈ Ap0 ,

‖M‖Lp0 (w) ≤ cϕ([w]Ap0
).

We will show that this cannot hold. To see this, we argue as in Theorem 1.2
and obtain that, for some positive constants c1, c2 and for 1 < p < p1 < p0,

‖Mf‖Lp(Rn) ≤ c1 ϕ([Rf ]p0−p
A1

)‖f‖Lp(Rn)

≤ c1 ϕ(c2(p− 1)−(p0−1))‖f‖Lp(Rn)

for any function f ∈ Lp(Rn). Since ‖M‖Lp(Rn) ≥ c 1
p−1 for p → 1, we obtain

that

(p− 1)−1 ≤ c1 ϕ(c2(p− 1)−(p0−1))

contradicting the assumption on ϕ. Therefore, we conclude that there is no
possible such an improvement of (1.1).

A similar argument can be used to derive an analogue result for a generic
operator T if it is known the precise endpoint behavior of T .

3. Operators with large kernel and commutators

Firstly, we address the problem of proving the sharpness of weighted esti-
mates for Calderón–Zygmund operators, its commutators with BMO func-
tions and vector valued extensions. We prove here the following corollary of
our main result.
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Corollary 3.1. Let T be a Calderón–Zygmund operator. Denote by [b, T ]
the commutator with a BMO function b. More generally, its k-iteration
defined recursively by

T k
b := [T k−1

b , b], k ≥ 1,

with k an integer. The following weighted estimates are sharp

(3.1) ‖T‖Lp(w) ≤ c [w]
max{1, 1

p−1
}

Ap
, w ∈ Ap

(3.2) ‖[b, T ]‖Lp(w) ≤ c ‖b‖BMO [w]
2max{1, 1

p−1
}

Ap
, w ∈ Ap

(3.3) ‖T k
b ‖Lp(w) ≤ c ‖b‖BMO [w]

(k+1)max{1, 1
p−1

}

Ap
, w ∈ Ap.

We also have the following application to vector–valued extensions.

Corollary 3.2. Given a C–Z operator T we define as usual the vector–
valued extension T q as

T qf(x) =





∞
∑

j=1

|Tfj(x)|
q





1/q

where f = {fj}
∞
j=1 is a vector–valued function. Then the following estimate

is sharp

(3.4) ‖T q(f)‖Lp(w) ≤ c [w]
max{1, 1

p−1
}

Ap

∥

∥f q

∥

∥

Lp(w)
, w ∈ Ap

where f q(x) =
(

∑∞
j=1 |fj(x)|

q
)1/q

.

Proof of Corollary 3.1 and Corollary 3.2. All the previous inequalities are
known to be true (see [Hyt12] for the case of C–Z operators and [CPP12]
for the case of commutators). The bound in (3.4) is a very recent result
from [HH] (see also [Scu] for an alternative proof). The sharpness follows
immediately from Theorem 1.2 if we check the appropriate values of αT and
γT for each case.

In order to apply our Theorem 1.2 here we need to exploit the bad be-
haviour at the endpoint. We remark here that the upper bound in (1.3)
holds for any C–Z operator, but we need to focus on those operators T such
that the upper bound in (1.3) is attained. A general condition for this can
be found in [Ste93, p. 42]: suppose that the operator kernel K of a C–Z
operator T on R

n satisfies that

(3.5) |K(x, y)| ≥
c

|x− y|n
.
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for some c > 0 and if x 6= y. Then T satisfies the same endpoint behaviour
as the Hilbert transform in (1.3):

(3.6) ‖T‖Lp(Rn) ∼ O(
1

p− 1
),

which clearly implies that αT = 1 (we can consider the Hilbert transform H
as a model example of this phenomenon in R and the Riesz transforms for
R
n, n ≥ 2). Therefore, for any of such operators T , we have that αT = 1.

The same kind of arguments shows that γT = 1 and then we conclude that
(3.1) is sharp. Since it is clear that the same holds for the vector valued
extension, we conclude that (3.4) is also sharp.

For the case of a commutator of [b, T ], if T is a C–Z operator with a kernel
K satisfying (3.5), we have that α[b,T ] = γT = 2. Similarly, for the k-iterated

commutator T k
b , we have that αT k

b
= γT = k. This concludes with the proof

of the corollary. �

As a final application of this result for large kernels, we present here the
following consequence of our Theorem 1.2 for the optimality of weighted
estimates of Bochner-Riesz multipliers. For λ > 0 and R > 0, this operator
is defined by the formula

(3.7) (Bλ
Rf)(x) =

∫

Rn

(

1− (|ξ|/R)2
)λ

+
f̂(ξ)e2πiξx dξ,

where f̂ denotes the Fourier transform of f . For R = 1 we write simply Bλ.
It is a known fact that this operator has a kernel Kλ(x) defined by

(3.8) Kλ(x) =
Γ(λ+ 1)

πλ

Jn/2+λ(2π|x|)

|x|n/2+λ
,

where Γ is the Gamma function and Jη is the Bessel function of integral
order η (see [Gra08, p.197]).

Corollary 3.3. Let 1 < p < ∞. Suppose further that the following estimate
holds

(3.9) ‖B(n−1)/2‖Lp(w) ≤ c [w]βAp
,

for any w ∈ Ap and where the constant cp is independent of the weight.

Then β ≥ max
{

1; 1
p−1

}

.

Proof. The proof is immediate once we check that the size of the Kernel sat-
isfies (3.5). To see this, we use the known asymptotics for Bessel functions,
namely

Jη(r) = O(r−1/2),

(see [Ste93, p.338, Example 1.4 ]). Combining this with (3.8), we obtain
that

K(n−1)/2(x) = O(|x|−n),

and therefore we have that αB(n−1)/2 = γB(n−1)/2 = 1. �
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In particular, this result shows that the claimed norm inequality for the
maximal Bochner-Riesz operator from [LS12] cannot hold (see also [LS13]).

4. Maximal operators and square functions

In this section we will show how to derive sharp bounds for maximal-
related operators. We also include a new result for the k-iterated Hardy-
Littlewood maximal operator.

4.1. Iterated maximal operator. Let k be any positive integer, then the
k-th iteration of the maximal function can be defined by induction as Mk =
M(Mk−1). For this operator, we have the following sharp weighted estimate.

Corollary 4.1. Let M be Hardy-Littlewood maximal function and let 1 <
p < ∞ and w ∈ Ap. Then

(4.1) ‖Mk‖Lp(w) ≤ c [w]
k

p−1

Ap
.

and the exponent is sharp.

Proof. The bound follows directly by iterating Buckley’s theorem (1.1) and
the sharpness is a consequence of the main result Theorem 1.2 since it is
not difficult to verify that in this case αMk = k. For the iterated maximal
function we also have that, for large p,

‖Mk‖Lp(Rn) ∼ 1.

Therefore, we have that γMk = 0 and then (4.1) is sharp. �

4.2. Orlicz-type Maximal functions. In this section we study maximal
operators defined in terms of Orlicz norms. This kind of maximal opera-
tors allows to consider some sort of intermediate operators between integer
iterations of M . To be more precise, let us briefly recall some definitions
and properties. A function Φ : [0,∞) → [0,∞) is called a Young function
if it is continuous, convex, increasing and satisfies Φ(0) = 0 and Φ(t) → ∞
as t → ∞. The space LΦ is a Banach function space with the Luxemburg
norm defined by

‖f‖Φ = inf

{

t > 0 :

∫

Rn

Φ

(

|f |

t

)

dx ≤ 1

}

.

Given a cube Q, we can also define a localized Luxemburg norm on a
cube Q as

‖f‖Φ,Q = inf

{

t > 0 :
1

|Q|

∫

Q
Φ

(

|f |

t

)

dx ≤ 1

}

.

The corresponding maximal function is

(4.2) MΦf(x) = sup
x∈Q

‖f‖Φ,Q.

We are interested here in the logarithmic scale given by the functions
Φλ(t) := t logλ(e + t), λ ∈ [0,∞). Note that the case λ = 0 corresponds
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to M . The case λ = k ∈ N corresponds to ML(logL)k , which is pointwise

comparable to Mk+1 (see, for example, [Pér95a]). For noninteger values of
λ, we denote by MΦλ

= ML(logL)λ the associated maximal operator. By
Corollary 4.1, we have that the sharp exponent in weighted estimates for
these operators is 1/(p − 1) for λ = 0 and k/(p − 1) for λ = k ∈ N. The
following theorem provides a sharp bound for these intermediate exponents
in R+ \N.

Theorem 4.2. Let λ > 0, 1 < p < ∞ and w ∈ Ap. Then

(4.3) ‖MΦλ
‖Lp(w) ≤ c [w]

1
p

Ap
[σ]

1
p
+λ

A∞
≤ c [w]

1+λ
p−1

Ap
,

where σ = w1−p′. Furthermore, the exponents are sharp.

Proof. We start with the following variant of the classical Fefferman-Stein
inequality which holds for any weight w. For t > 0 and any nonnegative
function f , we have that

(4.4) w ({x ∈ R
n : MΦλ

f(x) > t}) ≤ c

∫

Rn

Φλ

(

f(x)

t

)

Mw(x) dx,

where is M is the usual Hardy–Littlewood maximal function and c is a
constant independent of the weight w. The result can be obtained using a
Calderón–Zygmund decomposition adapted to MΦλ

as in Lemma 4.1 from
[Pér95b]. We leave the details for the interested reader.

Now, if the weight w is in A1, then inequality (4.4) yields the linear
dependence on [w]A1 ,

w ({x ∈ R
n : MΦλ

f(x) > t}) ≤ c [w]A1

∫

Rn

Φλ

(

f(x)

t

)

w(x) dx.

From this estimate and by using an extrapolation type argument as in [Pér,
Section 4.1], we derive easily that, for any w ∈ Ap

(4.5) w ({x ∈ R
n : MΦλ

f(x) > t}) ≤ c [w]Ap

∫

Rn

Φλ

(

f(x)

t

)p

w(x) dx.

Now, we follow the same ideas from [HPR12, Theorem 1.3]. We write the
Lp norm as

‖MΦλ
f‖pLp(w) ≤ c

∫ ∞

0
tpw{x ∈ R

n : MΦλ
ft(x) > t}

dt

t

where ft := fχf>t. Since w ∈ Ap, then by the precise open property of Ap

classes, we have that w ∈ Ap−ε where ε ∼ 1
[σ]A∞

. Moreover, the constants

satisfy that [w]Ap−ε ≤ c[w]Ap (see [HPR12, Theorem 1.2]). We apply (4.5)
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with p− ε instead of p to obtain after a change of variable

‖MΦλ
f‖pLp(w) ≤ c [w]Ap

∫

Rn

fp

∫ ∞

1

Φλ(t)
p−ε

tp
dt

t
w dx

≤ c [w]Ap

∫ ∞

1

(log(e+ t))pλ

tε
dt

t
‖f‖pLp(w)

≤ c [w]Ap

(

1

ε

)λp+1

‖f‖pLp(w)

≤ c [w]Ap [σ]
λp+1
A∞

‖f‖pLp(w)

Takin p-roots we obtain the desired estimate (4.3).
Regarding the sharpness, we will prove now that the exponent in the last

term of (4.3) cannot be improved. This follows from Theorem 1.2 since it is
easy to verify that

‖MΦλ
‖Lp(Rn) ∼

1

(p− 1)1+λ
.

From this estimate we conclude that the endpoint order verifies αT = 1+ λ
for T = MΦλ

. As a final remark, we mention that the exponents of the
middle term in (4.3) are also sharp by the same argument as in Section
2.1.1. �

4.3. Vector valued maximal functions. We now consider the vector-
valued extension of the H-L maximal function. Let 1 < q < ∞ and 1 < p <
∞, then this operator is defined as:

M qf(x) =
(

∞
∑

j=1

(Mfj(x))
q
)1/q

,

where f = {fj}
∞
j=1 is a vector-valued function. For this operator we obtain

this corollary.

Corollary 4.3. For 1 < p < ∞, and for any w ∈ Ap, the following norm
inequality is sharp.

(4.6) ‖M qf‖Lp(w) ≤ c [w]
max{ 1

q
, 1
p−1

}
‖f q‖Lp(w), w ∈ Ap.

Proof. The bound was proved in [CUMP12]. For the sharpness of (4.6),
although we cannot apply directly our main Theorem 1.2, it is easy to see

that once we write the Lp norm of
(

∑

j M(fj)
q
)1/q

, the same arguments

yield the desired result, namely, the analogue of Theorem 1.2 in the vector-
valued setting. Therefore, the sharpness will follow if we check the values
of αMq

and γMq
. The fact that αMq

= 1 can be verified in the same way

as in the case q = 1. For γMq
, we can find an example of a vector- valued

function satisfying ‖M qf‖Lp ≥ cp1/q‖f‖Lp
ℓq

which implies that γMq
= 1/q.

This was already known; see [Ste93, p.75] for the classic proof. �
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4.4. Square functions. We include here the case of the dyadic square func-
tion Sd, since it behaves similarly to the vector–valued maximal function.
It is defined as follows. Let ∆ denote the collection of dyadic cubes in R

n.
Given Q ∈ ∆, let Q̂ be its dyadic parent, that is, the unique dyadic cube
containing Q whose side-length is twice that of Q. Then, the dyadic square
function is the operator

Sdf(x) =





∑

Q∈∆

(fQ − fQ̂)
2χQ(x)





1/2

where fQ = −
∫

Q f(x) dx.

For this operator the result is the following corollary of Theorem 1.2.

Corollary 4.4. For 1 < p < ∞, and for any w ∈ Ap, the following norm
inequality is sharp:

(4.7) ‖Sdf‖Lp(w) ≤ c [w]
max{ 1

2
, 1
p−1

}
‖f‖Lp(w).

Proof. Again, the inequality is known to be true (see [CUMP12] and ref-
erences therein). For the sharpness, we just check the values of the two
endpoint orders. We first note that αSd

= 1 by looking at the indica-
tor function of the unit cube (as in the case of the maximal function).
The value of γSd

= 1
2 was previously known, see for instance [CUMP12,

p. 434]. In particular, there is an explicit example of a function f such that

‖Sdf‖Lp ≥ cp1/2‖f‖Lp . It should be mentioned that the case p → ∞ was
already implicitly considered in [FP97]. �

We remark that this type of arguments for the sharpness of weighted
estimates were already in the cited article [CUMP12] for the square function
and the vector-valued maximal function. However, this was used only for
these two cases and only for large values of p.

5. Fractional integral operators

In the same spirit as in the previous sections, we can prove the sharpness
of weighted estimates for fractional integral operators. For 0 < α < n, the
fractional integral operator or Riesz potential Iα is defined by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy.

We also consider the related fractional maximal operator Mα given by

Mαf(x) = sup
Q∋x

1

|Q|1−α/n

∫

Q
|f(y)| dy.

It is well known (see [MW74]) that these operators are bounded from Lp(wp)
to Lq(wq) if and only if the exponents p and q are related by the equation
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1/q−1/p = α/n and w satisfies the so called Ap,q condition. More precisely,
w ∈ Ap,q if

[w]Ap,q ≡ sup
Q

(

1

|Q|

∫

Q
wq dx

)(

1

|Q|

∫

Q
w−p′ dx

)q/p′

< ∞.

An extrapolation theorem for these classes of weights, often called off-
diagonal extrapolation theorem, was obtained for the first time by Harboure,
Maćıas and Segovia in [HMS88] although we will use a new version from
[Duo11].

We have the following proposition.

Proposition 5.1. Suppose that 0 ≤ α < n, 1 < p < n/α and q is defined by
the relationship 1/q = 1/p−α/n. If w ∈ Ap,q, then the following inequalities
are sharp

(5.1) ‖Mα‖Lp(wp)→Lq(wq) ≤ c [w]
p′

q
(1−α

n
)

Ap,q
.

and

(5.2) ‖Iα‖Lp(wp)→Lq(wq) ≤ c [w]
(1−α

n
)max{1, p

′

q
}

Ap,q
.

Proof. Both inequalities are known to be true and the proof can be found in
[LMPT10]. There, it was also proved the sharpness by constructing appro-
priate examples. We show here that we can derive the sharpness by using a
version of our approach adapted to the setting of off diagonal extrapolation.
Let 1 < p0 < ∞ and 0 < q0 < ∞ such that 1/p0 − 1/q0 = α/n. Suppose
that we have, for some β > 0, the following inequality.

‖Mα‖Lp0 (wp0 )→Lq0 (wq0 ) ≤ c [w]βAp0,q0
,

for any w ∈ Ap,q. We apply Theorem 5.1 from [Duo11] to obtain, for any
n

n−α < q < q0, the unweighted estimate

(5.3) ‖Mαf‖Lq(Rn) ≤ c ‖M‖
β(q0−q)n−α

n

Lq n−α
n (Rn)

‖f‖Lp(Rn)

where M is the usual H–L maximal operator. Now we need to use the
analogue of the endpoint order for the fractional maximal operator. From
(5.3) we can derive the following inequality:

(5.4)

(

q −
n

n− α

)−1/q

≤ c

(

q −
n

n− α

)−β(q0−q)n−α
n

.

This can be done by estimating the operator norm of the fractional maximal
operator. On the left hand side of (5.4) we used the fact that

‖Mα‖
q
Lp(Rn)→Lq(Rn) ≥

1

q − n
n−α
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On the right hand side of (5.4) we just use again that ‖M‖Lr ∼ 1/(r − 1)
for r close to 1. Arguing as before, if we let q go to the critical value n

n−α
we obtain that

β ≥ (1− α/n)
1

q0
n−α
n − 1

= (1− α/n)
p′0
q0

The sharpness for the case of the fractional integral, namely inequality
(5.2), follows essentially the same steps. We need to prove that the inequality

‖Iα‖Lp(wp)→Lq(wq) ≤ c [w]βAp,q
, w ∈ Ap,q

implies that β ≥ (1 − α
n )max{1, p

′

q }. For the bound β ≥ (1 − α
n )

p′

q we can

repeat the previous proof, since the fractional integral also satisfies that

‖Iα‖
q
Lp(Rn)→Lq(Rn) ≥

1

q − n
n−α

The other case, namely β ≥ (1 − α
n ) follows easily by duality. We left the

details for the interested reader. �

6. Muckenhoupt bases

In this section we address the problem of finding optimal exponents for
maximal operators defined over Muckenhoupt bases. Recall that given a
family B of open sets, we can define the maximal operator MB as

MBf(x) = sup
x∈B∈B

−

∫

B
|f(y)| dy,

if x belongs to some set b ∈ B and MBf(x) = 0 otherwise. The natural
classes of weights associated to this operator are defined in the same way as
the classical Muckenhoupt classes: w ∈ Ap,B if

[w]Ap,B
:= sup

B∈B

(

1

|B|

∫

B
w(y) dy

)(

1

|B|

∫

B
w(y)1−p′ dy

)p−1

< ∞.

We say that a basis B is a Muckenhoupt basis if MB is bounded on Lp(w)
whenever w ∈ Ap,B (see [Pér91]).

In this generality, we also can prove a lower bound for the best possible
exponent in a weighted estimate. The only requirement on the operator MB

is that its Lp norm must blow up when p goes to 1 (no matter the ratio of
blow up). Precisely, we have the following theorem.

Theorem 6.1. Let B be a Muckenhoupt basis. Suppose in addition that the
associated maximal operator MB satisfies the following weighted estimate:

(6.1) ‖MB‖Lp0 (w) ≤ c [w]βAp0,B
.

If lim sup
p→1+

‖MB‖Lp(Rn) = +∞, then β ≥ 1
p0−1 .
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Proof. The idea is to perform the iteration technique from Theorem 1.2 but
with MB instead of the standard H–L maximal operator. Then we obtain,
for 1 < p < p0, that

(6.2) ‖MB‖Lp(Rn) ≤ c ‖MB‖
β(p0−p)
Lp(Rn) ≤ c ‖MB‖

β(p0−1)
Lp(Rn) .

The last inequality holds since ‖MB‖Lp(Rn) ≥ 1. We remark here that,
since we are comparing MB to itself, it is irrelevant to know the precise
quantitative behaviour of its Lp for p close to 1. In fact, we cannot use any
estimate like (2.2) since we are dealing with a generic basis. Just knowing
that the Lp norm blows up when p goes to 1, allows us to conclude that
β ≥ 1

p0−1 . �

As an example of this result, we can show that the result for Calderón
weights from [DMRO13] is sharp. Precisely, for the basis B0 of open sets in
R of the form (0, b), b > 0, the authors prove that the associated maximal
operator N defined as

Nf(t) = sup
b>t

1

b

∫ b

0
|f(x)| dx

is bounded on Lp(w) if and only if w ∈ Ap,B0 and, moreover, that

‖N‖Lp(w) ≤ c [w]
1

p−1

Ap,B0
.

By the preceding result, this inequality is sharp with respect to the exponent
on the characteristic of the weight.

We can also apply Theorem 6.1 to the basis of rectangles in R
n with

sides parallel to the coordinate axes. We detail this case in the following
subsection.

6.1. The strong maximal function. All the sharp results we have ob-
tained here concern the classical or one–parameter theory, where the opera-
tors commute with one-parameter dilations of Rn. A natural question would
be to study this kind of sharp quantitative estimates for multi–parameter
operators. As a first step we have tried to apply the approach we have pre-
sented here to the most basic example of the multiparameter theory, that is
the strong maximal function. However, we have not obtained a satisfactory
answer even for this.

Let us recall first some definitions and known estimates to understand
why our template does not work for this operator. For a locally integrable
function f on R

n we will denote by Msf the strong maximal function:

Msf(x) = sup
R∋x

1

|R|

∫

R
|f(y)|dy, x ∈ R

n,

where the supremum is taken over all the rectangles in R
n with sides parallel

to the coordinate axes. This operator is bounded in Lp(Rn). Indeed,

(6.3) ‖Ms‖p ≈ (p′)n
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where 1 < p < ∞. We will say that w belongs to the class A∗
p, 1 < p < ∞,

whenever

[w]A∗
p
= sup

R

(

1

|R|

∫

R
w

)(

1

|R|

∫

R
w1−p′

)p−1

< +∞

where the supremum is taken over all the rectangles in R
n with sides parallel

to the coordinate axes. Thus A∗
p is the class of weights associated naturally

with n–dimensional intervals. As it happened with the Hardy-Littlewood
maximal function, this class of weights characterizes completely the bound-
edness of the strong maximal function in weighted Lebesgue spaces. In fact,
it is not difficult to see that

(6.4) ‖Ms‖Lp(w) ≤ c [w]
n

p−1

A∗
p
, w ∈ A∗

p.

To study which would be the sharp exponent in the last inequality, we could
reproduce the proof of Theorem 1.2 replacing in the Rubio de Francia’s
algorithm the maximal function by the strong maximal one and making a
suitable use of estimate (6.3). The analogue for the multiparameter setting
is the following result. Suppose that a given operator T , bounded in Lp(Rn)
for 1 < p < ∞, satisfies a weighted inequality like

‖T‖Lp(w) ≤ c [w]βA∗
p

for any w ∈ A∗
p. In addition, define the endpoint order αT as before. Then,

the same arguments from Theorem 1.2 allow us to conclude that any expo-
nent in (6.1) needs to be

β ≥
αT

n(p− 1)
.

Going back to the case of the strong maximal function, we have that αMs = n
according to Definition 1.1 and the estimate (6.3). Therefore we just obtain
a trivial estimate.
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OPTIMAL EXPONENTS IN WEIGHTED ESTIMATES

WITHOUT EXAMPLES

TERESA LUQUE, CARLOS PÉREZ, AND EZEQUIEL RELA

Abstract. We present a general approach for proving the optimality
of the exponents on weighted estimates. We show that if an operator T
satisfies a bound like

‖T‖Lp(w) ≤ c [w]βAp
w ∈ Ap,

then the optimal lower bound for β is closely related to the asymptotic
behaviour of the unweighted Lp norm ‖T‖Lp(Rn) as p goes to 1 and +∞.

By combining these results with the known weighted inequalities, we
derive the sharpness of the exponents, without building any specific ex-
ample, for a wide class of operators including maximal-type, Calderón–
Zygmund and fractional operators. In particular, we obtain a lower
bound for the best possible exponent for Bochner-Riesz multipliers. We
also present a new result concerning a continuum family of maximal op-
erators on the scale of logarithmic Orlicz functions. Further, our method
allows to consider in a unified way maximal operators defined over very
general Muckenhoupt bases.

1. Introduction and statement of the main result

1.1. Introduction. A main problem in modern Harmonic Analysis is the
study of sharp norm inequalities for some of the classical operators on
weighted Lebesgue spaces Lp(w), 1 < p < ∞. The usual examples include
the Hardy–Littlewood (H–L) maximal operator, the Hilbert transform and
more general Calderón-Zygmund operators (C–Z operators). Here w denotes
a non–negative, locally integrable function, that is a weight. The class of
weights for which these operators T are bounded on Lp(w) were identified in
[17] and in the later works [10], [3]. This class consists of the Muckenhoupt
Ap weights defined by the condition

[w]Ap := sup
Q

(

1

|Q|

∫

Q
w(y) dy

)(

1

|Q|

∫

Q
w(y)1−p′ dy

)p−1

< ∞,

where the supremum is taken over all the cubes Q in R
n.

1991 Mathematics Subject Classification. Primary: 42B25. Secondary: 43A85.
Key words and phrases. Muckenhoupt weights, Calderón-Zygmund operators, Maximal

functions.
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Given any of these operators T , the first part of this problem is to look
for quantitative bounds of the norm ‖T‖Lp(w) in terms of the Ap constant
of the weight. Then, the following step is to find the sharp dependence,
typically with respect to the power of [w]Ap . In recent years, the answer to
this last question has let a fruitful activity and development of new tools in
Harmonic Analysis. Firstly, Buckley [1] identified the sharp exponent in the
case of the H–L maximal function, i.e.,

(1.1) ‖M‖Lp(w) ≤ c [w]
1

p−1

Ap
, w ∈ Ap,

and 1
p−1 cannot be replaced with 1−ε

p−1 , ε > 0. Afterwards, Petermichl [24]

showed that

(1.2) ‖T‖Lp(w) ≤ c [w]
max{1, 1

p−1
}

Ap
, w ∈ Ap

is sharp when T is any Riesz transform. Similar weighted estimates are
known to be true for other classical operators, such as commutators of C–
Z operators with BMO functions, the dyadic square function, vector valued
maximal operators and fractional integrals. In the case of sharp bounds with
respect to the power of the Ap constant of the weight w, the sharpness is
most frequently proved by constructing specific examples for each operator.

Throughout this paper, we will use the notation A . B to indicate that
there is a constant c > 0 independent of A and B such that A ≤ cB. By
A ∼ B we mean that both A . B and B . A hold.

1.2. Main results. In order to state our main results, we need to introduce
the notion of endpoint order for a given operator T . To illustrate the aim
of the next definition, consider the following example. Let H be the Hilbert
transform. Then, it is known that the size of its kernel implies (see [25, p.
42]) that the unweighted Lp norm satisfies

(1.3) ‖H‖Lp(Rn) ∼
1

p− 1
.

The next definition tries to capture this endpoint order by looking at the
asymptotic behaviour of the Lp norm of a general operator T .

Definition 1.1. Given a bounded operator T on Lp(Rn) for 1 < p < ∞, we
define αT to be the “endpoint order” of T as follows:

(1.4) αT =: sup{α ≥ 0 : ∀ε > 0, lim sup
p→1

(p − 1)α−ε‖T‖Lp(Rn) = ∞}.

The analogue of (1.4) for p large is the following. Let γT be defined as
follows

(1.5) γT =: sup{γ ≥ 0 : ∀ε > 0, lim sup
p→∞

‖T‖Lp(Rn)

pγ−ε
= ∞}.

This definition may have appeared previously in the literature but we are
not aware of it.

Now we can state our main result.
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Theorem 1.2. Let T be an operator (not necessarily linear). Suppose fur-
ther that for some 1 < p0 < ∞ and for any w ∈ Ap0

(1.6) ‖T‖Lp0 (w) ≤ c [w]βAp0
.

Then β ≥ max
{

γT ;
αT

p0−1

}

.

The novelty here is that we can exhibit a close connection between the
weighted estimate and the unweighted behaviour of the operator at the
endpoints p = 1 and p = ∞.

As an application of the method of proof we can derive a lower bound
for the optimal exponent that one could expect in a weighted estimate for
a maximal operator associated to a generic Muckenhoupt basis MB (see
Section 4). We note that it is not even possible to have an example working
for a general basis. The only requirement on the operator MB is that its
Lp norm must blow up when p goes to 1 (no matter the ratio of blow up).
Precisely, we have the following theorem.

Theorem 1.3. Let B be a Muckenhoupt basis. Suppose in addition that the
associated maximal operator MB satisfies the following weighted estimate:

(1.7) ‖MB‖Lp0 (w) ≤ c [w]βAp0,B
.

If lim sup
p→1+

‖MB‖Lp(Rn) = +∞, then β ≥ 1
p0−1 .

We also obtain new results for a class of maximal functions defined in
terms of Orlicz averages (see Section 3.3). For Φλ(t) = t log(e + t)λ, λ ∈
[0,∞), we prove new weighted estimates for the Orlicz maximal opera-
tor MΦλ

which, in addition, are sharp as a consequence of Theorem 1.2.
These operators can be seen as continuous versions of the iterated Hardy-
Littlewood maximal function. This continuity is reflected in the exponent
of the weighted estimates proved in Theorem 3.2. The operators MΦλ

are
relevant in many situations, in particular for the study of the so called “Ap

bump conjectures” (see [5, p.187]).
Even in the case where it is not known a sharp weighted estimate, we

obtain a lower bound for the exponent of the Ap constant. This is the case
of Bochner-Riesz multipliers treated in Section 3.1, Corollary 3.1.

1.3. Outline. This article is organized as follows. In Section 2 we prove
the main result. Then, in Section 3 we show how to derive the sharpness of
some weighted estimates for several classical operators. Finally, in Section
4 our method is used to obtain optimal exponents in the case of maximal
functions defined over general Muckenhoupt bases.

2. Proof of Theorem 1.2

We present here the proof of the main result. The key tool is the Rubio
de Francia’s iteration scheme or algorithm to produce A1 weights with a



4 TERESA LUQUE, CARLOS PÉREZ, AND EZEQUIEL RELA

precise control of the constant of the weight and the main underlying idea
comes from extrapolation theory. The same ideas that we use here were
already used to prove sharp weighted estimates for the Hilbert transform
with A1 weights in [8]. A more precise and general version was obtained
recently in [6]. We remark that the first part of the proof, namely the proof
of inequality (2.1) below, is a consequence of the extrapolation result from
[6] (see Theorem 3.1, first inequality of (3.2), p. 1889). We choose to include
the proof for the sake of completeness. For our inequality (2.4), which is the
analogue for large p, we perform a slightly different proof.

Proof of Theorem 1.2. We first consider the bound β ≥ αT
p0−1 . The first step

is to prove the following inequality, which can be seen as an unweighted
Coifman-Fefferman type inequality relating the operator T to the Hardy–
Littlewood maximal function. We have that

(2.1) ‖T‖Lp(Rn) ≤ c ‖M‖
β(p0−p)
Lp(Rn) 1 < p < p0.

Lets start by defining, for 1 < p < p0, the operator R as follows:

R(h) =

∞
∑

k=0

1

2k
Mk(h)

‖M‖kLp(Rn)

.

Then we have
(A) h ≤ R(h)

(B) ‖R(h)‖Lp(Rn) ≤ 2 ‖h‖Lp(Rn)

(C) [R(h)]A1 ≤ 2 ‖M‖Lp(Rn)

To verify (2.1), consider 1 < p < p0 and apply Holder’s inequality to
obtain

‖T (f)‖Lp(Rn) =
(

∫

Rn

|Tf |p (Rf)
−(p0−p) p

p0 (Rf)
(p0−p) p

p0 dx
)1/p

≤
(

∫

Rn

|Tf |p0 (Rf)−(p0−p) dx
)1/p0 (

∫

Rn

(Rf)p dx
)

p0−p

pp0

For clarity in the exposition, we denote w := (Rf)−(p0−p). Then, by the
key hypothesis (1.6) together with properties (A) and (B) of the Rubio de
Francia’s algorithm, we have that

‖T (f)‖Lp(Rn) ≤ c [w]βAp0

(

∫

Rn

|f |p0 w dx
)1/p0

‖f‖
p0−p
p0

Lp(Rn)

≤ c [w]βAp0

(

∫

Rn

|f |p dx
)1/p0

‖f‖
1− p

p0

Lp(Rn)

= c [w]βAp0
‖f‖Lp(Rn)

= c [w1−p′0 ]
β(p0−1)
Ap′

0

‖f‖Lp(Rn)
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since [w]Aq = [w1−q′ ]q−1
Aq′

. Now, since p0−p
p0−1 < 1 we can use Jensen’s inequal-

ity to compute the constant of the weight as follows

[w1−p′0 ]Ap′
0
= [(Rf)

p0−p
p0−1 ]Ap′

0
≤ [R(f)]

p0−p
p0−1

Ap′0

≤ [R(f)]
p0−p
p0−1

A1
.

Finally, by making use of property (C), we conclude that

‖T (f)‖Lp(Rn) ≤ c ‖M‖
β(p0−p)
Lp(Rn) ‖f‖Lp(Rn),

which clearly implies (2.1). Once we have proved the key inequality (2.1), we
can relate the exponent on the weighted estimate to the endpoint order of T .
To that end, we will use the known asymptotic behaviour of the unweighted
Lp norm of the maximal function. It is well known that when p is close to
1, there is a dimensional constant c such that

(2.2) ‖M‖Lp(Rn) ≤ c
1

p− 1
.

Then, for p close to 1, we obtain

(2.3) ‖T‖Lp(Rn) ≤ c (p− 1)−β(p0−p) ≤ c (p − 1)−β(p0−1).

Therefore, multiplying by (p−1)αT−ε, using the definition of αT and taking
upper limits we have,

+∞ = lim sup
p→1

(p− 1)αT−ε‖T‖Lp(Rn) ≤ c lim sup
p→1

(p − 1)αT−ε−β(p0−1).

This last inequality implies that β ≥ αT
p0−1 , so we conclude the first part of

the proof of the theorem.
For the proof of the other inequality, β ≥ γT , we follow the same line of

ideas, but with a twist involving the dual space Lp′(Rn). Fix p, p > p0. We
perform the iteration technique R′ as before changing p with p′:

R′(h) =
∞
∑

k=0

1

2k
Mk(h)

‖M‖k
Lp′ (Rn)

.

Then we have
(A’) h ≤ R′(h)

(B’) ‖R′(h)‖Lp′ (Rn) ≤ 2 ‖h‖Lp′ (Rn)

(C’) [R′(h)]A1 ≤ 2 ‖M‖Lp′ (Rn)
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Fix f ∈ Lp(Rn). By duality there exists a non-negative function h ∈

Lp′(Rn), ‖h‖Lp′ (Rn) = 1, such that,

‖Tf‖Lp(Rn) =

∫

Rn

|Tf(x)|h(x) dx

≤

∫

Rn

|Tf |(R′h)
p−p0

p0(p−1) h
p(p0−1)
p0(p−1) dx

≤

(
∫

Rn

|Tf |p0(R′h)
p−p0
p−1 dx

)1/p0 (∫

Rn

hp
′

dx

)1/p′0

=

(
∫

Rn

|Tf |p0(R′h)
p−p0
p−1 dx

)1/p0

.

Now we use the key hypothesis (1.6) and Hölder’s inequality to obtain

‖Tf‖Lp(Rn) ≤ c [(R′h)
p−p0
p−1 ]βAp0

(
∫

Rn

|f |p0(R′h)
p−p0
p−1 dx

)1/p0

≤ c [(R′h)
p−p0
p−1 ]βAp0

(
∫

Rn

|f |pdx

)1/p (∫

Rn

(R′h)p
′

dx

) 1
p′

p−p0
p0(p−1)

≤ c [(R′h)
p−p0
p−1 ]βAp0

(
∫

Rn

|f |pdx

)1/p

by (B’) .

≤ c [R′h]
β

p−p0
p−1

Ap0

(
∫

Rn

|f |pdx

)1/p

by Jensen’s

≤ c ‖M‖
β

p−p0
p−1

Lp′ (Rn)

(
∫

Rn

|f |pdx

)1/p

by (C’).

Hence,

(2.4) ‖T‖Lp(Rn) ≤ c ‖M‖
β

p−p0
p−1

Lp′ (Rn)
p > p0.

This estimate is similar and, somehow dual, to (2.1). To finish the proof
we recall that, for large p, namely p > p1 > p0, we have the asymptotic
estimate, ‖M‖Lp′ (Rn) ∼

1
p′−1 ≤ p. Therefore, we have that

‖T‖Lp(Rn) ≤ c p
β

p−p0
p−1 ≤ c pβ

since p > p1 > p0 > 1. As before, dividing by pγT−ε and taking upper limits,
we obtain

+∞ = lim sup
p→∞

‖T‖Lp(Rn)

pγT−ε
≤ c lim sup

p→∞
pβ−γT+ε.

This last inequality implies that β ≥ γT , so we conclude the proof of the
theorem.

�
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Remark 2.1. The techniques used in the proof of Theorem 1.2 actually allow
us to deduce sharper results for some particular cases. For the H–L maximal
function M , by considering the indicator function of the unit cube, it is easy
to conclude that

(2.5) ‖M‖Lp(Rn) ∼ (p− 1)−1,

for p close to 1. This precise endpoint behavior allows us to prove that we

cannot replace in the weighted inequality (1.1) the function t 7→ t(p−1)−1

by any other smaller growth function ϕ. To be more precise, the following
inequality fails

‖M‖Lp(w) ≤ cϕ([w]Ap )

for any non-decreasing function ϕ : [0,∞) → [0,∞) such that

lim
t→∞

ϕ(t)

t
1

p−1

= 0.

The proof follows the same ideas of Theorem 1.2. We left the details for the
interested reader. A similar argument can be used to derive an analogue
result for a generic operator T if it is known the precise endpoint behavior
of T .

3. Applications

In this section we show how to derive from our general result in Theorem
1.2 the sharpness of several known weighted inequalities. This will follow
from Theorem 1.2 if we check the appropriate values of αT and γT for each
case.

3.1. Operators with large kernel and commutators. Consider any C–
Z operator whose kernel K satisfies

(3.1) |K(x, y)| ≥
c

|x− y|n
.

for some c > 0 and if x 6= y (we can consider the Hilbert transform H as a
model example of this phenomenon in R and the Riesz transforms for R

n,
n ≥ 2). Then, it is true (see [25, p. 42]) that, for p → 1,

(3.2) ‖T‖Lp(Rn) ∼
1

p− 1
,

which clearly implies that αT = 1. By duality we can see that γT = 1.
Further, for the commutator [b, T ] we use the example from [23, Section 5,
p. 755]. There, for the choice of b(x) = log(|x|) and considering the Hilbert
transform H, it is shown that

(3.3) ‖[b,H]‖Lp(Rn) &
1

(p − 1)2
,

which implies that α[b,H] = 2. More generally, its k-iteration defined recur-
sively by

T k
b := [b, T k−1

b ], k ∈ N,
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satisfies that αHk
b
= γHk

b
= k. The value for γHk

b
follows by duality as in the

case of C–Z operators.
We then obtain, as an immediate consequence of Theorem 1.2, that the

following known weighted inequalities are sharp (for the proofs, see [11] for
the case of C–Z operators and [2] for the case of commutators).

(3.4) ‖T‖Lp(w) ≤ c [w]
max{1, 1

p−1
}

Ap
, w ∈ Ap,

(3.5) ‖[b, T ]‖Lp(w) ≤ c ‖b‖BMO [w]
2max{1, 1

p−1
}

Ap
, w ∈ Ap,

(3.6) ‖T k
b ‖Lp(w) ≤ c ‖b‖BMO [w]

(k+1)max{1, 1
p−1

}

Ap
, w ∈ Ap.

As a final application of this result for large kernels, we present here the
following consequence of our Theorem 1.2 for the optimality of weighted
estimates of Bochner-Riesz multipliers. For λ > 0 and R > 0, this operator
is defined by the formula

(3.7) (Bλ
Rf)(x) =

∫

Rn

(

1− (|ξ|/R)2
)λ

+
f̂(ξ)e2πiξx dξ,

where f̂ denotes the Fourier transform of f . For R = 1 we write simply Bλ.
It is a known fact that this operator has a kernel Kλ(x) defined by

(3.8) Kλ(x) =
Γ(λ+ 1)

πλ

Jn/2+λ(2π|x|)

|x|n/2+λ
,

where Γ is the Gamma function and Jη is the Bessel function of integral
order η (see [9, p. 352]).

Corollary 3.1. Let 1 < p < ∞. Suppose further that the following estimate
holds

(3.9) ‖B(n−1)/2‖Lp(w) ≤ c [w]βAp
,

for any w ∈ Ap and where the constant c is independent of the weight. Then

β ≥ max
{

1; 1
p−1

}

.

Proof. We use the known asymptotics for Bessel functions, namely

Jη(r) = cr−1/2 cos(r − τ) +O(r−3/2)

for some constants c, τ > 0, τ = τη, and r > r0 ≫ 1 (see [25, p.338, Example
1.4.1, eq. (14)]). Combining this with (3.8), we obtain that

(3.10) K(n−1)/2(x) ∼
cos(|x| − τ) + ϕ(|x|)

|x|n
.

for some ϕ : R → R such that |ϕ(r)| . r−1. We see that this kernel does
not satisfy the size condition (3.1). However, (3.10) is sufficient to conclude
that αB(n−1)/2 = γB(n−1)/2 = 1. Testing on the indicator function of the unit
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cube (we use again [25, p. 42]) we obtain, after a change of variables and
for some

r1 ≥ r0,

‖B(n−1)/2‖p
Lp(Rn)

&

∫

r>r1

|cos(r − τ) + ϕ(r)|p

rp
dr.

We choose r2 ≥ r1 large enough such that |ϕ(r)| < 1/4 and consider the set
A = {r ∈ R : r > r2, | cos(r − τ)| > 1/2}. We obtain that

‖B(n−1)/2‖pLp(Rn) &

∫

A

1

rp
dr &

∫

r>1

1

rp
dr &

1

p− 1

for p close to 1. The estimate in the middle follows by the monotonicity of
the function t 7→ t−p and taking into account that we can find the exact
description of the set A as a union of intervals. The value for γB(n−1)/2 = 1
follows by duality. �

In particular, this result shows that the claimed weighted norm inequality
for the maximal Bochner-Riesz operator from [15] cannot hold (see also [16]).

3.2. Maximal operators and square functions. For k ∈ N the k-th
iteration of the maximal function is defined by Mk = M(Mk−1). In this
case we have that αMk = k. The case k = 1 is (2.5) and an induction
argument yields the case k > 1. The fact that γMk = 0 is trivial. Then the
following weighted inequality is sharp.

(3.11) ‖Mk‖Lp(w) ≤ c [w]
k

p−1

Ap
, w ∈ Ap.

We now consider the vector-valued extension of the H-L maximal function.
For 1 < q < ∞ and 1 < p < ∞, this operator is defined as:

M qf(x) =
(

∞
∑

j=1

(Mfj(x))
q
)1/q

,

where f = {fj}
∞
j=1 is a vector-valued function. Here, as usual, we adopt

the notation f q :=
(

∑∞
j=1 f

q
j

)1/q
. The fact that αMq

= 1 can be verified

in the same way as in the case q = 1. For γMq
, we can find an example

of a vector-valued function satisfying ‖M qf‖Lp(Rn) ≥ cp1/q‖f q‖Lp(Rn) which
implies that γMq

= 1/q. This is already known; see [25, p.75] for the classic

proof. Then the following inequality is sharp.

(3.12) ‖M qf‖Lp(w) ≤ c [w]
max{ 1

q
, 1
p−1

}
‖f q‖Lp(w), w ∈ Ap.

We include here the case of the dyadic square function Sd defined as

Sdf(x) =





∑

Q∈∆

(fQ − fQ̂)
2χQ(x)





1/2
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where fQ = −
∫

Q f(x) dx, ∆ is the lattice of dyadic cubes and Q̂ stands for

the dyadic parent of a given cube Q. We first note that αSd
= 1 by looking

at the indicator function of the unit cube (as in the case of the maximal
function). The value of γSd

= 1
2 was previously known, see for instance [4,

p. 434]. As before, we conclude that the following inequality is sharp.

(3.13) ‖Sdf‖Lp(w) ≤ c [w]
max{ 1

2
, 1
p−1

}

Ap
‖f‖Lp(w) w ∈ Ap.

The proof of inequalities (3.13) and (3.12) can be found in [4].

3.3. Orlicz-type Maximal functions. Given a Young function Φ, we de-
fine the maximal function as

(3.14) MΦf(x) = sup
x∈Q

‖f‖Φ,Q,

where ‖f‖Φ,Q is the localized Luxemburg norm on a cube Q. We refer to [5,
p. 97] for the precise definitions and properties.

We are interested here in the logarithmic scale given by the functions
Φλ(t) := t logλ(e + t), λ ∈ [0,∞). Note that the case λ = 0 corresponds
to M . The case λ = k ∈ N corresponds to ML(logL)k , which is pointwise

comparable to Mk+1 (see, for example, [21]). For noninteger values of λ,
we denote by MΦλ

= ML(logL)λ the associated maximal operator. We have
seen that the sharp exponent in weighted estimates for these operators is
1/(p − 1) for λ = 0 and k/(p − 1) for λ = k ∈ N. The following theorem
provides a sharp bound for these intermediate exponents in R+ \ N. This
theorem is a mixed Ap−A∞ result involving the Fujii-Wilson A∞’s constant
defined as

[w]A∞
:= sup

Q

1

w(Q)

∫

Q
M(χQw)dx.

Theorem 3.2. Let λ > 0, 1 < p < ∞ and w ∈ Ap. Then

(3.15) ‖MΦλ
‖Lp(w) ≤ c [w]

1
p

Ap
[σ]

1
p
+λ

A∞

where σ = w1−p′. As a consequence we have

‖MΦλ
‖Lp(w) ≤ c [w]

1+λ
p−1

Ap
.

Furthermore, the exponent is sharp.

Results of this type were proved for first time in [12] and it was used to
improve the A2 theorem from [11].

Proof. We start with the following variant of the classical Fefferman-Stein
inequality which holds for any weight w. For t > 0 and any nonnegative
function f , we have that

(3.16) w ({x ∈ R
n : MΦλ

f(x) > t}) ≤ c

∫

Rn

Φλ

(

f(x)

t

)

Mw(x) dx,
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where is M is the usual Hardy–Littlewood maximal function and c is a
constant independent of the weight w. The result can be obtained using a
Calderón–Zygmund decomposition adapted to MΦλ

as in Lemma 4.1 from
[22]. We leave the details for the interested reader.

Now, if the weight w is in A1, then inequality (3.16) yields the linear
dependence on [w]A1 ,

w ({x ∈ R
n : MΦλ

f(x) > t}) ≤ c [w]A1

∫

Rn

Φλ

(

f(x)

t

)

w(x) dx.

From this estimate and by using an extrapolation type argument as in [19,
Section 4.1], we derive easily that, for any w ∈ Ap

(3.17) w ({x ∈ R
n : MΦλ

f(x) > t}) ≤ c [w]Ap

∫

Rn

Φλ

(

f(x)

t

)p

w(x) dx.

Now, we follow the same ideas from [13, Theorem 1.3]. We write the Lp

norm as

‖MΦλ
f‖pLp(w) ≤ c

∫ ∞

0
tpw{x ∈ R

n : MΦλ
ft(x) > t}

dt

t

where ft := fχf>t. Since w ∈ Ap, then by the precise open property of Ap

classes, we have that w ∈ Ap−ε where ε ∼ 1
[σ]A∞

. Moreover, the constants

satisfy that [w]Ap−ε ≤ c[w]Ap (see [13, Theorem 1.2]). We apply (3.17) with
p− ε instead of p to obtain after a change of variable

‖MΦλ
f‖pLp(w) ≤ c [w]Ap

∫

Rn

fp

∫ ∞

1

Φλ(t)
p−ε

tp
dt

t
w dx

≤ c [w]Ap

∫ ∞

1

(log(e+ t))pλ

tε
dt

t
‖f‖pLp(w)

≤ c [w]Ap

(

1

ε

)λp+1

‖f‖pLp(w)

≤ c [w]Ap [σ]
λp+1
A∞

‖f‖pLp(w).

Taking p-roots we obtain the desired estimate (3.15).
Regarding the sharpness, we will prove now that the exponent in the

term on the right hand side (3.15) cannot be improved. This follows from
Theorem 1.2 since it is easy to verify (again by testing on the indicator of
the unit cube) that

‖MΦλ
‖Lp(Rn) ∼

1

(p− 1)1+λ
.

From this estimate we conclude that the endpoint order verifies αT = 1+ λ
for T = MΦλ

. �
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3.4. Fractional integral operators. For 0 < α < n, the fractional inte-
gral operator or Riesz potential Iα is defined by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy.

We also consider the related fractional maximal operator Mα given by

Mαf(x) = sup
Q∋x

1

|Q|1−α/n

∫

Q
|f(y)| dy.

It is well known (see [18]) that these operators are bounded from Lp(wp)
to Lq(wq) if and only if the exponents p and q are related by the equation
1/q−1/p = α/n and w satisfies the so called Ap,q condition. More precisely,
w ∈ Ap,q if

[w]Ap,q := sup
Q

(

1

|Q|

∫

Q
wq dx

)(

1

|Q|

∫

Q
w−p′ dx

)q/p′

< ∞.

We first note that

‖Mα‖
q
Lp(Rn)→Lq(Rn) &

1

q − n
n−α

.

This can be seen again by considering the indicator of the unit cube. Now
we can use an off-diagonal version of the extrapolation theorem for Ap,q

classes from [6, Theorem 5.1]. Then we obtain, by the same line of ideas
from Theorem 1.2, that the following inequality is sharp.

(3.18) ‖Mα‖Lp(wp)→Lq(wq) ≤ c [w]
p′

q
(1−α

n
)

Ap,q
.

for 0 ≤ α < n, 1 < p < n/α and q is defined by the relationship 1/q =
1/p− α/n and w ∈ Ap,q.

For the case of the fractional integral we can easily compute that

‖Iα‖
q
Lp(Rn)→Lq(Rn) ≥

1

q − n
n−α

.

Then, arguing as above we conclude that the following weighted inequality
is also sharp.

(3.19) ‖Iα‖Lp(wp)→Lq(wq) ≤ c [w]
(1−α

n
)max{1, p

′

q
}

Ap,q
.

The proof of inequalities (3.18) and (3.19) can be found in [14].

4. Muckenhoupt bases

In this section we address the problem of finding optimal exponents for
maximal operators defined over Muckenhoupt bases. Recall that given a
family B of open sets, we can define the maximal operator MB as

MBf(x) = sup
x∈B∈B

−

∫

B
|f(y)| dy,
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if x belongs to some set b ∈ B and MBf(x) = 0 otherwise. The natural
classes of weights associated to this operator are defined in the same way as
the classical Muckenhoupt classes: w ∈ Ap,B if

[w]Ap,B
:= sup

B∈B

(

1

|B|

∫

B
w(y) dy

)(

1

|B|

∫

B
w(y)1−p′ dy

)p−1

< ∞.

We say that a basis B is a Muckenhoupt basis if MB is bounded on Lp(w)
whenever w ∈ Ap,B (see [20]).

Proof of Theorem 1.3. The idea is to perform the iteration technique from
Theorem 1.2 but with MB instead of the standard H–L maximal operator.
Then we obtain, for 1 < p < p0, that

(4.1) ‖MB‖Lp(Rn) ≤ c ‖MB‖
β(p0−p)
Lp(Rn) ≤ c ‖MB‖

β(p0−1)
Lp(Rn) .

The last inequality holds since ‖MB‖Lp(Rn) ≥ 1. We remark here that,
since we are comparing MB to itself, it is irrelevant to know the precise
quantitative behaviour of its Lp for p close to 1. In fact, we cannot use any
estimate like (2.2) since we are dealing with a generic basis. Just knowing
that the Lp norm blows up when p goes to 1, allows us to conclude that
β ≥ 1

p0−1 . �

As an example of this result, we can show that the result for Calderón
weights from [7] is sharp. Precisely, for the basis B0 of open sets in R of the
form (0, b), b > 0, the authors prove that the associated maximal operator
N defined as

Nf(t) = sup
b>t

1

b

∫ b

0
|f(x)| dx

is bounded on Lp(w) if and only if w ∈ Ap,B0 and, moreover, that

‖N‖Lp(w) ≤ c [w]
1

p−1

Ap,B0
.

By the preceding result, this inequality is sharp with respect to the exponent
on the characteristic of the weight.

As another example of a Muckenhoupt basis we can consider the basis R
of rectangles with edges parallel to the axis. The corresponding maximal
operator MR is bounded in Lp(Rn). Indeed,

(4.2) ‖MR‖Lp(Rn) ∼ (p′)n

where 1 < p < ∞. In addition, it is not difficult to see that

(4.3) ‖MR‖Lp(w) ≤ c [w]
n

p−1

Ap,R
, w ∈ Ap,R.

From our Theorem 1.3 we can only deduce that the exponent on the weight
must be greater or equal to 1/(p− 1) as it is already known. Therefore, the
problem of finding the sharp dependence for MR is still open.
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