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STACKELBERG–NASH EXACT CONTROLLABILITY FOR LINEAR
AND SEMILINEAR PARABOLIC EQUATIONS ∗, ∗∗
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Abstract. This paper deals with the application of Stackelberg–Nash strategies to the control of pa-
rabolic equations. We assume that we can act on the system through a hierarchy of controls. A first
control (the leader) is assumed to choose the policy. Then, a Nash equilibrium pair (corresponding
to a noncooperative multiple-objective optimization strategy) is found; this governs the action of the
other controls (the followers). The main novelty in this paper is that, this way, we can obtain the exact
controllability to a prescribed (but arbitrary) trajectory. We study linear and semilinear problems and,
also, problems with pointwise constraints on the followers.
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1. Introduction

In classical control theory, we usually find a state equation or system and one control with the mission of
achieving a predetermined goal. Frequently (but not always), the goal is to minimize a cost functional in a
prescribed family of admissible controls.

A more interesting situation arises when several (in general, conflictive or contradictory) objectives are
considered. This may happen, for example, if the cost function is the sum of several terms and it is not clear
how to average. It can also be expectable to have more than one control acting on the equation. In these cases,
we are led to consider multi-objective control problems.

In contrast with the mono-objective case, various strategies for the choice of good controls can appear,
depending of the characteristics of the problem. Moreover, these strategies can be cooperative (when the controls
mutually cooperate in order to achieve some goals) or noncooperative.
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There exist several equilibrium concepts for multi-objective problems, with origin in game theory, mainly mo-
tivated by economics. Each of them determines a strategy. Thus, let us mention the noncooperative optimization
strategy proposed by Nash [16], the Pareto cooperative strategy [17] and the Stackelberg hierarchical-cooperative
strategy [21].

In the context of the control of PDEs, a relevant question is whether one is able to steer the system to a
desired state (exactly or approximately) by applying controls that correspond to one of these strategies. Up to
date, there has been some work on the subject:

• The papers by Lions [14,15], where the author gives some results concerning Pareto and Stackelberg strate-
gies, respectively.

• The paper by Dı́az and Lions [4], where the approximate controllability of a system is established following
a Stackelberg–Nash strategy and the extension in Dı́az [3], that provides a characterization of the solution
by means of Fenchel–Rockafellar duality theory.

• The papers [18,19], where Ramos et al. study Nash equilibria from the theoretical and numerical viewpoints
for linear parabolic PDEs and for the Burgers equation.

• Finally, let us mention that the Stackelberg–Nash strategy for the Stokes systems has been studied by
Guillén-González et al. in [11].

The controllability issues considered in these works only provide answers at the approximate level. This means
that the main results assert that one can lead the system to a state that is arbitrarily close (but not identical)
to a desired target.

The main novelty of the present paper is to extend the analysis and the results to an exact controllability
framework.

1.1. The problems and their motivations

Let Ω ⊂ R
N be a bounded domain whose boundary Γ is regular enough. Let T > 0 be given and let us

consider the cylinder Q = Ω× (0, T ), with lateral boundary Σ = Γ × (0, T ). In the sequel, we will denote by C a
generic positive constant. Sometimes, we will indicate the data on which C depends by writing C(Ω), C(Ω, T ),
etc. The usual norm and scalar product in L2(Ω) will be respectively denoted by ‖ · ‖ and (·, ·).

We are interested in the proof of the exact controllability to the trajectories of a multi-objective parabolic
PDE problem in Q, where we apply a Stackelberg–Nash strategy. For simplicity, we will assume that only three
controls are applied (one leader and two followers), but very similar considerations hold for systems with a
higher number of controls.

We will consider systems of the form⎧⎨
⎩
yt −Δy + a(x, t)y = F (y) + f1O + v11O1 + v21O2 in Q,
y = 0 on Σ,
y(·, 0) = y0 in Ω,

(1.1)

where y = y(x, t) is the state, a ∈ L∞(Q), F is a locally Lipschitz-continuous function and y0 is prescribed.
In (1.1), the set O ⊂ Ω is the main control domain and O1,O2 ⊂ Ω are the secondary control domains (all them
are supposed to be small); 1O, 1O1 and 1O2 are the characteristic functions of O, O1 and O2, respectively; the
controls are f , v1 and v2, where f is the leader and v1 and v2 are the followers.

Let O1,d, O2,d ⊂ Ω be open sets, representing observation domains for the followers. We will consider the
(secondary) functionals

Ji(f ; v1, v2) :=
αi

2

∫∫
Oi,d×(0,T )

|y − yi,d|2 dxdt+
μi

2

∫∫
Oi×(0,T )

|vi|2 dxdt, i = 1, 2 (1.2)

and the main functional
J (f) :=

1
2

∫∫
O×(0,T )

|f |2 dxdt, (1.3)

where the αi > 0, μi > 0 are constants and the yi,d = yi,d(x, t) are given functions.
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The control process can be described as follows:

1. The followers v1 and v2 assume that the leader f has made a choice and intend to be a Nash equilibrium for
the costs Ji (i = 1, 2).
Thus, once f has been fixed, we look for controls vi ∈ L2(Oi × (0, T )) that satisfy

J1(f ; v1, v2) = min
v̂1

J1(f ; v̂1, v2), J2

(
f ; v1, v2

)
= min

v̂2
J2(f ; v1, v̂2). (1.4)

Any pair (v1, v2) satisfying (1.4) is called a Nash equilibrium for J1 and J2.
Note that, if the functionals Ji (i = 1, 2) are convex, then (v1, v2) is a Nash equilibrium if and only if

J ′
1(f ; v1, v2)(v̂1, 0) = 0, ∀v̂1 ∈ L2 (O1 × (0, T )) , v1 ∈ L2(O1 × (0, T )) (1.5)

and

J ′
2(f ; v1, v2)(0, v̂2) = 0, ∀v̂2 ∈ L2 (O2 × (0, T )) , v2 ∈ L2(O2 × (0, T )). (1.6)

2. Let us fix an uncontrolled trajectory of (1.1), that is, a sufficiently regular solution to the system

⎧⎨
⎩
yt −Δy + a(x, t)ȳ = F (y) in Q,
y = 0 on Σ,
y(·, 0) = y0 in Ω.

(1.7)

Once the Nash equilibrium has been identified and fixed for each f , we look for a control f̂ ∈ L2(O× (0, T ))
such that

J(f̂) = min
f

J(f), (1.8)

subject to the restriction of exact controllability

y(·, T ) = y(·, T ) in Ω. (1.9)

Several motivations can be found for control problems of this kind:

• If y = y(x, t) is viewed as a temperature distribution in a body, we interpret that our intention is to drive y
to a desired y at time T by heating and cooling (acting only on the small subdomains O, O1 and O2), trying
at the same time to keep reasonable temperatures in O1,d and O2,d during the whole time interval (0, T ).

• The same control strategy makes sense in the context of fluid mechanics. Thus, we can replace (1.1) and (1.7)
by similar Stokes and/or Navier–Stokes systems and we can look for controls f̄ and associated Nash equilibria
(v1, v2) satisfying (1.8)–(1.9). In this case, it is assumed that we act on the system through mechanical forces
applied on O,O1 and O2 and the goal is to reach y at time T keeping the velocity field y not too far from
yi,d in Oi,d × (0, T ) (i = 1, 2).

• In the framework of mathematical finance, this can also be an interesting question. For instance, it is well
known that the price of an European call option is governed by a backward PDE similar to (1.1). Now, the
independent variable x must be interpreted as the stock price and t is in fact the reverse of time (we fix a
situation at t = T and we want to know what to do in order to arrive at this situation from a well chosen
state). In this regard, it can be interesting to control the solution of the system with the composed action
of several agents, each of them corresponding to a different range of values of x. For further information on
the modeling and control of phenomena of this kind, see for instance [2, 20, 22].
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1.2. The main results

We will have to impose the following assumption:

O1,d = O2,d. (1.10)

Accordingly, we will denote these sets by Od; see below, in Section 5, some comments on the necessity of the
hypothesis (1.10).

In the linear case (F ≡ 0), the exact controllability to the trajectories is equivalent to the null controllability
property. The following result holds:

Theorem 1.1. Let us assume that F ≡ 0, Od ∩ O �= ∅ and the μi > 0 (i = 1, 2) are sufficiently large. Then,
there exists a positive function ρ̂ = ρ̂(t) blowing up at t = T with the following property: if y is the unique
solution to (1.7) with (F ≡ 0) associated to the initial state y0 ∈ L2(Ω) and the yi,d are such that∫∫

Od×(0,T )

ρ̂2|y − yi,d|2 dxdt < +∞, i = 1, 2, (1.11)

for any y0 ∈ L2(Ω), there exist controls f ∈ L2(O× (0, T )) and associated Nash equilibria (v1, v2) such that the
corresponding solutions to (1.1) satisfy (1.9).

Roughly speaking, the assumption on the μi means that the followers must have moderate L2 norms. On the
other hand, the assumption (1.11) means that both y1,d and y2,d approach y as t→ T .

In the semilinear case, with F being a locally Lipschitz-continuous function, we can consider the same
controllability questions. However, it is important to note that, in this case, we lose the convexity of the
functionals Ji and the Nash equilibrium condition (1.4) is not necessarily equivalent to (1.5) and (1.6). For this
reason, it is convenient to weaken the definition of equilibrium as follows:

Definition 1.2. Let f ∈ L2(O × (0, T )) be given. The pair (v1, v2) is called a Nash quasi-equilibrium
of (1.1)–(1.2) associated to f if the conditions (1.5) and (1.6) are satisfied.

For the semilinear case, we have the following result:

Theorem 1.3. Let us assume that F ∈ W 1,∞(R), Od∩O �= ∅ and the μi > 0 (i = 1, 2) are sufficiently large. Let
y be the unique solution to (1.7) associated to the initial state y0 ∈ L2(Ω) and let us assume that (1.11) holds,
where ρ̂ is the weight furnished by Theorem 1.1. Then, for each y0 ∈ L2(Ω), there exist controls f ∈ L2(O×(0, T ))
and associated Nash quasi-equilibria (v1, v2) such that the corresponding solutions to (1.1) satisfy (1.9).

A natural question is whether there are semilinear systems for which the concepts of Nash equilibrium and
Nash quasi-equilibrium are equivalent. An answer is given by the following result:

Proposition 1.4. Let us assume that F ∈W 2,∞(R) and yi,d ∈ L∞(Oi,d × (0, T )) (i = 1, 2). Suppose that y0 ∈
H1

0 (Ω) (resp. y0 ∈ L2(Ω)) and N ≤ 14 (resp. N ≤ 12). Then, there exists C > 0 such that, if f ∈ L2(O×(0, T ))
and the μi satisfy

μi ≥ C(1 + ‖f‖L2(O×(0,T ))),

the conditions (1.4) and (1.5)–(1.6) are equivalent.

In this paper, we also analyze if a result like Theorem 1.1 holds true when the followers are constrained to
belong to appropriate convex sets Ui ⊂ L2(Oi × (0, T )). Thus, let I1 and I2 be two nonempty closed intervals
with 0 ∈ I1 ∩ I2, let us take

Ui = { v ∈ L2(Oi × (0, T )) : v(x, t) ∈ Ii a.e. }, i = 1, 2, (1.12)

and let us suppose that the minimization of J1 and J2 in (1.4) is subject to the restrictions v̂1 ∈ U1 and v̂2 ∈ U2.
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The controllability result is the following:

Theorem 1.5. Let us assume that F ≡ 0, Od ∩ O �= ∅ and the μi > 0 (i = 1, 2) are sufficiently large. Let
y be the unique solution to (1.7) associated to the initial state y0 ∈ L2(Ω). Then, for each y0 ∈ L2(Ω), there
exist controls f ∈ L2(O × (0, T )) and associated Nash equilibria (v1, v2) ∈ U1 × U2 such that the corresponding
solutions to (1.1) satisfy (1.9).

As mentioned above, the main novelty of this paper is that we deal with exact and not approximate controlla-
bility. There are other points that distinguish our contribution as well. Thus, contrarily to what was imposed in
other previous papers (see for instance [11]), we do not make any assumption on the open sets Oi. In particular,
the Oi can be disjoint of O, which is obviously the most interesting situation. On the other hand, the analysis
and results also hold, after appropriate modifications, for m followers with m > 2.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.1, which concerns the linear case.
This result will be strongly used in the other sections. In Section 3 we prove Theorem 1.3 and Proposition 1.4.
As a consequence, we see that the Stackelberg–Nash strategy can be applied to nonlinear problems and, also,
that under adequate hypotheses on F , we still obtain a Nash equilibrium. Section 4 deals with the proof
of Theorem 1.5. Finally, we present some additional comments and questions in Section 5.

2. The linear case

In this section we prove Theorem 1.1. The proof is long and, for clarity, has been decomposed in two parts.
In Section 2.1 we will recall the existence, uniqueness and characterization of a Nash equilibrium (for fixed but
arbitrary f); then, in Section 2.2, we will prove the desired controllability result.

Thanks to the linearity of the problem, we may reduce the exact controllability to the trajectories to a null
controllability property. In fact, after the change of variable y = z+y, it is immediate to see from (1.1) and (1.7),
with F ≡ 0, that z is the solution to the problem⎧⎨

⎩
zt −Δz + a(x, t)z = f1O + v11O1 + v21O2 in Q,
z = 0 on Σ,
z(·, 0) = z0 in Ω,

(2.1)

where z0 = y0 − y0. It is clear that the condition (1.9) is equivalent to

z(x, T ) = 0 in Ω. (2.2)

Also, we can write the functionals Ji in (1.2) in terms of z, which gives

Ji(f ; v1, v2) =
αi

2

∫∫
Oi,d×(0,T )

|z − zi,d|2 dxdt+
μi

2

∫∫
Oi×(0,T )

|vi|2 dxdt, i = 1, 2,

where zi,d := yi,d − y (i = 1, 2).

2.1. Nash equilibrium

In this subsection, we will recall an existence/uniqueness result concerning a Nash equilibrium, in the sense
of (1.4), for any f ∈ L2(O × (0, T )). We will also recall a result which characterizes this Nash equilibrium in
terms of the solution to an adjoint system. These results are due to Dı́az and Lions (see [3, 4, 15]).

For the moment, we do not have to impose the assumption (1.10). This requirement only appears later,
in Section 2.2, when the choice of f has to be made. Accordingly, in this section we keep the notation Oi,d

(i = 1, 2).
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2.1.1. Existence and uniqueness

Let us introduce the spaces Hi := L2 (Oi × (0, T )) and H := H1 × H2 and let us consider the operators
Li ∈ L(Hi;L2 (Q)) with Liv

i = zi, where zi is the solution to the system⎧⎨
⎩
zi

t −Δzi + a(x, t)z = vi1Oi in Q,
zi = 0 on Σ,
zi(·, 0) = 0 in Ω.

By definition, for any control f , the pair (v1, v2) is a Nash equilibrium if and only if it satisfies (1.5) and (1.6),
that is to say,

αi

∫∫
Oi,d×(0,T )

(z − zi,d)wi dxdt+ μi

∫∫
Oi×(0,T )

viv̂i dxdt = 0, ∀v̂i ∈ Hi, (2.3)

where wi is the derivative of z with respect to vi in the direction v̂i. Note that⎧⎨
⎩
wi

t −Δwi + a(x, t)wi = v̂i1Oi in Q,
wi = 0 on Σ,
wi(·, 0) = 0 in Ω.

Consequently, Liv̂
i = wi. We also have z = L1v

1 + L2v
2 + u, where⎧⎨

⎩
ut −Δu+ a(x, t)u = f1O in Q,
u = 0 on Σ,
u(·, 0) = z0 in Ω.

Therefore, we may rewrite (2.3) in the form

αi

∫∫
Oi,d×(0,T )

(
L1v

1 + L2v
2 − (zi,d − u)

)
Liv̂

i dxdt

+μi

∫∫
Oi×(0,T )

viv̂i dxdt = 0, ∀v̂i ∈ Hi

or ∫∫
Oi×(0,T )

(
αiL

∗
i

((
L1v

1+L2v
2 − (zi,d − u)

)
1Oi,d

)
+μiv

i
)
v̂i dxdt = 0, ∀v̂i ∈ Hi,

where L∗
i ∈ L(L2(Q);Hi) is the adjoint of Li. In other words, (v1, v2) is a Nash equilibrium if and only if

αiL
∗
i

((
L1v

1 + L2v
2
)
1Oi,d

)
+ μiv

i = αiL
∗
i ((zi,d − u)1Oi,d

) in Hi, i = 1, 2.

Let us introduce the operator L ∈ L(H;H), given by

L
(
v1, v2

)
=
(
α1L

∗
1

((
L1v

1 + L2v
2
)
1O1,d

)
+ μ1v

1, α2L
∗
2((L1v

1 + L2v
2)1O2,d

) + μ2v
2
)
, (2.4)

for all (v1, v2) ∈ H. Then, the task is to prove the existence and uniqueness of a solution for the equation

L
(
v1, v2

)
= Ψ,

(
v1, v2

) ∈ H, (2.5)

where
Ψ = (α1L

∗
1((z1,d − u)1O1,d

), α2L
∗
2((z2,d − u)1O2,d

)). (2.6)
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In this direction, the following holds:

Proposition 2.1. Let us assume that

α1‖1O1,d
L2‖(1) < 4μ2 and α2‖1O2,d

L1‖(2) < 4μ1, (2.7)

where ‖·‖(i) denotes the norm in the space L(H3−i;L2(Oi,d×(0, T ))). Then L is an isomorphism. In particular,
for each f ∈ L2(O × (0, T )), there exists exactly one Nash equilibrium (v1(f), v2(f)) in the sense of (1.4).

Proof. From (2.4) and Young’s inequality, we observe that

(
L
(
v1, v2

)
,
(
v1, v2

))
H =

2∑
i=1

μi‖vi‖2
Hi

+
2∑

i,j=1

αi(Ljv
j , Liv

i)L2(Oi,d×(0,T ))

≥
2∑

i=1

(
μi‖vi‖2

Hi
+ αi‖Liv

i‖2
L2(Oi,d×(0,T ))

)

−
2∑

i=1

αi

(
‖Liv

i‖2
L2(Oi,d×(0,T )) +

1
4
‖L3−iv

3−i‖2
L2(Oi,d×(0,T ))

)

≥
2∑

i=1

(
μi − α3−i

4
‖1O3−i,d

Li‖2
(3−i)

)
‖vi‖2

Hi
.

Therefore, (
L
((
v1, v2

)
,
(
v1, v2

)))
H ≥ γ‖ (v1, v2

) ‖2
H, ∀ (v1, v2

) ∈ H, (2.8)

where γ = mini {μi − α3−i‖1O3−i,d
Li‖2

(3−i)} > 0, see (2.7).
Now, let us introduce the bilinear form a : H×H → R, with

a
((
v1, v2

)
,
(
v̂1, v̂2

))
:=
(
L
((
v1, v2

)
,
(
v̂1, v̂2

)))
H .

From the definition of the operator L and the inequality (2.8), we readily see that a(·, ·) is continuous and
coercive on H. Consequently, the Lax–Milgram’s Theorem implies that, for any Φ ∈ H′, there exists exactly one
(v1, v2) ∈ H satisfying

a(
(
v1, v2

)
, (v̂1, v̂2)) =

〈
Φ, (v̂1, v̂2)

〉
H′×H ∀ (v̂1, v̂2) ∈ H;

(
v1, v2

) ∈ H.

In particular, we get (2.5) and the proof is done. �

From the proof, it becomes clear that, under the assumptions of Proposition 2.1, for any f ∈ L2(O × (0, T ))
the associated Nash equilibrium (v1(f), v2(f)) satisfies

∥∥(v1(f), v2(f)
)∥∥

H ≤ C
(
1 + ‖f‖L2(O×(0,T ))

)
, (2.9)

where the constant C depends on Ω,O, T,Oi,Oi,d, αi, μi, ‖z0‖ and ‖a‖L∞(Q). These estimates will be used
below. Notice that, in view of (2.9), the state z associated to f and (v1(f), v2(f)) satisfies

‖z‖L2(0,T ;H1
0 (Ω)) + ‖zt‖L2(0,T ;H−1(Ω)) ≤ C(1 + ‖f‖L2(O×(0,T ))), (2.10)

where C is as above.
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2.1.2. Characterization of the Nash equilibrium

We will express the followers v1(f) and v2(f) in terms of a new adjoint variable.
Let f ∈ L2(O × (0, T )) be given. For any (v1, v2) ∈ H, let us consider the associated state z (the solution

for (2.1)). In view of (2.3), it is very natural to introduce the adjoint states φi (i = 1, 2), with⎧⎨
⎩

−φi
t −Δφi + a(x, t)φi = αi(z − zi,d)1Oi,d

in Q,
φi = 0 on Σ,
φi(·, T ) = 0 in Ω.

Using integration by parts, we see that (v1, v2) is a Nash equilibrium if and only if∫∫
Oi×(0,T )

(
φi + μiv

i
)
v̂i dxdt = 0, ∀v̂i ∈ Hi, vi ∈ Hi.

This directly implies that

vi = − 1
μi

φi
∣∣
Oi×(0,T )

, i = 1, 2.

Let us gather all these informations in the same system. We obtain the following:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = f 1O −
2∑

i=1

1
μi
φi1Oi in Q,

−φi
t −Δφi + a(x, t)φi = αi(z − zi,d)1Oi,d

in Q,
z = 0, φi = 0 on Σ,
z(·, 0) = z0, φi(·, T ) = 0 in Ω.

(2.11)

Recall that our main objective is to prove the null controllability of z at time t = T . Therefore, the task is
to find a distributed control f ∈ L2(O × (0, T )) such that the solution to (2.11) satisfies (2.2).

2.2. Null controllability

In this subsection, we will achieve the proof of Theorem 1.1.
We will establish an observability inequality for the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ψt −Δψ + a(x, t)ψ =
2∑

i=1

αiγ
i1Oi,d

in Q,

γi
t −Δγi + a(x, t)γi = − 1

μi
ψ1Oi in Q,

ψ = 0, γi = 0 on Σ,
ψ(·, T ) = ψT , γi(·, 0) = 0 in Ω,

(2.12)

which can be viewed as the adjoint of (2.11). This will suffice. This observability estimate is given in the following
result:

Proposition 2.2. Assume that (1.10) holds, Od ∩ O �= ∅ and the μi are sufficiently large. There exist C > 0,
only depending on Ω,O, T,Oi,Od, αi, μi and ‖a‖L∞(Q) and a weight function ρ̂ = ρ̂(t) blowing up at t = T ,
only depending on Ω, O, Od, T and ‖a‖L∞(Q), such that, for any ψT ∈ L2(Ω), the following inequality holds
true for the solution (ψ, γi) of (2.12):

∫
Ω

|ψ(x, 0)|2 dx+
2∑

i=1

∫∫
Q

ρ̂−2|γi|2 dxdt ≤ C

∫∫
O×(0,T )

|ψ|2 dxdt. (2.13)
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Let us assume for a moment that Proposition 2.2 holds and let us prove the controllability result in
Theorem 1.1. From a well known duality argument, we have that, for any z0 ∈ L2(Ω) and any ψT ∈ L2(Ω),

∫
Ω

[
z(x, T )ψT (x) − z0(x)ψ(x, 0)

]
dx =

∫∫
O×(0,T )

fψ dxdt−
2∑

i=1

αi

∫∫
Od×(0,T )

zi,dγ
i dxdt, (2.14)

where (z, φ1, φ2) and (ψ, γ1, γ2) are the solutions to (2.11) and (2.12), respectively associated to z0 and ψT .
Thus, to prove the null controllability property is equivalent to find, for each z0 ∈ L2(Ω), a control f such that,
for any ψT ∈ L2(Ω), one has

∫∫
O×(0,T )

fψ dxdt = −
∫

Ω

z0(x)ψ(x, 0) dx +
2∑

i=1

αi

∫∫
Od×(0,T )

zi,dγ
i dxdt.

There are several ways to show that (2.13) implies the existence of such a control. They rely on well known
arguments. For completeness, let us sketch one of them.

For each ε > 0, let us consider the following functional:

Fε(ψT ) :=
1
2

∫∫
O×(0,T )

|ψ|2 dxdt+ ε‖ψT ‖ +
∫

Ω

z0(x)ψ(x, 0) dx

−
2∑

i=1

αi

∫∫
Od×(0,T )

zi,dγ
i dxdt, ∀ψT ∈ L2(Ω).

It is then clear that Fε : L2(Ω) → R is continuous and strictly convex. Moreover,

Fε(ψT ) ≥ 1
4

∫∫
O×(0,T )

|ψ|2 dxdt

− C

(∫
Ω

|z0|2 dx+
2∑

i=1

α2
i

∫∫
Od×(0,T )

ρ̂2|zi,d|2 dxdt

)

+ ε‖ψT‖,

where C and ρ̂ are furnished by Proposition 2.2. Consequently, Fε is also coercive in L2(Ω). Note that, here,
we have used the assumption (1.11) on zi,d = yi,d − ȳ.

Let ψT
ε be the unique minimizer of Fε. Then, either ψT

ε = 0 or〈
F ′

ε(ψ
T
ε ), ψT

〉
= 0, ∀ψT ∈ L2(Ω).

Suppose that ψT
ε �= 0. In this case, we have∫∫

O×(0,T )

ψεψ dxdt+ ε

(
ψT

ε

‖ψT
ε ‖
, ψT

)
+
∫

Ω

z0(x)ψ(x, 0) dx

−
2∑

i=1

αi

∫∫
Od×(0,T )

zi,dγ
i dxdt = 0, ∀ψT ∈ L2(Ω),

(2.15)

where we have denoted by (ψε, γ
1
ε , γ

2
ε ) the solution to (2.12) corresponding to ψT = ψT

ε . Taking f = fε :=
ψε1O×(0,T ) in (2.14), denoting by zε the associated state and comparing to (2.15), we see that

∫
Ω

(
zε(x, T ) − ε

‖ψT
ε ‖
ψT

ε

)
ψT (x) dx = 0, ∀ψT ∈ L2(Ω),
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which implies
‖zε(·, T )‖ ≤ ε. (2.16)

On the other hand, from (2.13) and (2.15) we also have

‖fε‖L2(O×(0,T )) ≤ C

(∫
Ω

|z0|2 dx+
2∑

i=1

∫∫
Od×(0,T )

ρ̂2|zi,d|2 dxdt

)1/2

, (2.17)

that is, fε is uniformly bounded in L2(O × (0, T )).
Obviously, we also have (2.16) and (2.17) when ψT

ε = 0 and we take fε = 0.
In view of these inequalities, we can easily deduce a uniform estimate for zε. Then, taking limits as ε → 0,

we conclude that null controllability holds. This ends the proof of Theorem 1.1.

Remark 2.3. The leader control we have constructed is the unique solution to the extremal problem (1.8)–(1.9).
This claim can be justified as follows:

1. For each ε > 0, there exists exactly one minimal L2 norm control fε such that the associated state, i.e. the
corresponding solution to (2.11), satisfies (2.16).

2. From the weak lower semicontinuity of the terms in Fε, it is clear that any weak limit of a subsequence of
{fε} minimizes the L2 norm in the family of the null controls for z. Consequently, this is the case for f .

Now, we will give the proof of Proposition 2.2.

Proof of Proposition 2.2. The assumption (1.10) will be used here.
Since Od ∩O �= ∅, there exists a non-empty open set ω satisfying ω ⊂⊂ Od ∩O. Let η0 = η0(x) be a function

satisfying {
η0 ∈ C2(Ω), η0 > 0 in Ω, η0 = 0 on Γ ,
|∇η0| > 0 in Ω \ ω.

Such a function η0 always exists (see [7]).
Let us introduce the weight functions

σ(x, t) :=
e4λ‖η0‖L∞(Ω) − eλ(2‖η0‖L∞(Ω)+η0(x))

t(T − t)
, ξ(x, t) :=

eλ(2‖η0‖L∞(Ω)+η0(x))

t(T − t)
(2.18)

and the notation

Im(ψ) := sm−4λm−3

∫∫
Q

e−2sσξm−4(|ψt|2 + |Δψ|2) dxdt

+ sm−2λm−1

∫∫
Q

e−2sσξm−2|∇ψ|2 dxdt

+ smλm+1

∫∫
Q

e−2sσξm|ψ|2 dxdt. (2.19)

From the usual Carleman inequalities (see [5, 7, 13]), we have:

I3(ψ) ≤ C

(∫∫
Q

e−2sσ|α1γ
11O1,d

+ α2γ
21O2,d

|2 dxdt

+s3λ4

∫∫
ω×(0,T )

e−2sσξ3|ψ|2 dxdt

)
.

(2.20)
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Since (1.10) holds, we introduce h := α1γ
1 + α2γ

2 and we obtain∫∫
Q

e−2sσ|h|2 dxdt ≤ I0(h)

≤ C

(
s−3λ−3

∫∫
Q

e−2sσξ−3|ψ|2 dxdt+ λ

∫∫
ω×(0,T )

e−2sσ|h|2 dxdt

)
, (2.21)

for all large s and λ and some C only depending on Ω, ω and T .
We can observe that, in ω× (0, T ), one has h = −ψt−Δψ+aψ. Consequently, by introducing an appropriate

cut-off function ζ and integrating by parts, we get

λ

∫∫
ω×(0,T )

e−2sσ|h|2 dxdt ≤ λ

∫∫
ω′×(0,T )

ζ e−2sσh (−ψt −Δψ + aψ) dxdt

≤ εI0(h) + Cεs
4λ5

∫∫
ω′×(0,T )

ξ4e−2sσ|ψ|2 dxdt, (2.22)

where ω′ is a new open set satisfying ω ⊂ ω′ ⊂ Od ∩ O. From (2.20)–(2.22), we find that, for some C > 0,

I3(ψ) + I0(h) ≤ C

∫∫
ω′×(0,T )

ξ4e−2sσ|ψ|2 dxdt. (2.23)

Now, let us introduce � = �(t), with

�(t) :=
{
T 2/4 for 0 ≤ t ≤ T/2,
t(T − t) for T/2 ≤ t ≤ T,

and the functions

σ̄(x, t) :=
e4λ‖η0‖L∞(Ω) − eλ(2‖η0‖L∞(Ω)+η0(x))

�(t)
, ξ̄(x, t) :=

eλ(2‖η0‖L∞(Ω)+η0(x))

�(t)
· (2.24)

Let us denote by Īm(ψ) the right-hand side of (2.19) with σ and ξ repectively replaced by σ̄ and ξ̄. Then,
arguing as in ([6], Lem. 1), it is not difficult to see from (2.23) and the PDEs satisfied by ψ and the γi that
there exists a constant C > 0, such that

‖ψ(·, 0)‖2 + Ī3(ψ) + Ī0(h) ≤ C

∫∫
ω′×(0,T )

ξ4e−2sσ̄|ψ|2 dxdt. (2.25)

Let us introduce
σ̄∗(t) := max

x∈Ω̄
σ̄(x, t), ρ̂(t) := esσ̄∗(t).

Then ρ̂ = ρ̂(t) is a positive nondecreasing function in C1([0, T ]) that blows up at t = T . Observe that ρ̂
is determined by the Carleman weight esσ, that depends on Ω, O, Od, T and ‖a‖L∞(Q), but can be chosen
independently of Oi, αi and μi.

Using again the PDEs satisfied by the γi in (2.12), we readily see that

1
2
d

dt

∫
Ω

ρ̂−2|γi|2 dx+
∫

Ω

ρ̂−2|∇γi|2 dx = − 1
μi

∫
Oi

ρ̂−2ψγi dx−
∫

Ω

ρ̂−3ρ̂t|γi|2 dx−
∫

Ω

ρ̂−2a|γi|2dx

≤ 1
μ2

i

∫
Oi

ρ̂−2|ψ|2 dx+ (1 + ‖a‖L∞(Q))
∫

Ω

ρ̂−2|γi|2 dx.
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Thus, from Gronwall’s Lemma and the fact that γi(x, 0) ≡ 0, it follows that(∫
Ω

ρ̂−2|γi|2 dx
)

(τ) ≤ C

∫∫
Oi×(0,T )

ρ̂−2|ψ|2 dxdt, ∀τ ∈ [0, T ]. (2.26)

Since the right-hand side of (2.26) is bounded up to a multiplicative constant by Ī3(ψ), in view of (2.25)
and (2.26), we find that

‖ψ(·, 0)‖2 +
2∑

i=1

∫∫
Q

ρ̂−2|γi|2 dxdt ≤ C

∫∫
O×(0,T )

ξ4e−2sσ̄|ψ|2 dxdt, (2.27)

which implies (2.13). This ends the proof. �

Remark 2.4. If, instead of (1.10), we assume that the main hypothesis in [11], namely

Oi ⊂ O, i = 1, 2, (2.28)

is satisfied, the same result holds. Indeed, multiplying the second PDE in (2.12) by γi and integrating Ω× (0, t),
we get

‖γi(·, t)‖2 ≤ C

∫ t

0

‖γi(·, s)‖2 ds+
C

μ2
i

∫∫
Oi×(0,t)

|ψ(x, s)|2 dxds, ∀t ∈ [0, T ].

Consequently, by Gronwall’s Lemma and (2.28), it follows that

‖γi(·, t)‖2 ≤ C

∫∫
Oi×(0,t)

|ψ(x, s)|2 dxds ≤ C

∫∫
O×(0,t)

|ψ(x, s)|2 dxds, ∀t ∈ [0, T ].

By replacing this inequality in the first term on the right-hand side of (2.20) and arguing again as in ([6],
Lem. 1) we obtain

‖ψ(·, 0)‖2 + Ī3(ψ) ≤ C

∫∫
O×(0,T )

ξ4e−2sσ̄|ψ|2 dxdt.

This last inequality, together with (2.26), gives (2.27).

3. The semilinear case

In this section, we will analyze the controllability of a more general model, with a not necessarily vanishing
function F . Our goals are to prove Theorem 1.3 and Proposition 1.4.

3.1. Characterization of Nash quasi-equilibria

As already mentioned in Section 1, in the semilinear case, the convexity of the functionals Ji is not guaranteed.
Consequently, it is not clear whether the definition of Nash equilibria used in the linear case is the good one.
For this reason, we must re-define the concept of Nash optimality (recall Def. 1.2).

Notice that (1.5)–(1.6) is equivalent to⎧⎨
⎩
αi

∫∫
Od×(0,T )

(y − yi,d) pi dxdt+ μi

∫∫
Oi×(0,T )

viv̂idxdt = 0

∀v̂i ∈ Hi, vi ∈ Hi, i = 1, 2,
(3.1)

where we have denoted by pi the derivative of the state y with respect to vi in the direction v̂i. Obviously, one
has ⎧⎨

⎩
pi

t −Δpi + a(x, t)pi = F ′(y)pi + v̂i1Oi in Q,
pi = 0 on Σ,
pi(·, 0) = 0 in Ω.
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Let us introduce the adjoint systems⎧⎨
⎩

−φi
t −Δφi + a(x, t)φi = F ′(y)φi + αi(y − yi,d)1Od

in Q,
φi = 0 on Σ,
φi(·, T ) = 0 in Ω.

Then, a short computation shows that (3.1) can be written equivalently as follows:∫∫
Oi×(0,T )

(φi + μiv
i) v̂i dxdt = 0, ∀v̂i ∈ Hi, vi ∈ Hi, i = 1, 2.

As a consequence, we get the following characterization of any Nash quasi-equilibrium:

vi = − 1
μi

φi
∣∣
Oi×(0,T )

, i = 1, 2. (3.2)

In this way, we have the following optimality system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yt −Δy + a(x, t)y = F (y) + f1O − 1
μ1
φ11O1 −

1
μ2
φ21O2 in Q,

−φi
t −Δφi + a(x, t)φi = F ′(y)φi + αi(y − yi,d)1Oi,d

in Q,

y = 0, φi = 0 on Σ,
y(·, 0) = y0, φi(·, T ) = 0 in Ω.

(3.3)

3.2. Proof of Theorem 1.3

The Proof of Theorem 1.3 follows some arguments that are nowadays standard and rely on the ideas in-
troduced in [7, 23]. It is divided in three steps: first, we perform a change of variable that reduces the task to
solve a null controllability problem; then, this is rewritten as a fixed-point equation in L2(Q); in particular, we
use again Carleman inequalities and energy estimates to deduce an observability inequality for the adjoint of a
linearized system; finally, in a third step, we use some compactness properties of the system and we prove the
existence of a fixed-point.

Step 1. We must find a leader control f ∈ L2(O×(0, T )) such that the solution (y, φ1, φ2) to (3.3) satisfies (1.9).
In fact, by introducing the change of variable z = y − y, we can rewrite (3.3) in the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = G(x, t; z)z + f1O − 1
μ1
φ11O1 −

1
μ2
φ21O2 in Q,

−φi
t −Δφi + a(x, t)φi = F ′(z + ȳ)φi + αi(z − zi,d)1Od

in Q,

z = 0, φi = 0 on Σ,
z(·, 0) = z0, φi(·, T ) = 0 in Ω,

(3.4)

where zi,d := yi,d − ȳ, z0 = y0 − ȳ(·, 0) and

G(x, t; z) =
∫ 1

0

F ′(y(x, t) + σz) dσ.

In this way, obviously, what we have to prove is the null controllability for z in (3.4).

Step 2. For each z ∈ L2(Q) and each f ∈ L2(O × (0, T )), let us introduce the linear system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt −Δw + a(x, t)w = G(x, t; z)w + f1O − 1
μ1
φ11O1 −

1
μ2
φ21O2 in Q,

−φi
t −Δφi + a(x, t)φi = F ′(z + y)φi + αi(w − zi,d)1Od

in Q,

w = 0, φi = 0 on Σ,
w(·, 0) = z0, φi(·, T ) = 0. in Ω.

(3.5)
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By hypothesis, there exists K > 0 such that

|G(x, t; s)| + |F ′(s)| ≤ K, ∀(x, t, s) ∈ Q× R.

Note that, arguing as in Section 2.1, it can be proved that, if μ1 and μ2 are sufficiently large, (3.5) possesses
exactly one solution for each f ∈ L2(O × (0, T )). Furthermore, one has

‖w‖L2(0,T ;H1
0 (Ω)) + ‖wt‖L2(0,T ;H−1(Ω)) ≤ C

(
1 + ‖f‖L2(O×(0,T ))

)
, (3.6)

where C depends on Ω, O, T , Od, αi, μi, K, ‖a‖L∞(Q) and ‖z0‖.
Let us introduce the mapping Λ : L2(Q) → L2(Q), with Λ(z) = wz, for all z ∈ L2(Q), where wz is the state

associated to the minimal L2 norm null control fz for the linear system (3.5). In other words, wz is, together
with φ1

z, φ
2
z and fz, the unique solution to (3.5) and fz minimizes (1.3) subject to the constraint

w(·, T ) = 0 in Ω.

The goal is now to prove the null controllability of (3.5). To this purpose, we will make use again of a suitable
global Carleman inequality for the solutions to the adjoint system, that is,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ψz,t −Δψz + a(x, t)ψz = G(x, t; z)ψz + (α1γ
1
z + α2γ

2
z )1Od

in Q,

γi
z,t −Δγi

z = F ′(z + y)γi
z − 1

μi
ψz1Oi in Q,

ψz = 0, γi
z = 0 on Σ,

ψz(·, T ) = ψT , γi
z(·, 0) = 0 in Ω.

(3.7)

In the context of (3.7), we have the following:

Proposition 3.1. Assume that (1.10) holds, Od∩O �= ∅ and the μi are sufficiently large. There exist a constant
C > 0, only depending on Ω, O, T , Oi, Od, αi, μi, K and ‖a‖L∞(Q) and a weight function ρ̂ = ρ̂(x, t), only
depending on Ω, O, Od, T , K and ‖a‖L∞(Q) and blowing up at t = T , such that the following observability
inequality holds true for any ψT ∈ L2(Ω) and any z ∈ L2(Q):

∫
Ω

|ψz(x, 0)|2 dx+
2∑

i=1

∫∫
Q

ρ̂−2|γi
z |2 dxdt ≤ C

∫∫
O×(0,T )

|ψz|2 dxdt.

The proof is almost identical to the proof of Proposition 2.2 and, for brevity, is omitted.
This result leads, as in Section 2.2, to the existence of a minimal norm null control fz ∈ L2(O × (0, T ))

for (3.5). Furthermore it is clear that there exists a positive constant C, only depending on Ω, O, T , Oi, Od,
αi, μi, K, ‖a‖L∞(Q) and ‖z0‖, such that

‖fz‖2
L2(O×(0,T )) ≤ C, ∀z ∈ L2(Q). (3.8)

This argument proves that Λ is well defined.

Step 3. Taking into account (3.6) and (3.8), we see that wz is uniformly bounded in L2(0, T ;H1
0(Ω)) and wz,t is

uniformly bounded in L2(0, T,H−1(Ω)). In view of the classical Aubin-Lions’ Compactness Theorem, this means
that Λ maps the whole space L2(Q) into a compact set. On the other hand, the mapping z �→ Λ(z) is obviously
continuous. Therefore, we can use Schauder’s Fixed-Point Theorem to ensure the semilinear controllability
result. This ends the Proof of Theorem 1.3.
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3.3. Equilibria and quasi-equilibria

The aim of this subsection is to prove Proposition 1.4, that is, to investigate whether, in the semilinear case,
we may have a Nash equilibrium. Let us show that the answer is positive at least when F ∈ W 2,∞(R).

Let f ∈ L2(O× (0, T )) be given and let (v1, v2) be the associated Nash quasi-equilibrium. Note that, for any
s ∈ R and (w1, w2) ∈ H,

〈
D1J1(f ; v1 + sw1, v2), w2

〉− 〈D1J1(f ; v1, v2), w2
〉

= sμ1

∫∫
O1×(0,T )

w1w2 dxdt

+ α1

∫∫
Od×(0,T )

(ys − y1,d)ps dxdt− α1

∫∫
Od×(0,T )

(y − y1,d)p dxdt, (3.9)

where ⎧⎨
⎩
ys

t −Δys + a(x, t)ys = F (ys) + f1O + (v1 + sw1)1O1 + v21O2 in Q,
ys = 0 on Σ,
ys(x, 0) = y0 in Ω,

(3.10)

ps is the derivative of ys with respect to v1 in the direction w2, i.e. the solution to⎧⎨
⎩
ps

t −Δps + a(x, t)ps = F ′(ys)ps + w21O1 in Q,
ps = 0 on Σ,
ps(x, 0) = 0 in Ω

(3.11)

and we have used the notation y = ys|s = 0 and p = ps|s = 0.
Let us introduce the adjoint of (3.11)⎧⎨

⎩
−φs

t −Δφs + a(x, t)φs = F ′(ys)φs + α1(ys − y1,d)1Od
in Q,

φs = 0 on Σ,
φs(x, T ) = 0 in Ω

(3.12)

and let us also set φ = φs|s = 0.
Replacing (3.12) into (3.9) and using integration by parts, we obtain the following identity:

〈
D1J1(f ; v1 + sw1, v2), w2

〉− 〈D1J1(f ; v1, v2), w2
〉

= sμ1

∫∫
O1×(0,T )

w1w2 dxdt

+
∫∫

Od×(0,T )

(φs − φ)w2 dxdt.

Notice that
−(φs − φ)t −Δ(φs − φ) + a(x, t)(φs − φ)

= [F ′(ys) − F ′(y)]φs + F ′(y)(φs − φ) + α1(ys − y)1Od
.

Consequently, the limits

η = lim
s→0

1
s
(φs − φ) and h = lim

s→0

1
s
(ys − y)

exist and satisfy ⎧⎪⎨
⎪⎩

−ηt −Δη + a(x, t)η = F ′′(y)hφ+ F ′(y)η + α1h1Od
in Q,

ht −Δh+ a(x, t)h = F ′(y)h+ w11O1 in Q,
η = h = 0, on Σ,
η(·, T ) = h(·, 0) = 0 in Ω.

(3.13)

Thus, from (3.13), we deduce that

〈
D2

1J1(f ; v1, v2), (w1, w2)
〉

= μ1

∫∫
O1×(0,T )

w1w2 dxdt+
∫∫

O1×(0,T )

ηw2 dxdt.
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In particular, for all w1 ∈ L2(O1 × (0, T )), one has

〈
D2

1J1(f ; v1, v2), (w1, w1)
〉

= μ1

∫∫
O1×(0,T )

|w1|2 dxdt+
∫∫

O1×(0,T )

ηw1 dxdt. (3.14)

Let M > 0 be such that |F ′′(s)| ≤ M a.e. in R. Let us show that, for some C only depending on Ω, O, T ,
Oi, Od, αi, M , K, ‖a‖L∞(Ω) and ‖y0‖, we have∣∣∣∣∣

∫∫
O1×(0,T )

ηw1 dxdt

∣∣∣∣∣ ≤ C(1 + ‖f‖L2(O×(0,T )))‖w1‖H1 , ∀w1 ∈ L2(O1 × (0, T )). (3.15)

In fact, from standard energy estimates, since F ′ ∈ L∞(Q), we have∫
Ω

|h(x, t)|2 dx+
∫∫

Q

|∇h|2 dx ≤ C

∫∫
O1×(0,T )

|w1|2 dxdt.

Using the PDEs in (3.13), we also get the following:∫∫
O1×(0,T )

ηw1 dxdt =
∫∫

Q

(ht −Δh+ a(x, t)h− F ′(y)h)η dxdt

=
∫∫

Q

h(−ηt −Δη + a(x, t)η − F ′(y)η) dxdt

=
∫∫

Q

(F ′′(y)hφ+ α1h1Od
)h dxdt

=
∫∫

Q

(F ′′(y)|h|2φ+ α1|h|21Od
) dxdt.

(3.16)

Let us first assume that y0 ∈ H1
0 (Ω). The idea is to find r and s such that

φ ∈ Lr(0, T ;Ls(Ω)) and h ∈ L2r′
(0, T ;L2s′

(Ω)), (3.17)

where r′ and s′ are the conjugate of r and s, respectively. This will make possible to bound from above the last
integral in (3.16).

It is clear that h ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)). For this reason, it is natural to ask for which values

of α and β the following embedding holds:

L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)) ↪→ Lα(0, T ;Lβ(Ω)). (3.18)

By interpolation, we have that, for each 0 < θ < 1, (3.18) holds when

1
α

=
θ

2
and

1
β

=
(N − 4)θ

2N
+

(N − 2)(1 − θ)
2N

=
α(N − 2) − 4

2αN
·

Taking α = 2r′ and β = 2s′, we conclude that r = α/(α− 2) and s = αN/2(α+ 2).
Analogously, we have that y ∈ L2(0, T ;H2(Ω))∩L∞(0, T ;H1

0 (Ω)) ↪→ La(0, T ;Lb(Ω)), with b = 2aN/(a(N −
2) − 4). Using the regularity results of the heat equation and the fact that yi,d ∈ L∞(Oi,d × (0, T )), it follows
that

φ ∈ La(0, T ;W 2,b(Ω)) ↪→ La(0, T ;L
Nb

N−2b (Ω)) = La(0, T ;L
2aN

aN−6a−4 (Ω)).

If a = r = α/(α − 2), we get φ ∈ Lr(0, T ;L
2αN

αN−10α+8 (Ω)). To finish, we must have L
2αN

αN−10α+8 (Ω) ↪→ Ls(Ω),
which is equivalent to

αN

2(α+ 2)
≤ 2αN
α(N − 10) + 8

·

Thus, we see that this inequality holds true if and only if N ≤ 14.
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From (3.2), (3.3), (3.10) for s = 0, (3.12) for s = 0, (3.16) and the estimates at Section 3.2, we see that,
if y0 ∈ H1

0 (Ω) and N ≤ 14,∣∣∣∣∣
∫∫

O1×(0,T )

ηw1 dxdt

∣∣∣∣∣ ≤ M‖h‖2
L2r′(0,T ;L2s′(Ω))

‖φ‖Lr(0,T ;Ls(Ω))

+α1‖h‖2
L2(Od×(0,T ))

≤ C(‖φ‖Lr(0,T ;Ls(Ω)) + 1)‖w1‖2
H1≤ C(‖y‖L2(Q) + 1)‖w1‖2

H1

≤ C

(
2∑

i=1

1
μi

‖φi‖Hi + ‖f‖ + ‖y0‖ + 1

)
‖w1‖2

H1

≤ C(1 + ‖f‖)‖w1‖2
H1
.

This proves (3.15) in this case.
Now, let us assume that we only have y0 ∈ L2(Ω). As in the first situation, the idea is to find r and s such

that (3.17) holds. Since the regularity of η does not depend on the data y0, we still have η ∈ L2(0, T ;H2(Ω)) ∩
L∞(0, T ;H1

0 (Ω)) and, therefore, η ∈ Lα(0, T ;Lβ(Ω)), where α and β are as above. In this case, we have by
a interpolation argument that y ∈ L2(0, T ;H1

0(Ω)) ∩ L∞(0, T ;L2(Ω)) ↪→ Lā(0, T ;Lb̄(Ω)), where ā ≥ 2 and
b̄ = 2Nā/(āN − 4). Using again parabolic regularity, we get

φ ∈ Lā(0, T ;W 2,b̄(Ω)) ↪→ Lā(0, T ;L
Nb̄

N−2b̄ (Ω)) = Lā(L
2āN

ā(N−4)−4 (Ω)).

If ā = r = α/(α − 2), we have φ ∈ Lr(L
2αN

α(N−8)+8 (Ω)). Now, to finish the proof, we must have L
2αN

α(N−8)+8 (Ω) ↪→
Ls(Ω), which is equivalent to

αN

2(α+ 2)
≤ 2αN
α(N − 8) + 8

·

Since this holds if and only if N ≤ 12, the estimate (3.15) is also proved in this case.
Taking into account (3.14) and (3.15), we see that〈

D2
1J1(f ; v1, v2), (w1, w1)

〉 ≥ (μ1 − C(1 + ‖f‖L2(O×(0,T )))
) ‖w1‖2

H1
dxdt.

Note that the previous constant C can be chosen independent of μ1 and μ2.
In a similar way, it can be shown that, under the previous assumptions on y0 and N ,〈

D2
2J2(f ; v1, v2), (w2, w2)

〉 ≥ (μ2 − C(1 + ‖f‖L2(O×(0,T )))
) ‖w2‖2

H2
dxdt.

for another constant C independent of μ1 and μ2.
It is now clear that, for sufficiently large μ1 and μ2, the couple (v1, v2) is a Nash equilibrium in the sense

of (1.4).

4. The case with restrictions

In this section, we will prove Theorem 1.5.
We return to the Stackelberg–Nash null controllability problem for a linear parabolic PDE, but we impose

some restrictions: the followers (v1, v2) are supposed to minimize the functionals (1.2) subject to the convex
constraints vi ∈ Ui (i = 1, 2), where the Ui are given by (1.12). This is a more difficult problem. The search
of a pair (v1, v2) satisfying (1.4), where the minimizations are performed in U1,d and U2,d, is equivalent to the
following:

D1J1(f ; v1, v2)(v̂1 − v1, 0) ≥ 0, ∀v̂1 ∈ U1,d, v1 ∈ U1,d (4.1)
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and
D2J2(f ; v1, v2)(0, v̂2 − v2) ≥ 0, ∀v̂2 ∈ U2,d, v2 ∈ U2,d. (4.2)

As in Section 2, with the change of variable z = y− ȳ, we are led to a null controllability problem. Then, we
see that (4.1)–(4.2) is equivalent to⎧⎨

⎩αi

∫∫
Oi,d×(0,T )

(z − zi,d)wi dxdt+ μi

∫∫
Oi×(0,T )

vi(v̂i − vi) dxdt ≥ 0,

∀v̂i ∈ Ui,d, vi ∈ Ui,d,
(4.3)

where wi is the derivative of z with respect to v̂i in the direction vi, that is to say, the solution to⎧⎨
⎩
wi

t −Δwi + a(x, t)wi = vi1Oi in Q,
wi = 0 on Σ,
wi(·, 0) = 0 in Ω.

(4.4)

The adjoint system associated to (4.4) is given by⎧⎨
⎩

−φi
t −Δφi + a(x, t)φi = αi(z − zi,d)1Oi,d

in Q,
φ = 0 on Σ,
φ(·, T ) = 0 in Ω.

Replacing the equation satisfied by φi in (4.3), we obtain∫∫
Oi×(0,T )

(
φi + μiv

i
)
(v̂i − vi) dxdt ≥ 0, ∀v̂i ∈ Ui,d, vi ∈ Ui,d, i = 1, 2. (4.5)

Now, by introducing the projectors PUi,d
: L2(Oi × (0, T )) → Ui,d, we see that (4.5) can be rewritten

equivalently in the form

vi = PUi,d

(
− 1
μi

φi
∣∣
Oi×(0,T )

)
, i = 1, 2.

We may group all this information to get the following system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = f1O +
2∑

i=1

PUi,d

(
− 1
μi

φi
∣∣
Oi×(0,T )

)
in Q,

−φi
t −Δφi + a(x, t)φi = αi(z − zi,d)1Oi,d

in Q,
z = 0, φi = 0 on Σ,
z(·, 0) = z0, φi(·, T ) = 0 in Ω.

(4.6)

Let us prove that, under the assumptions (2.7), for each f ∈ L2(O× (0, T )) there exists exactly one solution
to (4.6), i.e. there exists a unique Nash equilibrium (v1, v2) in U1,d ×U2,d. Indeed, notice that (4.5) can also be
rewritten in the form {(

L
(
v1, v2

)
, (v̂1, v̂2) − (v1, v2

)) ≥ (Ψ, (v̂1, v̂2) − (v1, v2
))

H∀ (v1, v2
) ∈ U1,d × U2,d, (v̂1, v̂2) ∈ U1,d × U2,d,

(4.7)

where L and Ψ are respectively given by (2.4) and (2.6). If μ1 and μ2 satisfy (2.7), L is a coercive continuous
bilinear form on H, whence (4.7) is uniquely solvable. Furthermore, it is clear that the couple (v1, v2) and the
associated state z satisfy (again) the estimates (2.9) and (2.10). As in the semilinear case, we will analyze and
solve the null controllability problem for (4.6) by a fixed-point method. To this end, note that the projectors PUi,d

are given as follows:

PUi,d
(k)(x, t) =

{
k(x, t) if k(x, t) ∈ Ii,
Pi(k(x, t)) otherwise,
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for (x, t) a.e. in Oi × (0, T ), where Pi : R → Ii is the usual projector on the interval Ii. Also, note that, for
every k ∈ Hi, PUi,d

can be written in the form PUi,d
(k) = qi(k)k, where the function k �→ qi(k) is continuous

on Hi and
‖qi(k)‖∞ ≤ C, ∀k ∈ Hi.

Therefore, the controllability problem is reduced to find f ∈ L2(O × (0, T )) such that the solution to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = f1O −
2∑

i=1

q̃i(φi)φi1Oi in Q,

−φi
t −Δφi + a(x, t)ψ = αi(z − zi,d)1Oi,d

in Q,
z = 0, φi = 0 on Σ,
z(·, 0) = z0, φi(·, T ) = 0 in Ω,

(4.8)

where q̃i(φi) stands for the function q̃i(φi) = qi(− 1
μi
φi
∣∣
Oi×(0,T )

), satisfies (2.2). But this can be done easily.

Indeed, for each couple (φ̃1, φ̃2) ∈ [L2(Q)]2 we can consider the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = f1O −
2∑

i=1

q̃i(φ̃i)φi1Oi in Q,

−φi
t −Δφi + a(x, t)ψ = αi(z − zi,d)1Oi,d

in Q,
z = 0 φi = 0 on Σ,
z(·, 0) = z0, φi(·, T ) = 0 in Ω.

(4.9)

The arguments in Sections 2.2 and 3.2 can be applied again to (4.9). The main consequence is that there
exists exactly one minimal L2 norm null control f for this system with

‖f‖L2(O×(0,T )) ≤ C (4.10)

and, also, z, φ1 and φ2 uniformly bounded in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and zt, φ1

t and φ2
t uniformly

bounded (at least) in L2(0, T ;H−1(Ω)). Hence, it is not difficult to deduce that the mapping (φ̃1, φ̃2) �→ (φ1, φ2)
possesses at least one fixed-point. Such a fixed-point satisfies, together with some f and some z, (4.8) and (2.2).
This concludes the proof of Theorem 1.5.

5. Some additional comments and questions

5.1. On the assumption O1,d = O2,d

The assumption (1.10) is used in (2.20) and only there. Indeed, in combination with (2.21) and (2.22), (2.20)
yields (2.23). At present, we do not know whether an estimate like (2.13) remains true for O1,d �= O2,d. However,
this is the case if we modify appropriately the secondary functionals Ji. In fact, let ρ∗ = ρ∗(x, t) be a weight (a
positive continuous function on Ω × (0, T )) such that ρ∗ ≥ esσ/2, see (2.18). We assume now that the followers
produce a Nash equilibrium with respect to the functionals

J̃i(f ; v1, v2) :=
αi

2

∫∫
Oi,d×(0,T )

|y − yi,d|2 dxdt+
μi

2

∫∫
Oi×(0,T )

ρ2
∗|vi|2 dxdt, i = 1, 2.

With computations similar to those in Section 2.1, we obtain the following optimality system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = f1O −
2∑

i=1

1
μi
ρ−2
∗ φi1Oi in Q,

−φi
t −Δφi + a(x, t)φi = αi(z − zi,d)1Oi,d

in Q,
y = 0, φi = 0 on Σ,
y(·, 0) = y0, φi(·, T ) = 0 in Ω.
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The associated adjoint system is given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ψt −Δψ + a(x, t)ψ =
2∑

i=1

αiγ
i1Oi,d

in Q,

γi
t −Δγi + a(x, t)γi = − 1

μi
ρ−2
∗ ψ1Oi in Q,

ψ = 0, γi = 0 on Σ,
ψ(·, T ) = ψT , γi(·, 0) = 0 in Ω

and the main task is to prove an estimate like (2.13) for the solutions (ψ, γ1, γ2). In this situation, we have an
useful energy inequality for the γi:

‖γi(·, τ)‖2 +
∫ τ

0

‖∇γi(·, t)‖2 dt ≤ C

μ2
i

∫∫
Q

ρ−4
∗ |ψ|2 dxdt. (5.1)

Using (5.1) in the right-hand side of (2.20), since the μi are sufficiently large, we get

I3(ψ) ≤ Cs3λ4

∫∫
ω×(0,T )

e−2sαξ3|ψ|2dxdt. (5.2)

Combining (5.2) and (2.26), we arrive at (2.13). This shows that if we replace Ji by J̃i (i = 1, 2), the claims
in Theorem 1.1 to 1.5 remain true. In fact, this is not surprising: if we impose J̃i < +∞, then we force the
controls vi to vanish exponentially as t→ T− and the leader f finds no obstruction to control the system.

As mentioned above, it is unknown whether (2.13) continues to be true in the original framework (1.2) when
O1,d �= O2,d.

5.2. Stackelberg–Nash controllability and Stokes and Navier–Stokes systems

It makes complete sense to consider the Stokes-like system⎧⎪⎨
⎪⎩
yt −Δy + (w · ∇)y + ∇p = f1O + v11O1 + v21O2 in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0 in Ω,

(5.3)

where Ω, T , O and the Oi are as above, y0 belongs to the Hilbert space

H := { z ∈ L2(Ω)N : ∇ · z = 0 in Ω, z · n = 0 on Γ },
the field w belongs to L∞(0, T ;H) and the controls f and vi satisfy

f ∈ L2(O × (0, T ))N , vi ∈ L2(Oi × (0, T ))N .

With functionals J and Ji similar to those in the previous sections, we can formulate again the Stackelberg–
Nash null controllability problem for (5.3). Results of the same kind can be obtained easily by adapting the
arguments in Sections 2 to 4.

The situation is obviously more difficult to analyze when we consider the Navier–Stokes system⎧⎪⎨
⎪⎩
yt −Δy + (y · ∇)y + ∇p = f1O + v11O1 + v21O2 in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0 in Ω.

Now, the existence of Nash equilibria or quasi-equilibria for each f and, of course, whether or not there exist
null controls and associated Nash equilibrium pairs are open problems.

For other controllability results for Stokes and Navier–Stokes systems, see [6, 8–10,12].
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5.3. Other Stackelberg strategies

It is possible to introduce other strategies to control systems of the kind (1.1). One of them is the so called
Stackelberg–Pareto method.

For each f ∈ L2(O× (0, T )), we can associate one or several Pareto equilibrium pairs (u1(f), u2(f)) ∈ H. By
definition, this means that there is no (û1, û2) ∈ H satisfying

Ji(û1, û2) ≤ Ji(u1(f), u2(f)), i = 1, 2,

one of these inequalities at least being strict. Then, we search for f such that the states y associated to f and
the (u1(f), u2(f)) satisfy (1.9), where y = y(x, t) is a prescribed uncontrolled solution to (1.1).

The analysis of Stackelberg–Pareto controllability will be the goal of a forthcoming paper.

5.4. The boundary case

It is natural to try to prove results similar to Theorems 1.1, 1.3 and 1.5 with boundary controls. For instance,
let us consider the system ⎧⎪⎨

⎪⎩
zt −Δz + a(x, t)z = 0 in Q,

z = f1S + v11S1 + v21S2 on Σ,
z(·, 0) = z0 in Ω,

where S,S1,S2 ⊂ Γ are non-empty closed sets and let us introduce the functionals

Li(f ; v1, v2) :=
αi

2

∫∫
Oi,d×(0,T )

|z − zi,d|2 dxdt+
μi

2

∫∫
Si×(0,T )

|vi|2 dΓ dt, i = 1, 2. (5.4)

Now, the problem is to find for each f a Nash equilibrium (v1(f), v2(f)) associated to the functionals Li and,
then, choose f in a appropriate way such that z(x, T ) ≡ 0.

We can try to solve this problem as before. However, we find some technical difficulties, as shown below.
Arguing as in Section 2, we see that the optimality system for (v1(f), v2(f)) is the following:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zt −Δz + a(x, t)z = 0 Q,

−φi
t −Δφi + a(x, t)φi = αi(z − zi,d)1Oi,d

in Q,

z = f1S +
1
μ1

∂φ1

∂n
1S1 +

1
μ2

∂φ2

∂n
1S2 , φi = 0 on Σ,

z(·, 0) = z0, φi(·, T ) = 0 in Ω,

(5.5)

where n = n(x) is the outward unit normal to Ω at the point x ∈ Γ . The corresponding adjoint is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ψt −Δψ + a(x, t)ψ =
2∑

i=1

αiγ
i1Oi,d

in Q,

γi
t −Δγi + a(x, t)γi = 0 in Q,

ψ = 0, γi =
1
μi
ψ1Si on Σ,

ψ(·, T ) = ψT , γi(·, 0) = 0 in Ω.

(5.6)

Thus, if we try to adapt the proof of Proposition 2.2, we see at once that the following conditions are required:

O1,d = O2,d = Od and Od ∩ S �= ∅. (5.7)

The main difficulty in this case is that we have to combine a boundary Carleman inequality for ψ and a
distributed Carleman inequality for h = α1γ

1+α2γ
2 for functions satisfying nonhomogeneous Dirichlet boundary

conditions on Σ. This interesting situation will be also analyzed in a forthcoming paper.
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[1] H. Brézis, Analyse Fonctionnelle, Théorie et Applications. Dunod, Paris (1999).

[2] J.C. Cox and M. Rubinstein, Options Markets. Prentice-Hall. Englewood Cliffs, NJ (1985).

[3] J.I. Dı́az, On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environ-
mental problems. Rev. R. Acad. Cien., Ser. A. Math. 96 (2002) 343–356.

[4] J.I. Dı́az and J.-L. Lions, On the approximate controllability of Stackelberg–Nash strategies. Ocean circulation and pollution
control: a mathematical and numerical investigation, Madrid, 1997. Springer, Berlin (2004) 17–27.

[5] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability.
SIAM J. Control Optim. 45 (2006) 1395–1446.

[6] E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier–Stokes system. J.
Math. Pures Appl. 83 (2004) 1501–1542.

[7] A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Note Series. Research Institute
of Mathematics, Seoul National University, Seoul (1996).

[8] A.V. Fursikov and O.Y. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations. Russian Math.
Surveys 54 (1999) 565–618.
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