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Abstract
In this paper we deal with stationary points (also known as endpoints) of
nonexpansive set-valued mappings and show that the existence of such points under
certain conditions follows as a consequence of the existence of approximate
stationary sequences. In particular we provide abstract extensions of well-known
fixed point theorems.
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1 Introduction and preliminaries
Let X be a Banach space and C be a nonempty subset of X. A set-valued mapping T : C →
X \ {∅} is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x – y‖ (x, y ∈ C),

where H(·, ·) stands for the Hausdorff metric defined as

H(A, B) := max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

and d(a, B) := infx∈B d(a, x). An element x ∈ C is said to be a fixed point of T if x ∈ Tx and
a stationary point if Tx = {x}.

The first relevant work for existence of fixed points for nonexpansive set-valued map-
pings was provided by Markin [] in . Then a large and deep theory was developed by
several authors (see, for instance, [–] or [], Chapter , and references therein). This
theory, however, is very far from as much advanced a theory as the corresponding one for
single-valued nonexpansive mappings. The problem of the existence of stationary points
has remained almost unexplored for nonexpansive mappings, it being the case that most
results about them require contractive like conditions on the mapping as is the case in [–
]. There has recently been some activity in this direction though. Several authors have
begun the study of generalized set-valued nonexpansive mappings through an approach
given by the properties of approximate sequences of fixed points where stationary points
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have appeared in a natural way. See, for instance, [, ] and the notion of a strong ap-
proximate fixed point sequence (which we call an approximate stationary point sequence
here) in []. In the present work we show that some of the very well-known properties
implying the existence of fixed points for nonexpansive single-valued mappings also imply
the existence of stationary points in the set-valued case provided approximate stationary
point sequences exist.

We will consider X as a Banach space and C a bounded, nonempty, closed, and convex
subset of X. A closed ball of center x and radius r will be denoted Br[x]. We denote by F(X)
the family of all nonempty closed subsets of X and by K(X) the family of all nonempty
compact subsets of X. For x ∈ X, the distance from x to C is given by

d(x, C) := inf
a∈C

d(x, a),

while the Chebyshev radius of C with respect to x is given by

rx(C) := sup
z∈C

‖x – z‖.

The Chebyshev radius of C with respect to a set A will be given by

rA(F) = inf
a∈A

ra(C)

and denoted simply as r(C) if A = C. The Chebyshev center of C, which may be empty, is
then defined as

Z(C) :=
{

x ∈ C : rx(C) = inf
z∈C

rz(C)
}

.

Consider T : C → X \ {∅} to be a nonexpansive set-valued mapping. We say that a se-
quence (xn) in C is an approximate stationary point sequence (a.s.p. sequence) of T if

lim
n→∞ rxn (Txn) = ,

while (xn) is an approximate fixed point sequence (a.f.p. sequence) if

lim
n→∞ d(xn, Txn) = .

Approximate fixed point sequences play a major role in metric fixed point theory for
both single- and set-valued nonexpansive mappings. It is a very well-known fact, after
Nadler’s principle for set-valued contractions, that such sequences always exist provided
T : C → F(C) is nonexpansive (see, for instance, [], Chapter , [], Theorem ., or
[]). On the contrary, we see that approximate stationary point sequences do not need
exist even if the mapping has a fixed point, its values are compact and X is a Hilbert space.

Example  Let B be the closed unit ball of �. Define the nonexpansive set-valued map-
ping T : B → K(B) by

T(x, x, . . .) =
{

(, , , . . .), (, x, x, . . .)
}

.
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Trivially, the origin is a fixed point for T . Now, if (xn) is a.s.p. sequence then it must
be the case that diam(T(xn)) tends to  as n goes to ∞; however, it is immediate that
diam(T(x)) ≥  for any x in B.

Remark After the referee comments, the authors have learnt about references [, ]
which deal with close problems to ours. That is, in these works the authors study ques-
tions related to stationary points of nonexpansive multivalued mappings provided the ex-
istence of approximate stationary point sequences is guaranteed. Although there is some
overlapping among [, ] and the present work, their goals and ours are different. In []
the author mainly focuses on conditions involving uniform convexity and wonders about
the structure of the set of stationary points while [] focuses on taking up some of the
questions raised in []. In the present work, however, we deal with existence of station-
ary points on more general conditions than those studied in [, ] which, in particular,
lead to more general versions of some results provided by these references (compare The-
orems . and . in [] to, respectively, Theorems  and  below). Notice also that The-
orem  below gives an answer to Question ., which remains out of scope of [], raised
in [].

2 Main results
For our first result we will deal with two different notions of T-invariant sets.

Definition  Let T : C → C \ {∅}, then:
• A subset D of C is said to be T-invariant if Tx ⊆ D for all x ∈ D.
• A subset D of C is said to be weakly T-invariant if Tx ∩ D �= ∅ for all x ∈ D.

Remark  Notice that the two notions coincide for single-valued mappings.

A nonempty, closed, and convex subset D of C will be said to be a minimal T-invariant
set (minimal weakly T-invariant set) if it does not contain any proper closed and convex
subset which is T-invariant (weakly T-invariant).

Our first goal is to study the existence of stationary points for nonexpansive set-valued
mappings under the conditions of a normal structure (see [], Chapter ).

Definition  A Banach space X is said to have a normal structure (resp., weak normal
structure) if for every nonempty, bounded, closed (resp., weakly compact), and convex
subset C of X with diam(C) >  there exists x ∈ C such that

rx(C) < diam(C).

Also, a nonempty convex subset C of a Banach space X is said to have a normal struc-
ture if the same happens for each nonempty, convex, and bounded subset D of C with
diam(D) > .

We will use the next two propositions.

Proposition  ([], p. ) For every weakly compact convex subset C of a Banach space
X, Z(C) is a nonempty, closed, and convex subset of C.
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Proposition  ([], p. ) Let X be a Banach space and C be a weakly compact convex
subset of X with diam(C) >  and the normal structure. Then

diam
(
Z(C)

)
< diam(C).

The next result can be seen as an abstract extension of Kirk’s fixed point theorem.

Theorem  Let X be a Banach space and C a nonempty, weakly compact, and convex
subset of X with normal structure. Then a nonexpansive mapping T : C → K(C) has a
stationary point if and only if there is a nonempty, closed, and convex subset F of C which
is minimal weakly T-invariant and minimal T-invariant.

Proof It is obvious that if T has a stationary point x then F = {x} fulfills all the require-
ments. Conversely, let F be the minimal set given by the statement. If diam(F) =  then
its element is a stationary point. Therefore we can assume that diam(F) > . We will show
that the set Z(F) contradicts the minimality of F .

By Proposition , Z(F) is a nonempty, weakly compact, and convex set. Let x ∈ Z(F) and
y ∈ F be arbitrary. Fix z ∈ Tx and let w ∈ Ty be such that

‖z – w‖ ≤ H(Tx, Ty) ≤ ‖x – y‖ ≤ rx(F) = r(F).

Since F is T-invariant we have w ∈ F and so it is also in Br(F)[z] ∩ F ∩ Ty, which is a
nonempty set. Therefore, since y ∈ F is arbitrary, Br(F)[z]∩F is weakly T-invariant. On the
other hand, F is minimal weakly T-invariant and Br(F)[z]∩F is nonempty, weakly compact,
and weakly T-invariant, so Br(F)[z] ∩ F = F . Therefore F ⊆ Br(F)[z] and so for each x ∈ F ,
‖x–z‖ ≤ r(F). This implies that rz(F) ≤ r(F) and hence z ∈ Z(F). Since z ∈ Tx was arbitrary,
Tx ⊂ Z(F), that is, Z(F) is T-invariant. By Proposition  we have diam(Z(F)) < diam(F),
which leads to a contradiction with the minimality of F . �

Our next result, inspired by [], Lemma , is a technical one which explores the prop-
erties of minimal sets of stationary point free mappings.

Theorem  Let C be a nonempty, weakly compact, and convex subset of Banach space X
and T : C → C \ {∅} be a stationary point free nonexpansive set-valued mapping. There
exist α >  and a minimal nonempty, weakly compact, and convex T-invariant subset E of
C such that for every z ∈ E and any a.s.p. sequence (xn)∞n= in E we have

lim sup
n→∞

‖xn – z‖ ≥ α.

Proof Suppose that � is the set of all nonempty, weakly compact, and convex T-invariant
subsets D of C. The family � �= ∅, because C ∈ � and it can be partially ordered by set
inclusion. An easy application of Zorn’s lemma shows that the family � possesses a mini-
mal element E. The diameter of E must be positive since otherwise the T invariancy of E
would imply that T has a stationary point which is a contradiction.

We show by contradiction that there exists α >  such that

lim sup
n→∞

‖xn – z‖ ≥ α,



Espínola et al. Fixed Point Theory and Applications  (2015) 2015:236 Page 5 of 13

for each a.s.p. sequence (xn) in E and each z ∈ E. Choose γ >  such that γ < diam(E).
There exists an a.s.p. sequence (xn) in E such that

lim sup
n→∞

‖xn – z‖ < γ ,

for some point z ∈ E. Put

D =
{

z ∈ E : lim sup
n→∞

‖xn – z‖ ≤ γ
}

.

D is nonempty, closed, and convex (therefore weakly compact) subset of E. We show D is
T-invariant. Let x ∈ D and z ∈ Tx be arbitrary. For each y ∈ Txn, we have

‖xn – z‖ ≤ ‖xn – y‖ + ‖y – z‖
≤ rxn (Txn) + ‖y – z‖.

Since y ∈ Txn is arbitrary, we get

‖xn – z‖ ≤ rxn (Txn) + d(z, Txn)

≤ rxn (Txn) + H(Tx, Txn)

≤ rxn (Txn) + ‖xn – x‖.

Therefore,

lim sup
n→∞

‖xn – z‖ ≤ γ .

Hence z ∈ D. This implies that Tx ⊆ D and since x ∈ D was arbitrary, D is T-invariant.
Hence D � E is nonempty, weakly compact, and convex and T-invariant, i.e., D ∈ � and

diam(D) < diam(E), which is a contradiction because E is a minimal member of �. �

We have the following immediate corollaries.

Corollary  If the Banach space X is reflexive, then the same holds true for any nonempty,
closed, convex, and bounded subset C of X.

Corollary  Let C be a nonempty, weakly compact, and convex subset of Banach space X
and T : C → C \ {∅} be a stationary point free nonexpansive set-valued mapping. There
exist α >  and a nonempty, convex, weakly compact, and T-invariant subset D of C such
that for every compact subset A of D and any a.s.p. sequence (xn)∞n= in D we have

lim sup
n→∞

rxn (A) ≥ α.

Proof By Theorem  there exist α >  and a nonempty, weakly compact, and convex T-
invariant subset D of C such that for each a.s.p. sequence (xn) ⊆ D and for each z ∈ D

lim sup
n→∞

‖xn – z‖ ≥ α.
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We claim that for each (xn) in D and each compact subset A of D we have

lim sup
n→∞

rxn (A) ≥ α.

Suppose for contradiction that there exist a compact subset A of D and an a.s.p. sequence
(xn) ⊆ D such that

lim sup
n→∞

rxn (A) < α.

Since A is compact, so for each n ∈ N there exists yn ∈ A such that rxn (A) = ‖xn – yn‖.
Again by compactness of A we can find a subsequence (ynk ) of (yn) convergent to some
z ∈ A. Hence

lim sup
k→∞

‖xnk – z‖ = lim sup
n→∞

rxn (A) < α,

which is a contradiction, since any subsequence of an a.s.p. sequence is an a.s.p. se-
quence. �

We introduce next some elements that will be needed. Given a nonempty subset C of a
Banach space X and a bounded sequence (xn) in X, ra(C, {xn}) stands for the asymptotic
radius of (xn) with respect to C, Za(C, {xn}) for the asymptotic center of (xn) with respect
to C and ε(X) is the characteristic of the convexity of the Banach space X, and they are
defined as follows:

ra
(
C, {xn}

)
= inf

x∈C
lim sup

n→∞
‖xn – x‖,

Za
(
C, {xn}

)
=

{
z ∈ C : lim sup

n→∞
‖xn – z‖ = ra

(
C, {xn}

)}
,

and

ε(X) = sup
{
ε >  : δX(ε) = 

}
,

where δX : [, ] → [, ] is the modulus of convexity of the Banach space X and it is defined
by

δX(ε) = inf

{
 –

∥∥∥∥
x + y



∥∥∥∥ : ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}
.

The next technical well-known results will be needed.

Theorem  ([], p. ) Let (xn) be a bounded sequence in a Banach space X and C a
nonempty, weakly compact, and convex subset of X. Then Za(C, {xn}) is nonempty and con-
vex.

Theorem  ([], p. ) Let C be a nonempty, closed, and convex subset of the Banach
space X and (xn) a bounded sequence in X. Then

diam
(
Za

(
C, {xn}

)) ≤ ε(X)ra
(
C, {xn}

)
.
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Theorem  ([], p. ) If ε(X) ≤ , then X has normal structure.

Definition  Given T : C → C \ {∅}, with C a nonempty, closed, and convex subset of
Banach space X, we will say that T has the approximate stationary point sequence property
in C if T has an approximate stationary point sequence in any T-invariant, nonempty,
closed, and convex subset of C.

Remember that, as Example  exhibits, the existence of such sequences is not guaranteed
in general.

Theorem  Let X be a Banach space with characteristic of convexity ε(X) ≤ . Let C be a
nonempty, weakly compact, and convex subset of X and T : C → C \ {∅} a nonexpansive
mapping. Then T has a stationary point if and only if T has the approximate stationary
point sequence property.

Proof We only need to prove that T has a stationary point provided it has the approxi-
mate stationary point sequence property. Suppose for contradiction that T is stationary
point free. By Theorem , C contains a nonempty, weakly compact, and convex minimal
T-invariant subset E. From the hypothesis there is (xn) an a.s.p. sequence in E. From The-
orem , X has normal structure and so we can fix x ∈ E such that rx (E) < diam(E). By
Theorem , Za(E, {xn}) is nonempty. Then

ra
(
E, {xn}

) ≤ lim sup
n→∞

‖xn – x‖ < diam(E).

By Theorem  and the fact that ε(X) ≤ ,

diam
(
Za

(
E, {xn}

)) ≤ ra
(
E, {xn}

)
,

and, since ra(E, {xn}) < diam(E), we obtain

diam
(
Za

(
E, {xn}

))
< diam(E).

Now, the fact that Za(E, {xn}) is T-invariant follows in a similar way as was shown for
set D in the proof of Theorem . Therefore, since it is weakly compact and convex too, we
meet a contradiction with the minimality of E. �

A Banach space X is said to satisfy the Opial property if for every weakly null sequence
{xn} and every nonzero vector x in X, we have

lim sup
n→∞

‖xn‖ < lim sup
n→∞

‖xn – x‖.

It is well known that if X is a Banach space which satisfies the Opial property, then X has
the weak normal structure (see e.g. []).

Theorem  Let X be a Banach space which satisfies the Opial property. Let C be a
nonempty, weakly compact, and convex subset of X and T : C → C \ {∅} a nonexpansive
mapping. Then T has a stationary point if and only if T has the approximate stationary
point sequence property.
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Proof We only need to prove that T has a stationary point provided it has the approximate
stationary point sequence property. Suppose for contradiction that T is stationary point
free. Let E be the minimal subset of C as obtained in the proof of Theorem  which is
nonempty, weakly compact, and convex, T-invariant. From the hypothesis there is (xn) an
a.s.p. sequence in E, we can assume this sequence is weakly convergent to x. Since

Za
({xn}, E

)
=

{
z ∈ E : lim sup

n→∞
‖xn – z‖ ≤ ra

(
E, {xn}

)}
,

is a nonempty, weakly compact, convex, and T-invariant subset of E, then it must be the
case that

E = Za
({xn}, E

)
.

Therefore, for each z ∈ E, we have

lim sup
n→∞

‖xn – z‖ = ra
(
E, {xn}

)
.

Since X has the Opial property, and xn ⇀ x, for each z ∈ E where z �= x, we have

ra
(
E, {xn}

)
= lim sup

n→∞
‖xn – x‖ < lim sup

n→∞
‖xn – z‖ = ra

(
E, {xn}

)
,

which is a contradiction. �

In  Lim [] gave the following extension of the Markin fixed point theorem for uni-
formly convex spaces.

Theorem  Let X be a uniformly convex Banach space, let C be a closed, bounded, and
convex subset of X and T : C → K(C) be a nonexpansive mapping. Then T has a fixed
point.

In  Kirk and Massa [] gave the following partial generalization of Lim’s theorem.

Theorem  Let C be a closed, bounded, and convex subset of a Banach space X and T :
C → KC(C) a nonexpansive mapping, where KC(C) stands for the collection of nonempty,
compact, and convex subsets of C. If the asymptotic center in C of each bounded sequence
of X is nonempty and compact, then T has a fixed point.

Motivated by these two theorems we have the following for stationary points.

Theorem  Suppose that X is a Banach space such that for each closed convex bounded
subset C of X the asymptotic center in C of each bounded sequence is nonempty and com-
pact. Let T : C → C \ {∅} be a nonexpansive mapping with C weakly compact. Then T has
a stationary point if and only if T has the approximate stationary point sequence property.

Proof We only need to prove that T has a stationary point provided it has the approximate
stationary point sequence property. Suppose for contradiction that T is stationary point
free. Let (yn) be an arbitrary sequence in C. The sequence (yn) is bounded and, by the
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assumptions, Za({yn}, C) is nonempty and compact. As in previous proofs, we know that
the asymptotic center Za({yn}, C) is a nonempty, weakly compact, and convex T-invariant
subset of X. Again, by the assumptions,

inf
x∈Za({yn},C)

rx(Tx) = .

This, accompanied with the compactness of Za({yn}, C), implies that there exists a conver-
gent a.s.p. sequence (xn) in Za({yn}, C), say xn → x.

We show next that x is a stationary point of T . Let z ∈ Tx and fix n ∈ N. For each y ∈ Txn,
we have

‖x – z‖ ≤ ‖xn – x‖ + ‖xn – y‖ + ‖z – y‖
≤ ‖xn – x‖ + rxn (Txn) + ‖y – z‖.

This implies that

‖x – z‖ ≤ ‖xn – x‖ + rxn (Txn) + d(z, Txn)

≤ ‖xn – x‖ + rxn (Txn) + H(Tx, Txn)

≤ rxn (Txn) + ‖xn – x‖.

Since z ∈ Tx is arbitrary, we obtain

rx(Tx) ≤ rxn (Txn) + ‖xn – x‖.

As n → ∞, we obtain rx(Tx) =  and therefore, Tx = {x}, which finally proves the statement
by contradiction. �

In particular, the following corollary holds.

Corollary  Let X be a uniformly convex Banach space. Then the same conclusions as in
Theorem  hold.

Recall that a bounded sequence (xn) in a Banach space X is said to be regular with respect
to a bounded subset C of X if the asymptotic radii (with respect to C) of all subsequences
of (xn) are the same, that is,

ra
(
C, {xn}

)
= ra

(
C, {xni}

)
for each subsequence (xni ) of (xn).

A Banach space X is said to satisfy the (DL)-condition if there exists λ ∈ [, ) such that
for every weakly compact convex subset C of X and for every bounded sequence (xn) in C
which is regular with respect to C

rC
(
Za

(
C, {xn}

)) ≤ λra
(
C, {xn}

)

where the Chebyshev radius of a bounded subset D of X relative to C is defined by

rC(D) = inf
{

rx(D) : x ∈ C
}

.
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Indeed, any Banach space with the (DL)-condition has the weak normal structure (see
[], Theorem .).

Before giving the next result, we need the following proposition.

Proposition  ([, ]) Let C be a nonempty bounded subset of a Banach space X and {xn}
a bounded sequence in X. Then {xn} has a subsequence that is regular with respect to C.

Theorem  Let X be a Banach space with the (DL)-condition. Let T : C → C \ {∅} be
a nonexpansive mapping with C nonempty, weakly compact, and convex. Then T has a
stationary point if and only if T has the approximate stationary point sequence property.

Proof We only need to prove that T has a stationary point provided it has the approximate
stationary point sequence property. Suppose for contradiction that T is stationary point
free. From Theorem  there exist a minimal nonempty, weakly compact, and convex T-
invariant subset E of C and α >  such that for each a.s.p. sequence (zn) in E

lim sup
n→∞

‖zn – z‖ ≥ α, z ∈ E.

Consider an a.s.p. sequence (xn) in E, which exists by hypothesis. By Proposition  this
sequence has a regular subsequence with respect to E, say again (xn). Since X satisfies the
property (DL) we have

rE
(
Za

(
E, {xn}

)) ≤ λra
(
E, {xn}

)
()

for some λ ∈ [, ). Since

lim sup
n→∞

‖xn – z‖ ≥ α, z ∈ E,

ra(E, {xn}) > . Therefore,

λra
(
E, {xn}

)
< ra

(
E, {xn}

)
.

Since Za(E, {xn}) is nonempty, weakly compact, and convex, and a T-invariant set con-
tained in E, by minimality, we have Za(E, {xn}) = E. Therefore, in particular, from () we
have

rE(E) ≤ λra
(
E, {xn}

)
< ra

(
E, {xn}

)
,

which is a contradiction since {xn} ⊆ E. �

Next we list some sufficient conditions that lead to the (DL) property.

Corollary  Let X be a Banach space such that

ρ ′
X() <




.

Then the same conclusions as in Theorem  hold.
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Proof See [], Corollary . �

Corollary  Let X be a Banach space such that it satisfies one of the following two equiv-
alent conditions:

. rX() > ,
. �(X) < .

Then the same conclusions as in Theorem  hold.

Proof See [], Corollary . �

Corollary  Let X be a Banach space such that

j(X) <  +


μ(X)′
.

Then the same conclusions as in Theorem  hold.

Proof See [], Corollary .. �

Corollary  Let X be a Banach space such that

ρ ′
X() <


μ(X)

.

Then the same conclusions as in Theorem  hold.

Proof See [], Theorem . �

Corollary  Let X be a Banach space such that

δX

(


R(X)
+

√
 –


R(X)

+


R(X)

)
>




(
 –


R(X)

)
.

Then the same conclusions as in Theorem  hold.

Proof See [], Theorem .. �

We close this work with a last case where we follow the approach provided in []. Let
(X,‖ · ‖) be a Banach space. Assume that there exists a family {Rk : X → [,∞)}k∈N of
seminorms on X such that for all x ∈ X we have:

. R(x) = ‖x‖ and for all k ≥ , Rk(x) ≤ ‖x‖.
. limk→∞ Rk(x) = .
. If xn ⇀  (weakly convergent to zero), then for all k ≥ 

lim sup
n→∞

Rk(xn) = lim sup
n→∞

‖xn‖.

. If xn ⇀ , then for all k ≥ 

lim sup
n→∞

Rk(xn + x) = lim sup
n→∞

Rk(xn) + Rk(x).
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Let (γk) ⊆ (, ) be an arbitrary nondecreasing sequence such that limk→∞ γk = . An
equivalent norm on X may be defined as

‖|x‖| := sup
k

γkRk(x),

for each x ∈ X.
We restate Lemma  of [] next.

Lemma  Let X be a Banach space endowed with a family of seminorms {Rk(·)} satisfying
properties - stated above, and ‖| · ‖| be the equivalent norm given above. If (xn) and (yn)
are two bounded sequences in X with xn ⇀ x and yn ⇀ y, then

lim sup
m

lim sup
n→∞

‖|xn – ym‖| ≥ lim sup
n→∞

‖|xn – x‖| + lim sup
m

‖|ym – y‖|.

Theorem  Let X be a Banach space endowed with a family of seminorms {Rk(·)} sat-
isfying Properties - stated above, and ‖| · ‖| be the equivalent norm given above. Let
T : C → C \ {∅} be a nonexpansive mapping with respect to ‖| · ‖| and C a nonempty,
weakly compact, and convex. Then T has a stationary point if and only if T has the ap-
proximate stationary point sequence property.

Proof We only need to prove that T has a stationary point provided it has the approximate
stationary point sequence property. Suppose for contradiction that T is stationary point
free. By Theorem  there exist a minimal, nonempty, T-invariant, weakly compact, and
convex subset E.

By hypothesis there exists a weakly convergent a.s.p. sequence (xn) in E, say weakly con-
vergent to x ∈ E. Put lim supn→∞ ‖|xn – x‖| = γ . Theorem  implies that γ > . Set

D =
{

z ∈ E : lim sup
n→∞

‖|xn – x‖| ≤ γ
}

.

It is clear that D is a nonempty, weakly compact, and convex subset of D. Moreover, fol-
lowing the same reasoning as in Theorem , it can be shown that D is T-invariant subset
of E. The minimality of E now implies that E = D.

Now, for each m ∈N we have lim supn→∞ ‖|xn – xm‖| ≤ γ . Hence by Lemma ,

γ ≥ lim sup
m

lim sup
n→∞

‖|xn – xm‖| ≥ lim sup
n→∞

‖|xn – x‖| + lim sup
m

‖|xm – x‖| ≥ γ ,

which is a contradiction. �

Remark  Notice that, since approximate fixed point sequence always exists in the single-
valued case for the theorems we have revisited, our results can be regarded as abstract
extensions of corresponding results for single-valued nonexpansive mappings.
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