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Abstract. In this work, we introduce a discrete specific inf-sup condition to estimate the Lp norm,
1 < p < +∞, of the pressure in a number of fluid flows. It applies to projection-based stabilized finite
element discretizations of incompressible flows, typically when the velocity field has a low regularity.
We derive two versions of this inf-sup condition: The first one holds on shape-regular meshes and the
second one on quasi-uniform meshes. As an application, we derive reduced inf-sup conditions for the
linearized Primitive equations of the Ocean that apply to the surface pressure in weighted Lp norm.
This allows to prove the stability and convergence of quite general stabilized discretizations of these
equations: SUPG, Least Squares, Adjoint-stabilized and OSS discretizations.
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1. Introduction

Stabilized methods are designed to provide stable discretizations with reduced computational complexity
of several sources of spurious instabilities that may arise in the discretization of incompressible flows (that
may be due either to incompressibility or to large convection, Coriolis or reaction terms, among others). In
this paper, we focus on the treatment of the incompressibility constraint. Concretely, we deal with projection-
stabilized methods, introduced by Blasco and Codina in [3] by means of a local L2 projection, that produce
discretizations with high-order accuracy. This method was extended to the local projection-stabilization methods
that use element-wise L2 projections instead of the global L2 projection, while satisfying some orthogonality
properties. Among the many references on different versions of local projection-stabilization, let us quote Braack
and Burman [4], Braack et al. [5], Ganesan et al. [17], Knobloch [19], Matthies et al. [21], Roos et al. [23].
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A special class of projection-stabilized methods is the interior penalty method, in which stabilization is achieved
by introducing inter-element jumps of the terms to be stabilized. This method is equivalent to a projection-
stabilized method, where the L2 projection operator is replaced by the Oswald (cf. [22]) quasi-interpolant
operator on the discrete velocity space (cf. [7–9]).

A further simplification is introduced in [15] where the local projection operator is replaced by a quasi-local
approximation operator that does not need to satisfy any orthogonality property. This method has a more
compact stencil while retaining the same optimal accuracy as all projection-stabilization methods, in the sense
that its convergence order is optimal with respect to the degree of the finite element spaces.

In the present work, we extend the method introduced in [15] to stabilize the discretization of the pressure in
flows where the velocity has a low accuracy, typically in some space W 1,s(Ω) with 1 < s < 2. Then the pressure
has only Lp(Ω) regularity, where p is the conjugate exponent of s. This is the case, for instance, of the weak
solutions of the Primitive equations of the Ocean, that we consider as an application of our general setting.

We introduce a specific inf-sup condition in Lp norms, which is the main technical contribution of this paper.
As in [15], the derivation of this condition faces the difficulty of the reduced number of degrees of freedom of the
buffer space. This difficulty is solved by a finite-dimensional argument of equivalence of norms (cf. Lem. 2.4).
We derive two versions of this inf-sup condition: the first one holds on shape-regular meshes and the second one
on quasi-uniform meshes. As an application, we derive reduced inf-sup conditions for the linearized Primitive
equations of the Ocean that apply to the surface pressure in weighted Lp norms. This allows to prove the stability
and convergence of quite general stabilized discretizations of these equations: SUPG, Least Squares, Adjoint-
stabilized and OSS discretizations. This condition generalizes a similar one for L2 weighted norms introduced
in [14].

The paper is structured as follows: in Section 2 we introduce the inf-sup condition in Lp norms for shape-
regular meshes, as well as a simplified condition for quasi-uniform meshes. These conditions are applied to
stabilized discretizations of a linearized version of the Primitive equations in Section 3. In this section, reduced
inf-sup conditions for the surface pressure are deduced, for both shape-regular and quasi-uniform meshes. Also,
the stability and convergence of the stabilized discretizations are proved by means of these conditions.

2. Inf-sup condition for shape-regular meshes

Let Ω ⊂ R
d (d = 2 or 3) be a bounded domain. We assume that Ω is a polygon if d = 2 or a polyhedron

if d = 3. Let {Th}h>0 be a family of conforming triangulations of Ω̄ formed by simplicial elements, where the
parameter h denotes the largest diameter of the elements of Th. We assume the following.

Hypothesis 2.1. The family {Th}h>0 is shape-regular in the sense of Ciarlet [16] and no element of Th has
3 nodes (when d = 2) or 4 nodes (when d = 3) on the boundary of Ω.

We decompose Ω into a finite union of macro-elements:

Ω =
R⋃

i=1

Oi,

such that each Oi is the support of the piecewise affine basis function associated to the node i. Note that any
element K ∈ Th belongs to at most M macro-elements, where M is independent of h.

For all i, 1 ≤ i ≤ R, we set
hi = max

K⊂Oi

{hK} and ρi = min
K⊂Oi

{ρK},

where hK denotes the diameter of the element K of Th and ρK the diameter of the ball inscribed in K.
As the mesh is regular, then it is locally uniformly regular (or locally quasi-uniform) and this implies that

there exist positive constants C1 and C2 independent of h, such that for all K ∈ Th and for all i for which
K ⊂ Oi,

C1 ρi ≤ hK ≤ hi,
hi

ρi
≤ C2. (2.1)
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This implies immediately that
C1

C2
hi ≤ hK ≤ hi. (2.2)

For a domain O ⊂ R
d, we denote by ‖ · ‖k,p,O and | · |k,p,O the norm and, respectively, the seminorm in

W k,p(O). In Lp(Ω)/R, we also denote by ‖ · ‖0,p,Ω the quotient norm in order to simplify the notation.
For all p ∈ [1, +∞) and for all v ∈ Lp(Ω)d, we define

‖v‖h,p =

(
R∑

i=1

hp
i ‖v‖

p
0,p,Oi

) 1
p

. (2.3)

Given an integer l ≥ 1, we denote by Pl(K) the space of polynomials of degree smaller than, or equal to, l
defined on an element K ∈ Th and define the following finite element spaces:

V l
h = {vh ∈ C0(Ω̄) such that vh|K ∈ Pl(K), ∀K ∈ Th},

Xh = (V l
h ∩ H1

0 (Ω))d,

Mh = V m
h / R,

V l
h(Oi) = {vh ∈ C0(Oi) such that vh|K ∈ Pl(K), ∀K ∈ Th such that K ⊂ Oi},

Xh(Oi) = (V l
h(Oi) ∩ H1

0 (Oi))d.

We recall now the inverse inequalities in finite element spaces, that we use frequently in the sequel.

Lemma 2.2. Let p1 and p2 be numbers in [1,∞], and l1 and l2 two non-negative integers such that l1 ≥ l2 and
l1 − d

p1
≥ l2 − d

p2
.

[Local inverse inequalities] ([2], Prop. 4.2) For all K ∈ Th,

∀ v ∈ Pl(K), |v|W l1,p1(K) ≤ C ρ
l2−l1− d

p2
K h

d
p1
K |v|W l2,p2 (K), (2.4)

where C is a constant independent of K.

[Global inverse inequalities] ([6], Thm 4.5.11) If p1 ≥ p2 and Zh is a finite element space of polynomials in
each K, then

∀wh ∈ Zh,

( ∑
K∈Th

|wh|p1

W l1,p1 (K)

) 1
p1

≤ C ρ
l2−l1− d

p2
+ d

p1
min

( ∑
K∈Th

|wh|p2

W l2,p2 (K)

) 1
p2

, (2.5)

where C is a constant independent of h and ρmin = inf
K∈Th

{ρK}.

Throughout this work, C represents a constant that is always independent of h but may vary from an
inequality to another.

Let us now consider an interpolation or projection operator

Jh : L2(Ω)d → (V l−1
h )d, (2.6)

and set J∗
h = Id − Jh. Our main result is the following.
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Theorem 2.3. Assume that Hypothesis 2.1 holds. Then for any p ∈ (1, +∞) there exists a constant γp > 0
independent of h such that for all qh ∈ Mh,

γp‖qh‖0,p,Ω ≤ sup
vh∈Xh

(∇ · vh, qh)
|vh|1,s,Ω

+

(
R∑

i=1

(
sup

vh∈Xh(Oi)

|(∇ · vh, qh)Oi |p
|vh|p1,s,Oi

)) 1
p

+ ‖J∗
h(∇qh)‖h,p (2.7)

where s is the conjugate exponent of p ( 1
p + 1

s = 1).

To prove this theorem we need the following auxiliary result.

Lemma 2.4. Under Hypothesis 2.1, there exists a positive constant C independent of h, such that for all i,
1 ≤ i ≤ R,

∀ gh ∈ V l−1
h (Oi), ‖gh‖0,p,Oi ≤ C sup

vh∈V l
h(Oi)∩H1

0 (Oi)

(gh, vh)Oi

‖vh‖0,s,Oi

, (2.8)

where p ∈ (1, +∞) and s is the conjugate exponent of p.

Proof. For p = s = 2 this result was proved in [15]. We extend it here to any conjugate pair of exponents p
and s.

We denote by {aj} the nodes of Th that belong to Oi and we define the function wh ∈ V 1
h (Oi)∩H1

0 (Oi) such
that:

wh|K ∈ P1(K), for all K ⊂ Oi;
wh(aj) = 1 if aj is a interior node of Oi;
wh(aj) = 0 if aj is a node belonging to ∂Oi.

Because each macro-element Oi is the support of one piecewise affine basis function and no element of Th has
3 nodes (when d = 2) or 4 nodes (when d = 3) on the boundary of Ω, there exists at least one interior node
in Oi. So, this function wh is well-defined and it is positive in the interior of Oi.

Let gh ∈ V l−1
h (Oi) and vh = gh wh. Then, vh ∈ V l

h(Oi) ∩ H1
0 (Oi) and it satisfies

|(gh, vh)Oi | ≥ C ‖gh‖2
0,Oi

, (2.9)

with C a positive constant independent of h (cf. [15], Lem. 3.2).
Given K ⊂ Oi, let ĝK = gh|K ◦ FK , where FK is the affine mapping that transforms the reference element

K̂ onto K. The shape regularity of the mesh implies that

‖gh‖2
0,Oi

=
∑

K⊂Oi

∫
K

|gh|2 = C
∑

K⊂Oi

|K|
∫

K̂

|ĝK |2 ≥ C |Oi|
∑

K⊂Oi

∫
K̂

|ĝK |2. (2.10)

Denote by Ni the number of elements of Th|Oi and consider the norm in R
Ni :

‖(x1, . . . , xNi)‖p,Ni =

⎛
⎝ Ni∑

j=1

|xj |p
⎞
⎠

1
p

.

As the grids are regular, Ni ≤ N (independent of h) and

‖(x1, . . . , xNi)‖p,Ni = ‖(x1, . . . , xNi , 0, . . . , 0)‖p,N .

By the equivalence of norms in R
N , there exists a constant Cp (independent of h) such that

‖(x1, x2, . . . , xNi , 0, . . . , 0)‖2,N ≥ Cp‖(x1, x2, . . . , xNi , 0, . . . , 0)‖p,N . (2.11)
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Then, applying (2.11) with

xj =
(∫

K̂

|ĝKj |p
) 1

p

∀ j = 1, . . . , Ni,

we have ( ∑
K⊂Oi

∫
K̂

|ĝK |2
) 1

2

≥ Cp

( ∑
K⊂Oi

∫
K̂

|ĝK |p
) 1

p

.

Thus, from (2.10) and the shape regularity of the mesh

‖gh‖2
0,Oi

≥ C |Oi| Cp Cs

( ∑
K⊂Oi

∫
K̂

|ĝK |p
) 1

p
( ∑

K⊂Oi

∫
K̂

|ĝK |s
) 1

s

≥ C

( ∑
K⊂Oi

|K|
∫

K̂

|ĝK |p
) 1

p
( ∑

K⊂Oi

|K|
∫

K̂

|ĝK |s
) 1

s

.

That is,
‖gh‖2

0,Oi
≥ C ‖gh‖0,p,Oi ‖gh‖0,s,Oi. (2.12)

Moreover,
‖vh‖0,s,Oi ≤ ‖gh‖0,s,Oi ‖wh‖0,∞,Oi ≤ ‖gh‖0,s,Oi. (2.13)

Then, from (2.9) and taking into account (2.12) and (2.13) we obtain

C ‖gh‖0,p,Oi ≤ (gh, vh)Oi

‖vh‖0,s,Oi

,

whence we deduce (2.8). �

Proof of Theorem 2.3. We adapt Verfürth’s technique (cf. [24]). Given qh ∈ Mh, by Amrouche and Girault
(cf. [1]), there exists a constant C > 0 independent of h such that

C ‖qh‖0,p,Ω ≤ sup
v∈[W 1,s

0 (Ω)]d−{0}

(∇ · v, qh)
|v|1,s,Ω

·

So there exists v ∈ [W 1,s
0 (Ω)]d such that

1
2

C ‖qh‖0,p,Ω ≤ (∇ · v, qh)
|v|1,s,Ω

· (2.14)

Since the family of grids is regular, following the standard finite element interpolation theory (cf. [2] or [6],
Sect. 4.8), there exists an interpolate of v, vh ∈ Xh, such that

|vh|1,s,Ω ≤ C |v|1,s,Ω , (2.15)

‖v − vh‖0,s,K ≤ C hK |v|1,s,ωK , (2.16)

where ωK denotes the union of all elements of Th that intersect K.
Let us rewrite the r.h.s. of (2.14) as

(∇ · v, qh)
|v|1,s,Ω

=
(∇ · vh, qh)
|v|1,s,Ω

+
(∇ · (v − vh), qh)

|v|1,s,Ω
· (2.17)



1224 T. CHACÓN REBOLLO ET AL.

Using (2.15),
(∇ · vh, qh)
|v|1,s,Ω

≤ C
(∇ · vh, qh)
|vh|1,s,Ω

· (2.18)

Also, because qh belongs to H1(Ω) and (v − vh) · n = 0 on ∂Ω,

(∇ · (v − vh), qh) = −(v − vh,∇qh)

≤
∑

K∈Th

‖v − vh‖0,s,K ‖∇qh‖0,p,K

≤
∑

K∈Th

C hK |v|1,s,ωK ‖∇qh‖0,p,K (using (2.16))

≤ C

( ∑
K∈Th

|v|s1,s,ωK

) 1
s
( ∑

K∈Th

hp
K ‖∇qh‖p

0,p,K

) 1
p

≤ C |v|1,s,Ω

( ∑
K∈Th

hp
K ‖∇qh‖p

0,p,K

) 1
p

.

(2.19)

Then from (2.14), combining (2.17)−(2.19), we have

C ‖qh‖0,p,Ω ≤ sup
vh∈Xh

(∇ · vh, qh)
|vh|1,s,Ω

+

( ∑
K∈Th

hp
K ‖∇qh‖p

0,p,K

) 1
p

. (2.20)

As each element K ∈ Th belongs to some macro-element Oi,

∑
K∈Th

hp
K ‖∇qh‖p

0,p,K ≤ C

R∑
i=1

hp
i ‖∇qh‖p

0,p,Oi
.

So, from (2.20)

C ‖qh‖0,p,Ω ≤ sup
vh∈Xh

(∇ · vh, qh)
|vh|1,s,Ω

+ ‖∇qh‖h,p. (2.21)

To estimate the last term in (2.21), we use the relation Jh + J∗
h = Id and write

‖∇qh‖0,p,Oi ≤ ‖Jh(∇qh)‖0,p,Oi + ‖J∗
h(∇qh)‖0,p,Oi . (2.22)

Since Jh(∇qh)|Oi
∈ (V l−1

h (Oi))d we can apply the inf-sup condition (2.8) to each of its components,

‖Jh(∇qh)‖0,p,Oi ≤ C sup
vh∈Xh(Oi)

(Jh(∇qh),vh)Oi

‖vh‖0,s,Oi

·

Using again Jh + J∗
h = Id,

|(Jh(∇qh),vh)Oi | ≤ |(∇qh,vh)Oi | + |(J∗
h(∇qh),vh)Oi |

≤ |(∇ · vh, qh)Oi | + ‖J∗
h(∇qh)‖0,p,Oi ‖vh‖0,s,Oi ,

as (∇qh,vh)Oi = −(∇ · vh, qh)Oi because vh = 0 on ∂Oi. So,

‖Jh(∇qh)‖0,p,Oi ≤ C

(
sup

vh∈Xh(Oi)

|(∇ · vh, qh)Oi |
‖vh‖0,s,Oi

+ ‖J∗
h(∇qh)‖0,p,Oi

)
. (2.23)
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Thus, from (2.22) and (2.23)

‖∇qh‖p
h,p ≤ C

(
R∑

i=1

(
sup

vh∈Xh(Oi)

hp
i

|(∇ · vh, qh)Oi |p
‖vh‖p

0,s,Oi

)
+ ‖J∗

h(∇qh)‖p
h,p

)
. (2.24)

The local inverse inequality (2.4) between W 1,s(K) and Ls(K) on each K ⊂ Oi yields

|vh|1,s,Oi ≤ C ρ−1
i ‖vh‖0,s,Oi .

This inequality and (2.1) imply that
hp

i

‖vh‖p
0,s,Oi

≤ C
1

|vh|p1,s,Oi

,

and we obtain

‖∇qh‖p
h,p ≤ C

(
R∑

i=1

(
sup

vh∈Xh(Oi)

|(∇ · vh, qh)Oi |p
|vh|p1,s,Oi

)
+ ‖J∗

h(∇qh)‖p
h,p

)
. (2.25)

Finally, (2.7) follows from (2.21) and (2.25). �

2.1. The case of uniformly regular meshes

The inf-sup condition (2.7) may be simplified if the grids are uniformly regular. We assume the following.

Hypothesis 2.5. The family {Th}h>0 is uniformly regular (also called quasi-uniform): there exist positive con-
stants α and β independent of h such that

β h ≤ hK ≤ α ρK , ∀K ∈ Th. (2.26)

We define the space
Y =

{
v ∈ H1(Ω)d such that v · n = 0 a.e. on ∂Ω

}
,

and consider an interpolation or projection operator

Ih : L2(Ω)d → Yh, where Xh ⊆ Yh ⊆ (V l
h)d ∩ Y. (2.27)

We shall denote I∗h = Id − Ih.
In this case the inf-sup condition (2.7) reduces to a simpler one. This is stated as follows.

Theorem 2.6. Assume that Hypothesis 2.5 holds. Then for any p ∈ (1, +∞) there exists a constant λp > 0
independent of h such that for all qh ∈ Mh,

λp‖qh‖0,p,Ω ≤ sup
vh∈Yh

(∇ · vh, qh)
|vh|1,s,Ω

+ h ‖I∗h(∇qh)‖0,p,Ω, (2.28)

where s is the conjugate exponent of p.

Proof. As in Theorem 2.3 we obtain (2.20) because this estimate only requires that the grids be regular.
Moreover, as Xh ⊆ Yh,

C ‖qh‖0,p,Ω ≤ sup
vh∈Yh

(∇ · vh, qh)
|vh|1,s,Ω

+ h ‖∇qh‖0,p,Ω. (2.29)

In order to bound the last term in (2.29), we argue as in the proof of Theorem 2.3 but now we do not need to
follow a local argument. Using the relation Ih + I∗h = Id,

‖∇qh‖0,p,Ω ≤ ‖Ih(∇qh)‖0,p,Ω + ‖I∗h(∇qh)‖0,p,Ω. (2.30)



1226 T. CHACÓN REBOLLO ET AL.

As Ih(∇qh) ∈ Lp(Ω)d, there exists v ∈ Ls(Ω)d such that

(Ih(∇qh),v) = ‖Ih(∇qh)‖0,p,Ω ‖v‖0,s,Ω.

Now, let vh be the L2 orthogonal projection of v on Yh. As the mesh is uniformly regular, the L2 projection is
stable in the Ls norm (cf. [25]):

‖vh‖0,s,Ω ≤ C ‖v‖0,s,Ω.

Then, as Ih(∇qh) ∈ Yh,

(Ih(∇qh),vh) = (Ih(∇qh),v) ≥ C ‖Ih(∇qh)‖0,p,Ω ‖vh‖0,s,Ω.

Thus,

‖Ih(∇qh)‖0,p,Ω ≤ C sup
vh∈Yh

(Ih(∇qh),vh)
‖vh‖0,s,Ω

·

Using again Ih + I∗h = Id and (∇qh,vh) = −(∇ · vh, qh) because vh ∈ Y , we have

‖Ih(∇qh)‖0,p,Ω ≤ C

(
sup

vh∈Yh

|(∇ · vh, qh)|
‖vh‖0,s,Ω

+ ‖I∗h(∇qh)‖0,p,Ω

)
. (2.31)

Therefore, from (2.30) and (2.31),

h ‖∇qh‖0,p,Ω ≤ C

(
sup

vh∈Yh

h
|(∇ · vh, qh)|
‖vh‖0,s,Ω

+ h ‖I∗h(∇qh)‖0,p,Ω

)
. (2.32)

The global inverse inequality (2.5) between W 1,s(Ω) and Ls(Ω) and the quasi-uniformity of the mesh implies

|vh|1,s,Ω ≤ C h−1 ‖vh‖0,s,Ω.

Using this estimate in (2.32), we obtain

h ‖∇qh‖0,p,Ω ≤ C

(
sup

vh∈Yh

|(∇ · vh, qh)|
|vh|1,s,Ω

+ h ‖I∗h(∇qh)‖0,p,Ω

)
. (2.33)

Finally, (2.28) follows from (2.29) and (2.33). �

Remark 2.7. At the angular corner points of the boundary, the condition v · n = 0 implies that v = 0.
So, when the domain Ω is approximating a curved domain the space Yh in (2.27) coincides with Xh. In the
application to the Primitive equations of the Ocean studied in the next section, the boundary of the domain
has a flat component (the surface) and the space Xh is strictly contained into Yh.

3. Application to the Primitive equations of the Ocean

We study the fluid in a domain

Ω = {(x, z) ∈ R
d such that x ∈ ω, −D(x) ≤ z ≤ 0},

where ω is a bounded domain in R
d−1 and D : ω → R is a Lipschitz-continuous non-negative function that

represents the depth. The boundary is split as ∂Ω = Γs ∪ Γb, where Γs = {(x, 0) ∈ R
d such that x ∈ ω}

represents the ocean surface, and Γb represents the ocean bottom and, eventually, sidewalls.
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We consider a linearized version of the steady reduced Primitive equations model (cf. [20]). The problem
consists in finding a horizontal velocity field u : Ω �→ R

d−1 and a surface pressure p : ω �→ R such that

⎧⎪⎨
⎪⎩

W · ∇u − μΔu + ∇xp + ϕu⊥ = f in Ω,

∇x · 〈u〉 = 0 in ω,

u|Γb
= 0, μz∂zu|Γs = g.

(3.1)

Here W : Ω �→ R
d is a given convection velocity and 〈u〉 : ω �→ R

d−1 is defined by

〈u〉(x) =
∫ 0

−D(x)

u(x, s)ds. (3.2)

Also μ is the viscosity coefficient, that we assume to be isotropic for simplicity. The term ϕu⊥ is due the Coriolis
acceleration and it appears only when d = 3. In this case, u = (u1, u2) and u⊥ = (−u2, u1). The function ϕ
is defined by ϕ = 2θ sin φ, where θ is the angular rotation rate of the earth and φ is the latitude. The source
term f takes into account variable density effects, due to variations of temperature and salinity, and g represents
the wind tension at the surface.

This model includes the rigid-lid assumption, stating that the free surface is flat (z = 0 in our case), and
that the vertical velocity vanishes at the surface (cf. [13]). This last condition and the incompressibility of the
velocity U = (u, uz) are used to define the vertical velocity uz : Ω �→ R from the horizontal velocity:

uz(x, z) =
∫ 0

z

∇x · u(x, s) ds. (3.3)

To define weak solutions of problem (3.1), we consider the spaces

W 1,s
b (Ω) = {v ∈ W 1,s(Ω) such that v|Γb

= 0}, for an integer s ≥ 1.

In particular H1
b (Ω) = W 1,2

b (Ω). We denote H−1
b (Ω) the dual space of H1

b (Ω)d−1 and H− 1
2 (Γs) the dual space

of H
1
2 (Γs)d−1. We also consider the spaces

Lp
D(ω) =

{
q : ω �→ R such that

∫
ω

D(x)|q(x)|p dx < ∞
}

and
Lp

D,0(ω) = Lp
D(ω)/R,

for all p ∈ (1, +∞).
Problem (3.1) is a linearized version of the non-linear Primitive equations that in fact may be used as an

intermediate step to prove its well posedness. We thus assume that the velocity field is W = (w, wz) with

w ∈ H1
b (Ω)d−1 and wz(x, z) =

∫ 0

z

∇x ·w(x, s) ds. (3.4)

The weak formulation of problem (3.1) that we consider is: Given f ∈ H−1
b (Ω) and g ∈ H− 1

2 (Γs),⎧⎨
⎩Find (u, p) ∈ H1

b (Ω)d−1 × L
3
2
D,0(ω) such that

B((u, p), (v, q)) = L(v), ∀ (v, q) ∈ W 1,3
b (Ω)d−1 × L2

D,0(ω),
(3.5)



1228 T. CHACÓN REBOLLO ET AL.

where the forms B and L are defined as follows:

B((u, p), (v, q)) = −(W · ∇v,u) + μ (∇u,∇v) + (ϕu⊥,v)

−(p,∇x · v) + (∇x · u, q),
L(v) = 〈f ,v〉Ω + 〈g,v〉Γs .

(3.6)

Here 〈·, ·〉Ω stands for the duality between H−1
b (Ω) and H1

b (Ω)d−1 and 〈·, ·〉Γs stands for the duality between
H− 1

2 (Γs) and H
1
2 (Γs)d−1.

In this formulation the convection vertical velocity wz has only L2 regularity, as it is obtained by vertical
integration of the divergence of the horizontal velocity in (3.4). As a consequence, the convection operator has
not H−1 regularity and a Petrov–Galerkin formulation is needed, with test functions smoother than the velocity:
v ∈ W 1,3

b (Ω)d−1. This allows to define the convection term by duality as

〈W · ∇u,v〉 = −
∫

Ω

(W · ∇v)u,

and justifies the expression of the convection term in (3.6). The existence of solutions of problem (3.5) is proved
in [12].

Now we define a discretization of problem (3.5). To do this, we assume that ω is polygonal and D is a
piecewise affine function on {Ch}h>0, a family of conforming triangulations of ω̄. We introduce the prisms

PT = {(x, z) ∈ R
d, such that x ∈ T,−D(x) ≤ z ≤ 0} ∀T ∈ Ch,

and consider a family of triangulations of Ω̄ constructed by subdividing each prism PT into triangles (d = 2) or
tetrahedra (d = 3).

We consider the following finite element spaces:

Uh = (V l
h ∩ H1

b (Ω))d−1, (3.7)

Qh =
{
qh ∈ C0(ω̄) : qh|T ∈ Pm(T ), ∀T ∈ Ch

}
, Ph = Qh/R, (3.8)

for integers l, m ≥ 1.
In order to fully discretize problem (3.5), we use an interpolate of w, wh ∈ Uh, such that

|wh|1,Ω ≤ C|w|1,Ω , lim
h→0

‖wh − w‖1,Ω = 0, (3.9)

and we define

whz(x, z) =
∫ 0

z

∇x ·wh(x, s) ds. (3.10)

Note that the field Wh = (wh, whz) verifies that ∇ ·Wh = 0 a.e. in Ω, whz = 0 on Γs, and

‖Wh‖0,Ω ≤ C |w|1,Ω, lim
h→0

‖Wh − W‖0,Ω = 0. (3.11)

We also consider an interpolate of f , fh ∈ (V l
h)d−1, such that

‖fh‖H−1
b (Ω)

≤ C ‖f‖H−1
b (Ω)

, lim
h→0

‖f − fh‖H−1
b (Ω)

= 0. (3.12)

We define the following scalar product:

∀u,v ∈ L2(Ω)d−1, (u,v)τ =
∑

K∈Th

τK(u,v)K ,
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where τK are stabilization coefficients, and denote by ‖ · ‖τ the associated norm:

‖v‖τ =

( ∑
K∈Th

τK‖v‖2
0,K

) 1
2

.

We propose the following projection-stabilized discretization of problem (3.5):{
Find (uh, ph) ∈ Uh × Ph such that

Bh((uh, ph), (vh, qh)) = Lh(vh, qh), ∀(vh, qh) ∈ Uh × Ph,
(3.13)

where

Bh((uh, ph), (vh, qh)) = B((uh, ph), (vh, qh))

+ (Π∗
h(Wh · ∇vh − ε μ Δvh + ∇xqh + ϕv⊥

h ), Π∗
h(Wh · ∇uh − μ Δuh + ∇xph + ϕu⊥

h ))τ ,

Lh(vh, qh) = L(vh) + (Π∗
h(Wh · ∇vh − ε μ Δvh + ∇xqh + ϕv⊥

h ), Π∗
h(fh))τ .

(3.14)

Here Πh is an interpolation or projection operator from L2(Ω)d−1 into a finite element space and Π∗
h = Id−Πh.

Also ε is a real parameter that determines the method. In particular,

• If Πh ≡ 0,
– For l = m = 1 in (3.7) and (3.8), (3.13) is known as Streamline Upwing Petrov–Galerkin (SUPG) method.
– For others values of l ≥ 1 and m ≥ 1, (3.13) is known as Adjoint Stabilized/Variational Multi-Scale

(AdS/VMS) method when ε = −1, generalized SUPG method when ε = 0 and Galerkin Least Squares
(GLS) method when ε = 1.

• If Πh is the orthogonal projection onto Uh with respect to the inner product (·, ·)τ and ε = −1, (3.13) is the
Orthogonal Sub-Scales (OSS) method proposed in [14].

3.1. Stability and convergence analysis

We make the following hypotheses on the stabilization coefficients:

Hypothesis 3.1. There exist positive constants α1, α2 such that

α1 h2
K ≤ τK ≤ α2 h2

K , ∀ K ∈ Th. (3.15)

This hypothesis is verified by the usual stabilization coefficients and, in particular, by those given by Codina
(cf. [10]) or Chacón (cf. [11]). This assumption holds even in the convection-dominated regime. Indeed, in this
case, typically

τK = C
hK

‖u‖0,p,K
,

if the local Péclet number verifies PeK > P with PeK =
‖u‖0,p,K hK

μ
and P > 0 some preset threshold. Then,

τK ≤ C

P μ
h2

K .

Note that as a consequence of Hypothesis 3.1, when the grids are uniformly regular, there holds

∀v ∈ L2(Ω)d−1, β
√

α1 h ‖v‖0,Ω ≤ ‖v‖τ ≤ √
α2 h ‖v‖0,Ω. (3.16)

In reference [14] a stability and convergence analysis of the OSS method was realized when W ∈ Ld(Ω)d.
However, if we only assume the natural regularity for the convection velocity (3.4), it is not possible to bound
the pressure in the L2 norm when d = 3. We next state a weaker inf-sup condition that allows to estimate the
pressure in L

3
2 when d = 3.
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3.1.1. Case of uniformly regular meshes

We assume that the operator in (3.14) is an interpolation or projection operator from L2(Ω)d−1 into Uh,
denoted by ΠUh

and Π∗
Uh

= Id − ΠUh
.

Lemma 3.2. Assume that Hypothesis 2.5 holds. Then for any p ∈ (1, +∞) there exists a constant λp > 0
independent of h such that for all qh ∈ Ph,

λp‖qh‖Lp
D,0(ω) ≤ sup

vh∈Uh

(∇x · vh, qh)
|vh|1,s,Ω

+ h ‖Π∗
Uh

(∇xqh)‖0,p,Ω, (3.17)

where s is the conjugate exponent of p.

Proof. Given qh ∈ Ph, denote by q̃h its extension to Ω as the function defined by

q̃h(x, z) = qh(x), ∀x ∈ ω, ∀z ∈ (−D(x), 0). (3.18)

Then q̃h ∈ Mh = V m
h / R, because Th is a prismatic grid. Moreover, ‖q̃h‖0,p,Ω = ‖qh‖Lp

D,0(ω) and ∂z q̃h = 0 in Ω.

Let Yh = Uh ×
(
V l

h ∩ H1
0 (Ω)

)
and let Ih : L2(Ω)d → Yh be an interpolation or projection operator such

that Ih|L2(Ω)d−1 = ΠUh
. Note that all Vh in Yh satisfy Vh · n = 0 on ∂Ω. We may thus apply the inf-sup

condition (2.28) with this choice of Ih:

λp‖q̃h‖0,p,Ω ≤ sup
Vh∈Yh

(∇ ·Vh, q̃h)
|Vh|1,s,Ω

+ h ‖I∗h(∇q̃h)‖0,p,Ω. (3.19)

We set Vh = (vh, vhz) ∈ Yh and observe that (∇ ·Vh, q̃h) = (∇x ·vh, qh) because ∂z q̃h = 0 in Ω and vhz = 0
on ∂Ω. Thus,

sup
Vh∈Yh

(∇ ·Vh, q̃h)
|Vh|1,s,Ω

≤ sup
vh∈Uh

(∇x · vh, qh)
|vh|1,s,Ω

· (3.20)

As ∇q̃h = (∇xqh, 0),
‖I∗h(∇q̃h)‖0,p,Ω = ‖Π∗

Uh
(∇xqh)‖0,p,Ω. (3.21)

Then, (3.17) follows by substituting (3.20) and (3.21) into (3.19). �

We assume the following global stability properties of the operator ΠUh
:

Hypothesis 3.3. All v ∈ L2(Ω)d−1 satisfy

‖ΠUh
(v)‖0,Ω ≤ C ‖v‖0,Ω, (3.22)

‖ΠUh
(v)‖0, 3

2 ,Ω ≤ C ‖v‖0, 32 ,Ω. (3.23)

A large class of interpolation or local L2 projection operators satisfies these properties, in particular, the
Lagrange finite element interpolation operators, based upon averaged nodal values such as the variant of the
Scott−Zhang ([6], Sect. 4.8) operator in ([18], Appendix) or the Clément operator in [2]. The global L2(Ω)
orthogonal projection also satisfies these assumptions when the grids are uniformly regular (cf. [25]).

We next state the stability and convergence of discretization (3.13) and (3.14) with first-degree finite elements
for velocities (for the sake of simplicity).
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Theorem 3.4. Assume that Hypotheses 2.5, 3.1 and 3.3 hold. Then, the discrete problem (3.13)–(3.14) with
l = 1 in (3.7) admits a unique solution (uh, ph) ∈ Uh ×Ph which is bounded in H1

b (Ω)d−1 ×L
3
2
D,0(ω), satisfying

the estimates

|uh|1,Ω ≤ C

μ

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.24)

‖ph‖
L

3
2
D,0(ω)

≤ C

(
1 +

1
μ

+
1
√

μ

)
(1 + |w|1,Ω)

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.25)

‖Π∗
Uh

(
Wh · ∇uh + ∇xph + ϕu⊥

h

)
‖τ ≤ C

√
μ

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.26)

where C is a constant independent of h.
Moreover, the sequence {(uh, ph)}h>0 contains a subsequence which is weakly convergent in H1

b (Ω)d−1 ×
L

3
2
D,0(ω) to a solution of the continuous problem (3.5). If this solution belongs to W 1,3

b (Ω)d−1, then the conver-
gence is strong.

Proof. Part of this proof can be found in reference [14] (Thms. 1 and 2) when W ∈ Ld(Ω)d. Here we only detail
substantial differences when d = 3 that are due to the low regularity of the vertical velocity.

Taking vh = uh and qh = ph in the variational formulation (3.13) and (3.14) we have:

μ|uh|21,Ω + ‖Π∗
Uh

(ch)‖2
τ = L(uh) + (Π∗

Uh
(ch), Π∗

Uh
(fh))τ , (3.27)

where ch = Wh · ∇uh + ∇xph + ϕu⊥
h . Using (3.16) and (3.22),

‖Π∗
Uh

(fh)‖τ ≤ C h ‖Π∗
Uh

(fh)‖0,Ω ≤ C h ‖fh‖0,Ω ≤ C ‖fh‖τ . (3.28)

Moreover,

‖fh‖τ ≤ C ‖fh‖H−1
b (Ω)

≤ C ‖f‖H−1
b (Ω)

. (3.29)

This bound is obtained by using a representation of the term ‖fh‖τ on spaces of bubble functions by means of
static condensation operators and (3.12). (See [14] for details). Combining (3.28) and (3.29), we obtain

‖Π∗
Uh

(fh)‖τ ≤ C ‖f‖H−1
b (Ω)

. (3.30)

Then, from (3.27), we derive

√
μ |uh|1,Ω + ‖Π∗

Uh
(ch)‖τ ≤ C

√
μ

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.31)

whence (3.24) and (3.26).
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To estimate the pressure we use the inf-sup condition (3.17) with p = 3
2 and s = 3:

C‖ph‖
L

3
2
D,0(ω)

≤ sup
vh∈Uh

(∇x · vh, ph)
|vh|1,3,Ω

+ h ‖Π∗
Uh

(∇xph)‖0, 3
2 ,Ω. (3.32)

To estimate the first summand, we take qh = 0 in the discrete problem (3.13) and (3.14) and obtain:

(∇x · vh, ph) = −(Wh · ∇vh,uh) + μ (∇uh,∇vh) + (ϕu⊥
h ,vh)

+ (Π∗
Uh

(Wh · ∇vh + ϕv⊥
h ), Π∗

Uh
(ch))τ

− (Π∗
Uh

(Wh · ∇vh + ϕv⊥
h ), Π∗

Uh
(fh))τ − L(vh).

(3.33)

Next, to estimate the terms in the right-hand side, we first observe that

|(Wh · ∇vh,uh)| ≤ ‖Wh‖0,Ω ‖∇vh‖0,3,Ω ‖uh‖0,6,Ω ≤ C |w|1,Ω |uh|1,Ω |vh|1,3,Ω,

using (3.11) and Sobolev’s imbeddings. Also,

‖Π∗
Uh

(Wh · ∇vh + ϕv⊥
h )‖τ ≤ C h ‖Wh · ∇vh + ϕv⊥

h ‖0,Ω,

using (3.16) and (3.22), the global L2 stability of the operator ΠUh
. Next,

‖Wh · ∇vh‖0,Ω ≤ ‖Wh‖0,Ω ‖∇vh‖0,∞,Ω ≤ C h−1 |w|1,Ω |vh|1,3,Ω,

using (3.11) and the global inverse inequality (2.5) between W 1,∞(Ω) and W 1,3(Ω). Moreover,

‖ϕv⊥
h ‖0,Ω ≤ C ‖ϕ‖0,∞,Ω ‖vh‖0,Ω ≤ C ‖ϕ‖0,∞,Ω |vh|1,3,Ω.

Thus,
‖Π∗

Uh
(Wh · ∇vh + ϕv⊥

h )‖τ ≤ C (|w|1,Ω + ‖ϕ‖0,∞,Ω) |vh|1,3,Ω.

Then, from (3.33) we have

(∇x · vh, ph)
|vh|1,3,Ω

≤ C
(
|w|1,Ω |uh|1,Ω + μ |uh|1,Ω + ‖ϕ‖0,∞,Ω |uh|1,Ω

+ (|w|1,Ω + ‖ϕ‖0,∞,Ω) ‖Π∗
Uh

(ch)‖τ + (|w|1,Ω + ‖ϕ‖0,∞,Ω) ‖f‖H−1
b (Ω)

+ ‖f‖H−1
b (Ω)

+ ‖g‖
H− 1

2 (Γs)

)
,

(3.34)

and taking into account the estimates (3.24) and (3.26) we obtain

(∇x · vh, ph)
|vh|1,3,Ω

≤ C

(
1 +

1
μ

+
1
√

μ

)
(1 + |w|1,Ω)

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, ∀vh ∈ Uh. (3.35)

To estimate the second summand in (3.32) we split it in the following way:

h ‖Π∗
Uh

(∇xph)‖0, 32 ,Ω ≤ h ‖Π∗
Uh

(ch)‖0, 3
2 ,Ω

+ h ‖Π∗
Uh

(Wh · ∇uh)‖0, 3
2 ,Ω + h ‖Π∗

Uh
(ϕu⊥

h )‖0, 32 ,Ω.
(3.36)

We bound the first term by:

h ‖Π∗
Uh

(ch)‖0, 32 ,Ω ≤ C h ‖Π∗
Uh

(ch)‖0,Ω ≤ C ‖Π∗
Uh

(ch)‖τ ,
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using (3.16). The second term is bounded using first the stability (3.23) of the operator ΠUh
,

h ‖Π∗
Uh

(Wh · ∇uh)‖0, 3
2 ,Ω ≤ C h ‖Wh · ∇uh‖0, 32 ,Ω ≤ C h ‖Wh‖0,Ω ‖∇uh‖0,6,Ω

and then the global inverse inequality (2.5) between W 1,6(Ω) and H1(Ω),

‖∇uh‖0,6,Ω ≤ C h−1 |uh|1,Ω.

Thus,
h ‖Π∗

Uh
(Wh · ∇uh)‖0, 3

2 ,Ω ≤ C |w|1,Ω |uh|1,Ω. (3.37)

The last term is bounded using also (3.23):

h ‖Π∗
Uh

(ϕu⊥
h )‖0, 3

2 ,Ω ≤ C h ‖ϕu⊥
h ‖0, 3

2 ,Ω ≤ C h ‖ϕu⊥
h ‖0,Ω ≤ C ‖ϕ‖0,∞,Ω|uh|1,Ω.

Combining these estimates with (3.24) and (3.26), from (3.36) we have

h ‖Π∗
Uh

(∇xph)‖0, 32 ,Ω ≤ C (
1
μ

(1 + |w|1,Ω) +
1
√

μ
)
(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
. (3.38)

Therefore, we deduce (3.25) from (3.32) with (3.35) and (3.38).
Due the estimates (3.24) and (3.25), the sequence {(uh, ph)}h>0 is uniform bounded in H1

b (Ω)d−1 ×L
3
2
D,0(ω)

that is a reflexive space. Then, it contains a subsequence, that we still denote in the same way, weakly convergent
in that space to a pair (u, p). This pair is a solution of problem (3.5). The proof of this convergence is similar
to that performed in [14]. We skip the details here for brevity. �

3.1.2. The case of regular meshes

We assume that the operator Πh in (3.13) is an interpolation or projection operator from L2(Ω)d−1 into
(V l−1

h )d−1. We define the space Uh(Oi) = (V l
h(Oi) ∩ H1

0 (Oi))d−1, and recall the notation ‖ · ‖h,p for the norm
defined in (2.3).

Lemma 3.5. Assume that Hypothesis 2.1 holds. Then for any p ∈ (1, +∞) there exists a constant γp > 0
independent of h such that for all qh ∈ Mh,

γp‖qh‖Lp
D,0(ω) ≤ sup

vh∈Uh

(∇x · vh, qh)
|vh|1,s,Ω

+

(
R∑

i=1

(
sup

vh∈Uh(Oi)

|(∇x · vh, qh)Oi |p
|vh|p1,s,Oi

)) 1
p

+ ‖Π∗
h(∇xqh)‖h,p, (3.39)

where s is the conjugate exponent of p.

Proof. Given qh ∈ Ph we define its extension to Ω, q̃h, by (3.18). Let Jh be an interpolation or projection
operator from L2(Ω)d into (V l−1

h )d such that Jh|L2(Ω)d−1 = Πh. We use the inf-sup condition (2.7),

γp‖q̃h‖0,p,Ω ≤ sup
Vh∈Xh

(∇ ·Vh, q̃h)
|Vh|1,s,Ω

+

(
R∑

i=1

(
sup

Vh∈Xh(Oi)

|(∇ · Vh, q̃h)Oi |p
|Vh|p1,s,Oi

)) 1
p

+ ‖J∗
h(∇q̃h)‖h,p. (3.40)

On one hand,
‖q̃h‖0,p,Ω = ‖qh‖Lp

D,0(ω).

On the other hand, we have ∂z q̃h = 0 in Ω. Moreover, if V = (v, vhz) ∈ Xh then vhz = 0 on ∂Ω and also, if
V = (v, vhz) ∈ Xh(Oi) then vhz = 0 on ∂Oi. Thus,

sup
Vh∈Xh

(∇ ·Vh, q̃h)
|Vh|1,s,Ω

≤ sup
vh∈(V l

h∩H1
0 (Ω))d−1

(∇x · vh, qh)
|vh|1,s,Ω

≤ sup
vh∈Uh

(∇x · vh, qh)
|vh|1,s,Ω

, (3.41)
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and similarly

sup
Vh∈Xh(Oi)

(∇ · Vh, q̃h)Oi

|Vh|1,s,Oi

≤ sup
vh∈Uh(Oi)

(∇x · vh, qh)Oi

|vh|1,s,Oi

· (3.42)

Also, considering that ∇q̃h = (∇xqh, 0), we have

‖J∗
h(∇q̃h)‖0,p,Oi = ‖Π∗

h(∇xqh)‖0,p,Oi . (3.43)

Then, (3.39) follows from (3.40) by taking into account (3.41)–(3.43). �

We assume the following local stability properties of the operator Πh:

Hypothesis 3.6. The operator Πh satisfies for all v ∈ L2(Ω)d−1,

‖Πh(v)‖0,K ≤ C ‖v‖0,wK , (3.44)

‖Πh(v)‖0, 3
2 ,K ≤ C ‖v‖0, 32 ,wK

, (3.45)

where wK is the union of all elements of Th that intersect K.

This hypothesis is stronger than Hypothesis 3.3, but is also verified by local L2 projection or Lagrange
interpolation-based operators. However it is not verified by the global L2(Ω) projection operator.

Observe that as a consequence of (3.44), the operator Πh is also stable with respect to the norm ‖ · ‖τ :

‖Πh(v)‖τ ≤ C ‖v‖τ , ∀v ∈ L2(Ω)d−1. (3.46)

Theorem 3.7. Assume that Hypotheses 2.1, 3.1 and 3.6 hold. Then, the discrete problem (3.13) and (3.14)

with l = 1 in (3.7) admits a unique solution (uh, ph) ∈ Uh × Ph which is bounded in H1
b (Ω)d−1 × L

3
2
D,0(ω),

satisfying the estimates

|uh|1,Ω ≤ C

μ

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.47)

‖ph‖
L

3
2
D,0(ω)

≤ C (1 +
1
μ

+
1
√

μ
) (1 + |w|1,Ω)

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.48)

‖Π∗
h(Wh · ∇uh + ∇xph + ϕu⊥

h )‖τ ≤ C
√

μ

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
, (3.49)

where C is a constant independent of h.
Moreover, the sequence {(uh, ph)}h>0 contains a subsequence which is weakly convergent in H1

b (Ω)d−1 ×
L

3
2
D,0(ω) to a solution of the continuous problem (3.5). If this solution belongs to W 1,3

b (Ω)d−1, then the conver-
gence is strong.

Proof. The estimations (3.47) and (3.49) are obtained in the same way as in Theorem 3.4 but the estimate of
the pressure is now based on the inf-sup condition (3.39) with p = s = 2, when d = 2, or p = 3

2 and s = 3, when
d = 3. We indicate the estimates in this last case. To estimate the first summand in (3.39), we start from (3.33).
We treat all terms in the same way as before but to bound the term ‖Π∗

h(Wh ·∇vh +ϕv⊥
h )‖τ we have to argue

locally because in this case we only can use local inverse inequalities:
From (3.46),

‖Π∗
h(Wh · ∇vh + ϕv⊥

h )‖τ ≤ C ‖Wh · ∇vh + ϕv⊥
h ‖τ .

Moreover,

‖Wh · ∇vh‖2
τ =

∑
K∈Th

τK ‖Wh · ∇vh‖2
0,K ≤ α2

∑
K∈Th

h2
K ‖Wh‖2

0,K ‖∇vh‖2
0,∞,K .
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Then, using (3.11), the local inverse inequality (2.4) between W 1,∞(K) and W 1,3(K), and (2.1), we derive

‖Wh · ∇vh‖τ ≤ C |w|1,Ω |vh|1,3,Ω.

Likewise,

‖ϕv⊥
h ‖2

τ =
∑

K∈Th

τK ‖ϕv⊥
h ‖2

0,K ≤ α2

∑
K∈Th

h2
K ‖ϕ‖2

0,∞,Ω ‖vh‖2
0,K ≤ α2 ‖ϕ‖2

0,∞,Ω h ‖vh‖2
0,Ω.

So,
‖ϕv⊥

h ‖τ ≤ C ‖ϕ‖0,∞,Ω |vh|1,3,Ω.

Also from (3.46),

‖Π∗
Uh

(fh)‖τ ≤ C ‖fh‖τ .

In this way, we obtain (3.35).
To estimate the second summand in (3.39), we consider the variational formulation (3.13) and (3.14) with

vh ∈ Uh(Oi) and qh = 0. Then,

(∇x · vh, ph)Oi = (Wh · ∇uh,vh)Oi + μ (∇uh,∇vh)Oi + (ϕu⊥
h ,vh)Oi

+(Π∗
h(Wh · ∇vh + ϕv⊥

h ), Π∗
Uh

(ch))τ,Oi − (Π∗
h(Wh · ∇vh + ϕv⊥

h ), Π∗
Uh

(fh))τ,Oi − L(vh).
(3.50)

All terms in the right-hand side are estimated as before but here again we argue locally. For the stabilizing
term, we have:∣∣(Π∗

h(Wh · ∇vh + ϕv⊥
h ), Π∗

Uh
(ch))τ,Oi

∣∣ ≤ ‖Π∗
h(Wh · ∇vh + ϕv⊥

h )‖τ,Oi ‖Π∗
Uh

(ch)‖τ,Oi.

To estimate the first factor, we first observe that we have the local version of (3.46):

‖Π∗
h(Wh · ∇vh + ϕv⊥

h )‖τ,Oi ≤ C ‖Wh · ∇vh + ϕv⊥
h ‖τ,Oi,

because vh ∈ Uh(Oi). Now, we expand the terms ‖Wh · ∇vh‖τ,Oi and ‖ϕv⊥
h ‖τ,Oi:

‖Wh · ∇vh‖2
τ,Oi

=
∑

K∈Oi

τK‖Wh · ∇vh‖2
0,K

≤α2

∑
K∈Oi

h2
K‖Wh‖2

0,K ‖∇vh‖2
0,∞,K ≤ C |w|21,Ω

∑
K∈Oi

|vh|21,3,K ,

applying (3.15), (3.11), the local inverse inequality (2.4) between W 1,∞(K) and W 1,3(K) and (2.1). Next,

‖ϕv⊥
h ‖2

τ,Oi
=
∑

K∈Oi

τK ‖ϕv⊥
h ‖2

0,K

≤α2

∑
K∈Oi

h2
K ‖ϕ‖2

0,∞,Ω ‖vh‖2
0,K ≤ C ‖ϕ‖2

0,∞,Ω h2
∑

K∈Oi

|vh|21,3,K .

But ( ∑
K∈Oi

|vh|21,3,K

) 1
2

≤ C|vh|1,3,Oi ,

because the number of elements in Oi is bounded by a constant independent of h and i.
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Then, ∣∣(Π∗
h

(
Wh · ∇vh + ϕv⊥

h

)
, Π∗

Uh
(ch))τ,Oi

∣∣ ≤ C (1 + |w|1,Ω) |vh|1,3,Oi ‖Π∗
Uh

(ch)‖τ,Oi .

From here, applying Jensen’s inequality,
⎡
⎣ R∑

i=1

sup
vh∈Uh(Oi)

(
|(Π∗

h(Wh · ∇vh + ϕv⊥
h ), Π∗

Uh
(ch))τ,Oi |

|vh|1,3,Oi

) 3
2
⎤
⎦

2
3

≤ C (1 + |w|1,Ω)

(
R∑

i=1

‖Π∗
Uh

(ch)‖2
τ,Oi

) 1
2

≤ C (1 + |w|1,Ω)‖Π∗
Uh

(ch)‖τ ,

because the number of repetitions of a given element K in all macro-elements is bounded by a fixed constant
independent of h. Hence, by (3.49),

⎛
⎝ R∑

i=1

sup
vh∈Uh(Oi)

(
|(Π∗

h(Wh · ∇vh + ϕv⊥
h ), Π∗

Uh
(ch))τ,Oi |

|vh|1,3,Oi

) 3
2
⎞
⎠

2
3

≤ C
1
√

μ
(1 + |w|1,Ω)

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
.

We proceed in a similar way for the remaining terms and obtain

(
R∑

i=1

sup
vh∈Uh(Oi)

(
|(∇x · vh, ph)Oi |

|vh|1,3,Oi

) 3
2
) 2

3

≤ C (1 +
1
μ

+
1
√

μ
) (1 + |w|1,Ω)

(
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
.

(3.51)

It remains to estimate the third summand in (3.39). First, we write:

‖Π∗
h(∇xph)‖h, 32

≤ ‖Π∗
h(ch)‖h, 3

2
+ ‖Π∗

h(Wh · ∇uh)‖h, 3
2

+ ‖Π∗
h(ϕu⊥

h )‖h, 32
· (3.52)

Again we argue locally to bound the first term in the r.h.s. of (3.52). By definition,

‖Π∗
h(ch)‖h, 32

=

(
R∑

i=1

h
3
2
i ‖Π∗

Uh
(ch))‖

3
2
0, 3

2 ,Oi

) 2
3

.

To bound this term, it is convenient to use the function

H(x) =
∑

K∈Th

hKχK(x),

where χK is the characteritic function of K. Then (2.2) implies that

‖Π∗
h(ch)‖h, 3

2
≤ C

(
R∑

i=1

‖HΠ∗
h(ch)‖

3
2
0, 3

2 ,Oi

) 2
3

.

Since any element K ∈ Th belongs to at most M macro-elements, this yields

‖Π∗
h(ch)‖h, 3

2
≤ C

( ∑
K∈Th

‖HΠ∗
h(ch)‖

3
2
0, 3

2 ,K

) 2
3

.
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Finally, we associate with τk the analogue of H :

T (x) =
∑

K∈Th

τKχK(x).

Then we infer from (3.15) and Cauchy−Schwarz’s inequality:

‖Π∗
h(ch)‖h, 3

2
≤C

( ∑
K∈Th

‖
√

TΠ∗
h(ch)‖

3
2
0, 3

2 ,K

) 2
3

= C ‖
√

TΠ∗
h(ch)‖0, 3

2 ,Ω

≤C ‖
√

TΠ∗
h(ch)‖0,2,Ω = C ‖Π∗

h(ch)‖τ , (3.53)

which is bounded by (3.49).
To estimate the second term in the r.h.s. of (3.52), we use first the local stability of Πh:

‖Π∗
h(Wh · ∇uh)‖

3
2
h, 32

≤ C

R∑
i=1

h
3
2
i

∑
K∈Oi

‖Wh · ∇uh‖
3
2
0, 32 ,wK

.

Then we use the local quasi-uniformity of the mesh and the local inverse inequality (2.4) between W 1,6(K) and
W 1,2(K),

‖∇uh‖0,6,K ≤ C ρ−1
K ‖∇uh‖0,K .

Therefore

‖Π∗
h(Wh · ∇uh)‖

3
2
h, 32

≤C
∑

K∈Th

h
3
2
K‖Wh · ∇uh‖

3
2
0, 32 ,wK

≤ C
∑

K∈Th

h
3
2
K

(
1

ρK
‖Wh‖0,wk

‖∇uh‖0,wK

) 3
2

≤C
∑

K∈Th

‖Wh‖
3
2
0,wk

‖∇uh‖
3
2
0,wK

.

Hence,

‖Π∗
h(Wh · ∇uh)‖h, 32

≤C

( ∑
K∈Th

‖Wh‖
3
2
0,K‖∇uh‖

3
2
0,K

) 2
3

≤ C

( ∑
K∈Th

‖Wh‖6
0,K

) 1
6

|uh|1,Ω

≤C ‖Wh‖0,Ω|uh|1,Ω ≤ C |w|1,Ω |uh|1,Ω, (3.54)

by another application of Jensen’s inequality and (3.11). Similarly, we bound the last term in the r.h.s. of (3.52)
using again (3.45) and obtain

‖Π∗
h(ϕu⊥

h )‖h, 32
≤ C h ‖ϕ‖0,∞,Ω |uh|1,Ω. (3.55)

Then, from (3.52) and taking into account (3.53)–(3.55):

‖Π∗
h(∇xph)‖h, 32

≤
(

1
μ

(1 + |w|1,Ω) +
1
√

μ

) (
‖f‖H−1

b (Ω)
+ ‖g‖

H− 1
2 (Γs)

)
. (3.56)

Finally, we derive (3.48) from (3.39) by combining (3.35), (3.51) and (3.56). The rest of the proof follows as in
Theorem 3.4. �

Remark 3.8. When l > 1 in (3.7), Theorems 3.4 and 3.7 also hold if the constant α2 in (3.15) is small enough.
In this case, we have also to bound the term ‖Δuh‖τ . (See [14] for details).
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