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BORDERLINE WEIGHTED ESTIMATES FOR COMMUTATORS OF

SINGULAR INTEGRALS

CARLOS PÉREZ AND ISRAEL P. RIVERA-RÍOS

Abstract. In this paper we establish the following estimate

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ cT

ε2

ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

ML(logL)1+εw(x)dx

where w ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following
sharp Lp estimate

‖[b, T ]f‖Lp(w) ≤ cT (p′)
2
p2
(

p− 1

δ

)
1
p′

‖b‖BMO ‖f‖Lp(M
L(log L)2p−1+δw)

where 1 < p < ∞, w ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate
essentially contained in [18]:

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ cT [w]A∞

(

1 + log+[w]A∞

)2
ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

Mw(x)dx

We also obtain the analogue estimates for symbol-multilinear commutators for a wider
class of symbols.

1. Introduction

Motivated by a classical inequality due to C. Fefferman and E. Stein for the Hardy-
Littlewood maximal function, namely

‖Mf‖L1,∞(w) ≤ c

ˆ

Rn

|f |Mwdx

where M denotes the Hardy-Littlewood maximal operator and w is a weight, i.e. a locally
non negative integrable function, B. Muckenhoupt and R. Wheeden conjectured that

‖Hf‖L1,∞(w) ≤ c

ˆ

Rn

|f |Mwdx

where H is the Hilbert transform. This conjecture was recently disproved by M. C. Reguera
and C. Thiele [26] (see also [4] for the result in higher dimensions). The failure of this
conjecture was suggested by the first author in [20] where the following positive result was
obtained

(1) ‖Tf‖L1,∞(w) ≤ cε,T

ˆ

Rn

|f |ML(logL)ε(w)dx w ≥ 0,

where T is a Calderón-Zygmund operator (CZO). In the recent work [10], T. Hytönen and
the first author improved the control on the cε,T constant and were able to consider the
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2 CARLOS PÉREZ AND ISRAEL P. RIVERA-RÍOS

maximal singular operator T ∗ obtaining the following estimate (see [6] for an improvement
of this result)

(2) ‖T ∗f‖L1,∞(w) ≤
cT

ε

ˆ

Rn

|f(x)|ML(logL)ε(w)(x)dx w ≥ 0

which implies

(3) ‖T ∗f‖L1,∞(w) ≤ cT log (e + [w]A∞
)

ˆ

Rn

|f |Mwdx,

when w ∈ A∞. This result improves the main theorem from [15], namely

(4) ‖T ∗‖L1(w)→L1,∞(w) ≤ cT [w]A1 log (e+ [w]A∞
) .

It seemed that the logarithmic factor was superfluous and that it could be removed. However,
this is not the case by a very impressive negative result obtained by F. Nazarov, A. Reznikov,
V. Vasyunin and A. Volberg in [17]. In this work the authors disprove the so called A1

conjecture, namely they prove

sup
w∈A1

‖H‖L1(w)→L1,∞(w)

[w]A1

= ∞

where H is the classical Hilbert transform. Furthermore, the same conclusion holds if the
linear constant [w]A1 is replaced by [w]A1 log(e + [w]A1)

α for a positive α < 1
5
. This is

indicating that most probably (4) is fully optimal.
The main purpose of this paper is to prove estimates similar to (2) for commutators of

CZOs T with BMO functions b, usually called the symbol. These operators are defined
formally by the expression

[b, T ]f = bT (f)− T (b f),

These commutators were introduced by Coifman, Rochberg and Weiss in [3] in connection
with the classical factorization theorem for Hardy spaces. However, many other applica-
tions were found much later, specially in the theory of elliptic operators [13], [2]. Another
interesting aspect of the theory is its connection with the following nonlinear commutators
introduced by R. Rochberg and G. Weiss in [27]:

f → Nf = T (f log |f |)− Tf log |Tf |.
This operator is interesting due to its relationship with the Jacobian mapping and with
nonlinear P.D.E. as shown in [12] and [8].

The main result from [3] states that [b, T ] is a bounded operator on Lp(Rn), 1 < p < ∞,
when b is a BMO function and T is a singular integral operator. In fact, the BMO condition
of b is also a necessary condition for the Lp-boundedness of the commutator when T is the
Hilbert transform.

From the theoretical point of view, these commutators are of interest because they are more
singular than CZOs. For instance, the first author proved in [21] that these commutators
are not of weak type (1, 1) obtaining a suitable replacement, namely the following L logL
endpoint estimate:

w ({x ∈ Rn : |[b, T ] f(x)| > λ}) ≤ c

ˆ

Rn

Φ

( |f |
λ
‖b‖BMO

)

wdx

where Φ(t) = t
(

1 + log+(t)
)

, w ∈ A1 and the constant c depends upon the A1 constant of
the weight. The approach to prove this result was based on an appropriate non-standard
good-λ inequality using the Fefferman-Stein “sharp” maximal function. However, this method
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does not produce good results for further developments and in particular when considering
non-A∞ weights.

Later on, the first author together with G. Pradolini ([23]) established the following esti-
mate for arbitrary weights w ≥ 0,

w ({x ∈ Rn : |[b, T ] f(x)| > λ}) ≤ cT,ε

ˆ

Rn

Φ

( |f |
λ
‖b‖BMO

)

ML(logL)1+εwdx

for any ε > 0. The aim of this paper is to give a quantitative version of this estimate with a
good control on the constant CT,ε in terms of ε. In the simplest situation our estimate can
be stated as follows

(5) w ({x ∈ Rn : |[b, T ] f(x)| > λ}) ≤ cT

ε2

ˆ

Rn

Φ

( |f |
λ
‖b‖BMO

)

ML(logL)1+εwdx.

See Theorem 2 for the general situation. In fact, we will obtain a wider class of results
since we will be considering symbol-multilinear commutators with symbols in OscexpLs classes
which are subspaces of the BMO space (cf. Section 3.2). We will see that this choice of
symbols will be reflected in the maximal operator on the right hand side of the inequality.
As a consequence of these type of estimates we can recover, among other results, the following
endpoint A1 result from C. Ortiz [18] (see Corollary 1):

w ({x ∈ Rn : |[b, T ] f(x)| > λ}) ≤ cT Φ ([w]A1)
2

ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

w(x)dx.

Estimate (5) should be compared with the case of CZOs (2). It is not clear whether is
possible or not to establish (5) using techniques based on sparse operators as in [6]. Another
open question is the analogue of the Muckenhoupt-Wheeden conjecture for the commutator,
namely whether

w ({x ∈ Rn : |[b, T ] f(x)| > λ}) ≤ cw

ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

M2(w)(x)dx.

holds for every weight w or not. Techniques used in [26] and [4] rely upon an endpoint
extrapolation result, firstly established in [5], or upon variations of it as in [6]. It is not clear
how to perform a similar extrapolation from the L logL estimate that commutators satisfy.

This paper is organized as follows: Section 2 contains the statements of our main results
and the proof of Corollary 1. Section 3 contains precise definitions and facts which will
be used throughout the paper. In section 4 we give the proof of the strong type theorem,
namely Theorem 1, and all the needed technical results. The proof of the endpoint estimate
(Theorem 2) is presented in Section 5.

Acknowledgments

The authors are very grateful to Carmen Ortiz-Caraballo for her interest in this work and
for suggesting some improvement in the presentation of the paper. We also wish to thank
the referee for valuable comments on the paper.

2. Main results

To state our main results we need to introduce some notation. Let bi ∈ OscexpLsi si ≥ 1,
i = 1, · · · , k (cf. section 3.2 after Lemma 1) and T a CZO with associated kernel K. We
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define the symbol-multilinear commutator with respect to the symbol ~b = (b1, . . . , bk) as
follows

T~bf(x) =

ˆ

Rn

k
∏

i=1

(bi(x)− bi(y))K(x, y)f(y)dy

We also denote
1

s
=

k
∑

i=1

1

si

and

‖~b‖ =

k
∏

i=1

‖bi‖OscexpLsi
.

Our main results are the following.

Theorem 1. Let be T~b defined as above and let w be a weight. Then

‖T~bf‖Lp(w) ≤ cT (p′)
k+1

p1+
1
s

(

p− 1

δ

) 1
p′

‖~b‖ ‖f‖Lp(M
L(logL)

(1+ 1
s )p−1+δ

w)

for every δ ∈ (0, 1) and p ∈ (1,∞).

This result can be applied to derive the following endpoint estimate.

Theorem 2. Let be T~b and w as above. Then

w
({

x ∈ Rn :
∣

∣T~bf
∣

∣ > λ
})

≤ cT

εk+1

ˆ

Rn

Φ 1
s

(

‖~b‖|f(x)|
λ

)

M
L(logL)

1
s+εw(x)dx

for every ε ∈ (0, 1) where Φρ(t) = t(1 + log+(t))ρ, ρ > 0.

There is an interesting application of Theorem 2 from which we can recover one of the
main results of [18].

Corollary 1. Let T be a CZO and let b ∈ BMO.

(1) If w ∈ A∞ then

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ c[w]A∞

(

1 + log+[w]A∞

)2
ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

Mw(x)dx,

(2) If w ∈ A1 then

w ({x ∈ Rn : |[b, T ]f(x)| > λ})

≤ c[w]A1[w]A∞

(

1 + log+[w]A∞

)2
ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

w(x)dx

≤ cΦ ([w]A1)
2

ˆ

Rn

Φ

(

‖b‖BMO

|f(x)|
λ

)

w(x)dx

where Φ(t) = t(1 + log+ t).

Proof. For the proof of the corollary we follow the arguments in [10]. First observe that for
every α > 0 we have that log t ≤ tα

α
. Then we can write

log(t)1+ε ≤ tα(1+ε)

α1+ε
,

and hence

ML(logL)1+εw ≤ 1

α1+ε
ML1+α(1+ε) .
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Let us take α = 1
cn[w]A∞

(1+ε)
. Then, using the reverse Hölder inequality (Theorem 3),

1

ε2
ML(logL)1+ε ≤ 1

ε2
[cn[w]A∞

(1 + ε)]1+ε
ML1+α(1+ε)w

≤ 2

ε2
[cn[w]A∞

(1 + ε)]1+ε
Mw.

If we choose ε = 1
1+log+([w]A∞

)
we obtain the desired results just recalling that [w]A∞

≤ [w]A1.

�

3. Preliminaries and notation

In this section we gather some definitions and properties which will be used throughout
the paper.

3.1. Ap weights. We recall that a weight w belongs to the class Ap, 1 < p < ∞, if

[w]Ap = sup
Q

(

1

|Q|

ˆ

Q

w

)(

1

|Q|

ˆ

Q

w
− 1

p−1

)p−1

< ∞.

A weight w belongs to the class A1 if there is a finite constant C such that

1

|Q|

ˆ

Q

w(y) dy ≤ C inf
Q

w,

and the infimum of these constants C is called the A1 constant of w denoted by [w]A1 . Since
the Ap classes are increasing with respect to p, the A∞ class of weights is defined in a natural
way by A∞ = ∪p>1Ap. These classes of weights were introduced by B. Muckenhoupt in [16]
where it was shown that for 1 < p < ∞

w ∈ Ap ⇐⇒ M : Lp(w) −→ Lp(w)

and also

w ∈ A1 ⇐⇒ M : L1(w) −→ L1,∞(w).

From the definition of A∞ it is not clear how to define an appropriate constant. However,
Fujii proved essentially in [7] another characterization:

w ∈ A∞ ⇐⇒ [w]A∞
= sup

Q

1

w(Q)

ˆ

Q

M(χQw)dx < ∞

which was also rediscovered later on by Wilson in [29]. Recently, this quantity was defined
as the A∞ constant in [9] since it was proved to be the most suitable one. In particular, the
following optimal reverse Hölder’s inequality obtained in [9] (see also [11] for a better proof
and [28] for some other related results) was used in the proof of Corollary 1.

Theorem 3. Let w ∈ A∞, then there exists a dimensional constant τn such that

(

1

|Q|

ˆ

Q

wrw

)
1
rw

≤ 2

|Q|

ˆ

Q

w.

where

rw = 1 +
1

τn[w]A∞
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3.2. Orlicz maximal functions. We recall that Φ is a Young function if it is a continuous,
nonnegative, strictly increasing and convex function defined on [0,∞) such that Φ(0) = 0 and
limt→∞Φ(t) = ∞. We define the localized Luxembourg norm of a function f with respect to
a Young function Φ as follows

‖f‖Φ,Q = ‖f‖Φ(L),Q = inf

{

λ > 0 :
1

|Q|

ˆ

Q

Φ

( |f(x)|
λ

)

dx ≤ 1

}

which is equivalent to the following

‖f‖′Φ,Q = inf
µ>0

{

µ+
µ

|Qj |

ˆ

Qj

Φ

( |f(x)|
µ

)

dx

}

.

This result is due to Krasnosel’skĭı, M. A. and Rutickĭı, Ja. B. [14, p. 92] (see also [25, p.
69]). In fact,

‖f‖Φ,Q ≤ ‖f‖′Φ,Q ≤ 2‖f‖Φ,Q

which will be quite useful for our purposes. Observe that the case Φ(t) = t corresponds to the
usual average and we can see these localized norms as a “different” way of taking averages.
We can also define the maximal function associated to Φ as

MΦf(x) = sup
x∈Q

‖f‖Φ,Q.

Some useful examples that will be quite useful in the sequel are L logL functions

Φρ(t) = t(1 + log+(t))ρ with t ≥ 0

where log+(t) = χ(1,∞)(t) log(t) and ρ > 0. For such Φ we shall denote

‖f‖Φ,Q = ‖f‖L(logL)ρ,Q.
Another useful property that makes interesting these “non-standard averages” is the fol-

lowing generalized Hölder inequality.

Lemma 1. Let Φ0,Φ1,Φ2, . . . ,Φk be Young functions. If

(6) Φ−1
1 (t)Φ−1

2 (t) . . .Φ−1
k (t) ≤ κΦ−1

0 (t).

then for all functions f1, . . . , fm and all cubes Q we have that

‖f1f2 . . . fk‖Φ0,Q ≤ kκ‖f1‖Φ1,Q‖f2‖Φ2,Q . . . ‖fk‖Φk,Q.

A particular case of interest, an especially in this paper, are the spaces defined by

‖f‖OscexpLs = sup
Q

‖f − fQ‖Ψs,Q

where

Ψs(t) = et
s − 1 t ≥ 0,

with s > 0, is a Young function. Then the space OscexpLs is defined as

OscexpLs =
{

f ∈ L1
loc(R

n) : ‖f‖OscexpLs < ∞
}

.

We observe that John-Nirenberg’s theorem yields BMO = OscexpL. It’s also clear that for
every s > 1

OscexpLs ( BMO.

Now we state a result borrowed from [24] that will be used in the proof of Theorem 2.
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Lemma 2. Let Φ0, . . . ,Φk be continuous, nonnegative, strictly increasing functions on [0,∞)
with Φ(0) = 0 and limt→∞Φ(t) = ∞ such that

Φ−1
1 (t)Φ−1

2 (t) . . .Φ−1
k (t) ≤ Φ−1

0 (t) t ≥ 0,

then for all 0 ≤ x1, x2, . . . , xk < ∞

Φ0(x1x2 . . . xk) ≤ Φ1(x1) + Φ2(x2) + · · ·+ Φk(xk).

To close this section we provide a proof of Lemma 1 and also a corollary of it that will be
quite useful in the proof of Theorem 2.

Proof. Fix (x1, . . . , xk) and consider t0 = Φ1(x1)+Φ2(x2)+ · · ·+Φk(xk). Combining (6) and
the fact that each Φi is increasing it readily follows that

Φ0

(

Φ−1
1 (t0)Φ

−1
2 (t0) . . .Φ

−1
k (t0)

κ

)

≤ t0

and also that

Φ−1
i (t0) ≥ Φ−1

i (Φi(xi)) = xi.

Then we have that

(7) Φ0

(x1x2 . . . xk

κ

)

≤ Φ1(x1) + Φ2(x2) + · · ·+ Φk(xk)

We observe that this argument gives us a proof of Lemma 2. Coming back to our proof, let
us consider now ti > ‖fi‖Φi,Q. We have that using 7,

1

m

1

|Q|

ˆ

Q

Φ0

( |f1 . . . fk|
κt1 . . . tk

)

≤ 1

m

(

1

|Q|

ˆ

Q

Φ1

( |f1|
t1

)

+ · · ·+ 1

|Q|

ˆ

Q

Φk

( |fk|
tk

))

< 1

Consequently

‖f1 . . . fk‖Φ0,Q ≤ κt1 . . . tk

and it is enough to take the infimum on each ti to finish the proof of the lemma. �

As a particular case, the following corollary holds which will be used several times in this
paper.

Corollary 2. Let s1, . . . , sk ≥ 1 and denote
∑k

i=1
1
si
. Then

1

|Q|

ˆ

Q

|f1 . . . fkg| ≤ cs‖f1‖expLs1 ,Q . . . ‖fk‖expLs
k
,Q‖g‖

L(logL)
1
s ,Q

Proof. We denote ϕη(t) = et
η − 1. Then ϕ−1

η (t) = log(x+ 1)
1
η and we have that

ϕ−1
s1
(t) . . . ϕ−1

sk
(t)Φ−1

1
s

(t) ≃ ϕ−1
s1
(t) . . . ϕ−1

sk
(t)

x

log (x+ 1)
1
s

≤ x

and Lemma 1 gives the desired result. �
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3.3. Symbol-multilinear commutators. We recall that an operator T initially defined on
the Schwartz spaces and taking values into the space of tempered distributions T : S(Rn) →
S ′(Rn) is a CZO if,

(1) T is bounded on L2(Rn).
(2) For each smooth and compactly supported function f , Tf admits the following rep-

resentation

Tf(x) =

ˆ

Rn

K(x, y)f(y)dy x 6∈ supp f

where K is a standard kernel. Recall that a kernel K : Rn×Rn \∆ −→ R, where ∆ is
the diagonal in Rn ×Rn, is a locally integrable function such that for some constants
C1, C2, γ > 0 the following conditions hold:
(a) Size condition

|K(x, y)| ≤ C1
1

|x− y|n if x 6= y.

(b) Regularity condition

|K(x, y)−K(x′, y)|+ |K(y, x′)−K(y, x)| ≤ C2
|x− x′|γ
|x− y|n+γ

provided that |x− x′| ≤ 1
2
|x− y|.

The symbol-multilinear commutator T~b with vector symbol~b = (b1, · · · , bk), bi ∈ OscexpLsi , i =
1, · · · , k, and CZO T with kernel K is defined for smooth functions f as follows

T~bf(x) =

ˆ

Rn

k
∏

i=1

(bi(x)− bi(y))K(x, y)f(y)dy x 6∈ supp f.

Let b = {b1, b2, . . . , bk} be a set of symbols with bi ∈ OscexpLsi , i = 1, · · · , k. Also, let
b = σ ∪ σ′ where σ and σ′ are pairwise disjoint sets be a splitting of b. If we identify i and bi
we can introduce the following notation

(b(x)− λ)σ =
∏

i∈σ
(bi(x)− λi)

where λ = (λ1, λ2, . . . , λk) and also to write
∑

i∈σ
1
si
.

By Cj(b) we refer the family of all the subsets σ of b such that #σ = j. We shall also omit
the set of symbols and write just Ck

j . Finally if σ is a subset of b we write

T~σf(x) =

ˆ

Rn

∏

i∈σ
(bi(x)− bi(y))K(x, y)f(y)dy =

ˆ

Rn

(b(x)− b(y))σ K(x, y)f(y)dy x 6∈ supp f.

We end this section with some further notation. We write

‖~b‖ =
∏

bi∈b
‖bi‖OscexpLsi

and similarly

‖~σ‖ =
∏

bi∈σ
‖bi‖OscexpLsi

.

We will denote by #σ the cardinal of the set of symbols σ.
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3.4. Some estimates involving the sharp function. In this paper we will use two clas-
sical operators and some of their variations. The first one is the Hardy-Littlewood maximal
operator,

Mf(x) = sup
x∈Q

1

|Q|

ˆ

Q

|f(y)|dy,

where each Q is a cube with sides parallel to the axis. Also, Md will denote its dyadic
version, where the supremum is taken over dyadic cubes. We will also use the following
variants, Mε(f) = M(|f |ε) 1

ε , and similarly for Md
ε where ε ∈ (0,∞). The second operator is

the Fefferman-Stein sharp maximal function, namely

M ♯f(x) = sup
x∈Q

1

|Q|

ˆ

Q

|f(y)− fQ| dy,

and its dyadic counterpart M ♯,d. Similarly as above we define the following useful variation

M
♯
δ(f) = M ♯(|f |δ) 1

δ

with δ ∈ (0,∞).
The first result that we state in this section is borrowed from [19].

Lemma 3. Let 0 < p < ∞, 0 < δ < 1 and let w ∈ A∞. Then

‖f‖Lp(w) ≤ cp[w]A∞

∥

∥

∥M
♯,d
δ f
∥

∥

∥

Lp(w)

for any function f such that |{x : |f(x)| > t}| < ∞ for all t > 0.

Using the preceding lemma and following the proof of Lemma 3.1 in [18] we can derive the
following improvement.

Lemma 4. Let 0 < p < ∞, 0 < ε ≤ 1 and w ∈ A∞. Suppose that

|{x : |f(x)| > t}| < ∞
for all t > 0. Then there is a constant c = cn,ε such that

∥

∥Md
ε f
∥

∥

Lp(w)
≤ cp[w]A∞

∥

∥M ♯,d
ε f

∥

∥

Lp(w)

Proof. Applying previous lemma with δ = ε0 and 0 < ε0 < ε < 1
∥

∥Md
ε f
∥

∥

Lp(w)
≤ cp[w]A∞

∥

∥M ♯,d
ε0

(

Md
ε f
)∥

∥

Lp(w)
.

Now it suffices to prove that

M ♯,d
ε0

(

Md
ε f
)

(x) ≤ cM ♯,d
ε f(x).

But this was done in Lemma 3.1 of [18]. �

The reason why it is important to deal with M ♯
ε for small ε will be clear after the following

pointwise estimate proved in [24].

Lemma 5. Let T~b be the symbol-multilinear commutator defined above and let 0 < δ < ε < 1.
Then there exists a constant c > 0, depending only on δ and ε such that

M
♯
δ

(

T~bf
)

(x) ≤ cδ,ε



‖~b‖M
L(logL)

1
s
(f) +

k
∑

j=1

∑

σ∈Ck
j

‖~σ‖Mε

(

T ~bσ′
f
)

(x)





for any bounded function f with compact support.
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The first result, corresponding to the case k = 0, namely

(8) M
♯
δ (Tf)(x) ≤ cδ Mf(x) 0 < δ < 1

can be found in [1] and the case k = 1 was established in [21].

4. Proof of Theorem 1

In this section we prove Theorem 1. The first two subsections will be devoted to the core
of the proof for all the cases, namely k = 1 and k > 1. Both cases rely upon a two weight
inequality that will be established in the third subsection. A careful control of some Young’s
functions inverses will be required to obtain that two weight inequality.

4.1. Case k = 1.

Proof. In this proof we follow techniques in [15] and [18]. Let us call v = M
L(logL)(1+

1
s)p−1+δ

w.

If κ = cT (p′)2 p1+
1
s

(

p−1
δ

)
1
p′ , by duality, it suffices to show that

∥

∥

∥

∥

[b, T ]tf

v

∥

∥

∥

∥

Lp′ (v)

≤ κ

∥

∥

∥

∥

f

w

∥

∥

∥

∥

Lp′ (w)

Where [b, T ]t is the adjoint of [b, T ]. Calculating the norm by duality allows us to find a
non-negative function h ∈ Lp(v) with ‖h‖Lp(v) = 1 such that

∥

∥

∥

∥

[b, T ]tf

v

∥

∥

∥

∥

Lp′ (v)

=

ˆ

Rn

|[b, T ]tf |
v

hvdx =

ˆ

Rn

|[b, T ]t|f hdx = I.

Let us consider the operator

S(h) =
M
(

hv
1
p

)

v
1
p

.

We build the Rubio de Francia algorithm R using the operator S.

R(h) =
∞
∑

k=0

1

2k
Sk(h)

‖S‖k
Lp(v)

.

R satisfies the following properties:

(1) 0 ≤ h ≤ R(h)
(2) ‖R(h)‖Lp(v) ≤ 2‖h‖Lp(v)

(3) R(h)v
1
p ∈ A1 and furthermore

[

R(h)v
1
p

]

A1

≤ cp′.

Using Lemma 4.2 in [10]
[

v
1
2p

]2

A1

≤ cn

Taking that into account

[Rh]A3 =

[

R(h)v
1
p

(

v
− 1

p(1−q)

)1−q
]

Aq

≤
[

R(h)v
1
p

]

A1

[

v
1
2p

]2

A1

≤ cnp
′
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Applying Lemma 3, with p = 1, w = Rh and γ ∈ (0, 1), together with [Rh]A∞
≤ [Rh]A3 ≤

cnp
′, we have

I ≤
ˆ

Rn

∣

∣[b, T ]tf
∣

∣Rhdx

≤ cn[Rh]A∞

ˆ

Rn

M ♯
γ([b, T ]

tf)Rh(x)dx ≤ cnp
′
ˆ

Rn

M ♯
γ([b, T ]

tf)Rh(x)dx

Now we observe that [b, T ]t = − [b, T t]. Consequently, [b, T ]t is a commutator and if we
choose ε ∈ (δ, 1) in Lemma 5 we can continue with

≤ cnp
′‖b‖OscexpLs

[
ˆ

Rn

M
L(logL)

1
s
f(x)Rh(x)dx+

ˆ

Rn

Mε

(

T tf
)

(x)Rh(x)dx

]

= cnp
′‖b‖OscexpLs (I1 + I2)

To estimate I1 we use Hölder’s inequality and the second property of the operator R

I1 =

ˆ

Rn

M
L(logL)

1
s
f(x)Rh(x)dx ≤

(
ˆ

Rn

M
L(logL)

1
s
f(x)p

′

v(x)1−p′dx

)
1
p′
(
ˆ

Rn

Rh(x)pv(x)dx

)
1
p

≤ 2

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

To bound I2 we apply lemma 4 with w = Rh and p = 1

I2 ≤ cn[Rh]A∞

ˆ

Rn

M ♯
ε(T

tf)(x)Rh(x)dx ≤ cnp
′
ˆ

Rn

M ♯
ε(T

tf)(x)Rh(x)dx.

Using now (8) for the adjoint of T , namely, M ♯
ε(T

tf) ≤ cεMf , we have

I2 ≤ cn,εp
′
ˆ

Rn

MfRh.

Proceeding now as we did for I1 we derive to

I2 ≤ cnp
′
∥

∥

∥

∥

Mf

v

∥

∥

∥

∥

Lp′(v)

.

Consequently
∥

∥

∥

∥

[b, T ]tf

v

∥

∥

∥

∥

Lp′(v)

≤ cn (p
′)2 ‖b‖OscexpLs

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

,

and recalling that v = M
L(logL)(1+

1
s)p−1+δ

w, everything is reduced to establish the following

inequality,

(9)

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

≤ cnp
1+ 1

s

(

p− 1

δ

)
1
p′
∥

∥

∥

∥

f

w

∥

∥

∥

∥

Lp′(w)

which will be proved in Lemma 6 below. This concludes the proof of the Theorem in the
case k = 1.

�
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4.2. Case k > 1.

Proof. Due to the homogeneity of the operator we may assume that

‖b1‖OscexpLs1
= ‖b2‖OscexpLs2

= · · · = ‖bk‖OscexpLsk
= 1

Let us denote v = M
L(logL)(1+

1
s)p−1+δ

w. If κ = cT (p′)k+1
p1+

1
s

(

p−1
δ

)
1
p′ , by duality, it suffices

to show that
∥

∥

∥

∥

∥

T t
~b
f

v

∥

∥

∥

∥

∥

Lp′(v)

≤ κ

∥

∥

∥

∥

f

w

∥

∥

∥

∥

Lp′ (w)

,

where T t
~b

is the adjoint of T~b. Using duality we can find a non-negative function h ∈ Lp(v)

with ‖h‖Lp(v) = 1 such that
∥

∥

∥

∥

∥

T t
~b
f

v

∥

∥

∥

∥

∥

Lp′(v)

=

ˆ

Rn

|T t
~b
f |
v

hvdx =

ˆ

Rn

|T t
~b
f | hdx = I.

As in the case k = 1 we use again Lemma 3 with p = 1, w = Rh and γ ∈ (0, 1). Hence, since
[Rh]A∞

≤ [Rh]A3 ≤ cnp
′, we have

I ≤
ˆ

Rn

∣

∣T t
~b
f
∣

∣ Rhdx

≤ cn[Rh]A∞

ˆ

Rn

M ♯
γ(T

t
~b
f)Rhdx ≤ cnp

′
ˆ

Rn

M ♯
γ(T

t
~b
f)Rhdx

T t
~b
f is a commutator so if we take ε ∈ (γ, 1) Lemma 5 yields

cnp
′
ˆ

Rn

M ♯
γ

(

T t
~b
f
)

Rh(x)dx

≤ cnp
′





ˆ

Rn

M
L(logL)

1
s
f(x)Rhdx+

k
∑

j=1

∑

σ∈Ck
j

ˆ

Rn

Mε

(

T t
~σ′
f
)

Rhdx





= cnp
′(I1 + I2)

Now we have to estimate I1 and I2. For I1 we proceed as in the case k = 1 obtaining

I1 ≤ 2

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

To estimate I2 we need to control each term of the sum. To accomplish this we claim that
for every ε ∈ (0, 1):

(10)

ˆ

Rn

Mε

(

T t
~σ′
f
)

(x)Rh(x)dx ≤ cΓ(#σ′)(p′)#σ′+1

ˆ

Rn

M
L(logL)

∑

i∈σ′
1
si
f(x)Rh(x)dx

where

Γ(j) =











1 j = 0

2 j = 1

2 +
∑j−1

i=1

(

j

i

)

Γ(i) j > 1

which will be proved by induction on the number of symbols of T t
~σ′
, i.e., #σ′. For simplicity

with the notation, we prove the claim for T~σ′ instead of T t
~σ′
. We can do this since both them
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are commutators with the same number of symbols. Let us call m = #σ′. If the number of
symbols is zero T~σ′ = T and then combining Lemma 4 and (8) we obtain

ˆ

Rn

Mε (Tf) (x)Rh(x)dx ≤ cp′
ˆ

Rn

Mf(x)Rh(x)dx

since we assume
∑

i∈∅
1
si
= 0. If m = 1, then T~σ′ = [b1, T ]. Applying Lemma 4 with w = Rh,

p = 1 we have that
ˆ

Rn

Mε ([b1, T ]f) (x)Rhdx ≤ cn[Rh]A3

ˆ

Rn

M ♯
ε([b1, T ]f)Rhdx

≤ cnp
′
ˆ

Rn

M ♯
ε([b1, T ]f)Rhdx

Now, if we take 0 < ε < ε̃ < 1, Lemma 5 produces the following bound of the last expression

≤ cp′
ˆ

Rn

M
L(logL)

1
s1
f(x)Rh(x)dx+ cp′

ˆ

Rn

Mε̃(Tf(x))Rh(x)dx

≤ cp′
ˆ

Rn

M
L(logL)

1
s1
f(x)Rh(x)dx+ c(p′)2

ˆ

Rn

Mf(x)Rh(x)dx

≤ 2c(p′)2
ˆ

Rn

M
L(logL)

1
s1
f(x)Rh(x)dx.

This proves claim (10) in the case m = 1. Let us suppose now that the result holds for
0 ≤ l < m symbols, namely, if 0 ≤ #τ < m, then for every ε ∈ (0, 1)

ˆ

Rn

Mε (T~τf) (x)Rhdx ≤ cΓ(#τ)(p′)#τ+1

ˆ

Rn

M
L(logL)

∑
i∈τ

1
si
f(x)Rhdx

Combining Lemma 4, with w = Rh and p = 1, and Lemma 5 we have for ε < ε̃ < 1,
ˆ

Rn

Mε

(

T~σ′f
)

Rhdx

≤ cp′
ˆ

Rn

M
L(logL)

∑

i∈σ′

1
si
f Rhdx+

m
∑

j=1

∑

τ∈Cm
j

cp′
ˆ

Rn

Mε̃

(

T ~bτ ′
f
)

Rhdx

≤ cp′
ˆ

Rn

M
L(logL)

∑

i∈σ′

1
si
f Rhdx+

k
∑

j=1

∑

τ∈Ck
j

cp′
ˆ

Rn

Mε̃

(

T ~bτ ′
f
)

Rhdx.

Using now the induction hypothesis we continue with

≤ cp′
ˆ

Rn

M
L(logL)

∑

i∈σ′

1
si
f(x)Rhdx+

m
∑

j=1

∑

τ∈Cm
j

Γ(#τ ′)c(p′)#τ ′+1

ˆ

Rn

M
L(logL)

∑
i∈τ ′

1
si
f(x)Rhdx

≤ cp′
ˆ

Rn

M
L(logL)

∑

i∈σ′

1
si
f(x)Rhdx+





m
∑

j=1

∑

τ∈Cm
j

Γ(#τ ′)



 (p′)m+1

ˆ

Rn

M
L(logL)

∑
i∈σ′

1
si
f(x)Rhdx

≤



1 +
m
∑

j=1

∑

τ∈Cm
j

Γ(#τ ′)



 c(p′)k+1

ˆ

Rn

M
L(logL)

∑
i∈σ′

1
si
f(x)Rhdx.



14 CARLOS PÉREZ AND ISRAEL P. RIVERA-RÍOS

It’s easy to check that

1 +

m
∑

j=1

∑

τ∈Cm
j

Γ(#τ ′) = Γ(m)

Then the main claim (10) is proved in full generality. This yields, combining estimates

I2 ≤ cn,k,δ,ε (p
′)
k+1

ˆ

Rn

M
L(logL)

1
s
f(x)Rhdx.

Proceeding as we did for I1 we obtain the following estimate

I2 ≤ cn,δ,ε (p
′)
k+1

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

.

Consequently
∥

∥

∥

∥

∥

T t
~b
f

v

∥

∥

∥

∥

∥

Lp′(v)

≤ cn (p
′)
k+1

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

.

This concludes the proof since by Lemma 6
∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′ (v)

≤ cp1+
1
s

(

p− 1

δ

)
1
p′
∥

∥

∥

∥

f

w

∥

∥

∥

∥

Lp′(w)

that v = M
L(logL)(1+

1
s)p−1+δ

w. �

4.3. A key two weight inequality. As we already mentioned, we prove the following
lemma that was used several times during the proof of Theorem 1.

Lemma 6. Let w ≥ 0 be a weight. Let s ≥ 1 and 0 < δ < 1. Then for every p ∈ (1,∞) we
have that

(11)

∥

∥

∥

∥

∥

M
L(logL)

1
s
f

v

∥

∥

∥

∥

∥

Lp′(v)

≤ cp1+
1
s

(

p− 1

δ

)
1
p′
∥

∥

∥

∥

f

w

∥

∥

∥

∥

Lp′ (w)

.

where v = M
L(logL)(1+

1
s)p−1+δ

w.

The proof of this lemma will follow ideas from [22]. In particular, we are going to obtain
a precise version of the two weight inequality that appears in the proof of Theorem 2 of that
work. To do that we need precise estimates of the following inverse functions.

Lemma 7. Let ρ > 0, Aρ(t) = t
(

1 + log+ (t)
)ρ

and Xρ(t) =
t

(1+log+(t))
ρ . Then

(

1

1 + ρ

)ρ

t ≤ Xρ(Aρ(t)) ≤ t.

Proof. Observe that

Xρ(Aρ(t)) =
t
(

1 + log+ (t)
)ρ

(

1 + log+
(

t
(

1 + log+ (t)
)ρ))ρ

The upper bound is straightforward since
(

1 + log+ (t)
)ρ ≤

(

1 + log+
(

t
(

1 + log+ (t)
)ρ))ρ

.
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Now we prove the lower bound. It suffices to prove that

1 + log+ (t)

1 + log+
(

t
(

1 + log+ (t)
)ρ) ≥ 1

1 + ρ
.

If 0 < t ≤ 1 there’s nothing to prove since log+ (t) = log+
(

t
(

1 + log+ (t)
)ρ)

= 0. Suppose
now that t > 1. Then we have that

1 + log+ (t)

1 + log+
(

t
(

1 + log+ (t)
)ρ) =

1 + log (t)

1 + log (t (1 + log (t))ρ)

=
1 + log (t)

1 + log (t) + ρ log (1 + log (t))
≥ 1 + log (t)

1 + log (t) + ρ (1 + log (t))

=
1

1 + ρ
.

�

Lemma 8. Let ρ > 1, Aρ(t) = t
(

1 + log+ (t)
)ρ

and X̃ρ(t) = t
(

1+log+
(

t
tρ

))ρ with tρ = ρρ.

Then
(

1− 1

e

)ρ

t ≤ Aρ(X̃ρ(t)) ≤ t (1 + ρ log (ρ))ρ .

Proof. Observe first that

Aρ(X̃ρ(t)) = t











1 + log+
(

t
(

1+log+
(

t
tρ

))ρ

)

1 + log+
(

t
tρ

)











ρ

= tΦ(t)ρ

We begin studying the lower bound.
If t ∈ (0, 1) then

Aρ(X̃ρ(t)) = tΦ(t)ρ = t

and there’s nothing to prove.
If t ∈ [1, tρ] then

Aρ(X̃ρ(t)) = tΦ(t)ρ = t
(

1 + log+ (t)
)ρ ≥ t

Now if t > tρ, it’s easy to check that t
(

1+log
(

t
tρ

))ρ ≥ 1. Then

Aρ(X̃ρ(t)) = t











1 + log

(

t
(

1+log
(

t
tρ

))ρ

)

1 + log
(

t
tρ

)











ρ

Now we observe that

1 + log

(

t
(

1+log
(

t
tρ

))ρ

)

1 + log
(

t
tρ

) =
1 + log (t)− ρ log

(

1 + log
(

t
tρ

))

1 + log
(

t
tρ

) .
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Let us choose t = eλ and tρ = eλρ . Then

1 + λ− ρ log
(

1 + log
(

eλ

eλρ

))

1 + log
(

eλ

eλρ

) = 1 +
λρ − ρ log (1 + λ− λρ)

1 + λ− λρ

= 1 + gρ(λ)

Now we minimize gρ(λ). It’s easy to check that gρ reaches its minimum when λ = e1+
λρ

ρ +
λρ − 1. We observe that

gρ

(

e1+
λρ

ρ + λρ − 1
)

=
−ρ

e1+
λρ
ρ

and since tρ = ρρ

−ρ

e1+
λρ
ρ

= −1

e

and we obtain the desired lower bound. To finish the proof we focus on the bound. If
t ∈ (0, 1), then Aρ(X̃ρ(t)) = t and there’s nothing to prove. If t ∈ [1, tρ] then we have that

Aρ(X̃ρ(t)) = t(1 + log t)ρ ≤ t(1 + log tρ)
ρ = t(1 + ρ log ρ)ρ.

Finally if t ∈ (tρ,∞) then it’s easy to check that

Aρ(X̃ρ(t)) ≤ t (1 + log (tρ))
ρ
.

�

Finally, with the precise control of the inverses at our disposal we are ready to give the
proof of lemma 6.

Proof of Lemma 6. Proving (11) is equivalent to prove that
ˆ

Rn

M
L logL

1
s

(

fw
1
p

)p′
(

M
L(logL)(1+

1
s)p−1+δ

w

)1−p′

≤ cp
′

n

(

p1+
1
s

)p′
(

p− 1

δ

)
ˆ

Rn

|f |p′

Using now the notation of Lemma 7, we can write A 1
s
(t) = t(1 + log+ t)

1
s and X 1

s
(t) =

t

(1+log+ t)
1
s

and we have that

A−1
1
s

(t) ≥ X 1
s
(t)

We observe now that

X 1
s
(t) =

t
(

1 + log+ t
) 1

s

=
t
1
p

(

1 + log+ t
) 1

s
+ p−1+δ

p

· t
1
p′
(

1 + log+ t
)

p−1+δ
p

=





t
(

1 + log+ t
)(1+ 1

s)p−1+δ





1
p
(

t
(

1 + log+ t
)1+δ(p′−1)

)
1
p′

= F1(t)
1
p · F2(t)

1
p′

Using again the notation of Lemma 7,

F1(t) = X(1+ 1
s)p−1+δ

(t) =
t

(

1 + log+ t
)(1+ 1

s)p−1+δ
.

From that lemma it readily follows that

F1(t)
1
p ≥

(

1
(

1 + 1
s

)

p+ δ

)

(1+ 1
s)p−1+δ

p

A−1

(1+ 1
s)p−1+δ

(t)
1
p .
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Analogously, following the notation of Lemma 8

F2(t) = A1+δ(p′−1)(t) = t
(

1 + log+ t
)1+δ(p′−1)

From that lemma it follows that

F2(t)
1
p′ ≥

(

e− 1

e

)
1+δ(p′−1)

p′

X̃−1
1+δ(p′−1)(t)

1
p′ .

Taking into account (4.3) and (4.3) we obtain the following estimate

A−1
1
s

(t) (e′)
1+δ(p′−1)

p′

((

1 +
1

s

)

p+ δ

)

(1+ 1
s)p−1+δ

p

≥ A−1

(1+ 1
s)p−1+δ

(t)
1
p X̃−1

1+δ(p′−1)(t)
1
p′ t > 0.

Using now generalized Hölder inequality (Lemma 1) and taking into account that, since
δ ∈ (0, 1),

(e′)
1+δ(p′−1)

p′ (2p+ δ)
(1+ 1

s)p−1+δ

p ≤ cp1+
1
s

and also that ‖w‖Ψ(L) = ‖wp‖
1
p

Ψ

(

L
1
p

) if Ψ is a Young function, we have that

∥

∥

∥
fw

1
p

∥

∥

∥

L(logL)
1
s ,Q

≤ cp1+
1
s ‖f‖X̃1+δ(p′−1)(L

p′ ),Q ‖w‖
1
p

A
(1+ 1

s)p−1+δ
(L),Q

and consequently

M
L(logL)

1
s

(

fw
1
p

)

≤ cp1+
1
sMX̃1+δ(p′−1)(L

p′ )(f)M
L(logL)(1+

1
s)p−1+δ

(w)
1
p .

Using this estimate we have that
ˆ

Rn

M
L(logL)

1
s

(

fw
1
p

)p′
(

M
L(logL)(1+

1
s)p−1+δ

w

)1−p′

dx

≤
ˆ

Rn

(

cp(1+
1
s)MX̃1+δ(p′−1)(L

p′ )(f)M
L(logL)(1+

1
s)p−1+δ

(w)
1
p

)p′ (

M
L(logL)(1+

1
s)p−1+δ

w

)1−p′

dx

=
(

cp1+
1
s

)p′
ˆ

Rn

MX̃1+δ(p′−1)(L
p′ )(f)

p′dx

Lemma 2.1 of [10] yields
(
ˆ

Rn

MX̃1+δ(p′−1)(L
p′ )f(x)

p′dx

)
1
p′

≤ c

(

p− 1

δ

)
1
p′
(
ˆ

Rn

|f |p′(x)dx
)

1
p′

,

since
(

ˆ ∞

1

X̃1+δ(p′−1)(t
p′)

tp
′

dt

t

)
1
p′

=

(

(1 + (p′ − 1)δ)

p′
log (1 + (p′ − 1)δ) +

1

(p′ − 1)δ

)
1
p′

and 0 < δ < 1 allows us to write
(

(1 + (p′ − 1)δ)

p′
log (1 + (p′ − 1)δ) +

1

(p′ − 1)δ

)
1
p′

≤ c

(

p− 1

δ

)
1
p′

.

Consequently we have that

∥

∥

∥
M

L(logL)
1
s

(

fw
1
p

)∥

∥

∥

Lp′ (v1−p′ )
≤ cp1+

1
s

(

p− 1

δ

)
1
p′

‖f‖Lp′ (Rn).
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This concludes the proof of (4.3). �

5. Proof of Theorem 2

5.1. Case k = 1.

Proof. By homogeneity we shall suppose that ‖b‖OscexpLs = 1. We consider the Calderón-
Zygmund decomposition of f at height λ. That decomposition allows us to obtain a family
of dyadic cubes {Qj} which are pairwise disjoint such that

λ ≤ 1

|Qj|

ˆ

Qj

|f | ≤ 2nλ.

Let us denote
Ω =

⋃

j

Qj

As usual, we write f = g + h where g, the “good” part of f , is defined as

g(x) =

{

f(x) x ∈ Ωc

fQj
x ∈ Qj

and verifies that |g(x)| ≤ 2nλ a.e. and h =
∑

hj where hj =
(

f − fQj

)

χQj
and fQj

=
1

|Qj|
´

Qj
f(x)dx. We denote w∗(x) = w(x)χRn\Ω̃(x) and wj(x) = w(x)χRn\Q̃j

where Q̃j =

5
√
nQj and Ω̃ =

⋃

j Q̃j . Using that decomposition we can write

w ({x ∈ Rn : |[b, T ]f(x)| > λ}) ≤ w

({

x ∈ Rn \ Ω̃ : |[b, T ]g(x)| > λ

2

})

+ w(Ω̃)

+ w

({

x ∈ Rn \ Ω̃ : |[b, T ]h(x)| > λ

2

})

= I + II + III

To end the proof we have to estimate I, II and III. Let us begin with I. If p > 0,
Chebyschev’s inequality gives

w

({

x ∈ Rn \ Ω̃ : |[b, T ]g(x)| > λ

2

})

≤ 2p

λp

ˆ

Rn

|[b, T ]g(x)|pw∗(x)dx.

Let us choose 1+ ε

3(1+ 1
s)

< p < 1+ ε

2(1+ 1
s)

y δ = ε−
(

1 + 1
s

)

(p− 1). For that choice of p and

δ, is easy to check that

(p′)
2p
p(1+

1
s)p
(

p− 1

δ

)
p

p′

≤ cs
1

ε2
and

(

1 +
1

s

)

p− 1 + δ =
1

s
+ ε.

Using now Theorem 1, we have that

2p

λp

ˆ

Rn

|[b, T ]g(x)|pw∗(x)dx

≤ c (p′)
2p
p(1+

1
s)p
(

p− 1

δ

)
p

p′
ˆ

Rn

|g(x)|pM
L(logL)(1+

1
s)p−1+δ

w∗(x)dx

≤ c
1

ε2
2p

λp

ˆ

Rn

|g(x)|pM
L(logL)

1
s+εw

∗(x)dx ≤ c
1

ε2
1

λ

ˆ

Rn

|g(x)|M
L(logL)

1
s+εw

∗(x)dx

≤ c
1

ε2
1

λ

(
ˆ

Rn\Ω
|f(x)|M

L(logL)
1
s+εw(x)dx+

ˆ

Ω

|g(x)|M
L(logL)

1
s+εw

∗(x)dx

)
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and it suffices to estimate last integral. Indeed,

ˆ

Ω

|g(x)|M
L(logL)

1
s+εw

∗(x)dx ≤
∑

j

|f |Qj

ˆ

Qj

M
L(logL)

1
s+εwj(x)dx

≤ c
∑

j

|Qj |
1

|Qj|

ˆ

Qj

|f(y)|dy inf
z∈Qj

M
L(logL)

1
s+εwj(z)

= c
∑

j

ˆ

Qj

|f(y)| inf
z∈Qj

M
L(logL)

1
s+εwj(z)dy ≤ c

∑

j

ˆ

Qj

|f(y)|M
L(logL)

1
s+εwj(y)dy

≤ c

ˆ

Ω

|f(y)|M
L(logL)

1
s+εw(y)dy.

Summarizing, we obtain that

I ≤ c
1

ε2

ˆ

Rn

|f(y)|
λ

M
L(logL)

1
s+εw(y)dy.

For II we have the following standard estimate

II = w(Ω̃) ≤
∑

j

ˆ

5
√
nQj

w(x)dx =
∑

j

|5
√
nQj |

1

|5√nQj |

ˆ

5
√
nQj

w(x)dx

≤
∑

j

(

5
√
n
)n |Qj| inf

z∈Qj

Mw(z) ≤
(

5
√
n
)n
∑

j

1

λ

ˆ

Qj

f(y)dy inf
z∈Qj

Mw(z)

≤
(

5
√
n
)n
∑

j

1

λ

ˆ

Qj

Mw(y)f(y)dy ≤
(

5
√
n
)n

ˆ

Rn

f(y)

λ
Mw(y)dy

To estimate III we split the operator as follows

[b, T ]h =
∑

j

[b, T ]hj =
∑

j

(bT (hj)− T (bhj)) =
∑

j

(

b− bQj

)

T (hj)−
∑

j

T
((

b− bQj

)

hj

)

.

Then we continue with

III ≤ w

({

x ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∑

j

(

b(x)− bQj

)

Thj(x)

∣

∣

∣

∣

∣

>
λ

4

})

+ w

({

x ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∑

j

T
([

b− bQj

]

hj

)

(x)

∣

∣

∣

∣

∣

>
λ

4

})

= A +B
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To estimate A we use standard computations based on the smoothness property of the kernel
K and the cancellation of each hj,

A ≤ c

λ

ˆ

Rn\Ω̃

∑

j

|b(x)− bQj
| |Thj(x)|w(x)dx

≤ c

λ

∑

j

ˆ

Rn\Q̃j

|b(x)− b|w(x)
ˆ

Qj

|hj(y)|
∣

∣K(x, y)−K(x, xQj
)
∣

∣ dydx

≤ c

λ

∑

j

ˆ

Qj

|hj(y)|
ˆ

Rn\Q̃j

|K(x, y)−K(x, xQj
)||b(x)− bQj

|wj(x)dxdy

≤ c

λ

∑

j

ˆ

Qj

|hj(y)|
ˆ

Rn\Q̃j

∣

∣y − xQj

∣

∣

γ

∣

∣x− xQj

∣

∣

n+γ |b(x)− bQj
|wj(x)dxdy

≤ c

λ

∑

j

ˆ

Qj

|hj(y)|
∞
∑

k=1

ˆ

2kl(Qj)≤|x−xQj
|<2k+1l(Qj)

∣

∣y − xQj

∣

∣

γ

∣

∣x− xQj

∣

∣

n+γ |b(x)− bQj
|wj(x)dxdy

≤ c

λ

∑

j

(

ˆ

Qj

|hj(y)|dy
) ∞
∑

k=1

2−γk

|2k+1Qj |

ˆ

2k+1Qj

|b(x)− bQj
|wj(x)dx

We now fix one term of the sum. Using generalized Hölder inequality, Lemma 1, we have

∞
∑

k=0

2−γk

|2k+1Qj |

ˆ

2k+1Qj

|b(x)− bQj
|wj(x)dx

≤
∞
∑

k=0

2−γk

|2k+1Qj |

ˆ

2k+1Qj

|b(x)− b2k+1Qj
|wj(x)dx

+
∞
∑

k=0

2−γk

|2k+1Qj|

ˆ

2k+1Qj

|b2k+1Qj
− bQj

|wj(x)dx

≤
∞
∑

k=1

2−γk‖b− b2k+1Qj
‖expLs,2k+1Qj

‖wj‖
L logL

1
s ,2k+1Qj

+
∞
∑

k=1

2−γk(k + 1)‖b‖OscexpLs inf
z∈Qj

Mwj(z)

≤
∞
∑

k=1

2−γk‖b‖OscexpLs inf
z∈Qj

M
L logL

1
s
wj(z)

+
∞
∑

k=1

2−γk(k + 1)‖b‖OscexpLs inf
z∈Qj

Mwj(z)

≤ c

(

inf
z∈Qj

M
L logL

1
s
wj(z)

∞
∑

k=1

2−γk + inf
z∈Qj

Mwj(z)
∞
∑

k=1

2−γk(k + 1)

)

≤ c inf
z∈Qj

M
L logL

1
s
wj(z)
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Consequently,

A ≤ c

λ

∑

j

ˆ

Qj

|hj(y)|dy inf
y∈Qj

M
L logL

1
s
(wj)(y)

≤ c

λ

∑

j

ˆ

Qj

M
L logL

1
s
(wj)(y)|hj(y)|dy

≤ c

λ

(

ˆ

Rn

|f(y)|M
L logL

1
s
(wj)(y)dy +

∑

j

ˆ

Qj

M
L logL

1
s
(wj)(y)|fQj

|dy
)

≤ c

λ

(

ˆ

Rn

|f(y)|M
L logL

1
s
(wj)(y)dy +

∑

j

ˆ

Qj

f(y)dy inf
z∈Qj

M
L logL

1
s
(wj)(z)dy

)

≤ c

λ

ˆ

Rn

|f(y)|M
L logL

1
s
(wj)(y)dy

To end the proof we estimate B. Theorem 1.1 from [10] gives

B = w∗

({

x ∈ Rn :

∣

∣

∣

∣

∣

∑

j

T
([

b− bQj

]

hj

)

(x)

∣

∣

∣

∣

∣

>
λ

4

})

≤ c
1

ε

1

λ

ˆ

Rn

∣

∣

∣

∣

∣

∑

j

(

b(x)− bQj

)

hj

∣

∣

∣

∣

∣

(x)ML(logL)ε(w
∗)(x)dx

≤ c
1

ε

1

λ

∑

j

ˆ

Qj

∣

∣b(x)− bQj

∣

∣

∣

∣f(x)− fQj

∣

∣ML(logL)ε(wj)(x)dx

≤ c
1

ε

1

λ

∑

j

inf
z∈Qj

ML(logL)ε(wj)(z)

(

ˆ

Qj

∣

∣b(x)− bQj

∣

∣ |f(x)| dx+

ˆ

Qj

∣

∣b(x)− bQj

∣

∣

∣

∣fQj

∣

∣ dx

)

=
1

ε
(B1 +B2)

For B2

B2 =
c

λ

∑

j

inf
z∈Qj

ML(logL)ε(wj)(z)

ˆ

Qj

∣

∣b(x)− bQj

∣

∣

∣

∣fQj

∣

∣ dx

≤ c

λ

∑

j

1

|Qj |

ˆ

Qj

∣

∣b(x)− bQj

∣

∣ dx

ˆ

Qj

|f(y)|ML(logL)ε(wj)(y)dx

≤ c

λ

∑

j

‖b‖OscexpLs

ˆ

Qj

|f(y)|ML(logL)ε(wj)(y)dx

≤ c
∑

j

ˆ

Qj

|f(y)|
λ

ML(logL)ε(wj)(y)dy

≤ c

ˆ

Rn

|f(x)|
λ

ML(logL)εw(x)dx.
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For B1 we use the generalized Hölder inequality Lemma 1 and we obtain

B1 =
c

λ

∑

j

inf
z∈Qj

ML(logL)ε(wj)(z)

ˆ

Qj

∣

∣b(x)− bQj

∣

∣ |f(x)| dx

≤ c
∑

j

inf
z∈Qj

ML(logL)ε(wj)(z)
1

λ
|Qj| ‖b‖OscexpLs‖f‖

L(logL)
1
s L,Qj

= c
∑

j

inf
z∈Qj

ML(logL)ε(wj)(z)
1

λ
|Qj | ‖f‖L(logL) 1s ,Qj

.

(12)

Now we see that

1

λ
|Qj | ‖f‖

L(logL)
1
s ,Qj

≤ 1

λ
|Qj| inf

µ>0

{

µ+
µ

|Qj|

ˆ

Qj

Φ 1
s

( |f(x)|
µ

)

dx

}

≤ 1

λ
|Qj|

(

λ +
λ

|Qj|

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

)

= |Qj|+
ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

≤ 1

λ

ˆ

Qj

|f(x)|dx+

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx ≤ 2

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx.

(13)

Consequently

B1 ≤ c
∑

j

inf
z∈Qj

ML(logL)ε(wj)(z)

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

≤ c
∑

j

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

ML(logL)ε(wj)(x)dx

≤ c

ˆ

Rn

Φ 1
s

( |f(x)|
λ

)

ML(logL)ε(w)(x)dx.

�

5.2. Case k > 1.

Proof. Let us suppose that the desired inequality holds for l ≤ k−1 symbols. By homogeneity
we may assume that ‖b‖OscexpLs1

= · · · = ‖b‖OscexpLsk
= 1. Using the Calderón-Zygmund

decomposition with the same notation used in the case k = 1 we can write

w
({

x ∈ Rn : |T~bf(x)| > λ
})

≤ w

({

x ∈ Rn \ Ω̃ : |T~bg(x)| >
λ

2

})

+ w(Ω̃)

+ w

({

x ∈ Rn \ Ω̃ : |T~bh(x)| >
λ

2

})

= I + II + III

We consider now each term separately. To estimate I we use Chebyschev’s inequality for
p > 1 that will be chosen appropriately,

w

({

x ∈ Rn \ Ω̃ : |T~bg(x)| >
λ

2

})

≤ 2p

λp

ˆ

R

|T~bg(x)|pw∗(x)dx.
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Let us choose, as we did in the case k = 1, p such that 1 + ε

3(1+ 1
s)

< p < 1 + ε

(1+ 1
s)2

and

δ = ε−
(

1 + 1
s

)

p. For this choice of p and δ we have that

(p′)
(k+1)p

p(1+
1
s)p
(

p− 1

δ

)
1
p′

≤ cs
1

εk+1
and

(

1 +
1

s

)

p− 1 + δ =
1

s
+ ε

Using now theorem 1 and the choice of δ and p we have that

2p

λp

ˆ

R

|T~bg(x)|pw∗(x)dx ≤ cn (p
′)(k+1)p

p(1+
1
s)p
(

p− 1

δ

)
1
p′
ˆ

R

|g(x)|pM
L(logL)(1+

1
s)p−1+δ

w∗(x)dx

≤ c
1

εk+1

2p

λp

ˆ

R

|g(x)|pM
L(logL)

1
s+εw

∗(x)dx

Arguing as in the case k = 1 we obtain that

I ≤ cn
1

εk+1

ˆ

Rn

|f(y)|
λ

M
L(logL)

1
s+εw(y)dy.

For II, as in the case k = 1, we have the following estimate

II ≤ 3n
ˆ

Rn

f(y)

λ
Mw(y)dy

It remains to estimate III. Following the computations of page 684 of [24] we can write

T~bf(x) = (b1(x)− λ1) . . . (bk(x)− λk)Tf(x)

+ (−1)kT ((b1 − λ1) . . . (bk − λk)f) (x)

+

k−1
∑

i=1

∑

σ∈Ci(b)

(−1)k−i
(

b(x)− ~λ
)

σ

ˆ

Rn

(

b(y)− ~λ
)

σ′

K(x, y)f(y)dy.

(14)

Now we work on the last double summation. We observe that for each term we can write
(

b(x)− ~λ
)

σ

ˆ

Rn

(

b(y)− ~λ
)

σ′

K(x, y)f(y)dy

=

ˆ

Rn

(

b(y)− ~λ
)

σ′

(

[b(x)− b(y)] +
[

b(y)− ~λ
])

σ
K(x, y)f(y)dy

τ∪τ ′=σ
=

ˆ

Rn

(

b(y)− ~λ
)

σ′

#σ
∑

j=0

∑

τ∈Cj(σ)

(b(x)− b(y))τ

(

b(y)− ~λ
)

τ ′
K(x, y)f(y)dy

=

#σ
∑

j=0

∑

τ∈Cj(σ)

ˆ

Rn

(b(x)− b(y))τ

(

b(y)− ~λ
)

σ′∪τ ′
K(x, y)f(y)dy

=

#σ
∑

j=0

∑

τ∈Cj(σ)

T~τ

((

b− ~λ
)

σ′∪τ ′
f
)

= T ((b1 − λ1) . . . (bk − λk)f) (x) +

#σ
∑

j=1

∑

τ∈Cj(σ)

T~τ

((

b− ~λ
)

σ′∪τ ′
f
)

.
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Plugging this into the double summation of (14), since τ ∪ τ ′ ∪ σ′ = b we can write,

k−1
∑

i=1

∑

σ∈Ci(b)

(−1)k−i
(

b(x)− ~λ
)

σ

ˆ

Rn

(

b(y)− ~λ
)

σ′

K(x, y)f(y)dy

= ckT ((b1 − λ1) . . . (bk − λk)f) (x) +

k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

((

b− ~λ
)

σ′

f
)

where cσ is a constant that counts the number of repetitions of each T~σ. Summarizing

T~bf(x) = (b1(x)− λ1) . . . (bk(x)− λk)Tf(x)

+ ckT ((b1 − λ1) . . . (bk − λk)f) (x)

+
k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

((

b(y)− ~λ
)

σ′

f
)

(x)

Using this for each hj and summing on j,

∑

j

T~bhj(x) =
∑

j

(b1(x)− λ1) . . . (bk(x)− λk)Thj(x)

+
∑

j

ckT ((b1 − λ1) . . . (bk − λk)hj) (x)

+
∑

j

k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

((

b− ~λ
)

σ′

hj

)

(x)

Then we can estimate III as follows

III ≤ w

({

y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∑

j

(

b1(x)− (b1)Qj

)

. . .
(

bk(x)− (bk)Qj

)

Thj(x)

∣

∣

∣

∣

∣

>
λ

6

})

+ w

({

y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∑

j

ckT
((

b1 − (b1)Qj

)

. . .
(

bk − (bk)Qj

)

hj

)

(x)

∣

∣

∣

∣

∣

>
λ

6

})

+ w











y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∣

∑

j

k−1
∑

i=1

∑

σ∈Ck
i

cσT~σ

((

b− ~bQj

)

σ′

hj

)

(x)

∣

∣

∣

∣

∣

∣

>
λ

6











= L1 + L2 + L3
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To estimate L1 we denote wj = χRn\5√nQj
w and B(x) =

∏k
i=1

∣

∣

∣
bi(x)− (bi)Qj

∣

∣

∣
. Then

L1 ≤
c

λ

ˆ

Rn\Ω̃

∣

∣

∣

∣

∣

∑

j

(

b1(x)− (b1)Qj

)

. . .
(

bk(x)− (bk)Qj

)

Thj(x)

∣

∣

∣

∣

∣

w(x)dx

≤
∑

j

c

λ

ˆ

Rn\Ω̃
B(x) |Thj(x)|w(x)dx =

≤
∑

j

c

λ

ˆ

Rn\Ω̃
B(x)w(x)

(

ˆ

Qj

|hj(y)||K(x, y)−K(x, xQj
)|dy

)

dx

≤
∑

j

c

λ

ˆ

Qj

|hj(y)|
ˆ

Rn\5√nQj

B(x)wj(x)|K(x, y)−K(x, xQj
)|dxdy

A standard computation using the smoothness condition of K yields that the latter is
bounded by

∑

j

c

λ

ˆ

Qj

|hj(y)|
∑

m

ˆ

2ml(Qj)≤|x−xQj
|≤2m+1l(Qj)

B(x)wj(x)
|y − xQj

|γ
|x− xQj

|n+γ
dxdy

≤
∑

j

c

λ

ˆ

Qj

|hj(y)|
∑

m

2−mγ

(2m+1l(Qj))n

ˆ

|x−xQj
|≤2m+1l(Qj)

B(x)wj(x)dxdy =

(15)

Let us estimate the inner sum. We have that

∑

m

2−mγ

(2m+1l(Qj))n

ˆ

|x−xQj
|≤2m+1l(Qj)

B(x)wj(x)dx

≤
∑

m

2−mγ

(2m+1l(Qj))n

ˆ

2m+1Qj

k
∏

i=1

∣

∣

∣
bi(x)− (bi)Qj

∣

∣

∣
wj(x)dx

=
∑

m

2−mγ

(2m+1l(Qj))n

ˆ

2m+1Qj

k
∏

i=1

(∣

∣

∣
bi(x)− (bi)2m+1Qj

∣

∣

∣
+
∣

∣

∣
(bi)2m+1Qj

− (bi)Qj

∣

∣

∣

)

wj(x)dx

=
∑

m

2−mγ

(2m+1l(Qj))n

ˆ

2m+1Qj

k
∑

l=0

∑

σ∈Ck
l

(

∏

i∈σ

∣

∣

∣
bi(x)− (bi)2m+1Qj

∣

∣

∣

)(

∏

i∈σ′

∣

∣

∣
(bi)2m+1Qj

− (bi)Qj

∣

∣

∣

)

wj(x)dx

=
∑

m

k
∑

l=0

∑

σ∈Cl(b)

(

∏

i∈σ′

∣

∣

∣
(bi)2m+1Qj

− (bi)Qj

∣

∣

∣

)

2−mγ

(2m+1l(Qj))n

ˆ

2m+1Qj

(

∏

i∈σ

∣

∣

∣
bi(x)− (bi)2m+1Qj

∣

∣

∣

)

wj(x)dx

≤
∑

m

k
∑

l=0

∑

σ∈Cl(b)

(

∏

i∈σ′

‖bi‖OscexpLsi

)

2−mγ

(2m+1l(Qj))n

ˆ

2m+1Qj

(

∏

i∈σ

∣

∣

∣
bi(x)− (bi)2m+1Qj

∣

∣

∣

)

wj(x)dx

Applying Corollary 2 we have that

1

(2m+1l(Qj))n

ˆ

2m+1Qj

(

∏

i∈σ

∣

∣

∣
bi(x)− (bi)2m+1Qj

∣

∣

∣

)

wj(x)dx

≤ c

(

∏

i∈σ
‖bi‖OscexpLsi

)

inf
z∈2m+1Qj

M
L(logL)

∑
i∈σ

1
si
(wj)(x)
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Then for each y ∈ Qj

∑

m

k
∑

l=0

∑

σ∈Cl(b)

(

∏

i∈σ′

‖bi‖OscexpLsi

)

2−mγ

(2m+1l(Qj))n

ˆ

2m+1Qj

(

∏

i∈σ

∣

∣

∣
bi(x)− (bi)2m+1Qj

∣

∣

∣

)

wj(x)dx

≤ c
∑

m

1

2mγ

k
∑

l=0

∑

σ∈Cl(b)

(

∏

s∈σ′

‖bs‖Osc
expL

1
rs

)(

∏

i∈σ
‖bi‖Osc

expL

1
ri

)

inf
z∈2m+1Qj

M
L(logL)

∑
i∈σ

1
si
(wj)(x)

≤ ckM
L(logL)

1
s
(wj)(y)

∑

m

1

2γm
= ckM

L(logL)
1
s
(wj)(y).

Continuing the computation in (15) we have that by standard estimates,

∑

j

c

λ

ˆ

Qj

|hj(y)|
∑

m

2−mε

(2m+1l(Qj))n

ˆ

|x−xQj
|≤2m+1l(Qj)

B(x)wj(x)dxdy

≤ ck

λ

∑

j

ˆ

Qj

|hj(y)|M
L(logL)

1
s
(wj)(y)dy

≤ ck

λ

ˆ

Rn

|f(y)|M
L(logL)

1
s
(w)(y)dy.

Summarizing

L1 ≤
ck

λ

ˆ

Qj

|f(y)|M
L(logL)

1
s
(w)(y)dy.

We shall work now on L2. Theorem 1.1 from [10] gives

L2 = w̃

({

y ∈ Rn :

∣

∣

∣

∣

∣

ckT

(

∑

j

(

b1 − (b1)Qj

)

. . .
(

bk − (bk)Qj

)

hj

)

(x)

∣

∣

∣

∣

∣

>
λ

6

})

≤ c

λ

1

ε

ˆ

Rn

∣

∣

∣

∣

∣

∑

j

[(

b1(x)− (b1)Qj

)

. . .
(

bk(x)− (bk)Qj

)

hj

]

∣

∣

∣

∣

∣

ML(logL)εw̃(x)dx

≤ c

λ

1

ε

∑

j

ˆ

Qj

B(x)
∣

∣f(x)− fQj

∣

∣ML(logL)εwj(x)dx

≤ c

λ

1

ε

∑

j

inf
z∈Qj

ML(logL)εwj(z)

(

ˆ

Qj

B(x)|f(x)|dx+

ˆ

Qj

B(x)|fQj
|dx
)

=
c

λ

1

ε

(

∑

j

inf
z∈Qj

ML(logL)εwj(z)

ˆ

Qj

B(x)|f(x)|dx+
∑

j

inf
z∈Qj

ML(logL)εwj(z)

ˆ

Qj

B(x)|fQj
|dx
)

=
1

ε
(L21 + L22)

We estimate first L22 as follows

c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)

ˆ

Qj

B(x)|fQj
|dx

=
c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)

(

1

|Qj |

ˆ

Qj

B(x)dx

)(

ˆ

Qj

|f(x)|dx
)
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Using Corrollary 2 with g = 1 and fi =
∣

∣bi − (bi)Qj

∣

∣, we obtain the following estimate

(16)
1

|Qj|

ˆ

Qj

B(x)dx ≤ c

m
∏

i=1

∥

∥

∥
bi − (bi)Qj

∥

∥

∥

expLsi ,Qj

≤ c‖~b‖ = c.

Then

c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)

(

1

|Qj|

ˆ

Qj

B(x)dx

)(

ˆ

Qj

|f(x)|dx
)

≤ c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)

(

ˆ

Qj

|f(x)|dx
)

≤ c

λ

∑

j

ˆ

Qj

|f(x)|ML(logL)εwj(x)dx

≤ c

λ

ˆ

Rn

|f(x)|ML(logL)εwj(x)dx.

Let us estimate now L21. Using generalized Hölder inequality (Lemma 1) similarly as we did
in (12)

L21 =
c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)

ˆ

Qj

B(x)|f(x)|dx

≤ c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)|Qj |‖f‖L(logL) 1s ,Qj

since ‖~b‖ = 1. Also the same computation used in (13) based on properties of the Calderón-
Zygmund cubes Qj yields

1

λ
|Qj |‖f‖L(logL) 1s ,Qj

≤ 2

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

Hence

L21 ≤
c

λ

∑

j

inf
z∈Qj

ML(logL)εwj(z)|Qj |‖f‖
L(logL)

1
s ,Qj

≤ c
∑

j

inf
z∈Qj

ML(logL)εwj(z)2

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

≤ c
∑

j

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

ML(logL)εwj(x)dx

≤ c

ˆ

Rn

Φ 1
s

( |f(x)|
λ

)

ML(logL)εw(x)dx.

Putting L21 and L22 together we have that

L2 ≤ c
1

ε

ˆ

Rn

Φ 1
s

( |f(x)|
λ

)

ML(logL)εw(x)dx
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To conclude the proof we are left with estimating L3 as follows

L3 = w











y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∣

k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

(

∑

j

(

b− ~λ
)

σ′

hj

)

(x)

∣

∣

∣

∣

∣

∣

>
λ

6











≤ w











y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∣

k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

(

∑

j

(

b− ~λ
)

σ′

fχQj

)

(x)

∣

∣

∣

∣

∣

∣

>
λ

12











+ w











y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∣

k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

(

∑

j

(

b− ~λ
)

σ′

fQj
χQj

)

(x)

∣

∣

∣

∣

∣

∣

>
λ

12











= L31 + L32

To estimate L31 we use the inductive hypothesis.

L31

= w











y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

∣

k−1
∑

i=1

∑

σ∈Ci(b)

cσT~σ

(

∑

j

(

b− ~λ
)

σ′

fχQj

)

(x)

∣

∣

∣

∣

∣

∣

>
λ

12











≤ c

k−1
∑

i=1

∑

σ∈Ci(b)

w

({

y ∈ Rn \ Ω̃ :

∣

∣

∣

∣

∣

T~σ

(

∑

j

(

b− ~λ
)

σ′

fχQj

)

(x)

∣

∣

∣

∣

∣

>
λ

ck

})

≤ c

k−1
∑

i=1

∑

σ∈Ci(b)

∑

j

1

ε#σ+1

ˆ

Qj

Φ∑

i∈σ
1
si

(

‖~σ‖|f(x)|
λ

(

b(x)− bQj

)

σ′

)

M
L(logL)

∑
i∈σ

1
si

+ε(wj)(x)dx

Since we are assuming that ‖b1‖OscexpLs1
= ‖b2‖OscexpLs2

= · · · = ‖bk‖OscexpLsk
= 1, for each

σ ⊆ b we have that ‖~σ‖ = 1. Then,

c

k−1
∑

i=1

∑

σ∈Ci(b)

∑

j

1

ε#σ+1

ˆ

Qj

Φ∑

i∈σ
1
si

( |f(x)|
λ

(

b(x)− bQj

)

σ′

)

M
L(logL)

∑
i∈σ

1
si

+ε(wj)(x)dx

≤ c

k−1
∑

i=1

∑

σ∈Ci(b)

∑

j

1

ε#σ+1
inf
z∈Qj

M
L(logL)

∑
i∈σ

1
si

+ε(wj)(z)

ˆ

Qj

Φ∑

i∈σ
1
si

( |f(x)|
λ

(

b(x)− bQj

)

σ′

)

dx

Let us consider now

Φ−1
u (t) =

t

log(e+ t)u
ϕ−1
v (t) = log(1 + t)

1
v .

Then

Φ−1
1
s

(t)
∏

i∈σ
ϕsi

−1(t) =
t

log(e+ t)
∑ 1

si

∏

i∈σ
log(1 + t)

1
si ≤ t

log(e+ t)
∑

i∈σ′
1
si

= Φ−1
∑

i∈σ′
1
si

(t)

and also we know that

Φu(t) ≃ t
(

1 + log+ t
)u

, ϕv(t) = et
v − 1.
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Taking that into account, Lemma 2 gives
ˆ

Qj

Φ∑

i∈σ
1
si

( |f(x)|
λ

(

b(x)− bQj

)

σ′

)

dx

≤
ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx+
∑

i∈σ

ˆ

Qj

(

exp
(∣

∣

∣
bi(x)− (bi)Qj

∣

∣

∣

si
)

− 1
)

dx

≤
ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx+ c
∑

i∈σ
|Qj|‖bi‖expLsi ,Qj

≤
ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx+ c
∑

i∈σ
|Qj|‖bi‖OscexpLsi

[

‖bi‖OscexpLsi
= 1
]

≤
ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx+ ck|Qj|

≤ ck

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx.

(17)

In the last step we used properties of the Calderón-Zygmund cubes.
Plugging now that estimate,

c

k−1
∑

i=1

∑

σ∈Ck
i

∑

j

1

ε#σ+1
inf
z∈Qj

M
L(logL)

∑
i∈σ′

1
si

+ε(wj)(z)

ˆ

Qj

Φ∑

i∈σ′
1
si

( |f(x)|
λ

(

b(x)− bQj

)

σ

)

dx

≤ ck

k−1
∑

i=1

∑

σ∈Cm
i

∑

j

1

ε#σ+1
inf
z∈Qj

M
L(logL)

∑
i∈σ′

1
si

+ε(wj)(z)

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

≤ ck
1

εk

∑

j

inf
z∈Qj

M
L(logL)

1
s+ε(wj)(z)

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx

≤ ck
1

εk

∑

j

ˆ

Qj

M
L(logL)

1
s+ε(wj)(x)Φ 1

s

( |f(x)|
λ

)

dx

≤ ck
1

εk

ˆ

Rn

M
L(logL)

1
s+ε(wj)(x)Φ 1

s

( |f(x)|
λ

)

dx

For L32 arguing in the same way we have that

E2 ≤ ck
1

εk

k−1
∑

i=1

∑

σ∈Ck
i

∑

j

inf
z∈Qj

M
L(logL)

1
s+εwj(z)

ˆ

Qj

Φ∑

i∈σ′
1
si

( |fQj
|

λ

(

b(x)− bQj

)

σ

)

dx

The same computation used to obtain (17) yields
ˆ

Qj

Φ∑

i∈σ′
1
si

( |fQj
|

λ

(

b(x)− bQj

)

σ

)

dx ≤
ˆ

Qj

Φ 1
s

( |fQj
|

λ

)

dx+ ck|Qj|.

Now we see that using Jensen’s inequality,
ˆ

Qj

Φ 1
s

( |fQj
|

λ

)

dx ≤ |Qj|Φ 1
s

( |f |Qj

λ

)

≤ |Qj |
1

|Qj|

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx =

ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx.
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Hence
ˆ

Qj

Φ∑

i∈σ′
1
si

( |fQj
|

λ

(

b(x)− bQj

)

σ

)

dx ≤
ˆ

Qj

Φ 1
s

( |f(x)|
λ

)

dx+ ck|Qj |

and we finish the estimate arguing as we did for L31. �
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[14] M. A. Krasnosel′skĭı and Ja. B. Rutickĭı. Convex functions and Orlicz spaces. Translated
from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961.

[15] A. K. Lerner, S. Ombrosi, and C. Pérez. A1 bounds for Calderón-Zygmund operators
related to a problem of Muckenhoupt and Wheeden. Math. Res. Lett., 16(1):149–156,
2009. ISSN 1073-2780. doi:10.4310/MRL.2009.v16.n1.a14.

[16] B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal function. Trans.
Amer. Math. Soc., 165:207–226, 1972. ISSN 0002-9947.

[17] F. Nazarov, A. Reznikov, V. Vasyunin, and A. Volberg. A Bellman function counterex-
ample to the A1 conjecture: the blow-up of the weak norm estimates of weighted singular
operators. ArXiv e-prints, June 2015. URL http://arxiv.org/abs/1506.04710.

http://dx.doi.org/10.2307/2154379
http://arxiv.org/abs/1312.5255
http://dx.doi.org/10.1006/jfan.2000.3570
http://arxiv.org/abs/1505.01804
http://dx.doi.org/10.2140/apde.2013.6.777
http://dx.doi.org/10.1016/j.jmaa.2015.03.017
http://dx.doi.org/10.1016/j.jfa.2012.09.013
http://dx.doi.org/10.1515/crll.1994.454.143
http://dx.doi.org/10.1007/BF02819450
http://dx.doi.org/10.4310/MRL.2009.v16.n1.a14
http://arxiv.org/abs/1506.04710


BORDERLINE WEIGHTED ESTIMATES FOR COMMUTATORS OF SINGULAR INTEGRALS 31

[18] C. Ortiz-Caraballo. Quadratic A1 bounds for commutators of singular integrals with
BMO functions. Indiana Univ. Math. J., 60(6):2107–2129, 2011. ISSN 0022-2518.
doi:10.1512/iumj.2011.60.4494.

[19] C. Ortiz-Caraballo, C. Pérez, and E. Rela. Improving bounds for singular operators via
sharp reverse Hölder inequality for A∞. In Advances in harmonic analysis and operator
theory, volume 229 of Oper. Theory Adv. Appl., pages 303–321. Birkhäuser/Springer
Basel AG, Basel, 2013. doi:10.1007/978-3-0348-0516-2_17.

[20] C. Pérez. Weighted norm inequalities for singular integral operators. J. London Math.
Soc. (2), 49(2):296–308, 1994. ISSN 0024-6107. doi:10.1112/jlms/49.2.296.

[21] C. Pérez. Endpoint estimates for commutators of singular integral operators. J. Funct.
Anal., 128(1):163–185, 1995. ISSN 0022-1236. doi:10.1006/jfan.1995.1027.

[22] C. Pérez. Sharp estimates for commutators of singular integrals via iterations of the
Hardy-Littlewood maximal function. J. Fourier Anal. Appl., 3(6):743–756, 1997. ISSN
1069-5869. doi:10.1007/BF02648265.

[23] C. Pérez and G. Pradolini. Sharp weighted endpoint estimates for commutators
of singular integrals. Michigan Math. J., 49(1):23–37, 2001. ISSN 0026-2285.
doi:10.1307/mmj/1008719033.

[24] C. Pérez and R. Trujillo-González. Sharp weighted estimates for multilinear com-
mutators. J. London Math. Soc. (2), 65(3):672–692, 2002. ISSN 0024-6107.
doi:10.1112/S0024610702003174.

[25] M. M. Rao and Z.D. Ren. Theory of Orlicz Spaces. Marcel Dekker, 1991.
[26] M. C. Reguera and C. Thiele. The Hilbert transform does not map L1(Mw) to L1,∞(w).

Math. Res. Lett., 19(1):1–7, 2012. ISSN 1073-2780. doi:10.4310/MRL.2012.v19.n1.a1.
[27] R. Rochberg and G. Weiss. Derivatives of analytic families of Banach spaces. Ann. of

Math. (2), 118(2):315–347, 1983. ISSN 0003-486X. doi:10.2307/2007031.
[28] V. I. Vasyunin. The exact constant in the inverse Hölder inequality for Muckenhoupt

weights. St. Petersburg Math. J., 15:49–79, 2004. doi:10.1090/S1061-0022-03-00802-1.
[29] J. M. Wilson. Weighted inequalities for the dyadic square function without dyadic A∞.

Duke Math. J., 55(1):19–50, 1987. ISSN 0012-7094. doi:10.1215/S0012-7094-87-05502-5.

Carlos Pérez, Department of Mathematics, University of the Basque Country UPV/EHU
and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

E-mail address : carlos.perezmo@ehu.es

Israel P. Rivera-Ríos, IMUS & Departamento de Análisis Matemático, Universidad de
Sevilla, Sevilla, Spain

E-mail address : petnapet@gmail.com

http://dx.doi.org/10.1512/iumj.2011.60.4494
http://dx.doi.org/10.1007/978-3-0348-0516-2_17
http://dx.doi.org/10.1112/jlms/49.2.296
http://dx.doi.org/10.1006/jfan.1995.1027
http://dx.doi.org/10.1007/BF02648265
http://dx.doi.org/10.1307/mmj/1008719033
http://dx.doi.org/10.1112/S0024610702003174
http://dx.doi.org/10.4310/MRL.2012.v19.n1.a1
http://dx.doi.org/10.2307/2007031
http://dx.doi.org/10.1090/S1061-0022-03-00802-1
http://dx.doi.org/10.1215/S0012-7094-87-05502-5

	1. Introduction
	Acknowledgments
	2. Main results
	3. Preliminaries and notation
	3.1. Ap weights
	3.2. Orlicz maximal functions
	3.3. Symbol-multilinear commutators
	3.4. Some estimates involving the sharp function

	4. Proof of Theorem ??
	4.1. Case k=1
	4.2. Case k>1
	4.3. A key two weight inequality

	5. Proof of Theorem ??
	5.1. Case k=1
	5.2. Case k>1

	References

