
Finding representative patterns with ordered projections
Jos#e C. Riquelme, Jes#us S. Aguilar-Ruiz, Miguel Toro

Department of Computer Science, Technical School of Computer Science & Engineering, University of Seville,
Avda. Reina Mercedes s/n, 41012 Seville, Spain

Abstract

This paper presents a new approach to 2nding representative patterns for dataset editing. The algorithm patterns by ordered
projections (POP), h as some interesting ch aracteristics: important reduction of th e number of instances from th e dataset;
lower computational cost (�(mn log n)) with respect to other typical algorithms due to the absence of distance calculations;
conservation of the decision boundaries, especially from the point of view of the application of axis-parallel classi2ers. POP
works well in practice withbothcontinuous and discrete attributes. The performance of POP is analysed in two ways: percentage
of reduction and classi2cation. POP has been compared to IB2, ENN and SHRINK concerning the percentage of reduction and
the computational cost. In addition, we have analysed the accuracy of k-NN and C4.5 after applying the reduction techniques.
An extensive empirical study using datasets with continuous and discrete attributes from the UCI repository shows that POP
is a valuable preprocessing method for the later application of any axis-parallel learning algorithm.

Keywords: Data mining; Preprocessing techniques; Pattern analysis; Axis-parallel classi2ers

1. Introduction

The data mining researchers, especially those dedicated
to the study of algorithms that produce knowledge in some
of the usual representations (decision lists, decision trees,
association rules, etc.), usually make their tests on standard
and accessible databases (most of them of small size). The
purpose is to verify and validate independently the results
of their algorithms. Nevertheless, these algorithms are mod-
i2ed to solve speci2c problems, for example real databases
that contain much more information (number of examples)
than standard databases used in training. To accomplish the
2nal tests on these real databases with tens of attributes and
thousands of examples is a task that takes a lot of time and
memory size.

� This work has been supported by the Spanish Research Agency
CICYT under grant TIC2001-1143-C03-02.

∗ Corresponding author. Depto. de Lenguajes y Sistemas Infor-
maticos, Universidad de Sevilla, Adva. Reina Mercedes s/n, 41012
Seville, Spain.

E-mail address: aguilar@lsi.us.es (J.S. Aguilar-Ruiz).

Among all the methodologies used by data mining re-
searchers, those based on axis-parallel classi2ers are the
most common. These have an important advantage: they
are classi2ers that provide easy-to-understand decision rules
by humans and are very useful for the expert interested in
getting knowledge from the database. The C4.5 tool [1] is
probably the most useful technique of this type.

It is advisable to apply to the databases preprocess-
ing techniques to reduce the number of examples or the
number of attributes in such a way as to decrease the
computational cost. These preprocessing techniques are
fundamentally oriented to one of the next goals: edit-
ing (reduction of the number of examples by eliminating
some of them or 2nding representative patterns or cal-
culating prototypes) and feature selection (eliminating
non-relevant attributes). Our algorithm belongs to the 2rst
group.

Editing methods are related to the nearest neighbours
(NN) techniques [2]. Some of them are brieFy cited in the
following lines. Hart [3] proposed to include in the subset
S those examples of the training set T whose classi2ca-
tion with respect to S are wrong using the NN technique,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51405466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aguilar@lsi.us.es

so that every member of T is closer to a member of S of
the same class than to a member of S of a diIerent class;
Aha et al. [4] proposed a variant of Hart’s method; Wilson
[5] proposed to eliminate the examples with incorrect k-NN
classi2cation, so that each member of T is removed if it is
incorrectly classi2ed with the k nearest neighbours; Tomek
[6] extended the idea of Wilson eliminating the examples
with incorrect classi2cation from any i = 1 to k after com-
pleting all k loops; the work of Ritter [7] extended Hart’s
method and every member of T must be closer to a member
of S of the same class than to any member of T . Other vari-
ants are based on Voronoi diagrams [8], Gabriel neighbours
(two examples are said to be Gabriel neighbours if their
diametrical sphere does not contain any other examples) or
relative neighbours [9] (two examples p and q are relative
neighbours if for all other examples x in the set, is true the
expression dist(p; q)¡max{dist(p; x); dist(q; x)}). All of
these techniques need to calculate the distances between ex-
amples, which is rather time consuming. If n examples with
m attributes are considered, the 2rst methods take �(mn2)
time, the Ritter’s algorithm is �(mn2 + n3); the Voronoi
neighbours, Gabriel neighbours and relative neighbours are
�(mn3).

In this paper we present an algorithm, called patterns
by ordered projections (POP). The 2rst version of POP,
presented in Ref. [10] and called EOP (editing by ordered
projection), worked well with continuous attributes. The
experiments were carried out using the range-normalised
Euclidean metric to compare with the distance-based reduc-
tion techniques. Now, we have improved the algorithm to
work simultaneously with continuous and discrete attributes,
conserving the properties of the initial approach. Therefore,
the experiments described in this paper were run using the
HOEM distance (see Section 3).

The algorithm has several important characteristics:

• Considerable reduction of the number of examples.
• Lower computational cost �(mn log n) than other algo-

rithms.
• Absence of distance calculations.
• Conservation of the decision boundaries, especially inter-

esting for applying classi2ers based on axis-parallel de-
cision rules (like C4.5).

We have dealt with several databases from the UCI repos-
itory [11] (University of California at Irvine). To show the
performance of our method we have used k-NN and C4.5
before and after applying POP. Among the most known
editing methods, we have chosen IB2 [4], ENN [12] and
SRHINK [13]. A 10-fold cross-validation for each method
is achieved to reduce the databases. Afterwards, we have
used the 1-NN to show the classi2cation accuracy of the
reduced sets using the original tests. In addition, C4.5 gen-
erates the decision trees from the reduced sets and they are
proved with the original tests. Several tables with computa-
tional costs, percentages of reduction and classi2cation ac-

1
 3
 5

7
 9

2
11

4
6

8
10

12

Fig. 1. An example of database.

curacy for 1-NN, 3-NN, 5-NN and C4.5 are summarised in
the experiment section.

2. Algorithm

If we choose a region 1 where all examples inside have
the same class, perhaps we could select some of them, which
are not decisive, in order to establish the boundaries of the
region. For example, in two dimensions we need four exam-
ples to determine the boundaries of one region, maximum.
In general, in d-dimensions we will need 2d examples, max-
imum. Therefore, if a region has more than 2d examples,
we could reduce the number of them.

That is the main idea of our algorithm: to eliminate the
examples that are not in the boundaries of the regions to
which they belong. The aim is to calculate which set of ex-
amples could be covered by a “pure” region and then elimi-
nate those inside that are not establishing the boundaries. A
region is pure if all the examples inside have the same class.

The method is completely heuristic because POP will in-
dependently work with the projection of the example in each
dimension, not all dimensions at the same time. This heuris-
tic could seem poor for lack of generality; however, the re-
sults are quite the opposite.

To show graphically (Fig. 1) the idea of our algorithm
we use a simple two-dimensional database with 12 num-
bered examples and two labels: I (odd numbers) and P
(even numbers). An optimal classi2er would obtain the two
rules shown in Fig. 2. However, this classi2er must be hier-
archical, since it is producing overlapped rules. This is not
the case of C4.5 and many others. An axis-parallel classi-
2er might provide one of the following solutions presented
in Figs 3–6, where rules are not overlapped.

Before formally exposing the algorithm, we will brieFy
explain the main idea. Consider the situation depicted in
Fig. 7: the projection of the examples on the abscissa axis

1 In this context, region means hyper-rectangle.

 1
 3
 5

7
 9

2
11

4
6

8
10

12

Fig. 2. The best solution with overlapped rules.

 1
 3
 5

7
 9

2
11

4
6

8
10

12

Fig. 3. One possible solution.

 1
 3
 5

7
 9

2
11

4
6

8
10

12

Fig. 4. One possible solution.

produces four ordered sequences {I; P; I; P} correspond-
ing to the examples {[9; 3; 5; 1; 11]; [8]; [7]; [4; 6; 2; 12; 10]}.
Identically, with the projection on the ordinate axis, we
can obtain the sequences {P; I; P; I} formed by the exam-
ples {[12; 10; 8; 6; 4]; [11]; [2]; [9; 7; 5; 3; 1]}. Each sequence
represents a rectangular region as a possible solution of a

 1
 3
 5

7
 9

2
11

4
6

8
10

12

Fig. 5. One possible solution.

 1
 3
 5

7
 9

2
11

4
6

8
10

12

Fig. 6. One possible solution.

4

1

3

9

7

11

8

2

6

5

10

12

I

P

P

I

I P I P

Fig. 7. Regions without overlapping.

classi2er (a rule) and the initial and 2nal examples of the
sequence (if it has only one, it is simultaneously the initial
and the 2nal one) represent the lower and upper values for
each coordinate of this rectangle. For example, in Fig. 5,
there is a rectangle formed by the examples {1; 3; 5; 7; 9}.
This region needs the examples {9; 7} to establish the

4

1

3

9

7

11

8

2

6

5

10

12

I

P

P

I

I P I P

Fig. 8. Result of applying POP.

boundaries of a dimension and the examples {1; 9} for
another one. Therefore, the remaining examples will be can-
didates to be eliminated because they are never boundaries.
The idea is best understood by analysing the non-empty
regions obtained by means of projections on every axis,
as shown in Fig. 7 and deleting the examples that are not
relevant so as to establish the boundaries of a rule (Fig. 8).

2.1. De3nitions

De�nition 1. Let the attribute Ai be a real variable that takes
values in Ii = [mini ; maxi]. Then, A is the attributes space
de2ned as A= I1 × I2 × · · · × Im, where m is the number of
attributes.

De�nition 2. An example e∈E is a tuple formed by the
Cartesian product of the value sets of each attribute and the
set C of labels. We de2ne the operations att and lab to
access the attributes and its label (or class):

att : E × N → A and lab :E → C;

where N is the set of natural numbers.

De�nition 3. Let the universeU be a sequence of examples
from E. We will say that a database with n examples, each
of them with m attributes and a class, forms a particular
universe. Then U = 〈u[1]; : : : ; u[n]〉 and as the database is a
sequence, the access to an example is achieved by means of
its position. Likewise, the access to jth attribute of the ith
example is made by att(u[i]; j), and for knowing its label
lab(u[i]).

De�nition 4. An ordered projected sequence is a se-
quence formed by the projection of the universe onto
the ith attribute. This sequence is sorted out in increas-
ing order and it contains the numbers of the examples.
For example, in Fig. 1, for the 2rst attribute we have
{9; 3; 5; 1; 11; 8; 7; 4; 6; 2; 12; 10} and for the second attribute
{12; 10; 8; 6; 4; 11; 2; 9; 7; 5; 3; 1}.

De�nition 5. A partition in subsequences is the set of sub-
sequences formed from the ordered projected sequence of
an attribute in such a way as to maintain the projection or-
der. All the examples belonging to a subsequence have the
same class and every two consecutive subsequences are dis-
jointed with respect to the class. In Fig. 7, we have for the
2rst attribute {[9; 3; 5; 1; 11]; [8]; [7]; [4; 6; 2; 12; 10]} and for
the second attribute {[12; 10; 8; 6; 4]; [11]; [2]; [9; 7; 5; 3; 1]}.
Henceforth, a subsequence will be called a partition.

De�nition 6. If an example is in the left or right extreme
of a partition, the example is called border. If the partition
only has one example, it is a border. The remainders are not
border, but inner. For example, in the partition obtained in
the previous de2nition, the examples 9, 11, 8, 4 and 10 are
borders for the 2rst attribute.

De�nition 7. The weakness of an example is de2ned
as the number of times that example is not a border
in a partition (i.e., it is inner to a partition) for every partition
obtained from ordered projected sequences of each attribute.
In the previous example, let {[9; 3; 5; 1; 11]; [8]; [7]; [4; 6; 2;
12; 10]} and {[12; 10; 8; 6; 4]; [11]; [2]; [9; 7; 5; 3; 1]} be the
partitions, the weakness of each example is given by

weakness = 0 → examples{9; 11; 4},
weakness = 1 → examples{1; 8; 7; 2; 12; 10},
weakness = 2 → examples{3; 5; 6}.

De�nition 8. Those examples whose weaknesses are equal
to the number of attributes of the database are called irrel-
evant. In our example, there are three irrelevant examples:
{3; 5; 6}, and they do not appear in the solution (Fig. 8).

2.2. Algorithm

The algorithm is conceptually very simple (see Fig. 11).
It has two diIerent parts to handle: both continuous and
discrete attributes. The number of continuous attributes is
m1 and of discrete attributes is m2, so that the total number
of attributes m is the sum of m1 and m2.

The computational cost of POP is �(m1n log n + m2nr),
where r is the average of the number of diIerent discrete val-
ues. Since r might be less than log n and m¿max{m1; m2},
the cost could be rewritten as�(mn log n). This cost is much
lower than that of other algorithms proposed in the bibliog-
raphy, normally �(mn2).

2.2.1. Continuous attributes
The continuous attributes need special treatment due to

the sorting. To sort the database in increasing order by an
attribute is a task achieved by the QuickSort [14] algorithm.
This algorithm is �(n log n), on average.
After applying QuickSort, we might have repeated values

with diIerent class. For this reason, the algorithm 2rstly
sorts by value and, in case of equality, by class. In spite of

B A A A B B B B C A

2 3 3 3 3 3 3 3 3 4
values

classes

Fig. 9. Quicksort.

B B B B B C A A A A

2 3 3 3 3 3 3 3 3 4
values

classes

Fig. 10. Resort.

two comparisons, we could 2nd the situation depicted as in
Fig. 9.

Despite sorting, the examples sharing the same value for
an attribute are not nearer to those examples that have the
same class and have another value. In Fig. 9 we can observe
that it might be more interesting to have the examples with
value 3 and class B nearer to the example with value 2 and
class B. The solution to that problem consists of resorting the
interval containing repeated values. The heuristic is applied
to obtain the least number of changes of class. In this way,
the resorting method would produce the output shown in
Fig. 10 from the example in Fig. 9.

Fig. 11. POP algorithm.

We have considered the two diIerent values (2 and 4)
as pivots for resorting. Then, every example with the same
class as the left pivot is moved to the left, and every exam-
ple with the same class as the right pivot is moved to the
right, looking for the adjacent partition. In the middle, the
examples will remain with the order generated by Quick-
Sort. That is the algorithmic principle of the method imple-
mented in the ReSort algorithm. The complexity of the Re-
Sort algorithm is �(n), due to the shifting of equal-valued
examples. Therefore, the average computational cost of this
part of the algorithm is �(m1n log n) (Fig. 11).

2.2.2. Discrete attributes
Due to the nature of discrete attributes, these do not need

to be sorted. The set of patterns must be representative and
should therefore contain at least an example with every dif-
ferent discrete value. The aim is, increasing the weakness of
all the examples except one which has the least weakness
obtained for the continuous attributes. The average com-
plexity of this part is �(m2nr), where r is the average of
the number of diIerent discrete values.

3. Results

Tests have been achieved over 19 databases of varying
complexity from the UCI repository [11]. A summary of the
characteristics of these databases appears in the appendix.

BD.data
BD_ N.data

BD_ N.test

N={0,1,...,9}

10 sets

10 sets

Fig. 12. 10-fold cross-validation.

BD_ N .data

•METHOD ={POP, IB2, ENN, SHR}

BD_ METHOD _N.data

10 x 4 = 40 sets

METHOD

• Percentage of Retention (PR)

• Computational Cost in seconds (CCS)

TABLE 1

•N={0,1,...,9}

Fig. 13. Reduction methods.

BD_ METHOD _N .data

BD_ N .test
K-NN

•K={1, 3, 5}

• Error Rate (ER)

• Computational Cost in seconds (CCS)

TABLES 2,3

10 x 4 x 3 + 10 x 3 = 150 experiments

•METHOD ={POP, IB2, ENN, SHR}•N={0,1,...,9}

Fig. 14. Classifying with {1; 3; 5}-NN.

BD_ METHOD _N.data

BD_ N.test
C4.5

 • Error Rate (ER) TABLE 4

10 x 4 x 3 + 10 x 3 = 150 experiments

•METHOD ={POP, IB2, ENN, SHR}•N={0,1,...,9}

Fig. 15. Classifying with C4.5.

In our experiments, they all use the heterogeneous
overlap-Euclidean metric (HOEM) [5]. This function de-
2nes the distance between two values x and y of a given
attribute a as in Eq. (1).

da(x; y) =

{
rn diff(x; y) if a continuous;

overlap(x; y) if a nominal:
(1)

Table 1
Computational cost in seconds (CCS) and percentage of retention (PR) of the editing methods: POP, IB2, ENN and SHRINK. Average is
the mean of all databases

Database POP IB2 ENN SHRINK

CCS PR CCS PR CCS PR CCS PR

Bupa 0.7 79.3 1.7 44.3 7.3 62.5 5.5 45.3
Cancer 2.8 21.2 1.9 8.3 38.9 95.8 22.4 6.1
Cars 1.1 76.8 0.7 7.4 10.9 99.4 6.3 4.3
Cleve 1.8 91.0 1.4 30.6 8.9 75.4 6.1 32.3
German 13.4 70.5 25.2 37.5 129.5 72.1 90.7 37.0
Hayes-roth 0.19 91.33 0.22 47.65 1.1 68.26 0.82 53.12
Heart 1.7 92.5 1.4 32.8 7.9 75.5 5.5 32.4
Hepatitis 1.4 83.7 0.5 31.0 3.0 80.3 2.1 27.5
Ionosphe 6.3 99.1 3.8 20.2 32.4 86.7 19.8 16.3
Iris 0.2 66.1 0.1 12.8 1.0 95.3 0.7 10.1
Led7 23.1 9.3 87.0 37.8 467.0 62.7 354.2 27.6
Letter 331.7 34.8 4720.3 13.8 56629.8 96.1 33371.7 8.8
Lenses 0.0 73.6 0.0 51.0 0.0 69.0 0.0 38.9
Monk1 1.1 11.0 1.4 29.6 8.1 73.3 5.9 29.2
Mushroom 396.6 2.9 30.4 0.4 8426.1 100.0 4773.1 0.2
Pima 2.4 74.9 8.1 38.1 45.0 71.2 32.4 37.2
Tic-tac-toe 4.9 8.0 6.8 22.0 53.3 80.4 35.8 21.3
Vote 4.3 25.0 1.3 12.7 19.4 92.5 12.0 9.3
Zoo 0.7 89.4 0.1 12.3 1.2 96.8 0.6 6.9

Average 41.8 57.9 257.5 25.8 3467.9 81.8 2039.2 23.4
Average∗ 3.9 62.5 8.3 28.0 49.1 79.8 35.3 25.6

∗ Is the mean without mushroom and letter databases.

Table 2
Computational cost in seconds (CCS) and error rate (ER) of NN, POP, IB2, ENN and SHRINK using 1-NN technique

Database k-NN POP IB2 ENN SHRINK

CCS ER CCS ER CCS ER CCS ER CCS ER

Bupa 0.8 36.6 0.7 38.0 0.4 40.3 0.5 37.4 0.4 38.6
Cancer 4.4 4.0 0.9 6.6 0.4 6.7 4.1 3.9 0.3 21.5
Cars 1.3 0.5 1.0 0.5 0.1 1.3 1.2 1.0 0.1 16.6
Cleve 1.2 23.8 0.9 24.5 0.3 30.4 0.7 18.5 0.3 32.7
German 14.4 28.4 10.0 30.4 5.4 33.8 10.2 27.9 5.3 39.3
Hayes-roth 0.09 32.0 0.09 32.0 0.05 39.5 0.09 48.4 0.06 36.5
Heart 0.9 23.3 0.8 23.7 0.3 26.7 0.7 20.7 0.3 28.5
Hepatitis 0.3 20.0 0.3 20.0 0.1 29.6 0.3 15.4 0.1 36.0
Ionosphe 3.6 12.6 3.5 12.9 0.7 16.9 3.1 14.6 0.6 18.9
Iris 0.1 4.7 0.1 6.0 0.0 8.0 0.1 4.7 0.0 14.0
Led7 50.0 45.5 4.8 60.4 18.9 45.5 31.2 38.6 13.9 84.3
Lenses 0.0 30.0 0.0 61.7 0.0 51.7 0.0 51.7 0.0 40.0
Letter 6471.1 4.0 2168.2 7.0 830.8 7.9 6045.4 4.9 549.7 27.6
Monk1 0.9 25.9 0.1 34.0 0.3 25.2 0.6 29.8 0.3 25.0
Mushroom 949.4 0.0 25.4 0.2 3.8 0.0 957.4 0.0 1.9 28.7
Pima 4.9 28.3 3.7 30.5 2.1 35.8 3.5 24.4 1.9 39.7
Tic-tac-toe 5.8 20.3 0.5 30.2 1.3 19.9 4.6 21.9 1.3 19.4
Vote 2.0 8.0 0.5 7.6 0.3 9.9 2.0 8.0 0.2 52.5
Zoo 0.1 3.0 0.1 6.0 0.0 7.0 0.1 5.0 0.0 54.1

Average 395.3 18.5 116.9 22.7 45.5 22.9 371.9 19.8 30.3 34.4

Table 3
CCS and ER of NN, POP, IB2, ENN and SHRINK using {3; 5}-NN technique

Database k-NN POP IB2 ENN SHRINK

CCS ER CCS ER CCS ER CCS ER CCS ER

3-NN 392.1 17.2 116.8 20.2 46.1 25.6 378.2 18.3 31.5 40.4
5-NN 393.8 16.8 118.3 21.6 46.6 26.0 378.4 18.9 30.9 42.0

Table 4
C4.5: Error rate of the original training 2les, and the reduced
datasets from POP, IB2, ENN and SHRINK

Database Original POP IB2 ENN SHRINK

Bupa 33.4 37.7 43.8 33.7 41.2
Cancer 6.7 6.3 13.0 5.7 48.5
Cars 1.5 1.3 4.8 2.0 31.4
Cleve 23.5 22.5 29.1 20.5 31.7
German 32.9 34.3 34.2 31.4 39.7
Hayes-roth 18.3 18.3 16.7 23.5 12.0
Heart 25.5 22.9 32.6 20.7 35.2
Hepatitis 20.8 22.0 22.8 21.4 33.1
Ionosphe 11.2 11.4 25.4 9.1 48.0
Iris 4.0 6.0 26.0 6.0 39.3
Led7 27.0 31.6 27.8 37.7 81.0
Lenses 30.0 18.3 31.7 23.3 38.3
Letter 12.1 18.0 27.7 12.5 50.4
Monk1 3.7 29.6 9.2 19.0 24.5
Mushroom 0.0 0.2 18.8 0.0 59.3
Pima 26.6 28.8 31.9 25.0 36.3
Tic-tac-toe 14.2 35.1 23.9 16.1 24.9
Vote 6.2 5.7 7.8 5.0 67.1
Zoo 7.0 8.0 35.8 10.0 82.0

Average 16.0 18.8 24.4 17.0 43.4

The function overlap and the range-normalised diIerence
rn diff are de2ned in Eqs. (2) and (3), respectively.

overlap(x; y) =

{
0 if x = y;

1 otherwise;
(2)

rn diff(x; y) =
|x − y|

max −min
; (3)

where max and min are the upper and lower bounds of
the range of the attribute, respectively. And the overall dis-
tance between the two input vectors x and y is given by the
Eq. (4).

HOEM (x; y) =

√√√√ m∑
a=1

d2a(xa; ya): (4)

For each database (BD), 10-fold cross-validation was
used. A ten-fold cross-validation is performed by dividing
the data into 10 blocks of cases that have approximately

similar size and for each block in turn, testing the model
constructed from the remaining nine blocks on the unseen
cases in the hold-out block (Fig. 12).

Each reducing method was given a training set (BD N)
consisting of 90% of the available data, from which it re-
turned a subset BD METHOD N (Fig. 13).
The remainder 10% of the unseen data (BD N.test)

was tested on the instances in BD METHOD N.data using
k-NN, with k = 1; 3; 5. The classi2cation over the original
(non-reduced) BD N.data is also reported (see 10 × 3 in
Fig. 14).

As a further comparison, another widely-used learner,
C4.5, was run on these datasets (Fig. 15). The purpose is
to demonstrate that POP is more useful than other methods
if we are interested in producing axis-parallel-based models
like that of C4.5 (decision trees), COGITO [15] (decision
lists), and many others. POP conserves the axis-parallel de-
cision boundaries, and IB2, ENN and SHRINK do slightly
worse.

The experiments show that applying POP, the knowledge
in the original training 2le is conserved into the reduced
training 2le since the decision boundaries of every region in
the space are conserved.

A summary of the results of the editing methods appears
in Table 1. The 2rst column (CCS) shows the computational
cost in seconds of the complete 10-fold cross-validation
(the sum of the 10 experiments). The second column (PR)
presents the average percentages of examples in the original
training 2le that were included in the reduced 2le (see Fig.
13). As catalogued in the last row, the most salient aspect
is the large diIerence in time between POP and the other
methods when the database has a large number of examples
(for example, letter database).

From the point of view of the computational cost, POP
outperforms the remainder techniques (Table 1). As the
overall averages at the foot of the table indicate, with re-
spect to the computational cost, POP is six times faster than
IB2. Without taking into account the mushroom and letter
databases (two possible outliers), the time consumption is
half as slow for IB2 as it is for POP (see average∗ in Table
1). ENN and SHRINK are much slower, about ten times.
SHRINK and IB2 produces the best percentages of reduc-
tion at the expense of increasing the error rate.

In Tables 2 and 3, the results of the classi2cation using
k-NN are shown (see Fig. 14). The results obtained by 1- , 3-

Table 5
Global comparison

Method Time Retention Error Error
1-NN c4.5

POP 41.8 57.9 22.7 18.8
IB2 257.5 25.8 22.9 24.4
ENN 3467.9 81.8 19.8 17
SHRINK 2039.2 23.4 34.4 43.4

and 5-NN are very similar, which shows that the reduction
methods conserve the knowledge from the database. ENN,
IB2 and POP reach an interesting error rate, similar to NN
without reduction, even tough the percentage of reduction
of ENN is very low (the resulting database is almost the
same, without outliers). SHRINK has a marked increase in
error (34.4%). Consequently, it is not a good method for a
further classi2cation. As IB2 produces smaller reduced sets,
the cost of classifying using k-NN is logically lower.

The results presented in Table 4 (obtained as described in
Fig. 15) indicate that IB2 has a weaker performance when
C4.5 is used. Using C4.5, POP is more accurate than IB2.
When the database is reduced with IB2, it does not conserve
the necessary examples so that a parallel classi2er, like C4.5,
can generate accurate decision trees. POP has an error rate
of 18.8%, IB2 has 24.4%. ENN is more accurate than POP,
but it takes a lot of time in comparison, as we observed in
Table 1.

For the purposes of global comparison, in Table 5 we
present the average results of the methods used in this pa-
per. POP has lower cost than the other methods. IB2 and
SHRINK reach a great percentage of reduction, although
SHRINK has a very high error rate as with NN as C4.5. Ap-
plying C4.5 to the reduced database generated by IB2, the
decision tree produces an error rate greater than that of POP
does.

The comparison clearly indicates that POP is a robust
method to reduce databases since it takes a reasonable time
and produces accurate results for both k-NN and C4.5. In ad-
dition, it is completely deterministic and it does not depend
on the order of presentation of examples, like IB2, ENN,
SHRINK and many others. This means that it may be more
convenient to use POP as a preprocessing method when we
are interested in proving the accuracy of a learning method
based on axis-parallel representation.

4. Conclusions

In this paper an editing algorithm (POP: patterns by or-
dered projection) is presented. Its main application is as
a preprocessing method for axis-parallel classi2ers (like
C4.5). POP has an important characteristic: it does not need
distance calculations and, therefore, it is not necessary to

Table 6
Datasets

Database # Examples # Nominal # Continuous # Classes

Breast cancer 699 0 9 2
Bupa liver
disorder 345 0 6 2
Cars 392 1 7 3
Cleveland 303 7 6 2
German 1000 13 7 2
Hayes-Roth 132 0 5 3
Heart disease 270 0 13 2
Hepatitis 155 13 6 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Led7 3200 7 0 10
Lenses 24 4 0 3
Letter 20,000 0 16 26
Monk1 432 6 0 2
Mushroom 8124 22 0 2
Pima Indian
diabetes 768 0 8 2
Tic-Tac-Toe 958 9 0 2
Vote 435 16 0 2
Zoo 101 16 0 7

de2ne it. NN-based techniques need to initially set some
parameters, POP does not. The computational cost is lower
than other methods �(mn log n). The test set was carried
out with nineteen diIerent databases with continuous and
discrete attributes from the UCI repository and the results
are very interesting because they show that our algorithm is
a robust method to reduce datasets for studying other learn-
ing algorithms without loosing decision boundaries. POP is
deterministic; it is neither dependent on random values nor
the order of example processing.

At the same time, we are presenting a measure, named
weakness of an example, which can help to determine the
importance of an example as decision boundary. More
weakness implies less relevance. Thus, in more compli-
cated databases we could relax the reduction factor for
eliminating those examples whose weakness is less than m.

Appendix

Table 6 lists the number of examples, number of nomi-
nal attributes, and number of continuous attributes in each
dataset, along with the number of output classes.

References

[1] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Mateo, CA, 1993.

[2] T.M. Cover, P.E. Hart, Nearest neighbor pattern classi-
2cation, IEEE Trans. Inf. Theory IT-13 (1) (1967) 21–27.

[3] P. Hart, The condensed nearest neighbor rule, IEEE Trans.
Inf. Theory 14 (3) (1968) 515–516.

[4] D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning
algorithms, Mach. Learning 6 (1991) 37–66.

[5] D.R. Wilson, T.R. Martinez, Improved heterogeneous distance
functions, J. Artif. Intell. Res. 6 (1) (1997) 1–34.

[6] I. Tomek, An experiment with the edited nearest-neighbor
rule, IEEE Trans. Syst. Man Cybern. 6 (6) (1976) 448–452.

[7] G. Ritter, H. WoodruI, S. Lowry, T. Isenhour, An algorithm
for a selective nearest neighbor decision rule, IEEE Trans.
Inf. Theory 21 (6) (1975) 665–669.

[8] V. Klee, On the complexity of d-dimensional voronoi
diagrams, Arch. Math. 34 (1980) 75–80.

[9] G.T. Toussaint, The relative neighborhood graph of a 2nite
planar set, Pattern Recognition 12 (4) (1980) 261–268.

[10] J.S. Aguilar, J.C. Riquelme, M. Toro, Data set editing by
ordered projection, in: Proceedings of the 14th European

Conference on Arti2cial Intelligence (ECAI’00), Berlin,
Germany, 2000, pp. 251–255.

[11] C. Blake, E.K. Merz, UCI repository of machine learning
databases, 1998.

[12] D. Wilson, Asymptotic properties of nearest neighbor rules
using edited data, IEEE Trans. Syst. Man Cybern. 2 (3) (1972)
408–421.

[13] D. Kibler, D.W. Aha, Learning representative exemplars
of concepts: an initial case study, in: Proceedings of
Fourth International Workshop on Machine Learning, Morgan
Kaufmann, Irvine, CA, 1987, pp. 24–30.

[14] C.A.R. Hoare, Quicksort, Comput. J. 5 (1) (1962) 10–15.
[15] J.S. Aguilar, J. Riquelme, M. Toro, Three geometric

approaches for representing decision rules in a supervised
learning system, in: Genetic and Evolutionary Computation
Conference (GECCO ’99), Orlando, FL, EE.UU., 1999,
p. 771.

http://www.lsi.us.es/~riquelme
http://www.lsi.us.es/~aguilar

	Finding representative patterns with ordered projections
	Introduction
	Algorithm
	Definitions
	Algorithm
	Continuous attributes
	Discrete attributes

	Results
	Conclusions
	Appendix
	References

