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Abstract

In linear classi�ers, such as the Support Vector Machines (SVM), a score is as-
sociated with each feature and objects are assigned to classes based on the linear
combination of the scores and the values of the features. Inspired by discrete psy-
chometric scales, which measure the extent to which a factor is in agreement with
a statement, we propose the Discrete Level Support Vector Machines (DILSVM)
where the feature scores can only take on a discrete number of values, de�ned by the
so-called feature rating levels. The DILSVM classi�er bene�ts from interpretability
as it can be seen as a collection of Likert scales, one for each feature, where we rate
the level of agreement with the positive class. To build the DILSVM classi�er, we
propose a Mixed Integer Linear Programming approach, as well as a collection of
strategies to reduce the building times. Our computational experience shows that
the 3-point and the 5-point DILSVM classi�ers have comparable accuracy to the
SVM with a substantial gain in interpretability and sparsity, thanks to the appro-
priate choice of the feature rating levels.

Keywords: Support Vector Machines, Mixed Integer Linear Programming, Likert scale,
interpretability, feature rating level.

1 Introduction

Supervised Classi�cation, (Apte 2003, Hand et al. 2001, Wu et al. 2007), based on large
datasets, plays an important role in many industries, with notable examples being credit
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scoring (Baesens et al. 2003), fraud detection (Cecchini et al. 2010), customer targeting
(Archak et al. 2011, Cui et al. 2006), and surveillance (Fang et al. 2013). In Supervised
Classi�cation, we are given a set of objects Ω partitioned into classes and the aim is to
build a procedure for classifying new objects. In its simplest form, each object i ∈ Ω has
associated a pair (xi, yi), where the feature vector xi takes values on a set X ⊆ Rd and
yi ∈ {−1,+1} is the class membership of object i.

There are several desirable managerial properties in Supervised Classi�cation methods.
Incorporating domain knowledge at the time of building the classi�er is a very appealing
property (Cecchini et al. 2010). One may also like to keep the costs of learning the classi�er
low, where these costs arise from retrieving the features (Carrizosa et al. 2008, Turney
1995), obtaining feature information from the classi�er (Saar-Tsechansky et al. 2009),
or refreshing the classi�er to include new data (Fang et al. 2013). Another desirable
property is the comprehensibility/interpretability of the classi�er. Since conciseness of
the classi�er is closely related with its interpretability, much e�ort has been devoted to
increasing its sparsity, i.e., to reducing the number of active features in the classi�er
(Guyon et al. 2002), discretizing the features to detect active ranges of the features (Liu
et al. 2002, Romero Morales and Wang 2009) or relevant thresholds for the features
(Carrizosa et al. 2010). When trading o� between accuracy and interpretability, another
popular approach has been to extract easy�to�understand structures from powerful yet
black�box type classi�ers, such as if�then rules, decision trees and decision tables (Baesens
et al. 2003, Bertsimas et al. 2011, Martens et al. 2007, Martens and Provost 2013, Orsenigo
and Vercellis 2003, 2004). Yet another way of achieving interpretability is by building
discrete linear classi�ers (Chevaleyre et al. 2013, Golea and Marchand 1993). Classi�er
interpretability is a major challenge in datasets that contain a huge number of features,
where most of these are irrelevant. To address this issue, models have been proposed
aimed at increasing the sparsity of the classi�er, as is done with the Lasso, see Li et al.
(2006) and Roth (2004).

In Supervised Classi�cation, linear classi�ers are based on score functions. For in-
stance, the CHADS2 score (Gage et al. 2001, Letham et al. 2012) is widely used in
medicine to predict the risk of stroke in patients with atrial �brillation based on �ve
di�erent symptoms of the patient, whereas the extended CHA2DS2�VASc score (Lip et al.
2010) includes three additional risk factors. A score is associated with each feature, and
objects are assigned to classes based on the linear combination of the scores and the values
of the features. The role each feature plays in the classi�er is related to the magnitude
of the corresponding score, while the sign gives information on how the feature points
towards a given class.

A state-of-the-art method in Supervised Classi�cation using a score function is the
Support Vector Machines (SVM), Cristianini and Shawe-Taylor (2000), Vapnik (1995,
1998). The SVM aims at separating both classes by means of a hyperplane, ω>x+ b = 0,
found by solving the following Quadratic Programming problem with linear constraints:

min
ω, b, ξ

1

2

d∑
j=1

ω2
j +

C

n

n∑
i=1

ξi
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s.t. (SVM)

yi(ω
>xi + b) ≥ 1− ξi ∀i = 1, . . . , n

ω ∈ Rd

b ∈ R
ξi ≥ 0 ∀i = 1, . . . , n,

where n is the size of the sample used to build the classi�er, C is a nonnegative tradeo�
parameter, (ξi) is the vector of deviation variables, the input feature vector xi takes values
on Rd and

∑n
i=1 ξi is the so-called hinge loss function. See Carrizosa and Romero Morales

(2013) for a recent review on Mathematical Optimization and the SVM, and Bertsimas
et al. (2008), Brooks (2011), Cecchini et al. (2010), Chaovalitwongse et al. (2008), Guyon
et al. (2002), Martens et al. (2007), Romero Morales and Wang (2010) for successful
applications of the SVM.

The classi�er obtained by solving the SVM, like any linear classi�er, provides valuable
information on the role of each feature in the classi�er. Indeed, the set of features can be
partitioned into three clusters, namely those with positive ωj, those with negative ωj, and
the ones with ωj equal to zero. We can say that features in the �rst group have a positive
contribution in the classi�er, and thus such features point towards class +1, the positive
class; similarly, features in the second group have a negative contribution, and thus such
features point towards class −1, the negative class; and those features with ωj = 0 have no
contribution in the classi�er and are therefore irrelevant. However, the construction of the
SVM classi�er is aimed at margin maximization (a surrogate of classi�cation accuracy),
and interpretability issues are fully disregarded in the formulation.

Inspired by discrete psychometric scales, which measure the extent to which a factor
is in agreement with a statement, (Keeney and Gregory 2005), and by linear classi�ers
in which the weights are allowed to take values on a discrete set, (Chevaleyre et al. 2013,
Golea and Marchand 1993), we propose the Discrete Level Support Vector Machines
(DILSVM) where the feature scores can only take on a discrete number of levels, de�ned
by the so-called feature rating levels. The DILSVM classi�er bene�ts from interpretability,
as it can be seen as a collection of Likert scales, one for each feature, where we rate the
level of agreement with the positive class.

We formulate the DILSVM as a Mixed Integer Linear Programming (MILP) problem.
The parameters of our model, namely, the tradeo� parameter C and the rating levels,
may heavily in�uence the performance, i.e., the accuracy and the sparsity, of the DILSVM
and, therefore, have to be carefully chosen. Thus, building the DILSVM classi�er involves
solving a series of MILP problems, which, if solved to optimality, may make the overall
computational cost high for large datasets. For this reason we propose three strategies
to alleviate the computational burden, with di�erent tradeo�s between performance and
reduction in computational cost. Such strategies use the guidance of related but simpler
optimization models, and reduce the computational cost associated with each parameter
vector and/or the number of parameter vectors to be inspected.

In our computational experience, we compare the DILSVM against the SVM classi�er
using ten real-life datasets. We show that the 3-point and 5-point DILSVM classi�ers,
built using the MILP approach, have comparable accuracy to the SVM, with a substan-
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tial gain in sparsity. Moreover, by the very nature of our procedure (only a few levels, to
be interpreted as intensities, are allowed), interpretability is de�nitely improved allowing
us to visualize the classi�cation process via Likert scales. The tests illustrating the per-
formance of the reduction strategies reveal a clear competitiveness in terms of sparsity,
while the accuracy depends on the magnitude of the reduction, being close to the SVM
accuracies. In our computational experience, we also compare the DILSVM against the
3-point DILSVM classi�er with �xed parameters using ten real-life datasets. The 3-point
DILSVM with �xed parameters is inspired by the model in (Chevaleyre et al. 2013). The
results illustrate the relevance of tuning parameters to ensure accuracy and sparsity are
not compromised.

Likert scale representations allow non-experts to easily understand the classi�er, and
there are fewer relevant features because of the improvement on sparsity. This contributes
to the literature on SVM, but more generally, on Data Mining, because it signi�cantly
improves interpretability of learning methods and their visualization, without comprising
accuracy. These advantages are obtained by extending existing SVM models, adding
parameters right in the place they are needed to improve sparsity and thus interpretability.

The remainder of this paper is organized as follows. In Section 2 we introduce the
DILSVM classi�er. In Section 3 we discuss procedures for building the DILSVM classi�er.
In Section 4 we report our computational results using real-life datasets. We end the paper
in Section 5 with some conclusions and directions for future research.

2 The DILSVM classi�er

The Discrete Level Support Vector Machines (DILSVM) is a variant of the SVM classi�er
where for each feature j, the score ωj can only take on a discrete number of values. Let
A ⊂ R be a �nite set that includes the value 0, which models the marginal impact of
the feature on the classi�er. We can formulate the DILSVM as the following Discrete
Quadratic Programming problem:

min
ω, b, ξ

1

2

d∑
j=1

ω2
j +

C

n

n∑
i=1

ξi (1)

s.t.

yi(ω
>xi + b) ≥ 1− ξi ∀i = 1, . . . , n (2)

ωj ∈ A ∀j = 1, . . . , d (3)

b ∈ R (4)

ξi ≥ 0 ∀i = 1, . . . , n. (5)

See Burer and Letchford (2012) for a recent review of algorithmic tools for Mixed Integer
Nonlinear Programming.

For adequate choices of A, this model gains in interpretability and visualization. For
instance, let us consider A = {−a, 0, a}, a > 0. In the DILSVM classi�er, some of the
ωj will be equal to a or −a, while the rest will be equal to zero. Features for which
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ωj = a will have a positive impact on the classi�er and therefore will point towards the
positive class, those for which ωj = −a will point towards the negative class, while the
rest have no impact. We can view this in an alternative way: for a given rating level a, the
DILSVM detects those features which strongly agree with the positive class, those which
strongly disagree (and therefore strongly agree with the negative class), and those which
are irrelevant to the classi�er. This DILSVM classi�er can be represented as a collection
of 3-point Likert scales, one for each feature, measuring the extent to which the feature
is in agreement with the positive class. When looking for more granularity of the scale,
we can increase the size of A. For A = {−a1,−a2, 0, a2, a1}, a1 > a2 > 0, the DILSVM
classi�er can be seen as a collection of 5-point Likert scales where features j with ωj = a1

are seen to strongly agree with the positive class, those with ωj = a2 agree (but not so
strongly), while ωj = −a1 (−a2) strongly disagree (disagree).

As an illustration, let us consider the well-known German credit dataset, german,
which is one of the datasets used in our computational tests in Section 4, with 63 features
in total. This is a credit scoring dataset, with good customers de�ning the positive class,
and has been used in the context of Supervised Classi�cation and interpretability, such
as in Baesens et al. (2003) where rule extraction techniques are studied. Table 5 displays
the DILSVM classi�er with A = {−1, 0, 1} and C/n = 106 as a collection of 3-point
Likert scales. Let us focus on three of the features, namely `having no debtor', `having a
co-applicant' and `having a guarantor'. The only relevant feature is `having a guarantor',
strongly contributing to being a good customer, while for the other two features the score
is equal to zero. This is a pattern that can be extended to the overall classi�er, where
more than half of the features are irrelevant (41 out 63). The remaining features are
roughly equally split between the left and right side of the scale. Thus, in addition to
the gain in interpretability, this DILSVM classi�er gains in sparsity too. The 5-point
Likert scale representation of the DILSVM classi�er with A = {−1,−1/2, 0, 1/2, 1} and
C/n = 106 is given in Table 6. The feature `having a guarantor' still strongly contributes
to being a good customer, but `having a co-applicant' now contributes negatively (but
not strongly), while `having no debtor' is still irrelevant. Similarly to the 3-point Likert
scale classi�er, the split between the left and right side of the scale is balanced, but the
number of irrelevant features is about a third (27 out of 63).

Apart from the gain in interpretability and sparsity, once the DILSVM classi�er has
been obtained, its evaluation (i.e., classifying new objects) is as inexpensive as for the
SVM. However, these advantages come with an increased computational burden, related
to the choice of the set A, to build the classi�er. We analyze this issue in the next section.

3 Constructing the DILSVM classi�er

Inspired by Likert scales, we assume that the set A is symmetric and de�ned as A =
{−a1, . . . ,−aK , 0, aK , . . . , a1}, where a1 > . . . > aK > 0 are the so-called rating levels
telling us about the extent to which each feature is in agreement with the positive class.
We denote this model by DILSVM(K).

Our model involvesK+1 parameters, namely theK rating levels as well as the tradeo�
parameter C. In the following, we formulate the DILSVM(K), when the K+1 parameters
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are �xed, as an MILP problem. As we will illustrate in Section 4, tuning e�ciently the
parameters is a necessary and challenging problem, Carrizosa et al. (2014). In order to
alleviate this computational burden, a collection of strategies is proposed.

3.1 An MILP formulation

In this section we formulate (1)�(5) with A = {−a1, . . . ,−aK , 0, aK , . . . , a1} as an MILP
problem. For each feature j and each rating level ak, let αjk be equal to either −1, 1 or
0, indicating whether ωj is equal to −ak, ak or none of these two. For each feature j, at
most one αjk variable can be di�erent from zero. We can now rewrite

ωj =
K∑
k=1

akαjk

d∑
j=1

ω2
j =

d∑
j=1

K∑
k=1

a2
kα

2
jk =

d∑
j=1

K∑
k=1

a2
k|αjk|,

where the latter follows from the fact that αjkαjk′ = 0 for k 6= k′. It is straightforward to
see that by making these substitutions in (1)�(5) and adding the constraints relating to
αjk, the DILSVM

(K) can be formulated as:

min
α,b,ξ

1

2

d∑
j=1

K∑
k=1

a2
k|αjk|+

C

n

n∑
i=1

ξi

s.t.

yi

(
d∑
j=1

K∑
k=1

akαjkxij + b

)
≥ 1− ξi ∀i = 1, . . . , n

K∑
k=1

|αjk| ≤ 1 ∀j = 1, . . . , d

αjk ∈ {−1, 0, 1} ∀j = 1, . . . , d, ∀k = 1, . . . , K

b ∈ R
ξi ≥ 0 ∀i = 1, . . . , n.

Using the usual trick to transform an absolute value into linear constraints, i.e., αjk =
α+
jk−α

−
jk, and |αjk| = α+

jk+α−jk, with α
+
jk, α

−
jk ∈ {0, 1}, we can reformulate the DILSVM(K)

as an MILP problem:

min
α+,α−,b,ξ

1

2

d∑
j=1

K∑
k=1

a2
k(α

+
jk + α−jk) +

C

n

n∑
i=1

ξi (6)
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s.t. (DILSVM(K))

yi

(
d∑
j=1

K∑
k=1

ak(α
+
jk − α

−
jk)xij + b

)
≥ 1− ξi ∀i = 1, . . . , n (7)

K∑
k=1

(α+
jk + α−jk) ≤ 1 ∀j = 1, . . . , d (8)

α+
jk, α

−
jk ∈ {0, 1} ∀j = 1, . . . , d, ∀k = 1, . . . , K (9)

b ∈ R (10)

ξi ≥ 0 ∀i = 1, . . . , n. (11)

This MILP formulation has n+d constraints, 2dK binary decision variables, n nonnegative
and 1 free, while the SVM formulation has a quadratic objective function but all the
decision variables are continuous.

In terms of the choice of the number of rating levels, the DILSVM(K) may lead to a
higher classi�cation accuracy than the DILSVM(K′), with K > K ′, but it is computation-
ally more expensive as the number of zero�one decision variables increases and the gains
in interpretability and sparsity are less dramatic. Similar observations can be made when
comparing the SVM and the DILSVM(K), since at the end of the spectrum is the SVM,
which can be seen as DILSVM(∞). In the tradeo� between accuracy and interpretability,
we recommend the K = 1 and K = 2 versions of the model, namely the DILSVM(1) and
the DILSVM(2).

3.2 Reduction Strategies

We have formulated the DILSVM(K) as an MILP problem. Solving this MILP formulation
to optimality is an NP-Hard task even if we only consider one single rating level, namely
K = 1 and a1 = 1, and C = ∞, as shown in Chevaleyre et al. (2013). In addition, the
performance of the DILSVM(K) classi�er may be strongly in�uenced by the choice of the
tradeo� parameter C as well as the K rating levels. Thus, building the DILSVM classi�er
involves solving a series of MILPs, which, if solved to optimality, may make the overall
computational cost high for large datasets. In this section we present three di�erent
strategies to alleviate the computational burden of building the DILSVM(K) classi�er.

The proposed strategies use the guidance of related but simpler optimization models,
and reduce the computational cost associated with each parameter vector and/or the
number of parameter vectors to be inspected. The �rst strategy is based on rounding
the SVM classi�er using each vector of rating levels. The second strategy proposes,
for each parameter vector, the randomized rounding, Raghavan and Tompson (1987), of
the Linear Programming (LP) relaxation of the DILSVM(K). The third strategy aims
at speeding up the process for the DILSVM(K) based on information readily available
for the DILSVM(K′), K ′ < K. Clearly, these strategies are of diverse nature and, as the
computational experience will illustrate, o�er di�erent tradeo�s between performance and
reduction in computational cost.

The �rst and second strategies will be presented for general K, while, and for the sake
of clarity, the third strategy will be described for K = 2, though the process gracefully
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Step 1. For each C,

(i) Solve the SVM and obtain the (partial) optimal solution

(ω, b).

(ii) For each (a1, . . . , aK),

For j = 1, . . . , d

For k = 1, . . . , K, set β+
jk = β−jk = 0

For k = 1, . . . , K

If ak ≤ ωj < ak−1 then β+
jk = 1

ElseIf −ak−1 < ωj ≤ −ak then β−jk = 1

end

end

Return the classifier

K∑
k=1

ak(β
+
k − β

−
k )>x+ b.

Step 2. Choose the optimal parameter vector using

K∑
k=1

ak(β
+
k − β

−
k )>x+ b.

Figure 1: Pseudocode for Strategy 1, the SVM rounding strategy.

extends to arbitrary K. Apart from a grid of parameter vectors, we assume that we are
given a selection criterion, Carrizosa and Romero Morales (2013), to choose the optimal
classi�er among those generated for each vector of the grid. This is usually the accuracy
on an independent sample di�erent from the one used to build the classi�er, see Section
4.1 for more details.

The �rst strategy, the SVM rounding (RSVM ), is based on rounding the feature scores
of the SVM classi�er using the rating levels. For each value of C, the SVM classi�er is
obtained, and the rounding procedure is performed using each vector of rating levels. The
pseudocode of this reduction strategy is given in Figure 1, where a0 = ∞. While this
strategy examines all the parameter vectors in the grid, it is appealing since it is cheaper
to train an SVM than a DILSVM. In addition, for a given value of C, once the SVM
classi�er has been obtained, the rounding procedure takes O(dK) time for each vector of
rating levels.

The second strategy is based on the randomized rounding of the LP relaxation of the
DILSVM(K). We call this the randomized rounding (RR) strategy. For each parameter
vector (C, a1, . . . , aK), the RR strategy solves the LP relaxation of the DILSVM(K), where
constraints (9) are relaxed to α+

jk, α
−
jk ∈ [0, 1]. Let (α+, α−) be the (partial) optimal

solution obtained. Without loss of optimality, α+
jk · α

−
jk = 0. Thus, for a given feature j,

α+
jk (α

−
jk) can be seen as the desirability of setting the score of feature j to value ak (−ak).

Noting that the assignment constraints (8) are satis�ed, a randomized rounding procedure
can be applied to derive the DILSVM classi�er. In order to ensure feasibility with respect
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Step 1. For each (C, a1, . . . , aK),

(i) Solve the LP relaxation of DILSVM(K) and obtain the (partial)

optimal solution (α+, α−).

(ii) For j = 1, . . . , d

For k = 1, . . . , K, set β+
jk = β−jk = 0

Set K = {1, . . . , K}
while (K 6= ∅)

Let k̄ such that max{α+
jk̄
, α−

jk̄
} ≥ max{α+

jk, α
−
jk}, ∀k ∈ K

Set

β+
jk̄

= rand(α+
jk̄

)

β−
jk̄

= rand(α−
jk̄

)

If β+
jk̄

= β−
jk̄

= 0, set K = K \ {k̄}
Else K = ∅

end

end

(iii) Return the classifier

K∑
k=1

ak(β
+
k − β

−
k )>x+ b.

Step 2. Choose the optimal parameter vector using

K∑
k=1

ak(β
+
k − β

−
k )>x+ b.

Figure 2: Pseudocode for Strategy 2, the randomized rounding strategy.

to the assignment constraints, the rounding needs to take place in a predetermined order
of the rating levels, such that once a rating level and a sign has been assigned to a feature,
we move to the next feature. In the current version of the RR strategy, the rating levels
are arranged in decreasing order of max{α+

jk, α
−
jk}. The pseudocode of this reduction

strategy can be found in Figure 2, where rand(p) is a subroutine of random numbers
generation, returning the value 1 with probability p and 0 otherwise.

In the third strategy, the �xing strategy, we use the output of the DILSVM(1) classi�er
to alleviate the burden of building the DILSVM(2) classi�er. In this case, the reduction
is twofold. First, the size of the parameter space is narrowed down. Second, some of the
decision variables in the MILP formulation (6)�(11) are �xed in advanced, and therefore
eliminated. The pseudocode for this reduction strategy can be found in Figure 3. Using
the grid corresponding to parameters C and a1, we �rst build the DILSVM(1) classi�er
yielding optimal parameters values C(1) and a

(1)
1 . We then build the DILSVM(2) classi�er

using the MILP formulation (6)�(11) for K = 2, with C = C(1), a1 = a
(1)
1 and the values

of a2 in the grid. In addition, we reduce the number of zero�one decision variables in
the MILP formulation. In the current version of the �xing strategy, feature j will have a

9



strong positive rating in the DILSVM(2) classi�er if that was the case in the DILSVM(1)

classi�er, and similarly for a strong negative rating. For the rest of features, β+
jk and β

−
jk,

k = 1, 2, must be optimized.
As already mentioned, the �xing strategy can be extended to an arbitrary K, where

we use the output of the DILSVM(K′) classi�er with K ′ < K.

Step 1. For each (C, a1),

(i) Solve the DILSVM(1) and obtain the (partial) optimal solution

(α+, α−, b).

(ii) Choose the optimal parameter vector (C(1), a
(1)
1 ) using a1(α+ −

α−)>x+ b, and obtain (ᾱ+, ᾱ−).

Step 2. For C(1), a
(1)
1 , and for each a2,

(i) For j = 1, . . . , d

If ᾱ+
j1 = 1 then β+

j1 = 1 and β−j1 = β+
j2 = β−j2 = 0

ElseIf ᾱ−j1 = 1 then β−j1 = 1 and β+
j1 = β+

j2 = β−j2 = 0

end

(ii) Solve the DILSVM(2) and return the classifier

2∑
k=1

ak(β
+
k −β

−
k )>x+

b.

Step 3. Choose the optimal parameter vector using

2∑
k=1

ak(β
+
k − β

−
k )>x+ b.

Figure 3: Pseudocode for Strategy 3, the �xing strategy.

4 Computational Results

In this section we illustrate the performance of the DILSVM classi�er in terms of accuracy
and sparsity, where the latter is measured as the percentage of features with zero score.
As benchmark procedure we use the SVM, whose performance in terms of both criteria
is reported in Table 2. To build the DILSVM classi�er, we use four approaches, namely
the MILP approach and the three reduction strategies. We will show that, considered
in its full generality and with small values of K (K = 1, 2) to ensure interpretability,
the DILSVM(K) is competitive against the SVM in terms of accuracy, being substantially
sparser than the latter. Inspired by the model in Chevaleyre et al. (2013), we show in
Table 3 results for the DILSVM(1) with �xed parameters C =∞ and a1 = 1. Comparing
the DILSVM(1) with it shows the relevance of tuning parameters. The results for the
DILSVM(1) are reported in Table 3, where for each dataset and each criterion, we underline
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the best results across the three approaches. (Note that the �xing strategy only applies
to K ≥ 2, and therefore it is not present in Table 3.) Similarly, Table 4 reports the results
for the four approaches to build the DILSVM(2) classi�er.

Our experiments have been conducted on a PC with an Intel R© CoreTM i7 processor,
16 Gb of RAM. We use the optimization engine CPLEX v12.4, (CPLEX 2012), for solving
all optimization problems. We have set the time limit to 300 seconds, which is enough for
most of the optimization problems we have solved. For the remaining ones, the classi�ers
derived in this way are of heuristic nature. The rest of this section is structured as
follows. The tuning procedure used to choose the tradeo� parameter C and the rating
levels ak, k = 1, . . . , K, is given in Section 4.1. The datasets used to compare the models
are described in Section 4.2. The computational results are presented in Sections 4.3 and
4.4.

4.1 Parameters Setting

As customary in Supervised Classi�cation, the construction of the DILSVM classi�er
calls for tuning some parameters, namely the tradeo� parameter C as well as the rating
levels. The tuning procedure works as follows, (Carrizosa et al. 2014, Carrizosa and
Romero Morales 2013). The dataset is split into three sets, the so-called training, testing
and validation sets. For each vector of parameters, the DILSVM is run on the training
set, which has size n. The di�erent classi�ers built in this way are compared according to
their accuracy on the testing set. The vector of parameters with the highest accuracy on
the testing set is chosen, and its accuracy and sparsity on the validation set are reported,
see Figure 4.

Following the usual approach, for the DILSVM(1), parameters C and a1 are tuned by
inspecting a grid of the form C

n
∈ {10−6, . . . , 106} and of the form a1 ∈ {20, . . . , 210}. In

order to show the relevance of tuning parameters, results for the DILSVM(1) with C =∞
and a1 = 1 are also resported in Section 4.3. For the DILSVM(2), C and a1 are tuned
with the same grid, and a2 ∈ {a12 ,

a1
22
}.

4.2 Datasets

The performance, in terms of accuracy and sparsity, of our model is illustrated using
10 real-life large datasets: calhous from the StatLib repository (Vlachos and Meyer
1989), ijcnn1 and cod-rna from the LIBSVM repository (Chang and Lin 2011), and
the remaining ones from the UCI repository (Blake and Merz 1998). Datasets containing
categorical features have been transformed splitting the categories into binary features
(mushroom, german). Regression datasets are transformed into 2-class datasets using
the median (abalone, calhous), and multi-class datasets are transformed into 2-class,
treating the largest class as class +1 and the remaining classes as class −1 (careval,
shuttle). Please note the features are normalized and therefore we can safely assume
that there is one single rating scale for all the features, and thus for the scores.

A description of these datasets can be found in Table 1, whose �rst four columns
report the dataset name, full name given in the repository, number of features (d) and
total size of the dataset (|Ω|). The size of the training set (n) is set as the closest 5 · 10s−1
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Step 1. For each value of the parameter vector (C, a1, . . . , aK) in the grid,

(i) Obtain the corresponding classifier

K∑
k=1

ak(α
+
k − α−k )>x + b using

the training set.

(ii) Let πtest(C, a1, . . . , aK) be the accuracy of

K∑
k=1

ak(α
+
k − α

−
k )>x+ b in

the testing set.

Step 2. Let (C̄, ā1, . . . , āK) ∈ arg max(C,a1,...,aK) π
test(C, a1, . . . , aK) and

K∑
k=1

āk(ᾱ
+
k −

ᾱ−k )x> + b be the corresponding classifier using the training set.

(i) Report the performance of

K∑
k=1

āk(ᾱ
+
k −ᾱ

−
k )>x+b in the validation

set.

Figure 4: Pseudocode of the tuning procedure for the DILSVM(K).

multiple to |Ω|/2 where |Ω| is of 10s order, see �fth column of Table 1, and the remaining
records in the dataset are equally split between the testing and validation sets. The last
column reports the class split in the training set.

To obtain sharp estimates for the accuracy and the sparsity, repeated random sub-
sampling is used, where ten instances are run for each dataset. The ten instances di�er
in the seed used to reshu�e the dataset and then obtain di�erent training, testing and
validation sets.

4.3 Results for the MILP approach

In this section we compare the performance of the DILSVM(1) and the DILSVM(2) against
that of the SVM, where the DILSVM results are generated using the MILP formulation
in Section 3.1. Performance will be measured in terms of two criteria, accuracy, de�ned
as the percentage of objects correctly classi�ed, and sparsity, de�ned as the percentage
of features having a zero score. The ideal model would be that one achieving the highest
values in both criteria. When, for a given criterion, the di�erence in performance between
two approaches is 1 percentage point (p.p.) or below, we will say that both approaches
are comparable under that criterion.

Recall that Table 2 reports the performance of the SVM, while the MILP approach
results for the DILSVM(1) can be found in the second set of columns of Table 3, and the
ones for the DILSVM(2) in the �rst set of columns of Table 4. For each dataset, we report
the mean validation accuracy across the ten instances, as well as the standard deviation
and the median. The same statistics are presented for the sparsity. Below we discuss
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Table 1: Datasets.

Name Name in Repository d |Ω| n Class split (in %)
adult Adult 123 30956 15000 24/76
mushroom Mushroom 119 8124 4000 48/52
german Statlog (German Credit Data) 63 1000 500 30/70
ijcnn1 ijcnn1 22 35000 20000 9/91
careval Car Evaluation 21 1728 1000 30/70
gamma MAGIC Gamma Telescope 10 19020 10000 32/68
abalone Abalone 10 4177 2000 50/50
shuttle Statlog (Shuttle) 9 58000 30000 20/80
cod-rna cod-rna 8 59535 30000 33/67
calhous California Housing 8 20460 10000 50/50

mean values, but similar conclusions are derived if the median is used.
We start with the analysis of the mean accuracy, and show that the DILSVM is

competitive against the SVM. We �rst compare with the mean accuracy of the SVM. For
three datasets, adult, german and careval, the DILSVM(1) outperforms the SVM by
5.54, 2.36 and 1.16 p.p., respectively. For three datasets, mushroom, gamma and shuttle,
the DILSVM(1) and the SVM are comparable. In three datasets, ijcnn1, abalone and
calhous, the SVM outperforms the DILSVM(1) by 1.20, 1.24 and 1.61 p.p., respectively.
In cod-rna, the DILSVM(1) is clearly ine�cient compared to the SVM. For datasets such
as cod-rna, the DILSVM(1) is too restrictive, and the accuracy may bene�t from the
additional �exibility built in by the DILSVM(2). An improvement of more than 1 p.p.
can be observed from the DILSVM(1) to the DILSVM(2) in three datasets. The �rst one is
careval, for which the DILSVM(1) is already better than the SVM, and the improvement
on the SVM increases from 1.66 to 3.66 p.p. The second one is cod-rna, where now
the di�erence in mean accuracy between the SVM and the DILSVM has been reduced
from 15.69 to 3.22 p.p. The third one is calhous, where the SVM is better than the
DILSVM(1), but now the DILSVM(2) has a comparable performance to the SVM. Across
all datasets, the DILSVM(2) outperforms the SVM in three datasets, they are comparable
in �ve datasets, while the SVM outperforms the DILSVM(2) in two datasets. Thus, the
DILSVM(2) is competitive against the SVM in terms of mean accuracy. We now show
the relevance of tuning parameters by comparing mean accuracy results between the
DILSVM(1) and the DILSVM(1) with �xed parameters C = ∞ and a1 = 1. Using this
criterion, the �xed DILSVM(1) is not competitive and is outperformed by the DILSVM(1)

in eight datasets, where the increase in mean accuracy achieved ranges between 2.80 and
18.41 p.p., while the mean accuracy of both methods is basically the same for mushroom
and ijcnn1.

We now focus on the second criterion, and show that the DILSVM is the best in
terms of mean sparsity. Indeed, for each dataset except cod-rna, the best model is the
DILSVM(1), followed by the DILSVM(2), and the SVM being the worse. In cod-rna,
DILSVM(2) has the highest mean sparsity, then the DILSVM(1) followed by the SVM.
Note that the sparsity performance of the SVM is rather poor, being always fully dense
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(except for german), that is, all features have non-zero coe�cients, and therefore play a
role in the classi�er. In terms of mean sparsity, the DILSVM(1) with �xed parameters is
clearly outperformed by the DILSVM(1), except for cod-rna, in which the mean sparsity
is exactly the same for both methods. We now take a closer look at the mean sparsity
of our model and show how useful the MILP approach is to determine a high number
of irrelevant features which may make the classi�er harder to interpret and also may
negatively a�ect accuracy due to over�tting. The mean sparsity for the DILSVM(1) is
always 50% or above except for calhous, with 31.25%, while for the DILSVM(2) the
mean sparsity is always above 35% except for calhous, with 17.50%. Thus, except for
calhous, at least half of the features are irrelevant in the DILSVM(1), while this becomes
at least one third in the DILSVM(2). The results are even more encouraging for �ve of
these datasets, where the mean sparsity of the DILSVM(1) is at least 70%, while the mean
sparsity of the DILSVM(2) is at least 50%. In addition, in the mushroom dataset, both the
DILSVM(1) and the DILSVM(2) report a 100% accuracy with a 91.60% mean sparsity.

In summary, the model we propose, the DILSVM, is competitive against the SVM in
terms of accuracy, being substantially sparser than the latter. When faced with the choice
between one or two rating levels, we should observe that the DILSVM(1) is, in general,
more appealing: it has comparable accuracies to those of the DILSVM(2) in seven datasets,
while the DILSVM(1) is at least as sparser as the DILSVM(2). Thus, one rating level will,
in general, su�ce. In the remaining three datasets, including cod-rna, the DILSVM(1)

underperforms in terms of accuracy, while the additional rating level available in the
DILSVM(2) boosts the accuracy to a competitive level, at the cost of a lower sparsity.

The MILP approach to build the DILSVM yields attractive results in terms of both
criteria against both benchmarks. That comes with a high computational cost though,
where an MILP problem needs to be solved for each parameter vector. This can be
illustrated by the median ratio across the ten datasets between the building time of the
DILSVM and that of the SVM, which is equal to 210.91 for K = 1 and 429.60 for K = 2.
When comparing with the �xed DILSVM(1), the median ratio is 361.18 for K = 1 and
1054.53 for K = 2. We should emphasize that this high computational e�ort only a�ects
the phase of building the classi�er (o�-line). The evaluation phase (on-line), when new
objects are to be classi�ed, is even faster than with the SVM, since, due to the high
sparsity of the classi�er, fewer terms are computed. In addition, as shown in the next
section, the three strategies proposed in Section 3.2 are able to reduce the time to build
the DILSVM classi�er. In terms of performance, while the sparsity is not compromised,
the accuracy will depend on the magnitude of the time reduction.

4.4 Results for the Reduction Strategies

In this section we illustrate the performance of the three reduction strategies proposed
in Section 3.2, as well as their building times. The accuracy and the sparsity results can
be found in Tables 3 (K = 1) and 4 (K = 2), where we present the mean, the standard
deviation and the median of both criteria. Clearly, there is a drop in accuracy with respect
to the corresponding MILP approach. Below we show that these strategies behave well
against the benchmark. As before, we start with the mean accuracy.

In Strategy 1, the RSVM strategy, we round the feature scores of the SVM classi�er
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using the rating levels in the grid. This is a cheap option, in which the optimization
problems involved have only continuous decision variables. We now analyze the mean
accuracy, and show that the RSVM strategy is dominated by the SVM. For K = 1, the
RSVM strategy is clearly ine�cient against the SVM, where the loss in accuracy is at
least 1 p.p. in all datasets, while this becomes 47.97 p.p. in mushroom and 22.81 p.p.
in cod-rna. The improvement of K = 2 is dramatic for mushroom, where the RSVM

strategy becomes comparable to the SVM, also in ijcnn1, while in the remaining eight
datasets this strategy is still not competitive against the SVM.

In Strategy 2, the RR strategy, we reduce the computational cost of solving an MILP
problem for each parameter vector. Instead, the RR strategy solves the LP relaxation of
the DILSVM(K) and applies a randomized rounding to its optimal solution. Below, we
show that the RR strategy yields mean accuracies close to those of the SVM. For K = 1,
the loss in accuracy of the RR strategy compared to the SVM ranges from 0.51 to 17.73
p.p., and therefore, using this criterion, the RR strategy is dominated by the SVM. For
K = 2, the RR strategy outperforms the SVM in adult by 4.15 p.p. and in careval

by 3.71 p.p., for three datasets both methods are comparable, while in the remaining
�ve the losses in accuracy (in p.p.) with respect to the SVM are 1.12 (ijcnn1), 1.87
(shuttle), 1.88 (abalone), 3.12 (calhous) and 13.76 (cod-rna). Except for cod-rna, we
can conclude that the RR strategy with K = 2 and the SVM are comparable in terms of
accuracy.

In Strategy 3, the �xing strategy, we �rst build the DILSVM(1), and use its classi�er
to reduce both the number of parameter vectors to be inspected as well as the number
of zero�one decision variables in the MILP. For each dataset, this strategy reduces the
number of MILP problems to be solved from 286 (full grid inspected) to 2 (only grid
for a2 inspected), after solving the 143 MILPs associated with the DILSVM(1). Roughly
speaking, this halves the number of MILPs to be solved. We now analyze the mean
accuracy, and show that the �xing strategy yields results close to those of the SVM.
Compared to the SVM, the �xing strategy outperforms the SVM in adult by 4.19 p.p.
and in careval by 1.79 p.p., for three datasets both methods are comparable, while in
the remaining �ve the SVM performs better. If we ignore cod-rna with a 12.54 p.p. loss,
one can see that the improvement of the SVM for the remaining four datasets is below
1.36 p.p. Except for cod-rna, we can conclude that the �xing strategy has a comparable
behavior to the SVM.

In terms of mean sparsity, the strategies clearly dominate the SVM, as the latter is
always fully dense (except for ijcnn1). We now take a closer look at the mean sparsity of
each strategy. For K = 1, the mean sparsity of the RSVM strategy is at least 50% for all
datasets with eight datasets above 70%, while for K = 2 the mean sparsity is above 25%
for all datasets with seven above 50%. For K = 1, the mean sparsity of the RR strategy
is at least 65% for all datasets with eight datasets above 70%, while for K = 2 the mean
sparsity is above 15% for all datasets with eight datasets above 50%. Finally, the sparsity
of the �xing strategy is at least 20% for all datasets with �ve datasets above 50%.

We now illustrate the reduction in building time achieved by the strategies. As before,
we measure the ratio between the building time of a given strategy and that of the
SVM, and report the median ratio across the ten datasets. For the RSVM strategy, the
rounding time is negligible for small values of K. Thus, for K = 1, 2, the ratio between
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the building time of the RSVM and the SVM is roughly equal to 1 for each dataset. For
the RR strategy, when comparing with the SVM, the median ratio is equal to 10.32 for
K = 1 and 34.41 for K = 2. Finally, the �xing strategy is designed to reduce the building
time when K = 2 using the DILSVM(1) classi�er, and the median ratios are very similar
to the ones reported for the MILP approach with K = 1, namely 211.60 against the SVM.

In conclusion, we have presented three strategies of very diverse nature that are able
to reduce the building time of the DILSVM classi�er. When compared to the SVM, the
RR and the �xing strategies are competitive in terms of mean accuracy, but less so is the
RSVM, while the dominance of the three strategies in terms of sparsity is overwhelming.

5 Conclusions

In this paper we propose the DILSVM(K) classi�er, an SVM-type classi�er in which there
are K possible levels of agreement of each feature with the positive class. We recommend
small values of K, such as K = 1 and K = 2. In this case, our classi�er enjoys two
properties. First, it can be visualized as a collection of Likert scales, and therefore, since
K is small, the DILSVM(K) classi�er gains in interpretability. Second, once the classi�er
has been built, the evaluation of the DILSVM(K) (i.e., classifying new objects) is at least
as inexpensive as for the SVM: classifying new objects amounts to evaluating a linear
function. In addition, as shown by our computational experience, many coe�cients are
set to zero in both the DILSVM(1) and the DILSVM(2), while the SVM is fully dense.

The gain in visualization and sparsity achieved by the DILSVM is made without
paying any price in accuracy. As our computational experience shows, the DILSVM is
competitive against the SVM in terms of accuracy. Our classi�er is much harder to obtain
than the SVM, since an MILP problem is to be solved for each parameter vector, and
we have illustrated that parameter tuning is crucial if we do not want to compromise
accuracy. In terms of the number of parameters, there are now one (K = 1) or two
(K = 2) more parameters than in the standard SVM to tune. In order to alleviate the
computational burden, we propose three reduction strategies. Our computational tests
show that we are able to preserve an accuracy comparable to the SVM and signi�cantly
better sparsities. This means that, at the expense of an increase in o�-line computational
cost, the DILSVM is able to extract easy-to-interpret information from datasets without
sacri�cing classi�cation accuracy.

We conclude with three promising extensions of our approach. First, knowledge do-
main can also be incorporated into the model. Given a family of features, constraints
of the type �at least one feature of this family should be selected� or �no more than one
feature of this family should be chosen� simply lead to new linear constraints in the MILP
formulation. Second, accuracy and interpretability are usually contradicting objectives.
In this paper we �x the number of rating levels, and aim at optimizing accuracy. It is
natural to consider the problem of simultaneous optimization of both accuracy and in-
terpretability, see for instance Hooker and Williams (2012), Müssel et al. (2012). This
biobjective model deserves further analysis and testing. Third, our approach can also
be extended to other linear classi�ers, such as the classical Linear Discriminant Analysis
(Fisher 1936) and the Logistic Regression (Hastie et al. 2001), where building the new
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classi�er yields Nonlinear Integer Programming problems (Burer and Letchford 2012).
Solving these nonlinear problems e�ciently remains an important future challenge.
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