
An Evolutionary and Local Search Algorithm for
Motion Planning of Two Manipulators

M. A. Ridao*, E. F. Camacho
Departamento Ingenierıá de Sistemas y automática. Escuela Superior de Ingenieros
Universidad de Sevilla, Spain

J. Riquelme, M. Toro
Departamento Lenguajes y Sistemas, Facultad de Informática y Estadística.
Universidad de Sevilla, Spain

A method for obtaining coordinated motion plans of robot manipulators is presented.
A decoupled planning approach has been used; that is, the problem has been
decomposed into two subproblems: path planning, where a collision-free path is
found for each robot independently only considering fixed obstacles, and trajectory
planning, where the paths are timed and synchronized to avoid collisions with other
robots. This article focuses on the second problem. The proposed plan can easily be
implemented by programs written in most industrial robot programming languages.
The generated programs minimize the total motion time of the robots along their
paths. The method does not require accurate dynamic models of the robots and uses
an evolutionary algorithm followed by a local search which produces near optimal
solutions with a relatively small computational cost.

sion-free motion plans. These motion plans have to
take into account environment obstacles and other
robots. Finding collision-free motion planning algo-
rithms in multirobot systems has been the focus of
research in many works.1 These algorithms can be
classified into three categories: centralized, priori-
tized, and decoupled planning.

In centralized planning all robots are considered
simultaneously and the problem is solved by find-

1. INTRODUCTION

One of the main problems encountered when oper-
ating a multirobot system is that of obtaining colli-

*To whom correspondence should be addressed; e-mail:
ridao@cartuja.us.es.
Contract grant sponsor: CICYT.
Contract grant numbers: QUI199-0663, TAP-98-0541, 1FD97-0836,
and TIC-99-0351.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51405416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ing a collision-free path in a space with dimension
equal to the sum of the degrees of freedom of each
of the robots. Algorithms based on centralized plan-
ning require a large amount of computation because
of the size of the search space and only methods for
solving specific problems have been proposed.2 � 4

In prioritized planning, an order is established
among the robots. The motion of the robots is
planned in this order, only one robot at a time. The
motion of the robot is computed as if the robot were
moving among stationary obstacles and the previ-
ous robots are considered as moving obstacles.5

This is one way of reducing the computational com-
plexity, but this approach may fail to find a solu-
tion, even if there is one.

In the third category, decoupled planning, the
path of each robot is planned independently of the
others, and afterwards the paths are synchronized
to avoid collisions among the robots. These algo-
rithms reduce the computational complexity consid-
erably, but this gain results in a loss of complete-
ness. Different methods have been presented to solve
the interactions among the paths. Kant and Zucker6,7

and Fujimura8 used the technique for mobile robots.
Lee and Lee9 applied the technique to two manipu-
lators by fixing the speed of one of the robots and
modifying the other robot to find an obstacle-free
plan. The collisions are studied using a bidimen-

Ž .sional graph collision map where the path of the
second robot is represented versus time and colli-
sion regions are included and approximated by rect-
angles. The robots are modeled with spheres and
the movement of the robots was restricted to
straight-line paths. Chang et al.10 proposed an ex-
tension of this method using robots approximated
by polyhedra and determining the minimal delay
time value needed for collision avoidance.

O’Donnell and Lozano-Perez11 used the coordi-´
nation diagram, where all the possible collisions
between both robots appear. Applying the concept
of SW-closure, they proposed an algorithm which
did not require searching to find a solution. Bien
and Lee12 proposed a method to plan a trajectory
that ensures collision-free and time-optimal mo-
tions. The main drawback of the method is that it
can only be used when there is a single collision
region in the coordination space. Lee13 extended this
procedure to situations in which there are more
than one collision region.

Fraile et al.14 presented a distributed planning
and control architecture for multi-manipulator sys-
tems. A distributed trajectory planning approach
based on artificial potential fields was used. Finally,

Perez-Francisco et al.15 presented a method for the´
coordination of two robots when they are grasping
objects of unknown shape and position from a con-
veyor belt, under time constraints.

The solution obtained by most of these algo-
rithms is a robot trajectory; that is, they associate a
time component with the points of the paths. These
trajectories are very difficult to implement in most
industrial robots, because they require the internal
controller of each articulation to be fully available to
the user to synchronize their movement with the
movements of other robots’ joints. Also, the selec-
tion of an accurate robot dynamic model is critical,
because a discrepancy with the robot behavior can
cause collisions between robots.

In this article, a method is presented to mini-
mize the total motion time of two manipulators
along their paths, avoiding collision regardless of
the accuracy of the dynamic model used. The
method uses the coordination diagram concept and
provides trajectories that can easily be implemented
in most industrial robot programming languages.
Selection of the dynamical model is not a critical
aspect, because a collision will never occur, even
with an inaccurate dynamic model. However, since
the algorithm tries to minimize the total motion
time, precise models are required to obtain optimal
results. This method is based on defining synchro-
nization points16 as spots on the path of each robot
where it will stop until the other robot arrives at its
respective point. Once both robots are at these
points, motion can continue. This problem can be
solved by an A* algorithm.16,17 Additionally, the
problem complexity is considerably reduced by us-
ing decoupled planning and the concept of the syn-
chronization point. However the computational bur-

Žden in terms of memory needed and time required
.to solve it can be prohibitive in some complex

cases.
This article shows how evolutionary algorithms

can be used to obtain collision-free motion plans in
a multi-robot environment. Global optimization al-
gorithms imitating certain principles of nature such
as simulated annealing and the field of evolutionary

Ž .algorithms EAs have proved to be useful tools for
the optimization of high-dimensional and highly
nonlinear problems. The EA is based on biological
observations18,19: the means of natural evolution
Ž .natural selection and natural genetics and the sur-
vival of the fittest.

The evolutionary algorithm maintains a popula-
tion of problem solutions. First, the best individuals
are selected to form the offspring using crossover

and mutation. Finally, the worse individuals of the
population are replaced by the new offspring to
form a new population.

The fundamental intuition of genetic algorithms20

explains why the EA performs an effective search.
The EA presents a continual improvement using the
pair selection�mutation, working as a local search
where the mutation operator slightly modifies a
solution. If this new solution is better than previous
ones, it will be accepted with a high probability by
the selection mechanism. On the other hand, the
pair selection�crossover avoids the process being
trapped in a local minima, executing an intelligent
jump to another search space region.

The realization of fast search in wide space is
the main quality of genetics algorithms as function
optimizers. However, their capability for complete
local search is limited. Holland21 suggested that
genetic algorithms should be used as a preprocessor
to perform the initial search, before tuning the search
with local methods. Likewise, Grefensette22 pointed
out that genetic algorithms are qualified to identify
high performance regions of the search space and he
recommends: ‘‘it may be useful to invoke a local
search routine to optimize the members of the final
population.’’ A local search using a hill-climbing
strategy is proposed by Syrjakow and Szczerbicka.23

If the local search does not obtain a optimum value,
the authors apply a backtracking process to execute
a new genetic simulation.

The article is organized as follows: Section 2
states the problem and describes the coordination
diagram concept. Section 3 introduces the evolu-
tionary algorithms and defines individual struc-
tures, genetic operators, and other parameters used
in the algorithms. In Section 4 some results are
presented to demonstrate the feasibility of the
method. Finally, concluding remarks are given.

2. PROBLEM STATEMENT

The problem can be stated as: Given two robots R1
and R , a set of known fixed obstacles, and the2
initial and final configurations of R and R , find a1 2
coordinated motion plan for the robots from their
initial configuration to their final configuration
avoiding collisions with environment obstacles and
themselves.

To use the decoupled planning approach, it is
necessary that a fixed obstacle collision-free path for
each of the robots was previously obtained. These
paths are obtained by considering only the fixed

obstacles and not taking into account the other
robot. There are many algorithms described in the
literature1,8 which can solve this problem. The pro-
posed algorithm is independent of the algorithm
used for obtaining the fixed obstacle collision-free
path for each robot, although some details of the
method used for the applications presented are
given in Section 4. The paths which the robots are
expected to follow are assumed to be given as a
parameterized curve in the joint space

Ž . nP�� � , 0���� with � : R�Rmax

where n is the number of degrees of freedom of the
robot and � is the distance along the path. Let P1

and P 2 denote the two collision-free paths gener-
ated for each of the manipulators. Let �1 andmax
�2 denote the length of both paths. The P1P 2-spacemax
is defined as the following R2 region:

P1P 2 �space

Ž 1 2 . 1 1 2 2� � , � �0�� �� and 0�� ��� 4max max

Ž 1 2 . 1 2A point � , � in the P P -space represents a
�snapshot of the robot’s configurations robot i artic-

Ž i.�ulation positions are � � . Any continuous pathi
Ž . Ž 1 2 .from 0, 0 to � , � determines a coordinatedmax max

execution of the two paths and is called a coordina-
tion path.

Ž .Let the collision region CR be defined as the set
of points in the P1P 2-space where a collision be-
tween the two manipulators occurs. Normally, the
CR consists of several connected subsets, with com-
plex shapes. If a coordination path does not cross
through the collision region, it is called a collision-free
coordination path.

To reduce the search space in the P1P 2-space, a
discretization of each path has to be made, so the
path is divided into several equal-length intervals.
Let the intervals of both paths be numbered from 1
to max and 1 to max , respectively. Let � i be the1 2 k
k th interval along the path of the manipulator i.
Now, a path can be defined as an ordered set of
intervals; that is,

� i 4� � � �1�k�maxi k i

Ž 1 2 . 1A cell is defined as a pair � , � where � ��m m m 1
and � 2 �� . For simplicity, a cell will be repre-n 2

Ž . � 4sented as m, n and � � k�1�k�max . Withi i
these discretized paths, the P1P 2-space is trans-
formed into an array of cells. This array of cells is

Ž .the coordination diagram. Cell 1, 1 corresponds to
the first interval of each path, that is, the lower
left-hand cell of the coordination diagram, and
Ž .max , max is the upper right-hand corner, the1 2

Ž . 1 2last interval of each path. A cell m, n �� �� ism n
considered as a free cell if it satisfies the following
condition:

1 1 2 2 Ž 1 2 .�� �� , � �� � � , � �CRm n

If the cell does not satisfy the above condition, it
is considered as a collision cell. A correspondence
between a path interval and robot configuration has
to be established. A point � , which is normally thek
middle point, is associated to each interval k.

Obtaining the coordination diagram is not a
trivial problem. To evaluate whether the robots in a
particular configuration are going to collide, it is
necessary to determine if any link of one of the
robot collides with any of the other robot’s links. A
main aspect of this problem is the geometrical forms
used in links modeling. Many types of geometrical
shapes, such as convex polyhedra, spheres, or con-
vex spherical polyhedra have been proposed in the
literature to facilitate the task of detecting robot
collisions.24 To determine the collision state of each
cell is a more complex problem because the collision
problem should be solved for each point in the cell.
Only approximate solutions can be found. The tech-
nique used here was proposed by Lozano-Perez25´
and consists of determining the maximum displace-
ment for each of the robot’s joints in the interval
and increasing the size of the corresponding links
accordingly. By using this technique, the resulting
solid will include the volume swept by the moving
link. Finally, in this article, a sweep-line algorithm11

has been used to obtain the coordination diagram.
The size of the cells is an important factor. On

the one hand, if the size of the cells chosen is too
small, the computational time required by the algo-
rithm may be prohibitive. On the other hand, the

Ž .cell size has to be kept small because 1 the colli-
sion region will be oversized by the somewhat con-
servative sweep-line method if big cells are used

Ž .and 2 the synchronization points are chosen to be
the middle point of each cell. Large cells will de-
crease the size of the solution space and the opti-
mality of the solution.

A collision-free coordination path will be com-
posed of a sequence of free cells. To implement a
trajectory in the coordination diagram, the motion
of both robots must be synchronized; that is, both
robots have to be simultaneously on points of the

path corresponding to free cell coordinates. This
synchronization can be implemented in an open

Žloop manner defining timed trajectories for both
robots and assuming that the trajectories will be

.executed in the prescribed time . The open loop
synchronization strategy is not very realistic, be-
cause collisions may be produced if one of the
robots is not able to move at the programmed speed
in one part of the trajectory; so to ensure that all
robots are able to follow the trajectories, slow speeds
have to be prescribed. Furthermore, timed trajecto-
ries cannot be implemented in many industrial robot
programming languages.

Robots can be synchronized by a closed loop
strategy based on synchronization points.17 A syn-
chronization point is a point in the coordination
diagram which the robots have to reach; that is, any
coordination path will necessarily pass through it.
So, when a robot reaches a synchronization point, it
waits for the other robot to reach the synchroniza-
tion point before prosecuting its planned motion.
This requires some sort of communication between
robots. This type of synchronization has been used
here and it is easy to implement because it is only
necessary to connect a digital input with a digital
output signal on each one of the controllers. Figure
1 shows a general structure of the system.

To avoid a collision it is possible to alter the
coordination path defining the number and position

Trajectories

Robot 1

Controller Controller

Robot 2

Planner

Figure 1. A general structure of the trajectory planner
system.

of the synchronization points. Figure 2 shows a
coordination diagram, where the dark regions are
the collision regions, and it illustrates how a colli-
sion-free coordination path can be found by using
synchronization points for the case where robot 1
moves along its associated path faster than robot 2.

A collision-free coordinated motion of two
robots can be found by searching for a synchroniza-
tion point sequence that minimizes the total coordi-
nated motion time. The object of this article is to
determine this synchronization point sequence.

Let us consider a rectangle formed by free cells
in the coordination diagram and let us consider the
motion of the robots from the lower left corner cell
to the upper right corner cell. Any trajectory defined
for each robot between these two points in the
coordination diagram will be a collision-free coordi-
nation path; that is, the robots may move from the
starting point to the end point at any speed and a
collision between them will never occur. This class
of rectangles is going to be called free rectangles.

Let us now consider a set of free rectangles,
connected in such a way that the upper right corner
of one rectangle is the lower left corner of the next.
Furthermore, the lower left corner of the first one is
the lower left corner of the whole coordination dia-
gram, and the upper right corner of the last rectan-
gle is the upper right corner of the coordination
diagram, as can be seen in Figure 3. This set of
rectangles is a free rectangle sequence, and the inter-
section points between two rectangles will be the
synchronization points.

Given a free rectangle sequence, any coordina-
tion path constrained to pass over every synchro-
nization point of the sequence will be a collision-free

Ω

Ω2

1

Figure 2. Free coordination path using synchronization
points.

Ω 2

Ω 1

Figure 3. A free rectangle sequence.

coordination path. This constraint is very easy to
implement using most robot programming lan-
guages. The set of synchronization points will di-
vide the path of each robot into several sections.
Any section of the path between two synchroniza-
tion points will be followed by every robot indepen-
dently of the other, but a synchronization operation
must be implemented at the end of the section, that
is, at a synchronization point. The following is part
of a program with the synchronization instructions
written in VAL II, for the case of two robots.

ROBOT 1 PROGRAM
FOR i�0 TO N

� �MOVE �pts i
END
SIGNAL 1

Ž .WAIT SIG 1001
SIGNAL �1

With this program, it is possible to execute the
coordinated motion of the robots from an initial
position to a goal position, without collision, either
with fixed obstacles in the environment or with the
other robot.

The problem now is to find a free rectangle
sequence, that is, a synchronization point sequence
that minimizes the total execution time necessary
for the robots to complete their whole paths. The
main variables used to find this sequence are the
number of synchronization points, which depend on
the collision region shape, and the position of these
points in the coordination diagram. Notice that a
delay is produced by adding a new synchronization
point, because one of the robots has to stop to wait
for the other robot.

This optimization problem can be solved by an
A* algorithm as shown by Ridao and Camacho17

although the great number of successors of each cell
makes the searching tree too big, even with the
pruning techniques suggested in ref. 17. To give an
idea of the complexity of the problem, let us con-
sider a coordination diagram of m�n cells and
p�2 synchronization points, with two of them fixed

Ž . Ž .at positions 1, 1 and m, n . The number of poten-
tial solutions of this problem can be defined as the
number of sequences with a number of synchro-
nization points less than or equal to p�2 and can
be computed as follows:

Each solution of this problem can be obtained as
two nondecreasing successions of p coordinates
� 4 � 4x , . . . , x and y , . . . , y in such a way that a1 p 1 p

Ž .synchronization point is the pair x , y . Takingi i
into account that coordinates x and y are indepen-i i
dently chosen, the dimension of the search space is
Ž . Ž . Ž .t m � t n , where t k is the number of differentp p p

� 4sequences of p integers i , i , . . . , i such that 1� i1 2 p 1
Ž .� i � ��� � i �k. Clearly, t k is the number of2 p p

combinations with repetition taken in a group of p
elements

k�p�1Ž .t k �p ž /p

and the number of different synchronization point
sequences is clearly given by

m�p�1 n�p�1Ž . Ž .t m � t n � �p p ž / ž /p p

For the case of a coordination diagram of 100�
100 and p�10, there are around 1023 possible solu-
tions, while for a coordination diagram of 150�150
cells and p�20 there are around 1047 possible
solutions.

3. THE PROPOSED ALGORITHM

EAs are basically search algorithms that start with
some population of structures, called individuals,
that are initial solutions to the problem and repeat-
edly perform the following cycle of operations until
a termination condition is satisfied:

� Evaluation: Evaluate each individual in the
population.

� Selection: Depending on the fitness of the indi-
viduals, select some of them for reproduction.
These individuals are called parents.

� Reproduction: With some reproductive strate-
gies, called genetic operators, generate some

Ž .number of new individuals offspring from
selected parents.

� Replacement: Replace some or all of the origi-
nal population with the offspring, forming a
new generation of individuals.

EAs usually have two different ending condi-
Ž .tions: 1 the maximum number of generation and

Ž .2 a fixed number of generations without changes
in the best individual. The first one is applied in this
article. Some possible reproductive strategies are
combinations of replicate or copies of some parents,
crossover or recombination, where each new indi-
vidual is constructed with inherited characteristics
from its parents and mutation or change of an

Ž .attribute or characteristic gene of an individual.
The main aspects that define the application of

evolutionary algorithms for global optimization
problems are chromosomic structures undergoing
adaptation, ways to create an initial population, a
fitness measure that evaluates the structures, ge-
netic operators to modify the structures, constraints
on offspring, and parameters to control the process.

3.1. Chromosomic Representation of the Individual

Each individual will represent a nondecreasing syn-
chronization point sequence. Most of the problems
solved using EAs represent individuals using fixed
length chromosomes, because it is easier to imple-
ment genetic operators in this way. However, the
number of synchronization points is a variable pa-
rameter in this application.

The solution adopted here is to consider vari-
able-length chromosomes. The length of the chro-
mosome defines the number of synchronization
points of the sequence. Let n be the length of the
chromosome. The initial point of the sequence is the

Ž .path origin of each one of the robots 1, 1 and the
Ž .last point is max , max . Between these two ver-1 2

tices, an individual will be a set of synchronization
� 4 Ž .points P with 1� i�n where P � x , y andi i i i

x , y are points corresponding to the paths of thei i
first and second robots, respectively. A robot is not
allowed to move back along its path, so the codifica-
tion of an individual is therefore constrained by this
fact. This constraint is that the coordinates of suc-
cessive synchronization points should be monotoni-
cally increasing; that is, x �x and y �y , fori i�1 i i�1
all i. Finally, all the points should be in the coordi-

nation diagram; i.e., x 	1, y 	1, x �max , and1 1 n 1
y �max . Considering that the coordination dia-n 2
gram is a discretized space, every synchronization
point can be represented by a pair of integer num-
bers, so every individual must verify

� Ž . � 4x , y �� �� � i , x �x and y �yi i 1 2 i i�1 i i�1

1� i�n

A synchronization point sequence will be con-
sidered to be determined by n�2 points, where
Ž . Ž . Ž . Ž .x , y � 1, 1 and x , y � max , max .0 0 n�1 n�1 1 2

An individual has been defined as an acceptable
individual if it is a monotonically increasing succes-
sion of synchronization points. However, two classes
of acceptable individuals can be distinguished:

� Valid individuals: An individual is valid if it
forms an increasing sequence of free rectan-
gles, and therefore defines a collision-free co-
ordination path.

� Nonvalid individuals: An individual is nonva-
lid if there is at least one nonfree rectangle in
the sequence. Then it is possible that a colli-
sion between the robots may take place. These
individuals are not considered as a solution to
the problem.

Finally, when a genetic operator is applied, it is
possible for a decreasing synchronization point se-
quence to be obtained. It is not strictly an individ-
ual, but in this article, it will be called a nonaccept-
able individual.

3.2. Individuals in the Initial Population

The initial population is selected randomly. The
following procedure was proposed to obtain a ini-
tial population with a wide diversity of solutions in
a first approach, taking into account that the num-
ber of synchronization points of individuals is vari-
able:

A maximum number of points NMAX is estab-
Ž .lished only for the initial population , and the

number of synchronization points of the indi-
viduals of the initial population is distributed in
a random uniform way between 1 and NMAX.
In this way, a similar number of individuals
with one, two, and so on until NMAX synchro-
nization points are generated.

However, this uniform distribution of the num-
ber of points between 1 and NMAX was proved to
be inappropriate in the tests. The reason is that

Ž .nonoptimal solutions with few points can consti-
tute local minima, and the population quickly con-
verges toward them, losing genetic information.
Therefore, the method improves when the individu-
als of the initial population have available a greater
quantity of information, i.e., more points in the
coordination diagram. For this, a increasing proba-

Ž .bility distribution from 1 minimum to NMAX
Ž .maximum was selected.

Once the number of points n of an individual is
selected, its coordinates are obtained as follows: two

� �sets of n random values in 0, 1 are generated; then
they are ordered in a increasing way and projected

� � � �on 1, max and 1, max intervals, respectively.1 2

3.3. Fitness Measure

Ž .The objective is to minimize the cost function f , so
that the fitness function must increase as the cost
function decreases. There are many ways in which
this can be accomplished, for example, by making
the fitness function equal to a constant minus the
cost function19 or by making the fitness function

Ž . 26equal to 1� 1� f , which has been used here. The
probability of selection of each individual has been
made proportional to the fitness function, which has
been normalized by dividing it by the sum of the
fitness functions of all individuals in the population.
The selected fitness function guarantees that the
probability of selection of an individual with a low
cost in relation to the rest of the individuals will not
be too great at the beginning, whereas in a more
advance phase of the process, the difference be-
tween individuals with similar values of the cost
function will be enlarged.

The evaluation of the cost function will consider
the two different kinds of individuals: valid and
nonvalid ones. In fact, two different cost functions
will be used. For valid individuals, the cost function
measures the total execution time needed by the
robots to complete their paths when the synchro-
nization points are placed at the positions defined
by the individual specifications. Thus, to define the
cost function for these individuals, it is necessary to
use a model describing the robot motion. Dynamic
models of the robot of different levels of complexity
can be used for this purpose. That is, trajectory time
can be computed from a simple model characterized
by maximum acceleration and velocities of each
joint, to a full dynamical model of the robot consid-

ering inertia, Coriolis force, friction, load, and other
nonlinearities such as saturation or back slashes.

The paths used for the examples described in
the article are composed of straight lines in the
configuration space. This type of path has been
chosen because it can easily be implemented on
most industrial robots, although this is not an inher-
ent feature of the method which can be used with
other types of paths. The model used for this type of
path is based on the works of Paul,27 Luh and Lin,28

and Tondu and El-Zorkany.29 The following as-
sumptions are made for each joint:

� The motion in each segment is made with
constant speed, smooth transitions between
segments, and a continuous acceleration pro-
file. Maximum acceleration is reached in each
transition.

� The transition is carried out symmetrically.
Maximum acceleration is produced at the
middle point of the transition.

� At each segment, the motion of each joint is
synchronized with the movement of the rest
of the joints. That is, the speed of each joint is
computed to ensure that all joints finish their
movements simultaneously.

Therefore, for each joint, during the constant
speed phase, the joint position grows linearly with
time. A fourth degree polynomial is used to ensure
continuity in the position, speed, and acceleration
during the transition phases.29 The trajectory is
specified with two parameters: the desired speed
for each segment and maximum acceleration. These
parameters can be obtained from the robot manu-
facturer or experimentally. In the case of the PUMA
robot, the parameters given by Tondu and El-
Zorkany29 were considered, while for the applica-
tions presented with other robots, these parameters
were obtained experimentally in our laboratory.

The cost function for nonvalid individuals is
completely different. The execution time cannot be
used as a cost measure, because this individual is
not a solution of the problem. The function must
measure how far it is from a valid individual. Obvi-
ously, the cost value for this kind of individual
must be higher than any value for a valid individ-
ual. The function used is

Ž .f N �K�nco

where K is a high value with respect to the value
associated with the valid individuals, and nco is the

number of collision cells inside the rectangle se-
quence. This cost function makes sense when find-
ing initial valid solutions is difficult because of the
complexity of the collision regions. By using a cost
function such as the one we suggest, the algorithm
is able to find valid solutions.

3.4. Genetic Operators

Bearing in mind the special configuration of the
individuals in this problem, modifications to the
basic genetic operators are needed. The different
genetic operators used in the algorithm are pre-
sented in this section. This includes the crossover
and mutation operators. There have been many
types of crossover and mutation operators proposed
in the literature. Some of the genetic operators used
here are extensions or modifications of previously
proposed operators.

3.4.1. Crossover Operator

Given two individuals S1 and S2 formed by se-
quences of n and m synchronization points, respec-
tively, the idea is to obtain another sequence,
through genetic information exchange from parents
S1 and S2. The following method is proposed
Ž .Fig. 4 .

A synchronization point of S1 called P is ran-
domly selected. Then, Q, another synchronization
point of S2, is selected. Q is the first randomly
obtained point with the values of both coordinates
x and y greater than the respective coordinates of
P, so the resulting child will be always an increas-
ing sequence. It is possible that no point of S2

verifies this limitation, then the child is returned as

Ω2

Ω 1

P

Q

Child
S parent1

2S parent

Figure 4. Crossover operator.

a copy of S1. If any point Q exists, a new individual
1 Ž .is formed with the first points of S P inclusive ,

2 Ž .followed by the points of S from Q inclusive to
the end of S2. The number of SP of the child goes
from two, when P is the first SP of S1 and Q the
last of S2, to n�m when P is the last point of S1

and Q the first one of S2.
Afterward, all the synchronization points of the

resulting individual with the same coordinate val-
ues are reduced to a single synchronization point,
that is, the same individual but with a more simpli-
fied structure.

3.4.2. Mutation Operators

A mutation produces a change in a gene of an
individual. The proposed mutation types are de-
scribed in the following paragraphs.

� Slight mutation: Given an individual S�
�Ž . 4x , y �1� i�n , two integer values are ran-i i
domly chosen; the first one k so that 1�k�n
and the second one m with �MUTMAX�m
�MUTMAX, where MUTMAX is the maxi-
mum permitted mutation. Then, this muta-

Ž .tion consists of substituting point P � x , yk k k
Ž .by x �m, y �m . This mutation has threek k

variations:
— Double mutation: This is the result of se-

lecting two different values of m for each
coordinate.

— Single mutation: This second possibility is
the result of applying the mutation to only

Ž .one of the coordinates of P Fig. 5 .k
— Nonuniform mutation: The third variant is

obtained when MUTMAX varies as a
function of the number of the executed
generations.

Ω2

Ω 1Before mutation After mutation

m
Pk

Ž .Figure 5. Slight mutation single mutation .

Ω2

Ω 1

P

P

P

k-1

k

k+1

Figure 6. Proportional mutation.

The individuals obtained through these mutations
can be nonacceptable ones, and so, some action
must be taken to obtain acceptable individuals.

� Strong mutation: Several strong mutations
have been implemented and tested with satis-
factory results. The following mutations are
considered in this article:
— Proportional mutation: Given an individual

�Ž . 4S� x , y �1� i�n , an integer value ki i
is randomly chosen so that 1�k�n. Then,

Ž .the coordinates of the point P � x , yk k k
will be changed by new values in such a
way that they will be randomly distributed
over the rectangle defined by the lower left

Ž .vertex x , y and the upper rightk�1 k�1
Ž .vertex x , y ; that is, P will be sub-k�1 k�1 k

stituted by a new point inside the gray
area in Figure 6. Every individual gener-
ated by this mutation is an acceptable one.
This mutation has a variation consisting of
modifying only one of the coordinates of
the point, chosen randomly. This variation
has been called the single proportional mu-
tation.

— Synchronization point elimination: This mu-
tation eliminates a randomly selected syn-
chronization point of S; that is, the new
individual is identical to S, but with one
SP less.

— Segment mutation: This mutation chooses
two consecutive synchronization points

Ž . Ž .P � x , y and P � x , y , andk k k k�1 k�1 k�1
a slight mutation is applied to them with a
probability. Thereafter, this mutation adds
a new point between both of them. For this
purpose, the differences d �x �x andx k�1 k

J �yy k�1 �yk are obtained. Then, another two integers are
chosen randomly Žvx be-tween 1 and d �1 and vx y between 1
and d y �1.. The new point is located in the individual after P
with coordinates Ž xk k � v , yx k �vy. ŽFig. 7..

— Reflection: A set of synchronization points
of the sequence is selected with a given
probability. Every selected point is substi-
tuted by its symmetrical point in relation

Ž .to the diagonal; that is, a point P � x , yk k k
Ž .is substituted by y , x .k k

3.5. Constraints on the Individuals

When these operators are applied, the resulting in-
dividuals may not pass the conditions necessary for
being an acceptable individual. Various actions can
be taken to resolve this problem.

� Refusing a solution: The individual is refused
and substituted, by simply carrying out an-
other crossover or mutation operation until
an acceptable individual is obtained or by
selecting another individual to cross or mu-
tate it.

� One-coordinate moving solution: This consists of
changing only the coordinate affected at each
conflicting point P , modifying the sequencek
so that the coordinate of the following point
equals the conflicting coordinate of point P .k
A variation of this solution is to modify the
conflicting coordinate, making it equal to the
respective coordinate of the following point.

� Eliminating points solution: The last solution
consists of eliminating the conflicting point.

Ω2

Ω 1Before mutation After mutation

Pk

Pk+1

Figure 7. Segment mutation.

P3

P1

P3

P1’

P1

P2 P2

P2’

Figure 8. Resolution of the conflicts when nonacceptable
individuals appear.

Figure 8 shows an illustrative example of the
methods. P2 is the conflicting point, which can be
solved by moving either P1 or P2. Suppose that
during a crossover or a mutation execution a nonac-

� 4ceptable sequence defined by P1, P2, P3 is gener-
ated. The one-coordinate moving solution would give

� 4 � 4rise to the path P1�, P2, P3 or P1, P2�, P3 , whereas
the eliminating solution would give rise to the paths
� 4 � 4P1, P3 or P2, P3 .

3.6. Local Search Algorithm

In our work, the evolutionary algorithm gives an
approximate solution, and starting from this solu-
tion, a heuristic search algorithm will find the opti-
mum. The proposed local search procedure consists
of a monotonous random walk search with the
following structure:

Procedure Random-Walk
Ž .Generate CurrentSolution

BestSolution�CurrentSolution
REPEAT

CurrentSolution�GenerateNeighbor
Ž .CurrentSolution

Ž .IF Objective CurrentSolution �
Ž .Objective BestSolution

THEN BestSolution�CurrentSolution
UNTIL StopCriterion

We have used the previously defined mutation
operators to implement the GenerateNeighbor sub-
routine. Notice that these operators, even the strong
mutations, perform a local search, exploring for
minima at the nearness of the previous solution.
The strong operators allow us to find optimal solu-
tions even when we starting with solutions with a
nonoptimum number of synchronization points. In
most cases, the proposed hybrid technique obtains a
computational time reduction, in relation to a pure

EA, because the local search is performed on a more
restricted space. However, the method would fail if
the starting solution of the local search were not in
the proximity of the optimum. The election between
slight and strong mutations is made with a random
procedure as the following:

Ž .Procedure Generateneighbor Solution
Ž .Generate ProbChange

IF ProbChange�ProbChangeLocal
Ž .THEN RETURN SlightMutation Solution

Ž .ELSE RETURN StrongMutation Solution

The StrongMutation function performs one of
the previously describes mutation, selected by a
random procedure.

3.7. Parameters of the Algorithms

There are many alternatives for the design of the
EA. Three types of parameters must be defined in
this application. First are the usual parameters of
any EA, such as size of the population, number of
generations, mutation probability, selection mecha-
nism of the population to be reproduced, and ratio
of duplicates in each generation in the elitist selec-
tion mechanism.

Second, the specific parameters needed for this
EA application are the maximum number of points
in the initial population NMAX, the ratio of the
valid individuals in the initial population, the pa-
rameters associated to some types of mutation, and
the solutions for converting a nonacceptable indi-
vidual generated by a mutation operation into an
acceptable one. Finally, parameters related to the
local search are the number of iterations and the
parameter ProbChangeLocal.

4. APPLICATION EXAMPLES

The proposed algorithm has been implemented and
applied to several examples to test it and study its
efficiency. The first example corresponds to the co-
ordinated motion for two PUMA-560 robots. Figure
9a represents the coordination diagram with a sin-
gle collision region and 105�82 cells. This is a very
common coordination diagram in real multirobot
applications. Initial and final configurations are
shown in Figure 10. The optimal solution consists of
a single synchronization point represented in Figure
10b. The second one is a more complex example
Ž .Figure 9b , with two SCARA-type robots and a

Ω

Ω

Ω

Ω

22

1
1

(a) (b)

Figure 9. Coordination diagrams corresponding to exam-
ples 1 and 2.

Ž . Ž .Figure 10. Example 1. a Initial position. b Position at
Ž .the Synchronization point. c Goal.

coordination diagram with 82�68 cells. Any path
must verify the constraint consisting in passing
through two narrow corridors. Figure 11 shows the
initial position, the goal, and some intermediate
positions.

The last example corresponds to the motion of
two SCORBOT robots with 16 collision regions and

Ž .180�180 cells Fig. 12 . It is an iterative motion
represented in Figure 13. The motion from Figure
13-1 to Figure 13-2 and again to the initial configu-

Ž . Ž .Figure 11. Example 2. Initial position 1 , goal 8 , and
intermediate positions.

Ω 1

Ω 2

Figure 12. Example 3. Coordination diagram.

Ž .ration Figure 13-3 is repeated twice. The best syn-
chronization point sequence obtained is shown on
every coordination diagram. To obtain the initial
paths, the method proposed by Kondo30 has been
used. It is based on a decomposition in cells of the
configuration space followed by a multistrategic bidi-
rectional search. This method obtains a path given
by a sequence of points in the configuration space.
This path is approximated by a sequence of straight
line segments.

The results obtained for these three examples
are described in the following paragraphs.

In all the examples, the interval for path dis-
Žcretization is 4	 Discretization is carried out on the

variable which measures the path length which, as
indicated, is defined in the robot configuration space.
Taking into account the fact that in the examples
robots with revolution joints are used, interval sizes

.are given in degrees . Example 1 has been executed
with a population of 25 individuals, while the popu-
lation selected for the second and third examples

Ž .Figure 13. Example 3. Initial position 1 , Intermediate
Ž . Ž .position 2 , and goal Position 3 .

was 100 individuals. The selection of the population
will follow an elitist model with selection probabil-
ity proportional to fitness, 10% being the ratio of
parents that will be duplicated in the next genera-
tion, the rest being offspring obtained by crossover
and mutations of these. The nonacceptable individ-
uals have been eliminated using the eliminating
points solution. Different criteria have been used to
obtain the initial population for the examples pre-
sented in the article. For the two first examples the
initial population has been chosen with at least 15%
valid individuals.

For the third example the initial population was
chosen to have at least 15% almost-valid individu-

Žals a sequence of rectangles containing less than
.120 obstacle cells . The reason is that it takes a long

time to generate valid individuals by a random
generation procedure, whereas the evolutionary al-
gorithm is able to generate valid individuals from
almost-valid individuals by using the proper cost
function. NMAX has been chosen as 10 and the
mutation probability is 30%. These values have been
obtained empirically after numerous tests. Typical
CPU times on an IBM RISC-6000 320H are 1 min
30 s for 200 generations and 100-individual popula-
tions and 25 s for populations with 25 individuals.

The ProbChangeLocal value has been chosen
after several tests. The tests show that the major
improvement in the solution is due to slight muta-
tion, but strong mutations are indispensable, be-
cause they avoid the solution being trapped in local
minima after a few iterations. Therefore, the

Ž .ProbChangeLocal must be relatively low �0.1 to
get a larger presence of strong mutations. All the
probabilities of selecting a certain strong mutation
have been made equal.

The results confirm the efficiency of the pro-
Žposed approach. The solutions motion time in sec-

.onds found for examples 1 and 2 can be observed
in Table I. The tests compare the results of the
evolutionary algorithm without local search for 300

Ž .generations of 100 individuals GA 300 in tables ,
Žfor 100 generations also without local search GA

.100 , and finally, the achieved values for a local
search process beginning with the best individual of

Ž .the generation 100 GA 100�rw . The stop criteria
for random walk were 5,000 iterations. That is, 5,000
calls to the evaluation function, equivalent to an
additional computational cost of 50 generations of
100 individuals. Notice that the GA 100�rw pro-

Ž .cess 15,000 calls to the evaluation function has a
Ž .computational cost of 50% of GA 300 30,000 calls .

This reduction occurs because the evaluation of the

Table I. Example 1 and 2 results.a

Example Method Avg.
 Minimum

1 GA 300 g 3.73 0.06 3.70
GA 100 g 3.84 0.12 3.70
GA 100�rw 3.75 0.10 3.70

2 GA 300 g 7.71 0.09 7.58
GA 100 g 8.27 0.62 7.83
GA 100�rw 7.62 0.13 7.51

aRobot’s motion time in seconds. g, generations; rw,
random walk.

fitness function is almost 90% of the total computa-
tional cost. Finally, the number of simulations for
each test was 50.

Comparing the GA method with the GA�rw
method, results are similar for example 1 and
slightly better in example 2. For example, the aver-

Žage motion time in example 1 is 3.73 s 7.71 for
.example 2 for GA with 300 generations and 3.75 s

Ž .7.62 for example 2 for GA 100�rw.
The results for example 3 can be seen in Table

II. These values have been obtained for 100, 200,
300, and 500 generations of 100 individuals. After
each evolutionary process, a local search was exe-
cuted with 5,000 iterations starting with the best
individual. These values clearly confirm the effec-
tiveness of the proposed minimization method. No-
tice that the solution of GA 200�rw is 10% better
than that for GA 500, in spite of the fact that the
computational cost is reduced by 50%.

5. CONCLUSIONS

This article describes a method based on hybrid
evolutionary algorithms to generate collision-free
motion plans in multirobot environments. The plans

Table II. Example 3 results.a

Method Avg.
 Minimum

GA 100 44.98 1.34 42.35
GA 100�rw 38.41 1.99 35.98
GA 200 42.95 1.71 39.78
GA 200�rw 37.10 1.42 35.98
GA 300 41.19 1.16 38.63
GA 300�rw 36.84 1.05 36.02
GA 500 40.82 1.03 39.26

aRobot’s motion time in seconds. rw, random walk.

can be written in most industrial robot program-
ming languages and guarantee the coordinated mo-
tion of two robots without collision with the envi-
ronment fixed obstacles or between the robots. The
algorithm tries to find a synchronization point se-
quence that minimizes the total execution motion
time.

The cost function, which is complex and has
numerous local minima and flat behaviors, cannot
be easily optimized by traditional optimization al-
gorithms. The tests have demonstrated the capabil-
ity of the proposed algorithm to find satisfactory
solutions in few generations. The solutions found
are close to the global minimum for all the exam-
ples treated. This hybrid technique gets better re-
sults than a pure EA, even with a lower computa-
tional cost. Tests show that these benefits increase
with the complexity of the problem. Although the
algorithm has been implemented for two robots, it
could be extended to an environment with a greater
number of robots.

REFERENCES

1. J.C. Latombe, Robot motion planning, Kluwer Aca-
demic Publishers, Norwell, MA, 1991.

2. T.J. Schwartz and M. Sharir, On the piano movers
problem. III. Coordinating the motion of several inde-
pendent bodies: the special case of circular bodies
moving amidst polygonal barriers, Int J Robotic Res 2
Ž .1983 , 45�47.

3. S. Fortune, G. Wilfong, and C. Yap, Coordinated mo-
tion of two robot arms, Proc IEEE Int Conf Robotics
Automat, San Francisco, 1986, pp. 1216�1223.

4. M. Mediavilla, J.C. Fraile, and G.I. Dodds, Optimisa-
tion of collision free strategies in multi-robot systems,
ICRA ‘98, 1998, pp. 2910�2915.

5. M. Erdman and T. Lozano-Perez, On multiple moving´
obstacles, AI Memo 883, Artificial Intelligence Labora-
tory, MIT, 1986.

6. K. Kant and S.W. Zucker, Toward efficient trajectory
planning: the path-velocity decomposition, Int J

Ž .Robotics Res 5 1986 , 72�89.
7. K. Kant and S.W. Zucker, Planning collision free tra-

jectories in time varying environments: a two-level
hierarchy, Proc IEEE Conf Robotics and Automat,
1988, pp. 1644�1649.

8. K. Fujimura, Motion planning in dynamic environ-
ments, Springer-Verlag, Tokyo, 1991.

9. B.H. Lee and C.S.G. Lee, Collision-free motion plan-
ning of two robots, IEEE Trans Syst Man Cybernet

Ž .SMC-17 1987 , 21�32.

10. C. Chang, M.J. Chung, and B.H. Lee, Collision avoid-
ance of two general robot manipulators by minimum

Ž .delay time, IEEE Trans Syst Man Cybernet 24 1994 ,
517�522.

11. P.A. O’Donnell and T. Lozano-Perez, Deadlock-free´
and collision-free coordination of two robot manipula-
tors, Proc IEEE Int Conf Robotics Automat, 1989, pp.
484�489.

12. Z. Bien and J. Lee, A minimum-time trajectory plan-
ning method for two robots, IEEE Trans Robotics

Ž .Automat 8 1992 , 414�418.
13. J. Lee, A dynamic programming approach to near

minimum-time trajectory planning for two robots,
Ž .IEEE Trans Robotics Automat 11 1995 , 160�164.

14. J.-C. Fraile, C.H. Wang, C.J.J. Paredis, and P.K. Khosla,
Agent-based control and planning of a multiple-
manipulator assembly system, Proc 1999 IEEE Int
Conf Robotics Automat, Detroit, 1999.

15. M. Perez-Francisco, A.P. del Pobil, and B. Martınez-´ ´
Salvador, ‘‘Coordinated motion of two robot arms for
real applications,’’ Task and methods in applied artifi-
cial intelligence, A.P. del Pobil, J. Mira, and M. Ali
Ž .Editors , Lecture Notes in Computer Science 1416,
Springer-Verlag, Berlin, 1998, pp. 122�131.

16. M.A. Ridao, J. Riquelme, E.F. Camacho, and M. Toro,
‘‘An evolutionary� local search algorithm for plan-
ning two manipulators robot,’’ Task and methods in
applied artificial intelligence, A.P. del Pobil, J. Mira,

Ž .and M. Ali Editors , Lecture Notes in Computer
Science 1416, Springer-Verlag, Berlin, 1998, pp.
336�346.

17. M.A. Ridao and E.F. Camacho, Automatic motion
programming of robots working in a colliding envi-
ronment, Proc IMACS IEEE-SMC Multiconf Computa-

Ž .tional Eng Syst Applications, Lille France , 1996.
18. J.H. Holland, Adaptation in natural and artificial sys-

tems, The University of Michigan Press, Ann Arbor,
1975.

19. D.E. Goldberg, Genetic algorithms in search, opti-
mization and machine learning, Addison-Wesley,
Reading, MA, 1989.

20. D.E. Goldberg, The design of innovation: lessons from
genetic algorithms, lessons for the real world, Internal
Report 98004, Illinois Genetic Algorithms Laboratory,
Department of General Engineering, University of Illi-
nois at Urbana-Champaign, Illinois, 1997.

21. J.H. Holland, Adaptation in natural and artificial sys-
tems, University of Michigan Press, Ann Arbor, 1975.

22. J.J. Grefensette, ‘‘Incorporating problem specific
knowledge into genetic algorithms,’’ Genetic algo-

Ž .rithms and simulated annealing, L. Davis Editor ,
Morgan Kauffmann Publishers, San Francisco, 1987,
pp. 42�46.

23. M. Syrjakow and H. Szczerbicka, Optimization of sim-
ulation models with REMO, Proc Conf Modeling Sim-
ulation, 1994, pp. 274�281.

Ž .24. K. Gupka and A.P. del Pobil Editors , Practical mo-
tion planning in robotics, Wiley, New York, 1998.

25. T. Lozano-Perez, A simple motion-planning algorithm´
for general robot manipulators, IEEE J Robotics Au-

Ž .tomat RA-3 1987 , 224�238.
26. J.R. Koza, The genetic programming: on the program-

ming of computers by means of natural selection, MIT
Press, Cambridge, MA, 1992.

27. R. Paul, Robot manipulators: mathematics, program-
ming and control, MIT Press, Cambridge, MA, 1982.

28. J.Y.S. Luh and C.S. Lin, Optimum path planning for
Ž .mechanical manipulators, ASME Trans 102 1981 ,

142�151.
29. B. Tondu and H. El-Zorkany, Identification of a trajec-

tory generator model for the PUMA-560 robot, J
Ž .Robotic Syst 11 1994 , 77�90.

30. K. Kondo, Motion planning with six degrees of free-
dom by multistrategic bidirectional heuristic free-
space enumeration, IEEE Trans Robotics Automat 7,
Ž .1991 , 267�277.

	1. INTRODUCTION
	2. PROBLEM STATEMENT
	Figure 1.
	Figure 2.
	Figure 3.

	3. THE PROPOSED ALGORITHM
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.

	4. APPLICATION EXAMPLES
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Table I.

	5. CONCLUSIONS
	Table II.

	REFERENCES

