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Abstract: Choice design building based on D-error minimization can be accomplished 
either by using predefined β values or by assuming probabilistic distributions for them. 
Several mathematical techniques have been used for both approaches in the past, resulting 
in algorithms that obtain efficient designs, which guarantee the high quality of the 
information that will be provided by the respondents. This paper proposes the use of a 
genetic algorithm for dealing with the problem of building designs with minimum D-error, 
describing the technique and applying it successfully to several benchmark cases. Design 
matrices, D-error values, percentages of level overlap and computation times are provided 
for each case.  
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1 INTRODUCTION 

The building of choice designs is a complex problem, with 
a degree of complexity that depends on the number of 
alternatives in the design, regardless the number of choice 
sets into which they are distributed. The efficiency of a 
choice design is directly related to the quality of the 
information that can be extracted from it given the 
respondents’ answers, and even though there exist other 
measures of efficiency (Kessels, Goos and Vandebroek, 
2006), the most habitual one is the D-error of the design 
(Kuhfeld, Tobias and Garratt, 1994): 

D-error = |∑|1/K 
with:   
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where Z is the coded design matrix with N choice sets of JN 
alternatives and P is the probability vector for all the 
alternatives in the design, and where the objective of the 
design building is to find a design matrix Z that minimises 
the D-error. However, in order to calculate the D-error it is 
required to know the P vector beforehand, and the elements 
of this vector depend directly on the β values for the design 
variables in a multinomial logit model, in the following 
manner (McFadden, 1974): 
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 This obstacle has been overcome in two different ways. 
The first one is to predefine all the β values either equal to 
zero (Kuhfeld, Tobias and Garratt, 1994), assuming for the 
sake of the design building that the respondents prefer all 
the alternatives equally, or to certain non-zero values 
(Huber and Zwerina, 1996). These design building 
approaches calculate the DP error using those predefined 
values. Zwerina, Huber and Kuhfeld (2005) show the 
efficiency of their RS (Relabeling and Swapping) algorithm 
for building this type of designs. 

The second approach (Sandor and Wedel, 2001) deals 
with the uncertainty of the β values during the design 

building process by using Bayesian techniques, assuming a 
probabilistic distribution or the β values and calculating the 
subsequent DB error. Sandor and Wedel (2002) update the 
description of their RSC algorithm, which improves on the 
RS method by including a Cycling procedure, and Kessels, 
Goos and Vandebroek (2006) find efficient Bayesian 
designs using the modification of Fedorov’s (1972) 
exchange algorithm. 

However, other algorithmic techniques seem suitable for 
building D-efficient choice designs. The following section 
of the paper describes the use of a genetic algorithm for the 
determination of this type of designs either with predefined 
β values or with a Bayesian approach. The genetic algorithm 
is then applied to a series of benchmark problems to 
demonstrate its performance, and conclusions are derived 
from the results obtained. 

2 THE GENETIC ALGORITHM 

Genetic algorithms (Holland, 1975; Goldberg, 1989) are a 
type of metaheuristic technique frequently found in the 
operations research literature to reach near-optimal solutions 
of NP-hard problems (i.e. problems that cannot be solved in 
linear time: in choice design building, the required 
computation time does not increase linearly, but 
exponentially, with the number of alternatives in the 
design). They have been successfully applied to many 
classical operations research problems, like vehicle routing 
(see for example Baker and Ayechew (2003) or Hwang 
(2002)) or job scheduling in a factory (Shi, 1997; Liaw, 
2000). They are also frequently used for permutation 
problems (Iyer and Saxena, 2004; Liu et al, 2000), which is 
the case of choice design building, where the objective is to 
find the best possible permutation of alternatives from the 
full factorial to form the choice design, grouped in decision 
sets. 

A genetic algorithm is a computing technique that seeks 
the optimal solution of a complex problem by applying a 
procedure similar to that of animal evolution. Individuals of 
a given population couple to give birth to new individuals, 
whose genetic characteristics will be a combination of the 
parents’ genes. Occasionally, a genetic mutation occurs, and 
the new individual is born with a genetic characteristic that 
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cannot be found in either parent. Successive generations of 
individuals replace one another, and their goal as a species 
is to survive by improving their adaptation to the 
environment, that is, to get closer to a “perfect” genetic 
combination that might be impossible to reach. All these 
living quests are somewhat reproduced by a genetic 
algorithm in order to reach the “perfect” optimal solution, or 
at least get sufficiently close to it. 

The following sections describe the formulation of the 
genetic algorithm for choice design building and the 
different evolutionary operations involved in it, which are 
typical of this type of OR technique (see for example 
Mitchell (1998) or Potvin (1996)). 

2.1 Genome coding  

The first step in the genetic algorithm is the building of 
the population, which is defined by the genetic code (the 
genome) of all its individuals. In our case, each individual is 
a possible solution to the choice design problem, i.e. a 
combination of alternatives from the full factorial design. 
Say the choice design is to contain a total number of M 
alternatives, divided in choice sets of size m, and that the 
total number of alternatives in the full factorial design is N, 
resulting from all the different possible combinations of 
parameter levels. In that case, if the full factorial design 
contains more alternatives than the choice design (N>M), 
then the genome of each individual in the population will be 
formed by the M first elements of a permutation of the 
numbers from 1 to N. If, on the contrary, the choice design 
has more alternatives than the full factorial (N<M), then the 
full factorial is repeated k times, resulting in k•N 
alternatives, with k sufficiently large so that k•N>M, and 
then the genome of each individual will be formed by the 
first M elements of a permutation of the numbers from 1 to 
k•N. Finally, if N=M, then each genome is a permutation of 
the numbers from 1 to N.  

The size of the population (P) is one of the parameters of 
the algorithm to be defined by the analyst, with larger sizes 
offering the possibility of genetically richer populations 
(with more genetic combinations), but also resulting in 
larger computation times. The starting population is then a 
matrix with P rows and M columns, where each row 
represents an individual and consists of a different 
combination of M numbers from 1 to N (or to k•N). The 
starting population of our genetic algorithm was generated 
randomly. 

2.2 Mutation operator 

Mutation is the first process applied to the population. In 
animal life, mutations can result in unfitted individuals, but 
sometimes they produce a new individual that is 
surprisingly much better (in terms of its adaptation to the 
environment) than its parents. Thus, a genetic improvement 
that might take hundreds of generations to achieve can be 
reached by sheer random in a single mutation. Analytically 
speaking, mutations help the algorithm to explore new areas 

of the overall set of solutions, thus helping to avoid falling 
in local optima. 

The second main parameter to be defined by the analyst is 
the probability of mutation t. For each one of the P 
individuals in the population, a random number between 0 
and 1 is calculated, and if that number is smaller than t, the 
individual is mutated. This means that one of its M elements 
is replaced by another number between 1 and N (or k•N). 
This might mean that some reasonably good individuals 
(solutions) in the population dramatically lose quality, but if 
the value of t is appropriately calibrated, the overall result is 
an enhancement of the performance of the algorithm. 

In subsequent generations (iterations of the algorithm), the 
best individual of the population is never allowed to mutate, 
thus preserving the best solution found. 

2.3 Crossover operator 

In genetic algorithms, the crossover operator is the name 
given to the process of coupling existing individuals to act 
as parents for the birth of new individuals. The P 
individuals of the population are coupled randomly in P/2 
pairs (P should then be an even number), and each pair 
gives birth to a couple of children individuals. For each pair, 
a random crossing point (a number between 1 and M-1) is 
selected. The first child consists then of the same elements 
as the first parent, up to the crossing point. Then the second 
parent is reviewed sequentially, and every time one of its 
elements is not found already present in the first child, it is 
added as its next element. The second child, likewise, 
consists of the same elements as the second parent up to the 
crossing point, and the rest of its elements will follow in the 
same order as they are located in the first parent. If N>M, 
not all the possible N alternatives of the full factorial are 
present in the genome of each parent, and therefore passed 
on to the children, but this does not result in an unreliable 
overall performance of the algorithm, as long as the 
population is large enough so that all the N alternatives are 
represented in the different individuals of each generation. 

2.4 Selection operator 

After mutations and crossovers have taken place, a 
generation is completed, resulting in a set of 2P individuals 
(parents plus children), and the algorithm must select which 
individuals will move on to the next generation. In animal 
life, this means that only the fittest (i.e., the ones that are 
best adapted to the environment) survive. In genetic 
algorithms a fitness value is also calculated for each one of 
the 2P individuals: the D-error of the corresponding choice 
design. The P individuals with the lowest D-error value are 
selected to move on to the next generation, and the rest are 
discarded. 
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Figure 1   Sequence of operations in the genetic algorithm. 

2.5 Restart and stopping criteria 

The population is restarted every R iterations, with R 
being a parameter to be determined by the analyst. In each 
restart, only the p best individuals (with p again a 
parameter) are maintained, and the rest are recalculated 
randomly. Finally, the algorithm is stopped when 
convergence is reached or after a predefined number of 
iterations, with this number being the fifth and last 
parameter of the algorithm. In our case, the convergence 
criterion was not built into the algorithm, given that restarts 
and mutations can always results in unexpected 
improvements. 

The full sequence of steps taken in the algorithm is 
depicted in Figure 1. 

3 BENCHMARK TESTS 

The performance of the genetic algorithm was tested with 
five benchmarking problems: two of them were taken from 
Kessels, Goos and Vandebroek (2006) and we shall refer to 
them as KGV1 and KGV2; another one was taken from 
Sandor and Wedel (2005) and will be called SW; and 
finally, the last two, taken from Zwerina, Huber and 
Kuhfeld (2005), will be called ZHK1 and ZHK2. Table 1 
shows the characteristics of these five benchmark problems. 

 
Benchmark 
problem 

Type of 
design Interactions Value of the 

β parameters 
KGV1 32x2 / 2 / 12 Main effects Bayesian 

only 

KGV2 32x2 / 3 / 8 Main effects 
only Bayesian 

SW 34 / 2 / 15 Main effects 
only Bayesian 

ZHK1 33 / 3 / 9 AxB 
interaction 

Predefined 
zero values 

ZHK2 33 / 3 / 9 AxB 
interaction 

Predefined 
non-zero 
values 

Table 1   Characteristics of the five benchmark problems (Note: in 
the description of the type of design, for example, a 32x2/2/12 
design is one with 2 attributes of 3 levels and another one of 2 

levels, with 2 alternatives in each choice set and a total number of 
12 choice sets). 

Effects coding was used in all five cases. For the Bayesian 
problems, in order to determine the initial β values, the 
multivariate normal distribution π(β)=N(β|β0,∑0)  was used, 
with β0 equal to (-1,0,-1,0,-1)’ in the KGV cases and (-1,0,-
1,0,-1,0,-1,0)’ in SW, and ∑0 equal to the corresponding 
identity matrix (see Huber and Zwerina (1996) for an 
extensive explanation of this method of determining the 
Bayesian β values). 1000 samples of β were derived each 
time, and the corresponding DB value of the design was 
calculated as the average of the 1000 cases. In the case of 
the ZHK problems, the predefined β values used for 
calculating the DP value of the design were 
(0,0,0,0,0,0,0,0,0,0)’ for ZHK1 (with effects coding there 
are six variables for the main effects of the three parameters 
and four more for the AxB interaction), and (-1,0,-1,0,-
1,0,0,0,0,0)’ for ZHK2.  

The genetic algorithm was programmed in Matlab® 6.1 
and run in a PC with a 2.40 GHz processor and 1GB RAM. 
The parameter values for the genetic algorithm, which 
produced the best results in each benchmark test after 
calibration, are shown in Table 2. The designs obtained by 
the genetic algorithm for each benchmark case are in the 
Annex, with the corresponding D-error values shown in 
Table 3, along with the D-error value of the design given in 
each paper. The percentage values of level overlap (Sandor 
and Wedel, 2002) are shown in Table 4, and the 
computation times required for each problem in Table 5. 
Note that, even though the number of iterations in the ZHK 
problems is much larger than in the Bayesian cases, the 
computation time is much smaller in the former, because in 
each iteration of the Bayesian case the genetic algorithm has 
to compute the D-error of each individual in the population 
for 1000 probabilistic samples of the β values. 

 
Parameter KGV1 KGV2 SW ZHK1 ZHK2 
Population size 50 50 50 100 100 
Probability of 
mutation 0.2 0.2 0.2 0.2 0.2 

No. of iterations 
before restart 15 15 15 100 100 

No. of individuals 10 10 10 10 10 
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maintained in 
each restart 
Total no. of 
iterations 50 50 50 1000 1000 

Table 2   Values of the different parameters of the genetic 
algorithm used in each benchmark test. 

Benchmark 
problem 

Type of 
D-error 

D-error values 
of the designs 
given in the 
respective 
papers 

D-error values 
of the designs 
obtained by 
the genetic 
algorithm 

KGV1 DB 0.73024 0.6243 
KGV2 DB 0.76617 0.68316 
SW DB 0.834 0.76278 
ZHK1 DP 0.306 0.3058 
ZHK2 DP 0.399 0.3993 

Table 3   D-error values of the designs given in the five benchmark 
cases and of the designs obtained by the genetic algorithm for each 

one of them. 

Benchmark 
problem 

Percentage of level 
overlap obtained in 
the respective papers 

Percentage of level 
overlap in the designs 
built by the genetic 
algorithm 

KGV1 13.89 16.67 
KGV2 66.67 (38.00) 70.83 
SW 0 23.33 
ZHK1 37.04 51.85 
ZHK2 59.26 51.85 

Table 4   Percentage of level overlap in the designs of the five 
benchmark papers and of the designs obtained by the genetic 
algorithm. (Note: in the case of KGV2, the value given by the 

authors is 38.00, while the application of the definition of level 
overlap provided by Sandor and Wedel (2002) gives a value of 

66.67). 

Benchmark 
problem 

Computation times 
required in the 
respective papers 

Computation times 
required by the 
genetic algorithm 

KGV1 200 x 5min. 37.75 min. 
KGV2 200 x 5min. 49.48 min. 
SW N.A. 116.18 min. 
ZHK1 N.A. 12.88 min. 
ZHK2 N.A. 12.91 min. 

Table 5   Computation times required for each benchmark 
problem. The only values provided are those of the KGV problems, 

where 200 runs of a 5 minute algorithm were performed in each 
case. 
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e KGV1 problem SW problem 

Attributes Attributes 

1 2 3 1 2 3 4 

1 1 2 2 1 2 2 1 2 
 2 3 1 1 3 1 1 1 

2 1 2 2 1 1 3 2 2 
 2 1 2 2 1 1 1 3 

3 1 2 1 2 1 3 3 3 
 2 1 2 1 3 2 2 1 

4 1 1 1 2 2 2 1 3 
 2 2 3 1 3 1 1 2 

5 1 1 3 1 1 3 2 1 
 2 2 2 2 3 1 1 2 

6 1 1 1 1 1 2 3 1 
 2 3 2 1 3 1 2 1 

7 1 3 1 1 3 2 2 1 
 2 2 2 2 3 1 2 2 

8 1 2 1 2 2 1 2 3 
 2 1 3 2 1 2 1 2 

9 1 1 2 1 3 3 1 1 
 2 3 1 1 2 1 2 1 

10 1 3 2 1 1 2 2 3 
 2 2 3 1 2 2 1 2 

11 1 3 2 1 2 1 3 1 
 2 1 3 2 2 2 2 2 

12 1 1 1 2 2 3 1 1 
 2 3 3 1 3 3 3 1 

13 1    1 3 3 1 
 2    3 3 1 3 

14 1    1 2 2 1 
 2    2 3 1 1 

15 1    1 3 2 1 
 2    2 2 3 1 

Table 6   Design matrices for the benchmark problems with two 
alternatives in each decision set. 

C
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Se
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lte

rn
at

iv
e KGV2 

problem 
ZHK1 

problem 
ZHK2 

problem 
Attributes Attributes Attributes 

1 2 3 1 2 3 1 2 3 

1 1 3 1 1 3 2 1 3 1 2 
 2 3 3 1 2 3 3 3 2 1 
 3 2 2 1 1 2 2 2 2 3 
2 1 3 2 2 1 3 3 3 1 1 
 2 2 1 1 3 3 1 1 1 2 
 3 1 3 2 3 2 2 2 1 2 
3 1 1 2 2 1 3 2 1 2 3 
 2 1 1 1 1 1 3 3 1 2 
 3 2 1 1 1 2 1 1 3 1 
4 1 2 2 2 2 2 1 2 1 1 
 2 3 2 1 2 3 2 1 1 3 
 3 3 1 2 3 3 3 1 2 2 
5 1 2 1 2 3 1 2 3 2 2 
 2 1 1 2 2 1 1 2 3 1 
 3 1 2 1 3 2 3 1 3 3 
6 1 3 2 1 3 1 3 3 3 1 
 2 1 1 2 3 3 2 1 2 3 
 3 1 3 1 1 1 1 2 3 2 
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7 1 1 2 2 2 1 2 2 2 1 
 2 2 3 1 2 2 3 2 1 3 
 3 3 1 2 1 3 1 1 3 2 
8 1 3 3 1 1 2 3 3 2 3 
 2 2 2 2 2 2 2 2 2 2 
 3 1 3 2 3 1 1 3 3 2 
     2 1 3 2 2 2 
     2 3 1 1 1 3 
     1 1 2 2 3 1 

Table 7   Design matrices for the benchmark problems with three 
alternatives in each decision set. 

4 CONCLUSIONS 

According to the benchmark tests carried out, the genetic 
algorithm seems to be a useful tool for the building of D-
efficient choice designs. The designs obtained for the 
Bayesian problems have a significantly lower DB value, and 
in the ZHK cases the DP values reached are very similar. 
The level overlaps are slightly higher in the designs 
obtained by the genetic algorithm except for one of the 
problems, but they are not very different from those of the 
designs provided in the different benchmark papers. Finally, 
the computation times are only provided in one of the 
benchmark papers, and the genetic algorithm shows a much 
faster performance, considering that each one of its restarts 
can be the equivalent to each run of the modified Fedorov 
algorithm used in the paper. 
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