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Abstract

In this paper we propose and analyze a new augmented mixed finite element method
for the Navier-Stokes problem. Our approach is based on the introduction of a “nonlinear-
pseudostress” tensor linking the pseudostress tensor with the convective term, which leads
to a mixed formulation with the nonlinear-pseudostress tensor and the velocity as the main
unknowns of the system. Further variables of interest, such as the fluid pressure, the fluid
vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess
of the finite element solutions with the same rate of convergence. The resulting mixed
formulation is augmented by introducing Galerkin least-squares type terms arising from the
constitutive and equilibrium equations of the Navier-Stokes equations and from the Dirichlet
boundary condition, which are multiplied by stabilization parameters that are chosen in
such a way that the resulting continuous formulation becomes well-posed. Then, the classical
Banach’s fixed point Theorem and Lax-Milgram’s Lemma are applied to prove well-posedness
of the continuous problem. Similarly, we establish well-posedness and the corresponding
Cea’s estimate of the associated Galerkin scheme considering any conforming finite element
subspace for each unknown. In particular, the associated Galerkin scheme can be defined by
employing Raviart-Thomas elements of degree k for the nonlinear-pseudostress tensor, and
continuous piecewise polynomial elements of degree k + 1 for the velocity, which leads to
an optimal convergent scheme. In addition, we provide two iterative methods to solve the
corresponding nonlinear system of equations and analyze their convergence. Finally, several
numerical results illustrating the good performance of the method are provided.
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‡Departamento de Matemática, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile, and CI2MA, Univer-

sidad de Concepción, Casilla 160-C, Concepción, Chile, email: royarzua@ubiobio.cl
§Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Prague 8, 186 75, Czech

Republic, email: gtierra@karlin.mff.cuni.cz

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51405276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

This paper is concerned with the numerical approximation of the incompressible Navier-Stokes
problem:

−ν∆u + (u · ∇)u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,∫
Ω
p = 0,

(1.1)

where Ω ⊂ Rn, n ∈ {2, 3}, is a polyhedral domain, ν > 0 is the fluid viscosity, u is the velocity,
p is the pressure, and f is a source term. In particular, we are interested in pseudostress-type
mixed variational formulations to solve problem (1.1).

Pseudostress-based formulations, applied to the Stokes problem, have been extensively stu-
died during the last decades (see e.g. [5], [14], [20], [22], and the references therein). This study
has been extended to solve important problems in engineering, such as the Stokes-Darcy coupled
problem and transport problems (see, for instance, [1], [21], [24], [25]).

There are two main advantages to utilize this kind of formulations. On the one hand,
pseudostress-based formulations have a natural applicability to non-Newtonian flows. Indeed,
since in this case the constitutive equation is nonlinear, the stress can not be eliminated, and
hence it becomes an unavoidable unknown in the corresponding solvability analysis. Actually,
the main advantage of this kind of formulations is that their allows for a unified analysis for
linear and nonlinear flows (see [11], [19], [23], [28]). On the other hand, when using pseudostress-
based formulations, further variables of interest can be computed as a simple postprocess of the
pseudostress, and then, they can be approximated without loosing any accuracy. In fact, after
computing the pseudostress tensor σ := ν∇u − pI one can easily obtain the fluid stress tensor
σ̃ := ν(∇u +∇ut) − pI, the fluid pressure p, the fluid vorticity ω := 1

2(∇u − (∇u)t), and the
fluid velocity gradient ∇u, respectively, as follows:

σ̃ = σ − 1

n
tr (σ)I + σt, p = − 1

n
tr (σ), ω =

1

2ν
(σ − σt) and ∇u =

1

ν
(σ − 1

n
tr (σ)I).

Now, concerning mixed formulations for the Navier-Stokes equations, we first mention the
works of Farhloul et al. (see [12] and [13]), where the authors extend the analysis of dual-mixed
formulations for the Stokes equations to the Navier-Stokes problem. They propose quasi-optimal
convergent numerical methods for the fluid flow problem considering the strain tensor (in [12])
and the velocity gradient tensor (in [13]) as the main unknowns of the corresponding systems.
In [8] (see also [6] and [7]), Cai et al. have extended the analysis of pseudostress-based mixed
methods for the Stokes problem to the Navier-Stokes equations. They introduce and analyze
a conforming H(div ) method for a pseudostress-based mixed formulation which turns to be of
accuracy O(hk+1−n/6) (n = 2, 3) in the L3 norm. Finally, in [29], Howell and Walkington, present
a dual-mixed finite element method for the Navier-Stokes problem, where the main unknowns
are the velocity-gradient (in L2), the velocity (in L2) and a modified version of the pseudostress
(or stress) tensor (in H(div )) that links the pseudostress tensor and the convective term. The
authors prove well-posedness of the continuous formulation utilizing the classical Babuška-Brezzi
theory, the fact that the velocity can be seen as a function in H1 (Lemma 2.4), and a fixed-point
argument. The first tool involves inf-sup conditions which are not easy to prove for the classical
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H(div )-conforming discrete spaces. In order to deal with this issue, the authors introduce new
finite element subspaces for the corresponding unknowns, which turn to be expensive.

In this work we introduce a new augmented mixed finite element method for problem (1.1).
Similarly to [29], we introduce a “nonlinear-pseudostress” tensor (in H(div )), linking the pseu-
dostress tensor and the convective term, which together to the velocity (in H1), are the main
unknowns of the system. The pressure is eliminated by using the incompressibility property, and
can be recovered as a simple postprocess of the nonlinear-pseudostress tensor. Since the velocity
is kept as a function in H1, we utilize similar techniques developed in [16] and [17] for the linear
elasticity problem (see also [14] for similar results applied to the Stokes problem), and augment
the mixed formulation with Galerkin least-squares type terms arising from the constitutive and
equilibrium equations of the Navier-Stokes equations and from the Dirichlet boundary condi-
tion, which are multiplied by stabilization parameters that are chosen in such a way that the
resulting continuous formulation becomes well-posed. The introduction of these terms allows us
to circumvent the necessity of proving inf-sup conditions, and as a result, to relax the hypotheses
on the corresponding discrete subspaces. In this way, the classical Banach’s fixed point Theorem
and Lax-Milgram’s Lemma can be applied to prove well-posedness of the continuous problem.
Analogously, and considering any pair of conforming subspaces for the nonlinear-pseudostress
tensor and the fluid velocity, we establish well-posedness and the corresponding Cea’s estimate
of the associated Galerkin scheme. In particular, making use of Raviart-Thomas elements of
degree k for the nonlinear-pseudostress tensor, and continuous piecewise polynomial elements of
degree k+1 for the velocity, we obtain optimal rate of convergence, which is one of the principal
advantages of our method.

The rest of this paper is organized as follows. In Section 2 we present the main aspects
of the continuous problem. We reformulate the fluid flow problem as an equivalent first-order
set of equations. Then, we multiply the corresponding equations by suitable test functions
and integrate by parts to derive our augmented mixed variational formulation. In Section 3
we choose appropriate stabilization parameters, and apply the classical Banach’s fixed point
Theorem and Lax-Milgram’s Lemma to prove unique solvability and stability of the continuous
formulation. In Section 4 we introduce and analyze the associated Galerkin scheme. We proceed
analogously to the continuous case, and establish well-posedness of the corresponding discrete
problem, considering any subspace for the nonlinear-pseudostress tensor and the velocity. In
addition, we establish the corresponding Cea’s estimate and provide a suitable choice of finite
element spaces ensuring optimal rate of convergence. In Section 5 we present two iterative
strategies to compute the solutions of the aforementioned augmented scheme, and analyze their
convergence. Finally, several numerical results illustrating the good performance of the method,
are reported in Section 6.

2 Continuous problem

2.1 Preliminaries

Let us first introduce some general functional spaces. If O is a domain and r ∈ R, we define

Hr(O) := [Hr(O)]n , Hr(O) := [Hr(O)]n×n .

In the particular case r = 0 we usually write L2(O), and L2(O), instead of H0(O), and H0(O),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)).
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Also, the Hilbert space

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [4], [18] [15] for instance), where div is the
usual divergence operator acting on vector fields. The space of matrix valued functions whose
rows belong to H(div ;O) will be denoted H(div ;O). The Hilbert norms of H(div ;O) and
H(div ;O) are denoted by ‖ · ‖div ;O and ‖ · ‖div ;O, respectively. Note that if S ∈ H(div ;O),
then div S ∈ L2(O). Note also that H(div ;O) can be characterized as the space of matrix
valued functions S such that ctS ∈ H(div ;O) for any constant column vector c. In addition,
we have the following decomposition:

H(div ;O) = H0(div ;O) ⊕ P0(O) I , (2.1)

where

H0(div ;O) :=

{
S ∈ H(div ;O) :

∫
O

tr S = 0

}
, (2.2)

I is the n× n identity matrix, P0(O) is the space of constant polynomials on O, and tr stands
for the usual trace of tensor. More precisely, each S ∈ H(div ;O) can be decomposed uniquely
as:

S = S0 + c I , with S0 ∈ H0(div ;O) and c :=
1

n |O|

∫
O

tr S ∈ R . (2.3)

Finally, for the sake of simplicity, in what follows we denote

(u, v)Ω :=

∫
Ω
uv, (u,v)Ω :=

∫
Ω

u · v, (u,v)Γ :=

∫
Γ

u · v and (T,S)Ω :=

∫
Ω

T : S.

2.2 The first-order set of equations

As we already mentioned, in order to describe our mixed variational formulation, we first
rewrite problem (1.1) as an equivalent first-order set of equations. We begin by introducing
the “nonlinear-pseudostress” tensor

T := ν∇u − pI − u⊗ u in Ω. (2.4)

From the incompressibility condition div u = tr (∇u) = 0 in Ω, it is not difficult to see that

div (u⊗ u) = (u · ∇)u in Ω and tr (T) = −np− tr (u⊗ u) in Ω. (2.5)

In particular, the second equation in (2.5) allows us to write the pressure p in terms of the tensor
T and the velocity u as

p = − 1

n
(tr (T) + tr (u⊗ u)) in Ω, (2.6)

which in turns, together with (2.4), leads us to the equation

Td = ν∇u− (u⊗ u)d in Ω, (2.7)

where

Sd := S − 1

n
(tr S) I,
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is the deviatoric part of tensor S.
On the other hand, from (2.4), and the first equations of (1.1) and (2.5), we easily get the

equilibrium equation
−div T = f in Ω. (2.8)

Finally, from (2.6) we observe that the condition
∫

Ω p = 0, ensuring the uniqueness of solution
of problem (1.1), is equivalent to

(tr (T) + tr (u⊗ u), 1)Ω = 0. (2.9)

According to the above, we rewrite equations (1.1) equivalently as follows

Td = ν∇u− (u⊗ u)d in Ω, −div T = f in Ω,

u = 0 on Γ, (tr (T), 1)Ω = −(tr (u⊗ u), 1)Ω.
(2.10)

where the unknowns of the system are the tensor T and the velocity u. The pressure p can be
easily computed as a postprocess of the solution by using (2.6). Here,

∇u =

(
∂ui
∂xj

)
1≤i,j≤n

, and div T =
(

div (ti1, . . . , tin)
)

1≤i≤n .

Remark 2.1 Notice that, utilizing the solution of (2.10), besides recovering the pressure p, we
can also compute other variables of interest, such as the stress tensor σ̃ = ν(∇u + (∇u)t)− pI,
the velocity gradient ∇u and the vorticity ω := 1

2(∇u− (∇u)t), respectively, as follows

σ̃ = Td + (u⊗ u)d + Tt + u⊗ u,

∇u =
1

ν
(Td + (u⊗ u)d),

ω =
1

2ν
(T−Tt).

(2.11)

These formulae will be employed later to approximate this variables as a simple postprocess of
the finite element solutions, conserving the same rate of convergence.

2.3 The augmented mixed variational problem

We now turn to the derivation of the weak formulation of (2.10). To do this we first test the
first equation of (2.10) with arbitrary S ∈ H(div ; Ω), integrate by parts, utilize the Dirichlet
boundary condition u = 0 on Γ, and the identity Td : S = Td : Sd, to obtain

(Td,Sd)Ω + ν(div S,u)Ω + (u⊗ u,Sd)Ω = 0. (2.12)

In addition, the equilibrium equation div T = −f is imposed weakly as follows

ν(div T,v)Ω = −ν(f ,v)Ω, (2.13)

where v is a suitable test function. Observe that the term (u ⊗ u,Sd)Ω in (2.12) requires
the velocity u to be in a space smaller than L2(Ω). Then, as we will see later, in order to
obtain an optimal convergent discrete scheme, we propose to consider the velocity u in H1(Ω).
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Consequently, in order to ensure well-posedness of the resulting variational formulation, we
propose to enrich our formulation with the following residual terms arising from the constitutive,
equilibrium equations and the Dirichlet boundary condition

κ1(div T,div S)Ω = −κ1(f ,div S)Ω, (2.14)

κ2

(
ν∇u − Td − (u⊗ u)d,∇v

)
Ω

= 0, (2.15)

κ3 (u,v)Γ = 0, (2.16)

for all S ∈ H(div ; Ω) and v ∈ H1(Ω), where κ1, κ2 and κ3 are positive parameters to be specified
later.

Then, from (2.12)–(2.16) we obtain the variational problem: Find (T,u) ∈ H(div ; Ω) ×
H1(Ω), such that (tr (T) + tr (u⊗ u), 1)Ω = 0, and

(Td,Sd)Ω + κ1(div T,div S)Ω + ν(div S,u)Ω + (u⊗ u,Sd)Ω = −κ1(f ,div S)Ω,

−ν(div T,v)Ω + κ2

(
ν∇u − Td − (u⊗ u)d,∇v

)
Ω

+ κ3 (u,v)Γ = ν(f ,v)Ω,
(2.17)

for all (S,v) ∈ H(div ; Ω)× ∈ H1(Ω).

Let us now define the tensor

T0 := T +
1

n|Ω|
(tr (u⊗ u), 1)ΩI. (2.18)

It is clear that

T0 ∈ H0(div ; Ω) if and only if (tr (T) + tr (u⊗ u), 1)Ω = 0.

In this way, thanks to (2.18) and (2.3), problem (2.17) can be reformulated equivalently as: Find
(T0,u) ∈ H0(div ; Ω)×H1(Ω), such that

(Td
0,S

d)Ω + κ1(div T0,div S)Ω + ν(div S,u)Ω + (u⊗ u,Sd)Ω = −κ1(f ,div S)Ω,

−ν(div T0,v)Ω + κ2

(
ν∇u − Td

0 − (u⊗ u)d,∇v
)

Ω
+ κ3 (u,v)Γ = ν(f ,v)Ω,

(2.19)

for all (S,v) ∈ H0(div ; Ω)× ∈ H1(Ω).
The following lemma establishes that problems (2.17) and (2.19) are equivalent. Its proof is

straightforward.

Lemma 2.2 If (T,u) is a solution of (2.17), then (T0,u) = (T + 1
n|Ω|(tr (u⊗ u), 1)ΩI,u) is a

solution of (2.19). Conversely, if (T0,u) is a solution of (2.19), then (T,u) = (T0− 1
n|Ω|(tr (u⊗

u), 1)ΩI,u) is a solution of (2.17).

As a consequence of the above, in what follows we focus on analyzing problem (2.19).

3 Analysis of the continuous problem

In this section we analyze the well-posedness of problem (2.19). To that end, we first rewrite
our problem in a variational setting and state the main properties of the forms involved.
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3.1 Variational setting

First, let us define the global unknown and space:

φ := (T0,u) ∈ X := H0(div ; Ω)×H1(Ω),

where X is endowed with the norm

‖ψ‖2X := ‖S‖2div ,Ω + ‖v‖21,Ω ∀ψ = (S,v) ∈ X.

Then, defining the forms

A(φ,ψ) := (Td,Sd)Ω + κ1(div T,div S)Ω + κ2ν(∇u,∇v)Ω + κ3(u,v)Γ

− ν(div T,v)Ω + ν(div S,u)Ω − κ2(Td,∇v)Ω,

C(ζ;φ,ψ) := (u⊗ z,Sd)Ω − κ2((u⊗ z)d,∇v)Ω,

(3.1)

for all φ = (T,u), ψ = (S,v), ζ = (R, z) in X, and the functional

F(ψ) := −κ1(f ,div S)Ω + ν(f ,v)Ω ∀ψ = (S,v) ∈ X, (3.2)

the variational problem (2.19) reads: Find φ ∈ X, such that

A(φ,ψ) + C(φ;φ,ψ) = F(ψ) ∀ψ = (S,v) ∈ X. (3.3)

We now turn to discuss the stability properties of the forms involved. To do this we first
establish the following well known inequalities. For (3.4) we refer to Lemma 3.1 in [2] or Chapter
IV in [4], whereas for inequality (3.5) we refer to [9] and Chapter I in [15].

Cd‖S‖20,Ω ≤ ‖Sd‖20,Ω + ‖div S‖20,Ω ∀S ∈ H0(div ; Ω), (3.4)

Cp‖v‖21,Ω ≤ |v|21,Ω + ‖v‖20,Γ ≤ C̃p‖v‖21,Ω ∀ v ∈ H1(Ω), (3.5)

with Cd, Cp and C̃p, only depending on Ω. Notice that the inequality on left hand side of (3.5)
is nothing but the well known generalized Poincaré inequality.

Now, for the bilinear form A, we observe that, thanks to (3.5) and the Hölder’s inequality,
for any positive constants κ1, κ2, and κ3, there holds

|A(φ,ψ)| ≤ CA‖φ‖X‖ψ‖X, ∀φ, ψ ∈ X, (3.6)

with CA > 0 depending only on ν, κ1, κ2, κ3 and C̃p.
Now, for the form C, recalling that H1 is continuously embedded in L4, from Hölder’s

inequality, we obtain

|C(ζ;φ,ψ)| ≤ (1 + κ2
2)1/2‖z‖L4(Ω)‖u‖L4(Ω)‖ψ‖X

≤ (1 + κ2
2)1/2C2

sob‖z‖1,Ω‖u‖1,Ω‖ψ‖X
≤ CC‖ζ‖X‖φ‖X‖ψ‖X,

(3.7)

for all ζ = (R, z), φ = (T,u), and ψ ∈ X, with CC := C2
sob(1 + κ2

2)1/2. Here, Csob > 0 is the
constant of the corresponding Sobolev inequality.

We now turn to prove the ellipticity of A on X. This result is established next.
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Lemma 3.1 Assume that κ1, κ3 > 0 and 0 < κ2 < 2ν. Then there exists αA > 0, such that

A(ψ,ψ) ≥ αA‖ψ‖2X ∀ψ ∈ X. (3.8)

Proof. Given ψ := (S,v) ∈ X, from the definition of A, inequalities (3.4), (3.5), and Hölder’s
inequality, we have

A(ψ,ψ) = ‖Sd‖20,Ω + κ1‖div S‖20,Ω + κ2ν|v|21,Ω + κ3‖v‖20,Γ − κ2(Sd,∇v)Ω

≥ ‖Sd‖20,Ω + κ1‖div S‖20,Ω + κ2ν|v|21,Ω + κ3‖v‖20,Γ −
1

2
‖Sd‖20,Ω −

κ2
2

2
|v|21,Ω

≥ 1

2
‖Sd‖20,Ω + κ1‖div S‖20,Ω +

κ2

2
(2ν − κ2)|v|21,Ω + κ3‖v‖20,Γ

≥ 1

2
min{1, κ1}Cd‖S‖20,Ω +

κ1

2
‖div S‖20,Ω +

1

2
min {κ2(2ν − κ2), 2κ3}Cp‖v‖21,Ω.

Then, the result follows with αA = 1
2 min

{
min{1, κ1}Cd , κ1 , min {κ2(2ν − κ2), 2κ3}Cp

}
. �

Remark 3.2 Observe that if κ2 ∈ (0, 2ν), κ1 = κ2(2ν − κ2) and κ3 = 1
2κ2(2ν − κ2), then for

any viscosity constant ν ∈ (0, 1], the ellipticity constant αA becomes

αA =
1

2
κ2(2ν − κ2) min{Cd, 1, Cp},

which reaches its maximum value when κ2 = ν.

We end this section by establishing the boundedness of the functional F:

|F(ψ)| ≤ ‖f‖0,Ω(κ1‖div S‖0,Ω + ν‖v‖0,Ω )

≤ ‖f‖0,Ω(κ2
1 + ν2)1/2‖ψ‖X,

(3.9)

for all ψ = (S,v) ∈ X.

3.2 The main result

Now, we are in position of providing the main result of this section, namely, existence, uniqueness
and stability of problem (3.3). To that end we first introduce the bounded set

K :=

{
ψ ∈ X : ‖ψ‖X ≤

2(κ2
1 + ν2)1/2

αA
‖f‖0,Ω

}
, (3.10)

and the mapping
J : K→ K, ζ → J (ζ) = φ, (3.11)

with ζ and φ satisfying

A(φ,ψ) + C(ζ;φ,ψ) = F(ψ) ∀ψ ∈ X. (3.12)

Let us observe that φ ∈ X is a solution to (3.3), if and only if, J (φ) = φ. In this way,
to prove well-posedness of problem (3.3), in what follows we equivalently prove that J has a
unique fixed point by means of the classical Banach’s fixed point theorem. Before doing this,
we now provide the following lemma establishing the well-definedness of operator J .
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Lemma 3.3 Assume that
4CC(κ2

1 + ν2)1/2

α2
A

‖f‖0,Ω ≤ 1, (3.13)

with CC and αA being the constants in (3.7) and (3.8), respectively. Assume further that
κ1, κ3 > 0 and 0 < κ2 < 2ν. Then, given ζ ∈ K, there exists a unique φ ∈ K such that
J (ζ) = φ.

Proof. Let ζ ∈ K. From (3.7) and (3.8), there holds

A(ψ,ψ) + C(ζ;ψ,ψ) ≥ A(ψ,ψ) − |C(ζ;ψ,ψ)| ∀ψ ∈ X,

≥
(
αA − CC‖ζ‖X

)
‖ψ‖2X ∀ψ ∈ X.

(3.14)

In turn, from the definition of set K, and assumption (3.13), we easily get

CC‖ζ‖X ≤
2CC(κ2

1 + ν2)1/2

αA
‖f‖0,Ω ≤

αA

2
. (3.15)

Hence, combining (3.14) and (3.15), we obtain

A(ψ,ψ) + C(ζ;ψ,ψ) ≥ αA

2
‖ψ‖2X, ψ ∈ X, (3.16)

that is, the bilinear form A(·, ·) + C(ζ; ·, ·) is elliptic on X. Therefore, applying Lax-Milgram
Lemma we obtain that there exists a unique φ ∈ X satisfying (3.12). In addition, from (3.9),
(3.12) and (3.16), we get

αA

2
‖φ‖2X ≤ A(φ,φ) + C(ζ;φ,φ) = F(φ) ≤ ‖f‖0,Ω(κ2

1 + ν2)1/2‖φ‖X,

which together to (3.13) implies that φ belongs to K and concludes the proof. �

We now provide the well-posedness of problem (3.3) (or equivalently (2.19)), which corre-
sponds to the main result of this section.

Theorem 3.4 Let f ∈ L2(Ω) such that

4CC(κ2
1 + ν2)1/2

α2
A

‖f‖0,Ω < 1. (3.17)

Assume that κ1, κ3 > 0 and 0 < κ2 < 2ν. Then, there exists a unique φ ∈ X solution to (3.3).
In addition, the solution φ satisfies the continuous dependence result

‖φ‖X ≤
2(κ2

1 + ν2)1/2

αA
‖f‖0,Ω. (3.18)

Proof. First, let us observe that assumption (3.17) ensures that Lemma 3.3 holds true (see
assumption (3.13)).

Now, as mentioned before, we make use of the classical Banach’s fixed point Theorem to
prove that the mapping J has a unique fixed point in K. In fact, let ζ

1
, ζ

2
, φ

1
, φ

2
∈ K, such

that φ
1

= J (ζ
1
) and φ

2
= J (ζ

2
). From the definition of J it follows that

A(φ
1
− φ

2
,ψ) + C(ζ

1
;φ

1
,ψ)−C(ζ

2
;φ

2
,ψ) = 0, ∀ψ ∈ X.

9



Then, by choosing the test function ψ = φ
1
− φ

2
∈ K, and adding and subtracting suitable

terms, we arrive at

A(φ
1
− φ

2
,φ

1
− φ

2
) + C(ζ

2
;φ

1
− φ

2
,φ

1
− φ

2
) = −C(ζ

1
− ζ

2
;φ

1
,φ

1
− φ

2
). (3.19)

In this way, we proceed as in the proof of Lemma 3.3, and utilize the continuity of C and the
fact that φ

1
∈ K, to obtain

‖φ
1
− φ

2
‖X ≤

2CC

αA
‖φ

1
‖X‖ζ1

− ζ
2
‖X ≤

4CC(κ2
1 + ν2)1/2

α2
A

‖f‖0,Ω‖ζ1
− ζ

2
‖X, (3.20)

which together to assumption (3.17) implies that J is a contraction mapping. Hence, applying
the Banach’s fixed point Theorem we obtain that there exists a unique φ ∈ K such that J (φ) =
φ, or equivalently, there exists a unique φ ∈ X solution to (3.3), which satisfies (3.18). �

Remark 3.5 We conclude this section by observing that applying Lemma 2.2 and Theorem
3.4, the well-posedness of problem (2.17) is straightforward, where its unique solution given by
(T,u) = (T0 − 1

n|Ω|(tr (u⊗ u), 1)ΩI),u) ∈ H(div ; Ω)×H1(Ω).

4 The Galerkin scheme

In this section we introduce and study the Galerkin scheme of problem (3.3). As we will see in
the subsections, the analysis of the corresponding discrete problem follows straightforwardly by
adapting the results obtained for the continuous problem to the discrete case.

4.1 Discrete problem

We start by introducing the generic finite dimensional subspaces

Hh(div ,Ω) ⊆ H(div ,Ω), H1
h(Ω) ⊆ H1(Ω), (4.1)

and the discrete spaces

Hh :=
{
Sh ∈ H(div ; Ω) : ctSh ∈ Hh(div ; Ω) ∀ c ∈ Rn

}
,

Hh,0 := Hh ∩H0(div ; Ω),

H1
h := [H1

h(Ω)]n.

(4.2)

We observe that in order to have meaningful subspace Hh,0, we need to be able to eliminate
multiples of the identity matrix from Hh. This request is certainly satisfied if we assume that:

[P0(Ω)]n×n ⊆ Hh. (4.3)

Then, defining the global discrete space and unknown

φ
h

:= (Th,0,uh) ∈ Xh := Hh,0 ×H1
h,

the discrete problem reads: Find φ
h
∈ Xh, such that

A(φ
h
,ψ

h
) + C(φ

h
;φ

h
,ψ

h
) = F(ψ

h
) ∀ψ

h
:= (Sh,vh) ∈ Xh, (4.4)

with A, C and F defined in (3.1) and (3.2).
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Remark 4.1 It is not difficult to see that, similarly to the continuous case, (Th,0,uh) is a
solution of problem (4.4), if and only if, (Th,0 − 1

n|Ω|(tr (uh ⊗ uh), 1)ΩI,uh) is a solution of the

discrete version of problem (2.17): Find φ̃
h

:= (Th,uh) ∈ Hh×H1
h, such that (tr (Th)+tr (uh⊗

uh), 1)Ω = 0 and

A(φ̃
h
,ψ

h
) + C(φ̃

h
; φ̃

h
,ψ

h
) = F(ψ

h
) ∀ψ

h
:= (Sh,vh) ∈ Hh ×H1

h. (4.5)

According to this, provided the solution φ
h

= (Th,0,uh) ∈ Xh of problem (4.4), the approximate

solution of problem (2.17) is given by (Th,uh) ∈ Hh ×H1
h, where the tensor Th is computed by

the formula:

Th = Th,0 −
1

n|Ω|
(tr (uh ⊗ uh), 1)ΩI. (4.6)

This formula will be employed later to approximate further variables of interest.

Remark 4.2 Notice that the only requirement on the finite element subspaces defined in (4.2)
is (4.3), and as we will see later, no further requirements need to be added. This is one of the
key features of our approach; the freedom of choosing discrete spaces.

4.2 Well-posedness of the discrete problem

We begin by observing that the boundedness of the forms A, C, and the functional F, namely
(3.6), (3.7) and (3.9), is clearly inherited from the continuous case. In addition, the following
lemma holds.

Lemma 4.3 Assume that κ1, κ3 > 0 and 0 < κ2 < 2ν. Then there exists αA > 0, such that

A(ψ
h
,ψ

h
) ≥ αA‖ψh‖

2
X ∀ψ

h
∈ Xh. (4.7)

Proof. The proof follows by applying the same arguments utilized in the proof of Lemma 3.1.
We omit further details. �

Now, analogously to the continuous case, in what follows we apply the classical Banach’s
fixed point theorem to prove well-posedness of problem (4.4). To that end, we introduce the
finite dimensional bounded set

Kh :=

{
ψ
h
∈ Xh : ‖ψ

h
‖X ≤

2(κ2
1 + ν2)1/2

αA
‖f‖0,Ω

}
,

and the discrete version of J :

Jh : Kh → Kh, ζ
h
→ Jh(ζ

h
) = φ

h
, (4.8)

with ζ
h

and φ
h

satisfying

A(φ
h
,ψ

h
) + C(ζ

h
;φ

h
,ψ

h
) = F(ψ

h
) ∀ψ

h
∈ Xh. (4.9)

The following Lemma establishes that the operator Jh is well-defined.
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Lemma 4.4 Assume that
4CC(κ2

1 + ν2)1/2

α2
A

‖f‖0,Ω ≤ 1, (4.10)

with CC and αA being the constants in (3.7) and (3.8), respectively. Assume further that
κ1, κ3 > 0 and 0 < κ2 < 2ν. Then, given ζ

h
∈ Kh, there exists a unique φ

h
∈ Kh such that

Jh(ζ
h
) = φ

h
.

Proof. Similarly to the proof of Lemma 3.3, we let ζ
h
∈ Kh, assume inequality (4.10), and apply

Lemma 4.3, to obtain

A(ψ
h
,ψ

h
) + C(ζ

h
;ψ

h
,ψ

h
) ≥ αA

2
‖ψ

h
‖2X, ∀ψ

h
∈ Xh, (4.11)

that is, the bilinear form A(·, ·) + C(ζ
h
; ·, ·) is elliptic on Xh. This inequality, together to (3.7),

(3.9), and assumption (4.10) imply the result. �

Finally, we establish the well-posedness of problem (4.4).

Theorem 4.5 Let f ∈ L2(Ω) such that

4CC(κ2
1 + ν2)1/2

α2
A

‖f‖0,Ω < 1. (4.12)

Assume that κ1, κ3 > 0 and 0 < κ2 < 2ν. Then, there exists a unique φ
h
∈ Xh solution to (4.4).

In addition, the solution φ
h

satisfies the continuous dependence result

‖φ
h
‖X ≤

2(κ2
1 + ν2)1/2

αA
‖f‖0,Ω. (4.13)

Proof. Let us observe that Jh(φ
h
) = φ

h
if and only if φ

h
is the unique solution of problem (4.4)

satisfying (4.13). Then, analogously to the proof of Theorem 3.4, it suffices to prove that Jh is
a contraction mapping in Kh, which follows straightforwardly from the proof of Theorem 3.4.
�

4.3 Cea’s estimate

Now, we derive the corresponding Cea’s estimate of our Galerkin scheme (4.4). This result is
established in the following theorem.

Theorem 4.6 Let φ := (T0,u) ∈ X and φ
h

:= (Th,0,uh) ∈ Xh be the unique solutions of the

continuous and discrete problems (3.3) and (4.4), respectively, with f ∈ L2(Ω) satisfying (4.12).
Assume that κ1, κ3 > 0 and 0 < κ2 < 2ν. Then, there exists Ccea > 0, independent of h, such
that

‖φ− φ
h
‖X ≤ Ccea inf

ψ
h
∈Xh

‖φ−ψ
h
‖X. (4.14)

Proof. In order to simplify the subsequent analysis, we write eφ = φ − φ
h
. As usual, for any

ψ̂
h

:= (Ŝh, v̂h) ∈ Xh, we shall decompose this error into

eφ = ξφ + χφ = (φ− ψ̂
h
) + (ψ̂

h
− φ

h
). (4.15)
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Now, subtracting equations (3.3) and (4.4), we easily get the Galerkin orthogonality property

A(eφ,ψh) + [C(φ;φ,ψ
h
)−C(φ

h
;φ

h
,ψ

h
)] = 0 ∀ψ

h
∈ Xh. (4.16)

In turn, adding and subtracting suitable terms we get

A(eφ,ψh) + [C(eφ;φ
h
,ψ

h
) + C(φ; eφ,ψh)] = 0 ∀ψ

h
∈ Xh,

which implies

A(χφ,ψh) + C(χφ;φ
h
,ψ

h
) = −A(ξφ,ψh) − C(ξφ;φ

h
,ψ

h
) −C(φ;χφ,ψh)

−C(φ; ξφ,ψh),

for all ψ
h
∈ Xh. In particular, for ψ

h
= χφ, from (4.11), and the continuity of A and C, we

obtain
αA

2
‖χφ‖X ≤ (CA + CC‖φh‖X + CC‖φ‖X)‖ξφ‖X + CC‖φ‖X‖χφ‖X,

which together to the fact that φ ∈ K and φ
h
∈ Kh, yield(

1 − 4CC(κ2
1 + ν2)1/2

α2
A

‖f‖0,Ω

)
‖χφ‖X ≤

(
2CA

αA
+

8CC(κ2
1 + ν2)1/2

α2
A

‖f‖0,Ω

)
‖ξφ‖X. (4.17)

In this way, thanks to assumption (4.12), from (4.15), (4.17) and the triangle inequality we
obtain that there exists Ccea > 0, independent of h, such that

‖φ− φ
h
‖X = ‖eφ‖X ≤ ‖χφ‖X + ‖ξφ‖X ≤ Ccea‖ξφ‖X = Ccea‖φ− ψ̂h‖X,

for all ψ̂
h
∈ Xh, which concludes the proof. �

4.4 Computing further variables of interest

As mentioned before, one of the advantages of solving fluid flow problems through peudostress-
type formulations, is the possibility of approximating further variables of interest. In fact,
provided the solution (Th,0,uh) ∈ Xh of problem (4.4), we first recall that the solution of
problem (2.17) can be easily approximated by (Th,uh) := (Th,0 − 1

n|Ω|(tr (uh ⊗ uh), 1)ΩI,uh)

(see remark 4.1), where Th ∈ Hh turns to be the approximation of tensor T defined in (2.4).
According to this, and recalling the formulae provided in (2.6) and (2.11), the pressure p,
the stress σ̃ := ν(∇u + (∇u)t) − pI, the velocity gradient G = ∇u, and the vorticity ω :=
1
2(∇u−∇ut) can be approximated as follows:

ph = − 1

n
(tr (Th) + tr (uh ⊗ uh))

σ̃h = Td
h + (uh ⊗ uh)d + Tt

h + uh ⊗ uh,

Gh =
1

ν
(Td

h + (uh ⊗ uh)d),

ωh =
1

2ν
(Th −Tt

h).

(4.18)

The following corollary establishes the corresponding approximation result for this postpro-
cessing procedure.
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Corollary 4.7 Assume that the hypotheses of Theorem 4.6 hold true. Let φ := (T0,u) ∈ X
and φ

h
:= (Th,0,uh) ∈ Xh be the unique solutions of the continuous and discrete problems (3.3)

and (4.4), respectively. Let Th = Th,0− 1
n|Ω|(tr (uh⊗uh), 1)ΩI, and let ph, σ̃h, Gh and ωh given

by (4.18). Then there exists Ĉ > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σ̃ − σ̃h‖0,Ω + ‖G−Gh‖0,Ω + ‖ω − ωh‖0,Ω ≤ Ĉ inf
ψ

h
∈Xh

‖φ−ψ
h
‖X. (4.19)

Proof. Since H1 is continuously embedded in L4, and recalling that φ ∈ K and φ
h
∈ Kh, it is

not difficult to see that

‖u⊗ u− uh ⊗ uh‖0,Ω ≤ ‖(u− uh)⊗ u‖0,Ω + ‖uh ⊗ (u− uh)‖0,Ω
≤ C

{
‖(u− uh)‖1,Ω‖u‖1,Ω + ‖(u− uh)‖1,Ω‖uh‖1,Ω

}
≤ 2C‖(u− uh)‖1,Ω‖f‖0,Ω.

(4.20)

Then, the result follows from (4.14), (4.20), and equations (2.6), (2.11), (2.18) and (4.18). �

4.5 A particular choice of discrete spaces

We now specify a concrete example of finite element subspaces for our Galerkin scheme (4.4). To
this end we let Th be a regular family of triangulations of the polyhedral region Ω by triangles
K in R2 or tetrahedra in R3 of diameter hK such that Ω = ∪{K : K ∈ Th} and define
h := max{hK : K ∈ Th}. Now, given an integer l ≥ 0 and a subset S of Rn, we denote by
Pl(S) the space of polynomials of total degree at most l defined on S.

For each integer k ≥ 0 and for each K ∈ Th, we define the local Raviart-Thomas space of
order k (see, for instance [4]):

RTk(K) := [Pk(K)]n ⊕ Pk(K)x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we specify the discrete spaces in (4.1)
by:

Hh(div ; Ω) := {T ∈ H(div ; Ω) : T |K ∈ RTk(K), ∀K ∈ Th} ,

H1
h(Ω) :=

{
v ∈ C(Ω̄) : v|K ∈ Pk+1(K), ∀K ∈ Th

}
.

(4.21)

It is well known that these subspaces satisfy the following approximation properties (see, e.g.
[9], [18], [27]):

For each s > 0 and for each T ∈ Hs(Ω), with div T ∈ Hs(Ω), there exists Th ∈ Hh, such
that

‖T − Th‖div ,Ω ≤ Chmin{s,k+1} {‖T‖s,Ω + ‖div T‖s,Ω} . (4.22)

For each s > 0 and for each v ∈ Hs+1(Ω) there exists vh ∈ H1
h(Ω) such that

‖v − vh‖1,Ω ≤ Chmin{s,k+1}‖v‖s+1,Ω. (4.23)

As a consequence of the above we can establish the convergence result of our Galerkin scheme
(4.4) for this particular choice of spaces.
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Theorem 4.8 Let Xh = Hh,0 ×H1
h defined in terms of the finite element spaces (4.21). Let

φ := (T0,u) ∈ X and φ
h

:= (Th,0,uh) ∈ Xh be the unique solutions of the continuous and

discrete problems (3.3) and (4.4), respectively, with f ∈ L2(Ω) satisfying (4.12). Assume that
κ1, κ3 > 0 and 0 < κ2 < 2ν. Assume further that T0 ∈ Hs(Ω), div T0 ∈ Hs(Ω), and u ∈
Hs+1(Ω), for some s > 0. Then there exists Crate > 0, independent of h, such that

‖φ− φ
h
‖X ≤ Crateh

min{s,k+1} {‖T0‖s,Ω + ‖div T0‖s,Ω + ‖u‖s+1,Ω} (4.24)

Proof. The result is a straightforward application of Theorem 4.6, and properties (4.22) and
(4.23). �

We now provide the following corollary establishing the rate of convergence for the postpro-
cessing procedure introduced in (4.18).

Corollary 4.9 Let Xh = Hh,0 ×H1
h defined in terms of the finite element spaces (4.21). Let

φ := (T0,u) ∈ X and φ
h

:= (Th,0,uh) ∈ Xh be the unique solutions of the continuous and

discrete problems (3.3) and (4.4), respectively, with f ∈ L2(Ω) satisfying (4.12). Assume that
κ1, κ3 > 0 and 0 < κ2 < 2ν. Assume further that T0 ∈ Hs(Ω), div T0 ∈ Hs(Ω), and u ∈
Hs+1(Ω), for some s > 0. Let Th = Th,0 − 1

n|Ω|(tr (uh ⊗ uh), 1)ΩI, and let ph, σ̃h, Gh and ωh

given by (4.18). Then there exists C̃ > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σ̃ − σ̃h‖0,Ω + ‖G−Gh‖0,Ω + ‖ω − ωh‖0,Ω
≤ C̃hmin{s,k+1} {‖T0‖s,Ω + ‖div T0‖s,Ω + ‖u‖s+1,Ω} .

(4.25)

Proof. The result is a direct application of Theorem 4.8 and Corollary 4.7. �

5 Iterative methods

In this section we introduce and analyze two iterative methods to compute the solution of the
discrete nonlinear system (4.4), namely a fixed point iterative method and the classical Newton’s
method. For simplicity of notation, in what follows we present the algorithms in the continuous
case since, at discrete level, the analysis can be exactly replicated from the continuous case.
In addition we shall observe that the convergence results of the iterative methods at discrete
level are totally independent of the mesh, due to the fact that they are established by using the
properties of the forms A and C at the continuous level.

5.1 Fixed-point strategy

Our first strategy to solve the nonlinear problem (3.3) is given by a fixed point iteration written
in the following form: Given φ0 ∈ X, for m ≥ 1, find φm ∈ X such that

A(φm,ψ) + C(φm−1;φm,ψ) = F(ψ) ∀ψ ∈ X. (5.1)

Notice that this strategy is nothing but the classical Picard-type iteration to find the unique
fixed point of operator J given in (3.11) (or Jh given in (4.8)) which has been proved that is a
contraction mapping in K (or Kh for the discrete problem). As a consequence, the convergence
of this iterative process is ensured by Theorem 3.4 (respectively Theorem 4.5 for the discrete
problem). This result is provided next. Its proof is straightforward.
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Proposition 5.1 Let f ∈ L2(Ω) such that (3.17) holds. Assume that κ1, κ3 > 0 and 0 < κ2 <
2ν. Then, given an initial guess φ0, satisfying

‖φ0‖X ≤
2(κ2

1 + ν2)1/2

αA
‖f‖0,Ω,

the sequence φn given by (5.1) converges to the unique solution φ of problem (3.3) when n tends
to infinity, and

‖φ‖X ≤
2(κ2

1 + ν2)1/2

αA
‖f‖0,Ω.

5.2 Newton’s method

Now we present the well known Newton’s method to solve the nonlinear problem (3.3). Be-
fore describing this strategy applied to our problem, we first recall this method in an abstract
framework and introduce a classical theorem ensuring its convergence, namely, the Kantorovich
Theorem. To do this, we let X and Y be two Banach spaces and x0 a given element in X. In
addition, we let BR and Br be the bounded sets defined by

BR := {x ∈ X : ‖x− x0‖X < R}

and
Br := {x ∈ X : ‖x− x0‖X ≤ r},

where R and r are positive constants satisfying 0 < r < R. Let us assume that BR contains a
zero of an operator P : BR ⊂ X → Y , i.e., a point x∗ ∈ BR such that P (x∗) = 0, and that P
has a continuous derivative in BR. Then the Newton’s method is described as follows:

Newton’s method: Given an initial approximation x0 ∈ BR of x∗, compute:

xm = xm−1 − [P ′(xm−1)]−1(P (xm−1)) for m ≥ 1,

assuming that [P ′(xm−1)]−1 exists.

The following theorem establishes the convergence of this method (for details, see Theorem
5 in [3] or Theorem 6 (1.XVIII) in [30, p. 708]).

Theorem 5.2 (Kantorovich Theorem) Let P be defined on BR ⊂ X with continuous second
derivative in Br. Moreover assume that

(1) there exists the continuous linear operator [P ′(x0)]−1,

(2) there exists a positive constant K1 > 0 : ‖[P ′(x0)]−1(P (x0))‖ ≤ K1,

(3) there exists a positive constant K2 > 0 : ‖[P ′(x0)]−1P ′′(x)‖ ≤ K2, for all x ∈ Br.

If

K3 = K1K2 ≤
1

2
, (5.2)

and the radious r of Br satisfies

r ≥ r0 =
1−
√

1− 2K3

K3
K1 ,
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then, there exists a zero x∗ of P to which the Newton’s iteration converges. In this case,

‖x∗ − x0‖X ≤ r0.

Furthermore, if for K3 < 1/2

r < r1 =
1 +
√

1− 2K3

K3
K1,

or for K3 = 1/2
r ≤ r1,

the solution x∗ is unique in the set Br.
The rate of convergence of the Newton’s method is given by

‖x∗ − xm‖X ≤
1

2m
(2K3)2mK1

K3
, m ≥ 0. (5.3)

In what follows, we apply the theory described above to derive and analyze the Newton’s
method associated to problem (3.3). To do so, we let ζ be a fixed element in X, and introduce
the linear operator N (ζ, ·) : X→ X′, defined by〈

N (ζ,φ),ψ
〉

:= A(φ,ψ) + C(ζ;φ,ψ) ∀φ, ψ ∈ X, (5.4)

and the functional F ∈ X′ 〈
F ,ψ

〉
:= F(ψ) ∀ψ ∈ X, (5.5)

Then, defining the nonlinear operator P : X→ X′, as

P(ψ) := N (ψ,ψ) − F ∀ψ ∈ X, (5.6)

we obtain that φ ∈ X is the unique solution of (3.3), if and only if,〈
P(φ),ψ

〉
= A(φ,ψ) + C(φ;φ,ψ) − F(ψ) = 0 ∀ψ ∈ X,

that is, P(φ) = 0 ∈ X′.
Now, after simple computations, it is not difficult to see that the Gateaux derivative of P,

P ′ : X→ L(X,X′), is given by〈
(P ′(φ))(ζ),ψ

〉
= A(ζ,ψ) + C(ζ;φ,ψ) + C(φ; ζ,ψ) ∀φ, ζ, ψ ∈ X, (5.7)

where L(X,X′) is the set of linear and bounded operators from X to X′.

According to the above, we obtain that the Newton’s method applied to problem (3.3) reads:
Given φ0 ∈ X, for m ≥ 1, find φm ∈ X, such that〈

(P ′(φm−1))(φm − φm−1),ψ
〉

= −
〈
(P(φm−1)),ψ

〉
∀ψ ∈ X. (5.8)

In what follows we apply Theorem 5.2 to prove the convergence of the iterative method (5.8),
considering φ0 = 0 as initial guess. This result is stated in the next theorem.
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Theorem 5.3 Assume that hypotheses of Theorem 3.4 hold and let φ ∈ X the unique solution

of problem (3.3). Then, considering φ0 = 0 as initial guess, the sequence {φm}m∈N given by the
Newton’s method (5.8) converges to φ. In addition, There exist positive constants K1 and K2,
independent of the solution and m, such that

‖φ− φm‖X ≤
1

2m
(2K2)2mK1

K2
, m ≥ 0. (5.9)

(Explicit constants K1 and K2 are provided in (5.12) and (5.14), respectively).

Proof. It suffices to verify that assumptions (1), (2) and (3) of Theorem 5.2 hold.
First, it is easy to see that〈

P(φ0),ψ
〉

=
〈
P(0),ψ

〉
= −F(ψ) ≤ ‖f‖0,Ω(κ2

1 + ν2)1/2‖ψ‖X ∀ψ ∈ X,

from which
‖P(φ0)‖X′ ≤ ‖f‖0,Ω(κ2

1 + ν2)1/2. (5.10)

In turn, from Lemma 3.1, we have〈
(P ′(φ0))(ψ),ψ

〉
= A(ψ,ψ) ≥ αA‖ψ‖2X ∀ψ ∈ X,

which implies that [P ′(φ0)]−1 exists, and

‖[P ′(φ0)]−1‖L(X′,X) ≤
1

αA
. (5.11)

In this way, from (5.10) and (5.11) we obtain that assumption (1) and (2) hold with

K1 =
1

αA
(κ2

1 + ν2)1/2‖f‖0,Ω. (5.12)

Now, for (3) we first notice, after simple computations, that the second derivative of operator
P is given by〈

((P ′′(φ)(ϕ))(ψ), ζ
〉

= C(ϕ;ψ, ζ) + C(ψ;ϕ, ζ) ∀φ, ϕ, ψ, ζ ∈ X.

It follows that 〈
((P ′′(φ)(ϕ))(ψ), ζ

〉
≤ 2CC‖ϕ‖X‖ψ‖X‖ζ‖X ∀φ, ϕ, ψ, ζ ∈ X,

which yields
‖P ′′(φ)‖L(X,L(X,X′)) ≤ 2CC. (5.13)

Hence, from (5.11) and (5.13) we get that assumption (3) holds with

K2 =
2CC

αA
. (5.14)

Therefore, from (3.17), (5.12) and (5.14) we finally get

K3 := K1K2 =
2CC(κ2

1 + ν2)1/2

α2
A

‖f‖0,Ω <
1

2
,

which concludes the proof. �
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Remark 5.4 We observe that, according to the definition of operator P in (5.6), the Newton’s
method described in (5.8) can be rewritten in terms of the forms A and C as follows: Find
φm ∈ X such that

A(φm,ψ) + C(φm;φm−1,ψ) + C(φm−1;φm,ψ) = C(φm−1;φm−1,ψ) + F(ψ) , (5.15)

for all ψ ∈ X.

6 Numerical results

In this section we present three examples illustrating the performance of our augmented mixed
finite element scheme (4.4) on a set of uniform triangulations of the corresponding domains and
considering the finite element spaces introduced in Section 4.5. Our implementation is based
on a FreeFem++ code (see [26]), in conjunction with the direct linear solver UMFPACK (see
[10]). Regarding the implementation of the iterative methods, the iterations are terminated once
the relative error of the entire coefficient vectors between two consecutive iterates is sufficiently
small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of
freedom defining the finite element subspaces Hh and Hh, and tol is a fixed tolerance to be
specified on each example. As suggested in Theorem 5.3, for each example shown below we
simply take φ0 := (T0

h,0,u
0
h) = (0,0) as initial guess.

We now introduce some additional notations. The individual errors are denoted by:

e(u) := ‖u− uh‖1,Ω , e(T0) := ‖T0 −Th,0‖div ,Ω , e(p) := ‖p− ph‖0,Ω ,

e(ω) := ‖ω − ωh‖0,Ω , e(∇u) := ‖∇u−Gh‖0,Ω , e(σ̃) := ‖σ̃ − σ̃h‖0,Ω .

where ph, ωh, Gh, and σ̃h are the variables computed by the prostprocess (4.18). Also, we let
r(T0), r(u), r(p), r(ω), r(∇u), and r(σ̃) be the experimental rates of convergence given by

r(T0) :=
log(e(T0)/e′(T0))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
,

r(ω) :=
log(e(ω)/e′(ω))

log(h/h′)
, r(∇u) :=

log(e(∇u)/e′(∇u))

log(h/h′)
, r(σ̃) :=

log(e(σ̃)/e′(σ̃))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′.

Our first example is carried out in order to assess the influence of the parameters κ1, κ2 and
κ3 on the performance of our augmented mixed formulation (4.4). For this example we consider
the domain Ω := (−1, 1)2, the viscosity constant ν = 1, and take f so that the exact solution is
given by

u(x1, x2) =

 π sin(πx1)2 cos(πx2)

−2π cos(πx1) sin(πx1) sin(πx2)

 ,

p(x1, x2) = 5x1 sin(x2) .
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Figure 6.1: Example 1: ph (left) and p (right) with N = 157339

In order to emphasize the robustness of (4.4) with respect to the parameters κ1, κ2 and κ3, as

suggested in Remark 3.2, we choose (κ1, κ2, κ3) = (ν2, ν, ν
2

2 ) and (κ1, κ2, κ3) = (3ν2

4 , 3ν
2 ,

3ν2

8 ),
which, certainly, satisfy the assumptions of Lemma 3.1. In Tables 6.1 and 6.2 we summarize
the convergence history for a sequence of uniform triangulations, considering the finite element
spaces introduced in Section 4.5 with k = 0 and k = 1, and solving the nonlinear problem with
the Newton’s method defined in (5.15). We observe there that the rate of convergence O(hk+1)
predicted by Theorem 4.8 (when s = k+ 1) is attained in all the cases. In addition, the specific
results displayed in Tables 6.1 and 6.2, showing almost no difference between (κ1, κ2, κ3) =

(ν2, ν, ν
2

2 ) and (κ1, κ2, κ3) = (3ν2

4 , 3ν
2 ,

3ν2

8 ) illustrate the robustness of scheme (4.4), with respect
to the choice of these parameters. Next, in Figure 6.1 we display the approximate pressure
(to the left) obtained from the RT0 − P1 approximation with N = 157339 degrees of freedom,
and we compare it with the exact one (to the right). In addition, in Figure 6.2 we display the
magnitude and vector field of the approximate velocity (to the left) and we compare it with
the exact velocity (to the right). In both cases we observe that the finite element subspaces
employed provide very accurate approximations to the unknowns.

Our second example focusses on the performance of the iterative methods as a function of
the viscosity ν, considering the analytical solution (u, p) obtained by Kovasznay in [31]. For the
domain Ω := (−1/2, 3/2)× (0, 2) and for a given ν, this solution is given by

u(x1, x2) =

 1− eλx1 cos(2πx2)

λ
2πe

λx1 sin(2πx2)

 ,

p(x1, x2) = −1

2
e2λx1 + p̄,
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Errors and rates of convergence for the mixed RT0 − P1 approximation

N h e(T0) r(T0) e(u) r(u) e(p) r(p)

691 0.4129 90.2251 – 14.0226 – 4.8682 –
2595 0.1901 47.6284 0.8235 7.0122 0.8933 2.7057 0.7571
9955 0.0968 23.9312 1.0192 3.6224 0.9781 1.4606 0.9130
39195 0.0527 12.0739 1.1269 1.8405 1.1154 0.7152 1.1762
157339 0.0307 5.9814 1.2960 0.9051 1.3095 0.3541 1.2970

N h e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃) Iterations

691 0.4129 6.2193 – 14.069 – 23.0156 – 5
2595 0.1901 2.6606 1.0944 6.6236 0.9710 11.5540 0.8883 4
9955 0.0968 1.2866 0.9580 3.2792 1.0411 5.8339 1.0120 4
39195 0.0527 0.5917 1.2796 1.5895 1.1929 2.8858 1.1595 4
157339 0.0307 0.2887 1.3238 0.7799 1.3138 1.4201 1.3083 4

Errors and rates of convergence for the mixed RT1 − P2 approximation

N h e(T0) r(T0) e(u) r(u) e(p) r(p)

2315 0.4129 23.6263 – 3.3517 – 1.9654 –
8883 0.1901 5.7915 1.8122 0.8857 1.7154 0.5413 1.6619
34451 0.0968 1.5250 1.9760 0.2188 2.0702 0.1455 1.9456
136407 0.0527 0.3865 2.2611 0.0566 2.2270 0.0397 2.1386
549143 0.0307 0.0939 2.6103 0.0139 2.5957 0.0098 2.5783

N h e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃) Iterations

231 0.4129 3.3323 – 7.0599 – 10.8747 – 4
8883 0.1901 0.9016 1.6849 1.9217 1.6772 2.9757 1.6704 4
34451 0.0968 0.2165 2.1123 0.4934 2.0135 0.8006 1.9442 4
136407 0.0527 0.0551 2.2520 0.1270 2.2330 0.2087 2.2144 4
549143 0.0307 0.0133 2.6231 0.0300 2.6060 0.0512 2.5946 4

Table 6.1: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence and number
of iterations for the mixed RT0−P1 and RT1−P2 approximations of the Navier-Stokes problem
with (κ1, κ2, κ3) = (ν2, ν, ν

2

2 ).
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Errors and rates of convergence for the mixed RT0 − P1 approximation

N h e(T0) r(T0) e(u) r(u) e(p) r(p)

691 0.4129 90.2374 – 13.9627 – 4.7906 –
2595 0.1901 47.6335 0.8235 7.0124 0.8877 2.7074 0.7356
9955 0.0968 23.9321 1.0193 3.6227 0.9781 1.4593 0.9152
39195 0.0527 12.0741 1.1270 1.8405 1.1155 0.7155 1.1741
157339 0.0307 5.9814 1.2960 0.9051 1.3095 0.3541 1.2978

N h e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃) Iterations

691 0.4129 6.2267 – 13.9904 – 22.7738 – 4
2595 0.1901 2.6626 1.0950 6.5992 0.9685 11.4952 0.8812 4
9955 0.0968 1.2869 1.0768 3.2748 1.0377 5.8230 1.0072 4
39195 0.0527 0.5917 1.2797 1.5890 1.1912 2.8848 1.1570 4
157339 0.0307 0.2887 1.3239 0.7798 1.3134 1.4199 1.3079 4

Errors and rates of convergence for the mixed RT1 − P2 approximation

N h e(T0) r(T0) e(u) r(u) e(p) r(p)

2315 0.4129 23.6269 – 3.3457 – 1.9558 –
8883 0.1901 5.7915 1.8122 0.8853 1.7137 0.5402 1.6584
34451 0.0968 1.5250 1.9760 0.2188 2.0697 0.1454 1.9435
136407 0.0527 0.3865 2.2611 0.0566 2.2269 0.0397 2.1377
549143 0.0307 0.0939 2.6103 0.0139 2.5957 0.0098 2.5780

N h e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃) Iterations

231 0.4129 3.3322 – 7.0533 – 10.8542 – 4
8883 0.1901 0.9016 1.6849 1.9210 1.6765 2.9733 1.6690 4
34451 0.0968 0.2165 2.1124 0.4933 2.0132 0.8003 1.9435 4
136407 0.0527 0.0551 2.2540 0.1272 2.2327 0.2087 2.2140 4
549143 0.0307 0.0133 2.6231 0.0310 2.6060 0.0512 2.5945 4

Table 6.2: Example 1: Degrees of freedom, meshsizes, errors, rates of convergence and number
of iterations for the mixed RT0−P1 and RT1−P2 approximations of the Navier-Stokes problem
with (κ1, κ2, κ3) = (3ν2

4 , 3ν
2 ,

3ν2

8 ).
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Figure 6.2: Example 1: velocitiy magnitudes |uh| (left) and |u| (right) and velocity vector fields
with N = 157339

where

λ :=
−8π2

ν−1 +
√
ν−2 + 16π2

,

and the constant p̄ is such that
∫

Ω p = 0. Since, in this case the solution is inhomogeneous on
the boundary, we need to modify the functional F as follows

F(ψ) := −κ1(f ,div S)Ω + 〈Sn,g〉Γ + ν(f ,v)Ω + κ3(g,v)Γ ∀ψ = (S,v) ∈ X,

where 〈·, ·〉Γ denotes the duality pairing between H−1/2(Γ) and H1/2(Γ), and g := u|Γ ∈ H1/2(Γ).
In Table 6.3 we show the behaviour of the iterative methods (5.1) and (5.15) as a function

of the viscosity number, considering different meshsizes and a tolerance tol = 1E−10. The
parameters κ1, κ2, κ3 are simply chosen as (κ1, κ2, κ3) = (1, ν, 1) and we consider the finite
element spaces introduced in Section 4.5 with k = 0. Here we observe that the smaller the
parameter ν the higher the number of iterations. In addition we see that, as expected, the
Newton’s method is faster than the fixed-point iteration. Numerical experiments for smaller
values of ν are not reported since both iterative methods need too many iterations to converge
(more than 300). Next, the numerical results in Table 6.4 show the convergence history of
the Newton’s method (5.15) considering the viscosity ν = 0.1. We see there that the rate of
convergence O(h) provided by Theorem 4.8 and Corollary 4.9 for s = 1 is attained by the
unknowns and all the post-processed variables.

Finally, in our third example we assess the capability of a 3D implementation of our aug-
mented scheme. Here, we consider the domain Ω := (0, 1)3, the viscosity constant ν = 1, the
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Number of iterations for the fixed-point method

ν h = 0.3801 h = 0.1901 h = 0.0982 h = 0.0530 h = 0.0266

1 15 15 13 11 10
0.1 38 30 22 20 19

0.059 59 59 24 21 20

Number of iterations for the Newton’s method

ν h = 0.3801 h = 0.1901 h = 0.0982 h = 0.0530 h = 0.0266

1 5 5 5 4 4
0.1 7 6 6 5 5

0.059 12 7 6 6 6

Table 6.3: Example 2: Convergence behavior of the iterative methods with respect to the
parameter ν.

N h e(T0) r(T0) e(u) r(u) e(p) r(p)

683 0.3801 5.1122 – 12.9236 – 2.6472 –
2539 0.1901 3.0577 0.7415 6.7165 0.9442 1.2811 1.0471
9923 0.0982 1.3439 1.2448 2.8092 1.3198 0.5635 1.2435
39107 0.0530 0.5933 1.3248 1.1747 1.4129 0.2387 1.3919
157051 0.0266 0.2908 1.0342 0.5554 1.0862 0.1159 1.0476

N h e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃)

683 0.3801 21.9471 – 43.6479 – 8.9770 –
2539 0.1901 13.7239 0.6773 20.2037 1.1113 3.9804 1.1733
9923 0.0982 7.2897 0.9580 10.1070 1.0488 1.9127 1.1097
39107 0.0530 3.4478 1.2133 4.7831 1.2123 0.8896 1.2405
157051 0.0266 1.7457 0.9868 2.3881 1.0071 0.4405 1.0191

Table 6.4: Example 2: Degrees of freedom, meshsizes, errors, and rates of convergence for
the mixed RT0 − P1 approximation of the Navier-Stokes problem with ν = 0.1, utilizing the
Newton’s method.
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N h e(T0) r(T0) e(u) r(u) e(p) r(p)

442 0.7071 0.2621 – 0.0605 – 0.1578 –
2968 0.3536 0.1400 0.9043 0.0286 1.0824 0.0794 0.9910
21772 0.1768 0.0666 1.0730 0.0114 1.3210 0.0346 1.1991
166804 0.0884 0.0313 1.0901 0.0045 1.3403 0.0151 1.2001
1305892 0.0442 0.0151 1.0479 0.0019 1.2158 0.0070 1.1092

N h e(ω) r(ω) e(∇u) r(∇u) e(σ̃) r(σ̃) Iterations

442 0.7071 0.0708 – 0.1259 – 0.3436 – 3
2968 0.3536 0.0413 0.7766 0.0795 0.6628 0.1933 0.8298 3
21772 0.1768 0.0225 0.8745 0.0449 0.8254 0.0980 0.9798 3
166804 0.0884 0.0117 0.9431 0.0236 0.9254 0.0486 1.0121 3
1305892 0.0442 0.0060 0.9748 0.0121 0.9697 0.0242 1.0059 3

Table 6.5: Example 3: Degrees of freedom, meshsizes, errors, rates of convergence and number
of iterations for the mixed RT0−P1 approximation of the 3D Navier-Stokes problem solved with
the Newton’s method.

parameters κ1 = ν2, κ2 = ν κ3 = ν2/2, and take f so that the exact solution is given by

u(x1, x2, x3) :=

 4x2
1x2x3(x3 − 1)(x2 − 1)(x2 − x3)(x1 − 1)2

−4x1x
2
2x3(x2 − 1)2(x3 − 1)(x1 − 1)(x1 − x3)

4x1x2x
2
3(x3 − 1)2(x2 − 1)(x1 − 1)(x1 − x2)

 ,

p(x1, x2, x3) := x1 − 1
2 .

For this example we solve the nonlinear problem with the Newton’s method defined in (5.15)
with a tolerance tol = 1E − 10 and consider the finite element spaces introduced in Section
4.5 with k = 0. In Table 6.5 we summarize the convergence history for a sequence of uniform
triangulations. We observe there that the rate of convergence O(h) predicted by Theorem 4.8
and Corollary 4.9 (when s = 1) is attained in all the cases. Next, in Figure 6.3 we display
the magnitude and vector field of the approximate velocity (top left and bottom left), and
we compare them with their exact counterpart (top right and bottom right). Here, for the
magnitude of the velocity we display the section of the cube below the plane x1 +x2 +x3 = 1.5.
In addition, in Figure 6.4 we display the second component of the approximate vorticity ω1,h

(top left) and the iso-surface of the approximate pressure, and we compare them with their
exact counterpart (top right and bottom right). Again, for the vorticity we display the section
of the cube below the plane x1 + x2 + x3 = 1.5. All the graphics above were computed with
N = 1305892 degrees of freedom. We observe there that the finite element subspaces employed
provide very accurate approximations to the unknowns.

Acknowledgments. The authors are grateful to Prof. Gabriel N. Gatica and Eligio Col-
menares (CI2MA, Universidad de Concepción) for their helpful comments that helped us to
improve the paper.
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Figure 6.3: Example 3: velocity magnitudes |uh| (top left) and |u| (top right), and velocity
vector fields (approximate field to the left and exact field to the right) with N = 1305892.
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Figure 6.4: Example 3: second components of the vorticity ω2,h (top left) and ω2 (top right),
and iso-surface of the pressures ph (bottom left) and p (bottom right) with N = 1305892
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en Ingenieŕıa Matemática (CI2MA), UDEC, (2014).

[2] D.N. Arnold, J. Douglas and Ch.P. Gupta, A family of higher order mixed finite
element methods for plane elasticity. Numerische Mathematik, vol. 45, pp. 1–22, (1984).

[3] L. Badea, M. Discacciati and A. Quarteroni, Numerical analysis of the Navier–
Stokes/Darcy coupling. Numerische Mathematik, vol. 115, no. 2, pp. 195–227 (2010).

[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in
Computational Mathematics, 15. Springer-Verlag, New York, 1991.

[5] Z. Cai, Ch. Tong, P.S. Vassilevski and Ch. Wang, Mixed finite element methods for
incompressible flow: stationary Stokes equations. Numerical Methods Partial Differential
Equations, vol. 26, pp. 957–978, (2009).

[6] Z. Cai and Y. Wang, Pseudostress-velocity formulation for incompressible Navier-Stokes
equations. International Journal for Numerical Methods in Fluids, 63, no. 3, 341–356,
(2010).

[7] Z. Cai, Ch. Wang and S. Zhang, Mixed finite element methods for incompressible flow:
stationary Navier-Stokes equations SIAM Journal on Numerical Analysis, vol 48, no. 1,
79–94, (2010).

[8] Z. Cai and S. Zhang, Mixed methods for stationary Navier-Stokes equations based on
pseudostress-pressure-velocity formulation. Mathematics of Computation, vol. 81 , no. 280,
1903–1927, (2012).

[9] P.G. Ciarlet, The finite Element Method for Elliptic Problems. North-Holland, Amster-
dam, New York, Oxford, (1978).

[10] T. Davis, Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method.
ACM Transactions on Mathematical Software, vol. 30, pp. 196–199, (2004).

[11] V.J. Ervin, J.S. Howell and I. Stanculescu, A dual-mixed approximation method for
a three-eld model of a nonlinear generalized Stokes problem. Computer Methods in Applied
Mechanics and Engineering, vol. 197, 33–40, pp. 2886-2900, (2008).

[12] M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite-element method for
the stationary Navier-Stokes equations with mixed boundary conditions. IMA Journal of
Numerical Analysis, vol. 28, no. 1, 25–45, (2008).

[13] M. Farhloul, S. Nicaise and L. Paquet, A priori and a posteriori error estimations
for the dual mixed finite element method of the Navier-Stokes problem. Numerical Methods
for Partial Differential Equations, vol. 25, no. 4, 843–869, (2009).

[14] L. Figueroa, G.N. Gatica and A. Márquez, Augmented mixed finite element methods
for the stationary Stokes Equations. SIAM Journal on Scientific Computing, vol. 31, 2, pp.
1082–1119, (2008).

28



[15] V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes
Equations. Lecture Notes in Mathematics, 749. Springer-Verlag, Berlin-New York, (1979).

[16] G.N. Gatica, Analysis of a new augmented mixed finite element method for linear elastic-
ity allowing RT0–P1–P0 approximations. ESAIM: Mathematical Modelling and Numerical
Analysis, vol. 40, 1, pp. 1–28, (2006).

[17] G.N. Gatica, An augmented mixed finite element method for linear elasticity with non-
homogeneous Dirichlet conditions. Electronic Transactions on Numerical Analysis. vol. 26,
pp. 421–438, (2007).

[18] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Ap-
plications. Springer Briefs in Mathematics, Springer, Cham Heidelberg New York Dordrecht
London, (2014).
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