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LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE

FORMS SATISFYING AN IMPROVED EQUALITY

INVOLVING δ(2, 2)

BANG-YEN CHEN, ALICA PRIETO-MARÍN, AND XIANFENG WANG

Abstract. It was proved in [8, 9] that every Lagrangian submanifold

M of a complex space form M̃5(4c) of constant holomorphic sectional

curvature 4c satisfies the following optimal inequality:

δ(2, 2) ≤
25

4
H

2 + 8c, (A)

where H2 is the squared mean curvature and δ(2, 2) is a δ-invariant on

M introduced by the first author. This optimal inequality improves a

special case of an earlier inequality obtained in [B.-Y. Chen, Japan. J.

Math. 26 (2000), 105–127].

The main purpose of this paper is to classify Lagrangian submanifolds

of M̃5(4c) satisfying the equality case of the improved inequality (A).

1. Introduction

Let M̃n be a Kähler n-manifold with the complex structure J , a Kähler

metric g and the Kähler 2-form ω. An isometric immersion ψ :M → M̃n of

a Riemannian n-manifold M into M̃n is called Lagrangian if ψ∗ω = 0.

Let M̃n(4c) denote a Kähler n-manifold with constant holomorphic sec-

tional curvature 4c, called a complex space form. A complete simply-connected

complex space form M̃n(4c) is holomorphically isometric to the complex Eu-

clidean n-plane Cn, the complex projective n-space CPn(4c), or a complex

hyperbolic n-space CHn(4c) according to c = 0, c > 0 or c < 0, respectively.

B.-Y. Chen introduced in 1990s new Riemannian invariants δ(n1, . . . , nk).

For any n-dimensional submanifoldM in a real space form Rm(c) of constant
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curvature c, he proved the following sharp general inequality (see [5, 7] for

details):

δ(n1, . . . , nk) ≤
n2(n+ k − 1−∑nj)

2(n+ k −∑nj)
H2

+
1

2

(

n(n− 1)−
k
∑

j=1

nj(nj − 1)
)

c.

(1.1)

For Lagrangian submanifolds in a complex space form M̃n(4c), we have

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a

complex space form M̃n(4c) of constant holomorphic sectional curvature 4c.

Then inequality (1.1) holds for each k-tuple (n1, . . . , nk) ∈ S(n).
The following result from [6] extends a result in [10] on δ(2).

Theorem B. Every Lagrangian submanifold of a complex space form

M̃n(4c) is minimal if it satisfies the equality case of (1.1) identically.

Theorem B was improved recently in [8, 9] to the following inequality.

Theorem C. Let M be an n-dimensional Lagrangian submanifold of

M̃n(4c). Then, for an (n1, . . . , nk) ∈ S(n) with
∑k

i=1 ni < n, we have

δ(n1, . . . , nk) ≤
n2
{(

n−∑k

i=1ni + 3k − 1
)

− 6
∑k

i=1(2 + ni)
−1
}

2
{(

n−
∑k

i=1ni + 3k + 2
)

− 6
∑k

i=1(2 + ni)−1
} H2

+
1

2

{

n(n− 1)−
∑k

i=1
ni(ni − 1)

}

c.

(1.2)

The equality sign holds at a point p ∈ M if and only if there is an or-

thonormal basis {e1, . . . , en} at p such that the second fundamental form h

satisfies

h(eαi
, eβi

) =
∑

γi
hγiαiβi

Jeγi +
3δαiβi

2 + ni
λJeN+1,

∑ni

αi=1
hγiαiαi

= 0,

h(eαi
, eαj

) = 0, i 6= j; h(eαi
, eN+1) =

3λ

2 + ni
Jeαi

, h(eαi
, eu) = 0,

h(eN+1, eN+1) = 3λJeN+1, h(eN+1, eu) = λJeu, N = n1 + · · ·+ nk,

h(eu, ev) = λδuvJeN+1, i, j = 1, . . . , k; u, v = N + 2, . . . , n.

(1.3)

For simplicity, we call a Lagrangian submanifold of a complex space

form δ(n1, . . . , nk)-ideal (resp., improved δ(n1, . . . , nk)-ideal) if it satisfies

the equality case of (1.1) (resp., the equality case of (1.2)) identically.

For k = 2 and n1 = n2 = 2, Theorem C reduces to the following.
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Theorem D. Let M be a Lagrangian submanifold in a complex space

form M̃5(4c) of constant holomorphic sectional curvature 4c. Then we have

δ(2, 2) ≤ 25

4
H2 + 8c. (1.4)

If the equality sign of (1.4) holds identically, then with respect some suit-

able orthonormal frame {e1, . . . , e5} the second fundamental form h satisfies

h(e1, e1) = αJe1 + βJe2 + µJe5, h(e1, e2) = βJe1 − αJe2,

h(e2, e2) = −αJe1 − βJe2 + µJe5,

h(e3, e3) = γJe3 + δJe4 + µJe5, h(e3, e4) = δJe3 − γJe4,

h(e4, e4) = −γJe3 − δJe4 + µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆; h(ei, ej) = 0, otherwise,

(1.5)

for some functions α, β, γ, δ, µ, where ∆ = {1, 2, 3, 4}.
The classification of δ(2, 2)-ideal Lagrangian submanifolds in complex

space forms M̃5(4c) is done in [13]. In this paper we classify improved

δ(2, 2)-ideal Lagrangian submanifolds in M̃5(4c). The main results of this

paper are stated as Theorem 6.1, Theorem 7.1 and Theorem 8.1.

2. Preliminaries

2.1. Basic formulas. Let M̃n(4c) denote a complete simply-connected Kähler

n-manifold with constant holomorphic sectional curvature 4c. Then M̃n(4c)

is holomorphically isometric to the complex Euclidean n-plane Cn, the com-

plex projective n-space CPn(4c), or a complex hyperbolic n-space CHn(−4c)

according to c = 0, c > 0 or c < 0.

Let M be a Lagrangian submanifold of M̃n(4c). We denote the Levi-

Civita connections ofM and M̃n(4c) by∇ and ∇̃, respectively. The formulas

of Gauss and Weingarten are given respectively by (cf. [7])

∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +DXξ, (2.1)

for tangent vector fields X and Y and normal vector fields ξ, where h is

the second fundamental form, A is the shape operator and D is the normal

connection.

The second fundamental form and the shape operator are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 .
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The mean curvature vector
−→
H of M is defined by

−→
H = 1

n trace h and the

squared mean curvature is given by H2 = 〈−→H,−→H 〉 .
For Lagrangian submanifolds, we have (cf. [7, 12])

DXJY = J∇XY, (2.2)

AJXY = −Jh(X,Y ) = AJYX. (2.3)

Formula (2.3) implies that 〈h(X,Y ), JZ〉 is totally symmetric.

The equations of Gauss and Codazzi are given respectively by

〈R(X,Y )Z,W 〉 =
〈

Ah(Y,Z)X,W
〉

−
〈

Ah(X,Z)Y,W
〉

(2.4)

+ c(〈X,W 〉 〈Y,Z〉 − 〈X,Z〉 〈Y,W 〉),
(∇Xh)(Y,Z) = (∇Y h)(X,Z), (2.5)

where R is the curvature tensor of M and ∇h is defined by

(∇Xh)(Y,Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ). (2.6)

For an orthonormal basis {e1, . . . , en} of TpM , we put

hijk = 〈h(ej , ek), Jei〉 , i, j, k = 1, . . . , n.

It follows from (2.3) that hijk = hjik = hkij.

2.2. δ-invariants. Let M be a Riemannian n-manifold. Denote by K(π)

the sectional curvature of a plane section π ⊂ TpM , p ∈ M . For any

orthonormal basis e1, . . . , en of TpM , the scalar curvature τ at p is τ(p) =
∑

i<jK(ei ∧ ej).
Let L be a r-subspace of TpM with r ≥ 2 and {e1, . . . , er} an orthonormal

basis of L. The scalar curvature τ(L) of L is defined by

τ(L) =
∑

α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (2.7)

For given integers n ≥ 3, k ≥ 1, we denote by S(n, k) the finite set

consisting of k-tuples (n1, . . . , nk) of integers satisfying 2 ≤ n1, · · · , nk < n

and
∑k

j=1 i ≤ n.

Put S(n) = ∪k≥1S(n, k). For each k-tuple (n1, . . . , nk) ∈ S(n), the first

author introduced in 1990s the Riemannian invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, p ∈M, (2.8)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such

that dimLj = nj, j = 1, . . . , k (cf. [7] for details).
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2.3. Horizontal lift of Lagrangian submanifolds. The following link

between Legendrian submanifolds and Lagrangian submanifolds is due to

[16] (see also [7, pp. 247–248]).

Case (i): CPn(4). Consider Hopf’s fibration π : S2n+1 → CPn(4). For a

given point u ∈ S2n+1(1), the horizontal space at u is the orthogonal com-

plement of ıu, ı =
√
−1, with respect to the metric on S2n+1 induced from

the metric on Cn+1. Let ι : N → CPn(4) be a Lagrangian isometric immer-

sion. Then there is a covering map τ : N̂ → N and a horizontal immersion

ι̂ : N̂ → S2n+1 such that ι◦τ = π◦ι̂. Thus each Lagrangian immersion can be

lifted locally (or globally if N is simply-connected) to a Legendrian immer-

sion of the same Riemannian manifold. In particular, a minimal Lagrangian

submanifold of CPn(4) is lifted to a minimal Legendrian submanifold of the

Sasakian S2n+1(1).

Conversely, suppose that f : N̂ → S2n+1 is a Legendrian isometric im-

mersion. Then ι = π ◦ f : N → CPn(4) is again a Lagrangian isometric

immersion. Under this correspondence the second fundamental forms hf

and hι of f and ι satisfy π∗h
f = hι. Moreover, hf is horizontal with respect

to π.

Case (ii): CHn(−4). We consider the complex number space Cn+1
1 equipped

with the pseudo-Euclidean metric: g0 = −dz1dz̄1 +
∑n+1

j=2 dzjdz̄j .

Consider H2n+1
1 (−1) = {z ∈ C2n+1

1 : 〈z, z〉 = −1} with the canonical

Sasakian structure, where 〈 , 〉 is the induced inner product.

Put T ′
z = {u ∈ Cn+1 : 〈u, z〉 = 0}, H1

1 = {λ ∈ C : λλ̄ = 1}. Then there

is an H1
1 -action on H2n+1

1 (−1), z 7→ λz and at each point z ∈ H2n+1
1 (−1),

the vector ξ = −ız is tangent to the flow of the action. Since the metric

g0 is Hermitian, we have 〈ξ, ξ〉 = −1. The quotient space H2n+1
1 (−1)/ ∼,

under the identification induced from the action, is the complex hyperbolic

space CHn(−4) with constant holomorphic sectional curvature −4 whose

complex structure J is induced from the complex structure J on Cn+1
1 via

Hopf’s fibration π : H2n+1
1 (−1) → CHn(4c).

Just like case (i), suppose that ι : N → CHn(−4) is a Lagrangian immer-

sion, then there is an isometric covering map τ : N̂ → N and a Legendrian

immersion f : N̂ → H2n+1
1 (−1) such that ι ◦ τ = π ◦ f . Thus every La-

grangian immersion into CHn(−4) an be lifted locally (or globally if N is
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simply-connected) to a Legendrian immersion into H2n+1
1 (−1). In particu-

lar, Lagrangian minimal submanifolds of CHn(−4) are lifted to Legendrian

minimal submanifolds of H2n+1
1 (−1). Conversely, if f : N̂ → H2n+1

1 (−1) is

a Legendrian immersion, then ι = π ◦ f : N → CHn(−4) is a Lagrangian

immersion. Under this correspondence the second fundamental forms hf

and hι are related by π∗h
f = hι. Also, hf is horizontal with respect to π.

Let h be the second fundamental form ofM in S2n+1(1) (or inH2n+1
1 (−1)).

Since S2n+1(1) and H2n+1
1 (−1) are totally umbilical with one as its mean

curvature in Cn+1 and in Cn+1
1 , respectively, we have

∇̂XY = ∇XY + h(X,Y )− εL, (2.9)

where ε = 1 if the ambient space is Cn+1; and ε = −1 if it is Cn+1
1 .

3. H-umbilical Lagrangian submanifolds and complex extensors

3.1. H-umbilical Lagrangian submanifolds.

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kähler

n-manifold is called H-umbilical if its second fundamental form satisfies

h(ej , ej) = µJen, h(ej , en) = µJej, j = 1, . . . , n− 1,

h(en, en) = ϕJen, h(ej , ek) = 0, 1 ≤ j 6= k ≤ n− 1,
(3.1)

for some functions µ,ϕ with respect to an orthonormal frame {e1, . . . , en}.
If the ratio of ϕ : µ is a constant r, the H-umbilical submanifold is said to

be of ratio r.

If G : Nn−1 → E
n is a hypersurface of a Euclidean n-space E

n and

γ : I → C∗ is a unit speed curve in C∗ = C − {0}, then we may extend

G : Nn−1 → E
n to an immersion I ×Nn−1 → Cn by γ ⊗G : I ×Nn−1 →

C⊗E
n = Cn, where (γ ⊗G)(s, p) = F (s)⊗G(p) for s ∈ I, p ∈ Nn−1. This

extension of G via tensor product ⊗ is called the complex extensor of G via

the generating curve γ.

H-umbilical Lagrangian submanifolds in complex space forms were clas-

sified in a series of papers by the first author (cf. [2, 3, 4]). In particular,

the following two results were proved in [2].

Theorem E. Let ι : Sn−1 ⊂ E
n be the unit hypersphere in E

n cen-

tered at the origin. Then every complex extensor of ι via a unit speed curve
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γ : I → C∗ is an H-umbilical Lagrangian submanifold of Cn unless γ is con-

tained in a line through the origin (which gives a totally geodesic Lagrangian

submanifold).

Theorem F. Let M be an H-umbilical Lagrangian submanifold of Cn

with n ≥ 3. Then M is either a flat space or congruent to an open part of

a complex extensor of ι : Sn−1 ⊂ E
n via a curve γ : I → C∗.

3.2. Legendre curves. A unit speed curve z : I → S3(1) ⊂ C2 (resp.,

z : I → H3
1 (−1) ⊂ C2

1) is called Legendre if 〈z′, iz〉 = 0. It was proved in

[3] that a unit speed curve z in S3(1) (resp., in H3
1 (−1)) is Legendre if and

only if it satisfies

z′′ = iλz′ − z (resp., z′′ = iλz′ + z) (3.2)

for a real-valued function λ. It is known in [3] that λ is the curvature

function of z in S3(1) (resp., in H3
1 (−1)) (see also [1, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio. We provide a

general method to construct H-umbilical Lagrangian submanifolds with any

given ratio in CPn(4) via curves in S2(12) (resp., in CH
n(−4) via curves in

H2(−1
2)).

Proposition 3.2. For any real number r there exist H-umbilical Lagrangian

submanifolds of ratio r in CPn(4) and in CHn(−4).

Proof. If r = 2 this was done in [3, Theorems 5.1 and 6.1]. If r 6= 2, H-

umbilical Lagrangian submanifolds of ratio r can be constructed as follows:

Case (a): CPn(4). Let S2(12 ) = {x ∈ E
3; 〈x,x〉 = 1

4}. The Hopf fibration

π from S3(1) onto S2(12) ≡ CP 1(4) is given by (cf. [1])

π(z1, z2) =
(

z1z̄2,
1
2(|z1|

2 − |z2|2)
)

, (z1, z2) ∈ S3(1) ⊂ C2. (3.3)

For a Legendre curve z in S3(1), the projection γz = π◦z is a curve in S2(12 ).

Conversely, each curve γ in S2(12) gives rise to a horizontal lift γ̃ in S3(1)

via π which is unique up to a factor eiθ, θ ∈ R. Notice that each horizontal

lift of γ is a Legendre curve in S3(1). Moreover, since the Hopf fibration

is a Riemannian submersion, each unit speed Legendre curve z in S3(1) is

projected to a unit speed curve γz in S2(12 ) with the same curvature.
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It was known in [3, Lemma 7.2] that, for a given H-umbilical Lagrangian

submanifold of ratio r 6= 2 in M̃n(4c), the function µ in (3.1) satisfies

µµ′′ −
(

r − 3

r − 2

)

µ′2 + (r − 2)µ2((r − 1)µ2 + c) = 0. (3.4)

If µ is a non-trivial solution of (3.4) with c = 1, then there is a unit speed

curve γ in S2(12 ) whose curvature equals to rµ. Let z be a horizontal lift

of γ in S3(1). Then z is a unit speed Legendre curve satisfying z′′(x) =

irµz′(x)− z(x) (cf. [3, Theorem 4.1] or [1, Lemma 3.1]).

Consider the map ψ :M5 → S11(1) ⊂ C6 defined by

ψ(x, y1, . . . , y5) = (z1(x), z2(x)y1, . . . , . . . , z2(x)y5),

5
∑

j=1

y2j = 1. (3.5)

It follows from [3, Theorem 4.1 and Lemma 7.2] that π ◦ψ is a H-umbilical

Lagrangian submanifold of ratio r in CPn(4) such that

h(ej , ej) = µJe5, h(ej , en) = µJej ,

h(en, en) = rµJen, h(ej , ek) = 0, 1 ≤ j 6= k ≤ n− 1,
(3.6)

with respect to suitable orthonormal frame {e1, . . . , e5}.
Case (b): CHn(−4). For a non-trivial solution of (3.4) with c = −1, we

can construct an H-umbilical Lagrangian submanifold of CHn(−4) via the

Hopf fibration π : H3
1 (−1) → CH1(−4) ≡ H2(−1

2) in a similar way as case

(a), where

π(z1, z2) =
(

z1z̄2,
1
2(|z1|

2 + |z2|2)
)

, (z1, z2) ∈ H3
1 (−1) ⊂ C2

1, (3.7)

and H2(−1
2) = {(x1, x2, x3) ∈ E

3
1 : x21 − x22 − x23 = 1

4 , x1 ≥ 1
2} is the model

of the real projective plane of curvature −4. �

3.4. Classification of H-umbilical submanifolds of ratio 4. The equa-

tion of Gauss and (3.1) imply that H-umbilical Lagrangian submanifolds of

ratio r 6= 4 in complex space forms contain no open subsets of constant

sectional curvature. Hence we conclude from [3, Theorems 4.1 and 7.1] and

§3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in

CP 5(4) is congruent to an open portion of π◦ψ, where π : S11(1) → CP 5(4)

is Hopf’s fibration, ψ :M → S11(1) ⊂ C6 is given by

ψ(t, y1, . . . , y5) = (z1(t), z2(t)y), {y ∈ E
5 : 〈y,y〉 = 1}, (3.8)



LAGRANGIAN SUBMANIFOLDS 9

and z = (z1, z2) : I → S3(1) ⊂ C2 is a unit speed Legendre curve satisfying

z′′ = 4iµz′−z, and µ is a nonzero solution of 2µµ′′−µ′2+4µ2(3µ2+1) = 0.

Let M be an H-umbilical Lagrangian submanifold in CH5(−4) satisfying

(3.1). We may assume that µ is defined on an open interval I ∋ 0. Since

H-umbilical submanifolds of ratio 4 in CH5(−4) contain no open subsets of

constant curvature, Theorems 4.2 and 9.1 of [3] and results in §3.3 imply the

following classification of H-umbilical submanifolds of ratio 4 in CH5(−4).

Lemma 3.4. An H-umbilical Lagrangian submanifold M of ratio 4 in

CH5(−4) is congruent to an open part of π ◦ ψ, where π : H11
1 (−1) →

CH5(−4) is Hopf’s fibration and ψ :M → H11
1 (−1) ⊂ C6

1 is either one of

ψ(t, y1, . . . , y4) = (z1(t), z2(t)y), {y ∈ E
5 : 〈y,y〉 = 1}, (3.9)

ψ(t, y1, . . . , y4) = (z1(t)y, z2(t)), {y ∈ E
5
1 : 〈y,y〉 = −1}, (3.10)

where z is a unit speed Legendre curve in H3
1 (−1) satisfying z′′ = 4iµz′ + z

and µ is a non-trivial solution of 2µµ′′ − µ′2 + 4µ2(3µ2 − 1) = 0; or ψ is

ψ(t, u1, . . . , u4) =
√
µei

∫ t

0
µ(t)dt

(

1 +
1

2

4
∑

j=1

u2j − it+
1

2µ
− 1

2µ(0)
,

(

iµ(0)− µ′(0)

2µ(0)

)

(

1

2

4
∑

j=1

u2j − it+
1

2µ
− 1

2µ(0)

)

, u1, . . . , u4

)

,

(3.11)

where z = (z1, z2) : I → H3
1 (−1) ⊂ C2

1 is a unit speed Legendre curve and µ

is a non-trivial solution of µ′2 = 4µ2(1− µ2).

Example. It is easy to verify that µ = sech 2t is a non-trivial solution of

µ′2 = 4µ2(1− µ2). Using µ = sech 2t, (3.11) reduces to

ψ(t, u1, . . . , u4) =
ei tan

−1(tanh t)

√
cosh 2t

(

1

2
− it+

1

2

4
∑

j=1

u2j +
cosh 2t

2
,

t− i

2
+

i

2

4
∑

j=1

u2j +
i cosh 2t

2
, u1, . . . , u4

)

.

(3.12)

It is direct to verify that (3.12) satisfies 〈ψ,ψ〉 = −1 and the composition

π ◦ ψ gives rise to an H-umbilical Lagrangian submanifold of ratio 4 in

CH5(−4).
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4. Some Lemmas

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold of

M̃5(4c). Then with respect to some orthonormal frame {e1, . . . , e5} we have

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,
h(e2, e2) = −aJe1 + µJe5, h(e3, e3) = bJe3 + µJe5,

h(e3, e4) = −bJe4, h(e4, e4) = −bJe3 + µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(e5, e5) = 4µJe5,

h(ei, ej) = 0, otherwise.

(4.1)

Proof. Under the hypothesis, we have (1.5) with respect to an orthonormal

frame {e1, . . . , e5}. Thus, after applying [6, Lemma 1] to V = Span {e1, e2}
and V = Span {e3, e4}, we obtain (4.1). �

Let us put

∇Xei =

5
∑

j=1

ωj
i (X)ej , i = 1, . . . , 5, X ∈ TM5. (4.2)

Then ωj
i = −ωi

j, i, j = 1, . . . , 5.

If µ = 0, then M is a minimal Lagrangian submanifold according (4.1).

Such submanifolds in complex space forms M̃5(4c) have been classified in

[13].

If a = b = 0 and µ 6= 0, thenM is anH-umbilical Lagrangian submanifold

with ratio 4. Therefore, from now on we assume that a, µ 6= 0.

Lemma 4.2. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, b, µ 6= 0. Then we have

∇e1e1 =
e2a

3a
e2 − νe5, ∇e1e2 = −e2a

3a
e1, ∇e2e1 = −e1a

3a
e2,

∇e2e2 =
e1a

3a
e1 − νe5, ∇e3e3 =

e4b

3b
e4 − νe5, ∇e3e4 = −e4b

3b
e3,

∇e4e3 = −e3b
3b
e4, ∇e4e4 =

e3b

3b
e3 − νe5, ∇eie5 = νei, i ∈ ∆,

∇ekej = 0, otherwise,

(4.3)
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with ν = 1
2e5(lnµ) = −e5(ln a) = −e5(ln b), where ∆ = {1, 2, 3, 4}. More-

over, we have

ejµ = 0, j ∈ ∆, e1b = e2b = e3a = e4a = 0. (4.4)

Proof. This lemma is obtained from Codazzi’s equations via Lemma 4.1 and

(4.2) and long computations. �

Lemma 4.3. Under the hypothesis of Lemma 4.2, we have

(a) T0 is a totally geodesic distribution, i.e. T0 is integrable whose leaves

are totally geodesic submanifolds;

(b) T0 ⊕ T1 and T0 ⊕ T2 are totally geodesic distributions;

(c) T1 and T2 are spherical distributions, i.e. T1, T2 are integrable distri-

butions whose leaves are totally umbilical submanifolds with parallel

mean curvature vector,

where T0 = Span{e5}, T1 = Span{e1, e2} and T2 = Span{e3, e4}.

Proof. Since the distribution T0 is of rank one, it is integrable. Moreover,

since ∇e5e5 = 0 by Lemma 4.2, the integral curves of e5 are geodesics in M .

Thus we have statement (a). Statement (b) follows easily from (4.3).

To prove statement (c), first we observe that [e1, e2] ∈ T1 and [e3, e4] ∈ T2

follow from (4.3). Thus T1, T2 are integrable. Also, it follows from (4.3) that

the second fundamental form h1 of a leaf L1 of T1 in M is given by

h1(X,Y ) = −νg1(X1, Y1)e5, X1, Y1 ∈ TL1, (4.5)

where g1 is the metric of L1. From (4.3) we obtain ∇eie5 = νei, i = 1, 2.

Thus D1
e1e5 = D1

e2e5 = 0, where D1 is the normal connection of L1 in M .

It follows from Gauss’ equation and Lemma 4.1 that the curvature tensor R

satisfies

〈R(e1, e2)e1, ej〉 = 0, j = 3, 4, 5. (4.6)

Thus (4.6) and Lemma 4.2 imply that 0 ≡ R(e1, e2)e1 ≡ (e2ν)e5 (mod T1).

Hence e2ν = 0. Similarly, by considering R(e2, e1)e2, we also have e1α = 0.

After combining these with D1e5 = 0, we conclude that L1 has parallel mean

curvature vector in M . Hence T1 is a spherical distribution. Similarly, T2 is

also a spherical distribution. Consequently, we obtain statement (c). �

Lemma 4.4. Under the hypothesis of Lemma 4.2, M is locally a warped

product I×ρ1(t)M
2
1×ρ2(t)M

2
2 , where t is function such that e5 = ∂t (i.e., e5 =
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∂
∂t), ρ1 and ρ2 are two positive functions in t and M2

1 ,M
2
2 are Riemannian

2-manifolds.

Proof. This lemma follows from Lemma 4.3 and a result of Hiepko [15] (see

also [7, Theorem 4.4, p. 90]). �

Lemma 3.3 and (4.4) imply that µ depends only on t. Thus µ = µ(t).

Lemma 4.5. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, b, µ 6= 0. Then we have c = −ν2 −
µ2 < 0. Thus µ satisfies µ′(t)2 = −4µ2(t)(c+ µ2(t)).

Proof. Under the hypothesis, it follows from Gauss’ equation and Lemma

4.1 that 〈R(e1, e3)e3, e1〉 = c + µ2. On the other hand, the definition of

curvature tensor and Lemma 4.2 imply that 〈R(e1, e3)e3, e1〉 = −ν2. Thus

c = −ν2−µ2 < 0. By combining this with the definition of ν, we obtain the

lemma. �

5. More lemmas

Next, we consider the case a, µ 6= 0 and b = 0.
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Lemma 5.1. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, µ 6= 0 and b = 0. Then we have

∇e1e1 =
e2a

3a
e2 +

e3a

a
e3 +

e4a

3a
e4 − νe5,

∇e1e2 = −e2a
3a

e1 − 3ω2
1(e3)e3 − 3ω2

1(e4)e4,

∇e1e3 = −e3a
a
e1 + 3ω2

1(e3)e2 + ω4
3(e1)e4,

∇e1e4 = −e4a
a
e1 + 3ω2

1(e4)e2 − ω4
3(e1)e3,

∇e2e1 = −e1a
3a

e2 + 3ω2
1(e3)e3 + ω4

1(e2)e4,

∇e2e2 =
e1a

3a
e1 +

e3a

a
e3 +

e4a

a
e4 − νe5,

∇e2e3 = −3ω2
1(e3)e1 −

e3a

a
e2 + ω4

3(e2)e4,

∇e2e4 = −ω4
1(e2)e1 −

e4a

a
e2 − ω4

3(e2)e3,

∇e3e1 = ω2
1(e3)e2, ∇e3e2 = −ω2

1(e3)e1,

∇e3e3 = ω4
3(e3)e4 − νe5, ∇e3e4 = −ω4

3(e3)e3,

∇e4e1 = ω2
1(e4)e2, ∇e4e2 = −ω2

1(e4)e1,

∇e4e3 = ω4
3(e4)e4, ∇e4e4 = −ω4

3(e4)e3 − νe5,

∇e5e3 = ω4
3(e5)e4, ∇e5e4 = −ω4

3(e5)e5,

∇eie5 = νei, i ∈ ∆, ∇ekej = 0, otherwise.

(5.1)

with ν = 1
2e5(lnµ) = −e5(ln a). Moreover, we have

ejµ = 0, j ∈ ∆ = {1, 2, 3, 4}. (5.2)

Proof. Follows from Codazzi’s equations via Lemma 4.1 and (4.2). �

Lemma 5.2. Under the hypothesis of Lemma 5.1, we have

(i) T0 is a totally geodesic distribution;

(ii) T3 is a spherical distribution,

where T0 = Span{e5} and T3 = Span{e1, e2, e3, e4}.

Proof. Clearly, T0 is integrable. Moreover, since ∇e5e5 = 0 by Lemma 5.1,

integral curves of e5 are geodesics in M5. Thus statement (i) follows. To

prove statement (ii), we observe that the integrability of T3 follows from

(5.1). Also, (5.1) implies that the second fundamental form ĥ of a leaf L of

T3 in M5 is given by ĥ(X,Y ) = −νĝ(X,Y )e5 for X,Y ∈ TL, where ĝ is the
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metric of L. Since [ej , e5]µ = 0 by (5.1) and ejµ = 0, for j ∈ ∆, we find

eie5µ− e5eiµ = 2e1ν = 0. Therefore T3 is a spherical distribution. �

Lemma 5.3. Under the hypothesis of Lemma 5.1, M is locally a warped

product I ×ρ(t) N
4, where t is function such that e5 =

∂
∂t and ρ is a positive

function in t and N4 is a Riemannian 4-manifold.

Proof. Follows from Lemma 5.2 and Hiepko’s theorem. �

It follows from (5.2) and the definition of ν that µ = µ(t) and ν = ν(t).

Lemma 5.4. Under the hypothesis of Lemma 5.1, we have

dν

dt
= −3µ2 − ν2 − c,

dµ

dt
= 2µν. (5.3)

Proof. From Gauss’ equation and (5.1) we find 〈R(e1, e5)e5, e1〉 = 3µ2 + c.

On the other hand, (5.1) of Lemma 5.1 yields 〈R(e1, e5)e5, e1〉 = −e5ν− ν2.

Thus we find the first equation of (5.3). The second one follows immediately

from the definition of ν given in Lemma 5.1. �

6. Improved δ(2, 2)-ideal Lagrangian submanifolds of C5

Theorem 6.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in C5. Then it is one of the following Lagrangian submanifolds:

(a) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(b) an H-umbilical Lagrangian submanifold of ratio 4;

(c) a Lagrangian submanifold defined by

L(µ, u2, . . . , un) =
e

4

3
i tan−1

√
µ3/(c2−µ3)

√

c2µ−1 − µ2 + iµ
φ(u2, . . . , un), (6.1)

where c is a positive real number and φ(u2, . . . , un) is a horizontal lift

of a non-totally geodesic δ(2)-ideal Lagrangian minimal immersion

in CP 4(4).

Proof. Assume that M is an improved δ(2, 2)-ideal Lagrangian submanifold

in C5. Then there exists an orthonormal frame {e1, . . . , e5} such that (4.1)

holds. If µ = 0, then M is a minimal δ(2, 2)-ideal Lagrangian submanifold.

Thus, we obtain case (a). If µ 6= 0 and a = b = 0, we obtain case (b).

Now, let us assume a, µ 6= 0. Then Lemma 4.5 implies b = 0. So, by

Lemmas 5.1 we have (5.1) and ejµ = 0, j ∈ ∆. Further, by Lemma 5.3, M
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is locally a warped product I ×ρ(t) N
4 with e5 = ∂t. Moreover, 4.1 shows

that the second fundamental form satisfies

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,
h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5,

h(ei, e5) = µJei, i ∈ ∆,

h(e5, e5) = 4µJe5, h(ei, ej) = 0, otherwise.

(6.2)

From Lemma 5.4 we have the following differential system:

dν

dt
= −3µ2 − ν2,

dµ

dt
= 2µν. (6.3)

Let ϕ(t) be a function satisfying
dϕ

dt
= −4µ. Consider the map

φ = eiϕe5. (6.4)

Then 〈φ, φ〉 = 1. It follows from∇e5e5 = 0, dϕ
dt = −4µ and (6.2) that ∇̃e5φ =

0, where ∇̃ is the Levi-Civita connection of C5. Thus φ is independent of t.

Let L denote the Lagrangian immersion of M in C5. Then (6.4) yields

e5 = Lt = e−iϕφ(u1, . . . , u4), (6.5)

where u1, . . . , u4 are local coordinates of N4. For each j ∈ ∆, we obtain

from ∇eje5 = νej of Lemma 5.1 and the first equation of (6.3) that

φ∗(ej) = ∇̃ejφ = eiϕ∇̃eje5 = eiϕ(ν + iµ)ej. (6.6)

Thus

∇̃ej(φ∗(ei)) = eiϕ(ν + iµ)∇̃ejei. (6.7)

In view of ∇eje5 = νej and (6.2), we may put

∇̃eiej =
(

4
∑

k=1

Γk
ij + ihkij

)

ek − (ν − iµ)δije5, i, j ∈ ∆, (6.8)

for some functions Γk
ij . Now, it follows from (6.4), (6.6), (6.7), and (6.8)

that

∇̃ej(φ∗(ei)) =

n
∑

γ=2

(

Γk
ij + ihkij

)

φ∗(ek)−
(

µ2 + ν2
)

δijφ

=

n
∑

γ=2

(

Γk
ij + ihkij

)

φ∗(ek)− 〈φ∗(ei), φ∗(ej)〉φ.
(6.9)
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SinceM is a Lagrangian submanifold inC5, (6.4) and (6.6) show that iφ is

perpendicular to each tangent space ofM . Hence φ is a horizontal immersion

in the unit hypersphere S9(1) ⊂ C5. Moreover, it follows from (6.9) that the

second fundamental form of φ is the original second fundamental form of M

respect to to the second factor N4 of the warped product I×ρ(t)N
4. Hence,

φ is a minimal horizontal immersion in S9(1). Therefore, φ is a horizontal lift

of a minimal Lagrangian immersion in CP 4(4). Now, it follows from (6.2)

that φ is a horizontal lift of a δ(2)-ideal minimal Lagrangian submanifold of

CP 4(4).

By direct computation we find

∇̃eα

(

L− e5
ν + iµ

)

= 0, α = 1, . . . , 5. (6.10)

Thus, by (6.4), up to translations the Lagrangian immersion L is

L =
e−iϕ

ν + iµ
φ(u1, . . . , u4), (6.11)

where φ is a horizontal minimal immersion in S9(1) and ν, ϕ, µ satisfy

dν

dt
= −3µ2 − ν2,

dϕ

dt
= −4µ,

dµ

dt
= 2µν. (6.12)

From (6.12) we find

dν

dµ
+

ν

2µ
= −3µ

2ν
. (6.13)

After solving (6.13) we get ν = ±
√

c2µ−1 − µ2 for some real number c > 0.

Replacing e5 by −e5 if necessary, we have

ν =
√

c2µ−1 − µ2. (6.14)

It follows from (6.12) an (6.14) that ϕ′(µ) = −2/
√

c2µ−1 − µ2. By solving

the last equation we find ϕ = −4
3 i tan

−1
√

µ3/(c2 − µ3)+c0 for some constant

c0. Therefore, we have the theorem after applying a suitable translation in

µ. �

Remark 6.2. Minimal δ(2, 2)-ideal Lagrangian submanifolds in complex space

forms C5, CP 5 and CH5 are classified in [13]. Also δ(2)-ideal minimal La-

grangian submanifolds in CP 4 and CH4 have been classified recently in

[14].
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Let γ(t) be a unit speed curve in C∗. We put

γ(t) = r(t)eiθ(t), γ′(t) = eiζ(t). (6.15)

The following result gives H-umbilical submanifolds of C5 with ratio 4.

Proposition 6.3. If M is an H-umbilical Lagrangian submanifold of C5 of

ratio 4, then M is an open part of a complex extensor γ ⊗ ι of the unit hy-

persphere ι : S4(1) ⊂ E
5 via a generating curve γ : I → C∗ whose curvature

satisfies κ = 4θ′.

Proof. If M is an H-umbilical Lagrangian submanifold of C5 with ratio 4,

then the second fundamental form satisfies

h(ej , ej) = µJe5, h(ej , e5) = µJej, j ∈ ∆,

h(e5, e5) = 4µJe5, h(ej , ek) = 0, 1 ≤ j 6= k ≤ 4,

for a nonzero function µ. Thus Gauss’ equation yields K(e1 ∧ e5) = 3µ2.

HenceM is non-flat. Therefore, according to Theorem F,M is an open part

of a complex extensor of ι : Sn−1(1) ⊂ E
n via a generating curve γ : I → C∗.

It follows from [2] that the functions ϕ and µ in (4.1) are related with the

two angle functions ζ and θ by ϕ = ζ ′(t) = κ and µ = θ′(t). Thus whenever

γ is a unit speed curve satisfying κ = 4θ′, the complex extensor γ ⊗ ι is

an H-umbilical Lagrangian submanifold of ratio 4. Conversely, every H-

umbilical Lagrangian submanifold of ratio 4 in Cn can be obtained in such

way. �

7. Improved δ(2, 2)-ideal Lagrangian submanifolds of CP 5

Theorem 7.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in CP 5(4). Then it is one of the following Lagrangian submanifolds:

(1) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(µ, u2, . . . , u4) =
1

c

(√
µeiθφ, e3iθ(

√

c2 − µ3 − µ− iµ
3

2 )
)

, (7.1)

where c is a positive real number, φ : N4 → S9(1) ⊂ C5 is a hor-

izontal lift of a non-totally geodesic δ(2)-ideal Lagrangian minimal

immersion in CP 4(4), and θ(µ) satisfies

dθ

dµ
=

1

2
√

c2µ−1 − µ2 − 1
. (7.2)
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Proof. Under the hypothesis there is an orthonormal frame {e1, . . . , e5} such

that (4.1) holds. If µ = 0, then M is a δ(2, 2)-ideal Lagrangian minimal

submanifold. Thus we obtain case (1). If µ 6= 0 and a, b = 0, then M is an

H-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that a, µ 6= 0. Then Lemma 4.5 implies b = 0. So, by

Lemmas 5.1 we obtain (5.1) and (5.2). Also, in this case M is locally a

warped product I ×ρ(t) N
4 with e5 = ∂t according to Lemma 5.3. From

Lemma 4.1, we find

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,
h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(ei, ej) = 0, otherwise.

(7.3)

By Lemma 5.4 we have the following ODE system:

dν

dt
= −1− ν2 − 3µ2,

dµ

dt
= 2µν. (7.4)

Let θ(t) be a function on M satisfying

θ′(t) = µ. (7.5)

Let L denote the horizontal lift in S11(1) ⊂ C6 of the Lagrangian immer-

sion of M in CP 5(4) via Hopf ’s fibration. Consider the maps:

ξ =
e−3iθ (e5 − (ν + iµ)L)

√

1 + µ2 + ν2
, φ =

e−iθ (L+ (ν − iµ) e5)
√

1 + µ2 + ν2
. (7.6)

Then 〈ξ, ξ〉 = 〈φ, φ〉 = 1. From ∇eje5 = νej , j ∈ ∆, and (7.4), we find

∇̃ejξ = 0. Moreover, it follows from Lemma 5.1 and (7.3) that ∇̃e5e5 =

4iµe5−L. Thus we also hhve∇̃e5ξ = 0. Hence ξ is a constant unit vector in

C6. Similarly, we also have ∇̃e5φ = 0. So φ is independent of t. Therefore,

by combining (7.6) we find

L =
eiθφ− e3iθ(ν − iµ)ξ
√

1 + µ2 + ν2
. (7.7)

Since φ is orthogonal to ξ, iξ, after choosing ξ = (0, . . . , 0, 1) ∈ C6 we obtain

L =
1

√

1 + µ2 + ν2

(

eiθφ, e3iθ(ν − iµ)
)

(7.8)
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It follows from (7.4) and (7.5) that

dν

dµ
= −1 + ν2 + 3µ2

2µν
,

dθ

dµ
=

1

2ν
. (7.9)

Solving the first differential equation in (7.9) gives

ν = ±
√

c2µ−1 − µ2 − 1, c ∈ R+. (7.10)

By replacing e5 by −e5 if necessary, we have ν =
√

c2µ−1 − µ2 − 1. Conse-

quently,

L =
1

c

(√
µeiθφ, e3iθ(

√

c2 − µ3 − µ− iµ
3

2 )
)

, (7.11)

It follows from (5.1), (7.3) and the second formula in (7.6) that

∇̂ejφ =
ce−iθ

√
µ
ej , j ∈ ∆. (7.12)

Thus after applying (6.11) and (7.12) we derive that

∇̂eβ∇̂eαφ =

n
∑

γ=2

(

Γk
ij + ihkij

)

φ∗(ek)− 〈φ∗(ei), φ∗(ej)〉φ, i, j ∈ ∆. (7.13)

Hence φ is a horizontal immersion in S9(1). Moreover, it follows from (7.13)

that the second fundamental form of φ is a scalar multiple of the original

second fundamental form of M restricted to the second factor of the warped

product I ×ρ N . Consequently, φ is a minimal horizontal immersion in

S9(1) of a non-totally geodesic δ(2)-ideal Lagrangian minimal submanifold

of CP 4(4).

The converse is easy to verify. �

8. Improved δ(2, 2)-ideal Lagrangian submanifolds of CH5

Theorem 8.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in CH5(−4). Then M is one of the following Lagrangian submanifolds:

(i) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(ii) an H-umbilical Lagrangian submanifold of ratio 4;

(iii) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(√
µeiθφ(u2, . . . , u4), e

−iθ(
√

µ−µ3− c2 − iµ
3

2 )
)

,

(8.1)
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where c is a positive number, φ : N4 → H9
1 (−1) ⊂ C5

1 is a hor-

izontal lift of a non-totally geodesic δ(2)-ideal minimal Lagrangian

immersion in CH4(−4), and θ(t) satisfies dθ
dµ = 1

2

√

1− µ2 − c2µ−1;

(iv) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(

e−iθ(
√

µ−µ3+ c2 − iµ
3

2 ),
√
µeiθφ(u2, . . . , u4)

)

,

(8.2)

where c is a positive number, φ : N4 → S9(1) ⊂ C5 is a horizontal lift

of a non-totally geodesic δ(2)-ideal minimal Lagrangian immersion

in CP 4(4), and θ(t) satisfies dθ
dµ = 1

2

√

1− µ2 + c2µ−1;

(v) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(

2t+w+ i

(

cosh 2t−〈ψ,ψ〉− 1

4

)

,

ψ, 2t+ w + i

(

cosh 2t−〈ψ,ψ〉+ 1

4

))

,

(8.3)

where ψ(u1, . . . , u4) is a non-totally geodesic δ(2)-ideal Lagrangian

minimal immersion in C4 and up to a constant w(u1, . . . , u4) is the

unique solution of the PDE system: wuj
= 2

〈

ψuj
, iψ
〉

, j = 1, 2, 3, 4;

(vi) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(

2t+w + i

(

cosh 2t−〈ψ,ψ〉− 1

4

)

,

ψ1, ψ2, 2t+w + i

(

cosh 2t−〈ψ,ψ〉+ 1

4

))

,

(8.4)

where ψ = (ψ1, ψ2) is the direct product immersion of two non-totally

geodesic Lagrangian minimal immersions ψα : N2
α → C2, α = 1, 2,

and up to a constant w(u1, . . . , u4) is the unique solution of the PDE

system: wuj
= 2

〈

ψuj
, iψ
〉

, j = 1, 2, 3, 4.

Proof. Under the hypothesis there exists an orthonormal frame {e1, . . . , e5}
such that (4.1) holds.

Case (1) µ = 0. In this case, we obtain case (i) of the theorem.

Case (2): µ 6= 0 and a, b = 0. In this caseM is an H-umbilical Lagrangian

submanifold with ratio 4, which gives case (ii).

Case (3): µ 6= 0 and at least one of a, b is nonzero. Without loss of

generality, we may assume a 6= 0 and µ > 0. We divide this into two cases.
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Case (3.a): a, µ 6= 0 and b = 0. By Lemmas 5.1 we obtain (5.1) and (5.2).

Also, M is locally a warped product I ×ρ(t) N
4 with e5 = ∂t according to

Lemma 5.3. From Lemma 4.1 we find

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,
h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(ei, ej) = 0, otherwise.

(8.5)

Let L be a horizontal immersion ofM in H11
1 (−1) ⊂ C6

1 of the Lagrangian

immersion of M in CH5(−4) via Hopf ’s fibration and θ(t) a function sat-

isfying

dθ

dt
= µ. (8.6)

From Lemma 5.4 we obtain the following ODE system:

dν

dt
= 1− 3µ2 − ν2,

dµ

dt
= 2µν. (8.7)

It follows from (8.6) and (8.7) that

dν

dµ
=

1− 3µ2 − ν2

2µν
,

dθ

dµ
=

1

2ν
. (8.8)

Solving the first differential equation in (8.8) gives ν = ±
√

1− µ2 − kµ−1

for some real number k. By replacing e5 by −e5 if necessary, we find

ν =
√

1− µ2 − kµ−1,
dθ

dµ
=

1

2
√

1− µ2 − kµ−1
. (8.9)

It follows from (8.7) that d
dt(1− µ2 − ν2) = −2ν(1− µ2 − ν2). Since this

equation for y(t) = 1− µ2 − ν2 = kµ−1 has a unique solution for each given

initial condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): µ2 + ν2 < 1. In this case, (8.9) implies k > 0. Thus we may

put k = c2, c > 0. Consider the maps:

η =
e−3iθ(e5 − (ν + iµ)L

)

√

1− µ2 − ν2
, φ =

e−iθ ((ν − iµ) e5 − L)
√

1− µ2 − ν2
. (8.10)

Then 〈η, η〉 = 1 and 〈φ, φ〉 = −1. From ∇eje5 = νej , j ∈ ∆, and (8.5), we

obtain ∇̃ejξ = 0, where ∇̃ is the Levi-Civita connection of C6
1. Lemma 5.1

and (8.5) give ∇̃e5e5 = 4iµe5+L. Thus we find ∇̃e5ξ = 0. So η is a constant
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unit vector. Also, we find ∇̃e5φ = 0. Hence φ is independent of t. From

(8.10) we get

L = −e
iθφ+ e−iθ(ν − iµ)η
√

1− µ2 − ν2
. (8.11)

Since φ is orthogonal to η, iη and η is a constant unit space-like vector,

we conclude from (8.9) and (8.11) that L is congruent to (8.1). Next, by

applying the same method of the proof of Theorem 7.1, we conclude that φ is

a horizontal immersion inH9
1 (−1) whose second fundamental form is a scalar

multiple of the original second fundamental form restricted to the second

factor of I ×ρ N . Consequently, φ is a minimal horizontal immersion in

H9
1 (−1) of a non-totally geodesic δ(2)-ideal Lagrangian minimal submanifold

of CH4(−4). This gives case (iii).

Case (3.a.2): µ2 + ν2 > 1. In this case (8.8) implies k < 0. Thus we may

put k = −c2, c > 0. Now, we consider the maps:

η =
e−3iθ(e5 − (ν + iµ)L

)

√

µ2 + ν2 − 1
, φ =

e−iθ ((ν − iµ) e5 − L)
√

µ2 + ν2 − 1
(8.12)

instead. Then 〈φ, φ〉 = −〈η, η〉 = 1. By applying similar arguments as case

(3.a.1), we know that η is a constant time-like vector and φ is independent

of t and orthogonal to η, iη. Moreover, we may prove that φ is a minimal

Legendre immersion in S9(1). Therefore we have case (iv) after choosing

η = (1, 0, . . . , 0).

Case (3.a.3): µ2 + ν2 = 1. In this case system (8.7) gives dν
dt = 2(ν2 − 1)

and µ = ±
√
1− ν2. Solving these and applying a suitable translations in t,

we find

µ = sech 2t, ν = − tanh 2t. (8.13)

It follows from ∇e5e5 = 0, (8.5) and (8.13) that the horizontal lift L of

the Lagrangian immersion of M in CH5(−4) ⊂ C6
1 satisfies

Ltt − 4i( sech 2t)Lt − L = 0. (8.14)

Solving this second order differential equation gives

L =
φ(u1, . . . , u4) +B(u1, . . . , u4)(2t + i cosh 2t)

cosh t− i sinh t
, (8.15)

where φ(u1, . . . , u4) and B(u1, . . . , u4) are C6
1-valued functions.
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On the other hand, it follows from Lemma 5.1, (8.5) and (8.13) that

Ltuj
= (i sech 2t− tanh 2t)Luj

, j ∈ ∆. (8.16)

Substituting (8.15) into (8.16) shows that B is a constant vector ζ. Thus

L(t, u1, . . . , u4) =
φ(u1, . . . , u4)

cosh t− i sinh t
+

(2t+ i cosh 2t)

cosh t− i sinh t
ζ, (8.17)

Since 〈L,L〉 = −1, (8.17) implies

− cosh 2t = 〈φ, φ〉+ 〈φ, (4t+ 2i cosh 2t)ζ〉+ (4t2 + cosh2(2t)) 〈ζ, ζ〉 . (8.18)

Since φt = 0, by differentiating (8.18) with respect t we find

− sinh 2t = 2t 〈φ, ζ〉+ 2 sinh 2t 〈φ, iζ〉+ (4t+ sinh 4t) 〈ζ, ζ〉 . (8.19)

We find from (8.19) at t = 0 that 〈φ, ζ〉 = 0. Thus (8.19) gives

0 = sinh 2t(1 + 〈φ, iζ〉) + (4t+ sinh 4t) 〈ζ, ζ〉 . (8.20)

Differentiating (8.20) gives 〈φ, iζ〉 = −1
2−2 〈ζ, ζ〉 . Thus (8.17) yields 〈φ, iζ〉 =

−1
2 and 〈ζ, ζ〉 = 0. Now, we find from (8.18) that 〈φ, φ〉 = 0. Consequently

we have

〈φ, φ〉 = 〈ζ, ζ〉 = 〈φ, ζ〉 = 0, 〈φ, iζ〉 = −1
2 . (8.21)

Since ζ is a constant light-like vector, we may put

ζ = (1, 0, . . . , 0, 1), φ = (a1 + ib1, . . . , a6 + ib6) . (8.22)

It follows from (8.21) and (8.22) that a6 = a1 and b6 = b1 +
1
2 . Therefore

φ =
(

a1 + ib1, a2 + ib2, . . . , a1 + i(b1 +
1
2)
)

. (8.23)

Now, by using 〈φ, φ〉 = 0 and (8.23), we find ψ = (a2 + ib2, . . . , a5 + ib5)

and b1 = −1
4 − 〈ψ,ψ〉. Combining these with (8.23) yields

φ =

(

w − i 〈ψ,ψ〉 − i

4
, ψ, w − i 〈ψ,ψ〉 + i

4

)

(8.24)

with w = a1. It follows from (8.22) and (8.24) that
〈

φuj
, ζ
〉

=
〈

φuj
, iζ
〉

= 0.

Thus, by applying
〈

Luj
, iL
〉

= 0, j ∈ ∆, we find from (8.17) that
〈

φuj
, iφ
〉

=

0.

On the other hand, (8.24) implies that

〈

φuj
, iφ
〉

= −1
2wuj

+
〈

ψuj
, iψ
〉

(8.25)

with wuj
= ∂w

∂uj
. Therefore w satisfies the PDE system: wuj

= 2
〈

ψuj
, iψ
〉

.
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Now, we derive from (8.17), (8.22) and (8.23) that

L =
1

cosh t− i sinh t

(

2t+w + i

(

cosh 2t− 〈ψ,ψ〉 − 1

4

)

,

ψ, 2t+ w + i

(

cosh 2t− 〈ψ,ψ〉 + 1

4

))

.

(8.26)

It follows from (8.26) that

Luj
=

1

cosh t− i sinh t

(

wuj
− i 〈ψ,ψ〉uj

, ψuj
, wuj

− i 〈ψ,ψ〉uj

)

. (8.27)

Thus we find
〈

ψuj
, ψuk

〉

= cosh 2t
〈

Luj
, Luk

〉

which implies that ψ is an

immersion in C4. Also, we find from (8.27) and
〈

Luj
, iLuk

〉

= 0 that
〈

ψuj
, iψuk

〉

= 0. Thus ψ is a Lagrangian immersion. Now, by applying

an argument similar to the last part of the proof of [11, Theorem 6.1], we

conclude that

ψujuk
=

4
∑

i=1

(Γi
jk + ihijk)φui

, j, k ∈ ∆.

Therefore, according to (8.5), ψ is a δ(2)-ideal minimal Lagrangian immer-

sion in C4. Consequently, we obtain case (v) of the theorem.

Case (3.b): a, b, µ 6= 0. We obtain case (vi) of the theorem by applying

the same argument as case (3.a.3). �
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