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LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE
FORMS SATISFYING AN IMPROVED EQUALITY
INVOLVING §(2,2)

BANG-YEN CHEN, ALICA PRIETO-MARIN, AND XIANFENG WANG

ABSTRACT. It was proved in [8] [9] that every Lagrangian submanifold
M of a complex space form M® (4c) of constant holomorphic sectional

curvature 4c satisfies the following optimal inequality:
25
5(2,2) < ZH2 + 8¢, (A)

where H? is the squared mean curvature and §(2,2) is a d-invariant on
M introduced by the first author. This optimal inequality improves a
special case of an earlier inequality obtained in [B.-Y. Chen, Japan. J.
Math. 26 (2000), 105-127).

The main purpose of this paper is to classify Lagrangian submanifolds

of M°(4c) satisfying the equality case of the improved inequality (A).

1. INTRODUCTION

Let M™ be a Kéhler n-manifold with the complex structure J, a Kéhler
metric g and the Kéhler 2-form w. An isometric immersion ¢ : M — M™ of
a Riemannian n-manifold M into M" is called Lagrangian if ¢*w = 0.

Let M"(4c) denote a Kihler n-manifold with constant holomorphic sec-
tional curvature 4c, called a complex space form. A complete simply-connected

complex space form M "(4c) is holomorphically isometric to the complex Eu-
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clidean n-plane C", the complex projective n-space C'P™(4c), or a complex
hyperbolic n-space C H"(4c) according to ¢ = 0, ¢ > 0 or ¢ < 0, respectively.
B.-Y. Chen introduced in 1990s new Riemannian invariants d(ni, ..., ng).

For any n-dimensional submanifold M in a real space form R™(c) of constant
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curvature ¢, he proved the following sharp general inequality (see [5l [7] for
details):

n(n+k—1->n;) ,
2R 5 "

+ = ( (n—1) Zn] )c.

For Lagrangian submanifolds in a complex space form M "(4c), we have

S ymy) <

(1.1)

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a
complex space form M "(4c) of constant holomorphic sectional curvature 4c.
Then inequality (LI)) holds for each k-tuple (nqy,...,ng) € S(n).

The following result from [6] extends a result in [I0] on §(2).

Theorem B. Every Lagrangian submanifold of a complex space form
M™(4¢) is minimal if it satisfies the equality case of (L) identically.

Theorem B was improved recently in [8, 0] to the following inequality.
Theorem C. Let M be an n-dimensional Lagrangian submanifold of
M"(4c). Then, for an (ni,...,n;) € S(n) with Zle n; < n, we have
n2{ (n - Zleni + 3k — 1) — 62?21(2 + ni)’l}H2
2{(n—zf:1ni+3k+2) —62?21(24-1%)_1} (1.2)

+ %{n(n —1) - Zleni(ni — 1)}(:.

The equality sign holds at a point p € M if and only if there is an or-

5(711,... ,nk) <

thonormal basis {e1,...,e,} at p such that the second fundamental form h

satisfies

h(ea; es;) = Z hlzBZJe%. + séjlzz Meni, Zzzzlh;@ai =0,

3\
24+n
h(ent1,ent1) = 3AJeny1, hlenyi,eu) = >\J€u, N =mng+---+ny,

h(eu,€ey) = NowwJent1, 4,5 =1,... ;) k;u,v =N+2,....n

h(eai7 eaj) = 07 1 7é ,]7 h(ea“ €N+1) Jeoc“ h(ea“ eu) = 07 (13)

For simplicity, we call a Lagrangian submanifold of a complex space
form d(ny,...,nk)-ideal (resp., improved d(nq,...,n)-ideal) if it satisfies
the equality case of (IL.I)) (resp., the equality case of (I.2))) identically.

For k = 2 and n; = no = 2, Theorem C reduces to the following.
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Theorem D. Let M be a Lagrangian submanifold in a complex space

form MP5(4¢) of constant holomorphic sectional curvature 4c. Then we have

h

6(2,2) < %HQ + 8c. (1.4)
If the equality sign of (4] holds identically, then with respect some suit-
able orthonormal frame {e1,...,e5} the second fundamental form h satisfies
h(er,e1) = aJey + BJes + pdes, h(er,es) = fJer — ades,
h(ea,es) = —adey — BJes + pdes,
h(es,es) = vJes + dJeq + uJes, h(es,eq) = 0Jes — yJey, (1.5)
h(e4,e4) = —yJeg — dJeq + pJes, h(es,es) =4uJes,
(

e es) = pJe;, i € A; h(e;,e;) =0, otherwise,

for some functions o, 3,7, 0, u, where A = {1,2,3,4}.

The classification of §(2,2)-ideal Lagrangian submanifolds in complex
space forms MP®(4c) is done in [I3]. In this paper we classify improved
5(2,2)-ideal Lagrangian submanifolds in M®(4c). The main results of this
paper are stated as Theorem [6.1, Theorem [.I] and Theorem [B.11

2. PRELIMINARIES

2.1. Basic formulas. Let M"(4c) denote a complete simply-connected Kéahler
n-manifold with constant holomorphic sectional curvature 4c. Then M"(4c)
is holomorphically isometric to the complex Euclidean n-plane C", the com-
plex projective n-space C'P™(4c), or a complex hyperbolic n-space C H"(—4c)
according to ¢ =0,¢ > 0 or ¢ < 0.

Let M be a Lagrangian submanifold of M"(4c). We denote the Levi-
Civita connections of M and M "(4c) by V and V, respectively. The formulas
of Gauss and Weingarten are given respectively by (cf. [7])

VxY =VxY +h(X,Y), Vx{=—AcX + Dx¢, (2.1)

for tangent vector fields X and Y and normal vector fields &, where h is
the second fundamental form, A is the shape operator and D is the normal
connection.

The second fundamental form and the shape operator are related by

(W(X,Y),6) = (AcX,Y).
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The mean curvature vector ﬁ of M is defined by ﬁ = Ltraceh and the

~n
squared mean curvature is given by H? = <ﬁ, ﬁ)

For Lagrangian submanifolds, we have (cf. [7) 12])
DxJY = JVyY, (2.2)
AsjxY = —Jh(X,Y) = Ay X. (2.3)

Formula (2.3]) implies that (h(X,Y"),JJZ) is totally symmetric.

The equations of Gauss and Codazzi are given respectively by

(R(X,Y)Z, W) = <Ah(y7z)X,W> — <Ah(X,Z)Y,W> (2.4)
+ C(<X7 W> <Y7 Z> - <X7 Z> <Y7 W>)7
(Vxh)(Y,Z) = (Vyh)(X, 2), (2.5)

where R is the curvature tensor of M and Vh is defined by
(Vxh)(Y,Z) = Dxh(Y,Z) = h(VxY,Z) = h(Y,Vx Z). (2.6)
For an orthonormal basis {e1,...,e,} of T,M, we put
;k = (h(ej,ex),Je;), 1,5,k=1,...,n.
It follows from (23] that h;k = hgk = hf]

2.2. )-invariants. Let M be a Riemannian n-manifold. Denote by K ()
the sectional curvature of a plane section # C T,M, p € M. For any
orthonormal basis ey, ..., e, of T,M, the scalar curvature 7 at p is 7(p) =
Zi<j K(ei Nej).
Let L be a r-subspace of T, M with r > 2 and {ey, ..., e,} an orthonormal
basis of L. The scalar curvature 7(L) of L is defined by
T(L)=> K(eaNeg), 1<a,B<r (2.7)
a<f
For given integers n > 3, k > 1, we denote by S(n,k) the finite set
consisting of k-tuples (nq,...,nk) of integers satisfying 2 < nq, -+ ,np <n
and Z?zli < n.
Put S(n) = Ug>18(n, k). For each k-tuple (ni,...,n;) € S(n), the first

author introduced in 1990s the Riemannian invariant d(nq,...,ng) by
d(ni,...,ng)(p) =7(p) —inf{r(L1) +---+7(Lx)}, p€ M, (2.8)
where Ly, ..., L; run over all £ mutually orthogonal subspaces of T),M such

that dimL; = nj, j =1,...,k (cf. [7] for details).
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2.3. Horizontal lift of Lagrangian submanifolds. The following link
between Legendrian submanifolds and Lagrangian submanifolds is due to
[16] (see also [7, pp. 247-248]).

Case (i): CP™(4). Consider Hopf’s fibration m : S*"*!1 — CP"(4). For a
given point u € $?"*1(1), the horizontal space at u is the orthogonal com-
plement of 1, 1 = v/—1, with respect to the metric on S?**! induced from
the metric on C"*1. Let + : N — C'P"(4) be a Lagrangian isometric immer-
sion. Then there is a covering map 7 : N — N and a horizontal immersion
{: N — §2"+1 guch that cor = woi. Thus each Lagrangian immersion can be
lifted locally (or globally if N is simply-connected) to a Legendrian immer-
sion of the same Riemannian manifold. In particular, a minimal Lagrangian
submanifold of C'P™(4) is lifted to a minimal Legendrian submanifold of the
Sasakian S?"T1(1).

Conversely, suppose that f : N — §2n+1 g a Legendrian isometric im-
mersion. Then ¢ = mo f: N — CP"(4) is again a Lagrangian isometric
immersion. Under this correspondence the second fundamental forms hf
and h* of f and ¢ satisfy m.h/ = h*. Moreover, h' is horizontal with respect

to .

Case (ii): CH™(—4). We consider the complex number space C’f“ equipped
with the pseudo-Euclidean metric: gy = —dz1dz; + Z;Lizl dz;dz;.

Consider HZ""1(~1) = {z € CI"*! . (2,2) = —1} with the canonical
Sasakian structure, where ( , ) is the induced inner product.

Put T/ = {u € C"*': (u,z) =0}, H{ ={\ € C: A\ = 1}. Then there
is an Hj-action on H""!(—1), 2 — Az and at each point z € H?" " (~1),
the vector £ = —1z is tangent to the flow of the action. Since the metric
go is Hermitian, we have (£,€) = —1. The quotient space HZ""'(~1)/ ~,
under the identification induced from the action, is the complex hyperbolic
space CH™(—4) with constant holomorphic sectional curvature —4 whose
complex structure .J is induced from the complex structure J on C?H via
Hopf’s fibration m : H" " (—1) — CH"(4c).

Just like case (i), suppose that ¢ : N — CH"(—4) is a Lagrangian immer-
sion, then there is an isometric covering map 7 : N — N and a Legendrian
immersion f : N — H12"+1(—1) such that 1 o7 = mo f. Thus every La-
grangian immersion into CH™(—4) an be lifted locally (or globally if N is
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simply-connected) to a Legendrian immersion into H. 12”+1(—1). In particu-
lar, Lagrangian minimal submanifolds of C H"(—4) are lifted to Legendrian
minimal submanifolds of H2"*1(—1). Conversely, if f: N — H>"*1(—1) is
a Legendrian immersion, then « = 7o f : N — CH"(—4) is a Lagrangian
immersion. Under this correspondence the second fundamental forms hf
and h* are related by m.h/ = h*. Also, h' is horizontal with respect to 7.
Let h be the second fundamental form of M in §2**1(1) (or in H2" ! (—-1)).
Since S2"*1(1) and H?"™'(—1) are totally umbilical with one as its mean

curvature in C"*! and in C’f“, respectively, we have
VxY =VxY +h(X,Y) —¢L, (2.9)

where ¢ = 1 if the ambient space is C"*!; and ¢ = —1 if it is C’f“.

3. H-UMBILICAL LAGRANGIAN SUBMANIFOLDS AND COMPLEX EXTENSORS

3.1. H-umbilical Lagrangian submanifolds.

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kéahler

n-manifold is called H-umbilical if its second fundamental form satisfies
hiej,ej) =pJen, hlej,en)=pdej, j=1,...,n—1,

3.1
hien,en) = @Jey, hiejer) =0, 1<j#k<n-—1, 3.1)

for some functions p, ¢ with respect to an orthonormal frame {eq, ..., e,}.
If the ratio of ¢ : p is a constant r, the H-umbilical submanifold is said to

be of ratio r.

If G : N ! — E" is a hypersurface of a Euclidean n-space E" and
v : I — C* is a unit speed curve in C* = C — {0}, then we may extend
G : N"! - E" to an immersion I/ x N*! - C" by y® G : I x N*! —
C®E" = C", where (y® G)(s,p) = F(s) ® G(p) for s € I, p € N*~!. This
extension of GG via tensor product ® is called the complex extensor of G via
the generating curve .

H-umbilical Lagrangian submanifolds in complex space forms were clas-
sified in a series of papers by the first author (cf. [2| B, [4]). In particular,

the following two results were proved in [2].

Theorem E. Let ¢+ : S"~! C E" be the unit hypersphere in E" cen-

tered at the origin. Then every complexr extensor of v via a unit speed curve
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~v: I — C* is an H-umbilical Lagrangian submanifold of C™ unless v is con-
tained in a line through the origin (which gives a totally geodesic Lagrangian
submanifold).

Theorem F. Let M be an H-umbilical Lagrangian submanifold of C"
with n > 3. Then M is either a flat space or congruent to an open part of

a complex extensor of v : S"1 C E™ wia a curve vy : I — C*.

3.2. Legendre curves. A unit speed curve z : I — S3(1) C C? (resp.,
z: I — H}(—1) C C?) is called Legendre if (#',iz) = 0. It was proved in
[3] that a unit speed curve z in S3(1) (resp., in H{(—1)) is Legendre if and

only if it satisfies
2" =i\ — 2z (resp., 2" =i\ + 2) (3.2)

for a real-valued function \. It is known in [3] that A is the curvature
function of z in S3(1) (resp., in H{(—1)) (see also [I, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio. We provide a
general method to construct H-umbilical Lagrangian submanifolds with any
given ratio in CP™(4) via curves in 5?($) (resp., in CH"(—4) via curves in
H2(-1)).

Proposition 3.2. For any real number r there exist H-umbilical Lagrangian
submanifolds of ratio r in CP™(4) and in CH™(—4).

Proof. If r = 2 this was done in [3, Theorems 5.1 and 6.1]. If r # 2, H-
umbilical Lagrangian submanifolds of ratio » can be constructed as follows:

Case (a): CP"(4). Let S%(3) = {x € E3; (x,x) = 1}. The Hopf fibration
7 from S3(1) onto S*(3) = CP(4) is given by (cf. [1])

F(Zl,ZQ) = (2122, %(|Z1|2 — |22|2)) 5 (Zl,ZQ) S 53(1) C C2. (3.3)

For a Legendre curve z in S%(1), the projection v, = moz is a curve in S%(3).
Conversely, each curve v in S?(3) gives rise to a horizontal lift 4 in S3(1)
via 7 which is unique up to a factor €, § € R. Notice that each horizontal
lift of  is a Legendre curve in S3(1). Moreover, since the Hopf fibration
is a Riemannian submersion, each unit speed Legendre curve z in S3(1) is

projected to a unit speed curve v, in 52(%) with the same curvature.
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It was known in [3| Lemma 7.2] that, for a given H-umbilical Lagrangian
submanifold of ratio r # 2 in M™(4c), the function x in (B satisfies

" — (%) W+ (r=2)p((r = p® +¢) = 0. (3.4)

If p is a non-trivial solution of (B.4]) with ¢ = 1, then there is a unit speed
curve v in 52(%) whose curvature equals to ru. Let z be a horizontal lift
of v in $3(1). Then z is a unit speed Legendre curve satisfying 2”(z) =
iruz'(z) — z(z) (cf. [3, Theorem 4.1] or [I, Lemma 3.1]).

Consider the map v : M° — S'1(1) € C® defined by

5
¢(3§‘,y1, s 7y5) = (251(33),252(117)3/1,. IR ,z2($)y5), Zyjz =L (35)
j=1

It follows from [3] Theorem 4.1 and Lemma 7.2] that 7o ¢ is a H-umbilical
Lagrangian submanifold of ratio  in C'P™(4) such that
hiej,ej) =pJes, hiej,ey) = puJe;j,

3.6
h(en,en) =rudey, hiejer) =0, 1<j#k<n-—1, (3.6)

with respect to suitable orthonormal frame {eq,...,e5}.

Case (b): CH™(—4). For a non-trivial solution of (34]) with ¢ = —1, we
can construct an H-umbilical Lagrangian submanifold of CH"(—4) via the
Hopf fibration m : H{(—1) — CH'(—4) = H?(—1) in a similar way as case

(a), where
(21, 22) = (212, 5(|21)° + |22]%)) , (21,22) € H} (—1) C C3, (3.7)

and H%(—1) = {(21,22,23) € E} : 2 — 23 — a3 = I, 21 > £} is the model

of the real projective plane of curvature —4. O

3.4. Classification of H-umbilical submanifolds of ratio 4. The equa-
tion of Gauss and ([B.)) imply that H-umbilical Lagrangian submanifolds of
ratio r # 4 in complex space forms contain no open subsets of constant
sectional curvature. Hence we conclude from [3, Theorems 4.1 and 7.1] and

§3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in
CP5(4) is congruent to an open portion of wot), where 7 : S (1) — CP>(4)
is Hopf’s fibration, 1 : M — S (1) C C® is given by

Pt yr, .- ,us) = (21(t), 22(t)y), {y € E”: (y,y) =1}, (3.8)
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and z = (21, 22) : I — S3(1) C C? is a unit speed Legendre curve satisfying
" =4ipz' — z, and p is a nonzero solution of 2pu” — pu'? +4p?(3u*+1) = 0.

Let M be an H-umbilical Lagrangian submanifold in CH®(—4) satisfying
(BI). We may assume that p is defined on an open interval I > 0. Since
H-umbilical submanifolds of ratio 4 in C H®(—4) contain no open subsets of
constant curvature, Theorems 4.2 and 9.1 of [3] and results in §3.3 imply the

following classification of H-umbilical submanifolds of ratio 4 in CH?(—4).

Lemma 3.4. An H-umbilical Lagrangian submanifold M of ratio 4 in
CH®(—4) is congruent to an open part of ™ o1, where © : Hi'(—1) —
CH?(—4) is Hopf’s fibration and v : M — H{i'(—1) C CY is either one of

Gty oys) = (21(0), 22(t)y), {y €E”: (y,y) =1}, (3.9)
¢(t7y17 cee 7y4) = (zl(t)Y7 Z2(t))7 {y € E? : <Y7Y> = _1}7 (310)
where z is a unit speed Legendre curve in H3(—1) satisfying 2" = 4ipz’ + z

and 1 is a non-trivial solution of 2uu” — p'? + 4pu?(3u® — 1) = 0; or 1 is

Dty ua) = /et lo HU <1+ Zu o T 20y

4
. O (1< , 1
(ZN(O) O><2] 1% +ﬂ_m>7u17"'7u4)7

(3.11)
where z = (21, 29) : I — H}(—1) C C? is a unit speed Legendre curve and

is a mon-trivial solution of p'* = 4u>(1 — p?).

Ezample. 1t is easy to verify that p = sech2t is a non-trivial solution of
2 = 4p2(1 — p?). Using p = sech 2t, (BI0) reduces to

el tan~ ! (tanh t)

1 cosh2t
w(t,u1,...,u4)zm(—_t+ Z] ,

(3.12)
i ix~ o icosh2t
t—§+§;uj +T,U1,...,U4
It is direct to verify that (3.12]) satisfies (1,1) = —1 and the composition
m o1 gives rise to an H-umbilical Lagrangian submanifold of ratio 4 in

CH5(-4).
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4. SOME LEMMAS

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved 6(2,2)-ideal Lagrangian submanifold of

M?5(4¢). Then with respect to some orthonormal frame {ey,. .., es} we have
h(e1,e1) = aJer + pJes, h(er,es) = —ades,
h(eg, 62) = —aJ€1 + /LJ€5, h(eg, 63) = bJ€3 + /LJ€5,
h(es,eq) = —bJey, h(ey, 64) = —bJes + uJes, (4.1)
h(ei,es) = pJe;, i € A, h(es,e5) = 4uJes,
(

>

€i,€j 0, otherwise.

Proof. Under the hypothesis, we have (L)) with respect to an orthonormal
frame {eq,...,e5}. Thus, after applying [6, Lemma 1] to V' = Span {e1,e2}

and V' = Span {es, e4}, we obtain (4.T]). O
Let us put
5 .
Vxei=» wl(X)ej, i=1,...,5 X € TM". (4.2)
j=1

Thenwlj = —w;-, i,7=1,...,5.

If 4 =0, then M is a minimal Lagrangian submanifold according (4.).
Such submanifolds in complex space forms M?(4c) have been classified in
[13].

Ifa=5b=0and pu # 0, then M is an H-umbilical Lagrangian submanifold

with ratio 4. Therefore, from now on we assume that a, pt # 0.

Lemma 4.2. Let M be a Lagrangian submanifold of M5(4c) whose second
fundamental form satisfies ([d1)) with a,b,u # 0. Then we have

€20 €20 e1a

Velel = 562 — ves, vele2 = —gel, vegel = —562,
eia eqb eqb
Ve,2 = ——e1 —ves, Vesez = ——eg — ves, Ve,eq = ———e3,
3a 3b 3b (4'3)
€3b egb .
Vee3 = ———e4, Veeq = ——e3 —ves, Vees =ve;, 1t € A,

3b 3b

Ve,e; =0, otherwise,
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with v = Zes(Inp) = —es(Ina) = —es(Inb), where A = {1,2,3,4}. More-

over, we have
ejin=0,7 €A, erb=eb=e3a=-eqa=0. (4.4)

Proof. This lemma is obtained from Codazzi’s equations via Lemma [£T] and

and long computations. O
@2) g

Lemma 4.3. Under the hypothesis of Lemma we have

(a) Ty is a totally geodesic distribution, i.e. Ty is integrable whose leaves
are totally geodesic submanifolds;

(b) To @ Ty and Ty ® T are totally geodesic distributions;

(¢) Ty and Ty are spherical distributions, i.e. T1, Ty are integrable distri-
butions whose leaves are totally umbilical submanifolds with parallel

mean curvature vector,

where Ty = Span{es }, T1 = Span{ey, ea} and To = Span{es, e4}.

Proof. Since the distribution Tj is of rank one, it is integrable. Moreover,
since Ve e5 = 0 by Lemmald.2] the integral curves of e5 are geodesics in M.
Thus we have statement (a). Statement (b) follows easily from (Z3]).

To prove statement (c), first we observe that [eq, ea] € T} and [es, e4] € T
follow from (&3]). Thus 77, T, are integrable. Also, it follows from (€3]) that
the second fundamental form hy of a leaf £1 of 17 in M is given by

hl(X,Y) = —Vgl(Xl,Y1)€5, X, e T,Cl, (45)

where g1 is the metric of £;. From (43]) we obtain Ve = ve;, i = 1,2.
Thus D;l e5 = DéQeg) = 0, where D! is the normal connection of £; in M.
It follows from Gauss’ equation and Lemma 1] that the curvature tensor R

satisfies
<R(€1, 62)61, €j> = 0, ] = 3,4, 9. (4.6)

Thus ([£6]) and Lemma [£.2] imply that 0 = R(e1,e2)e; = (eav)es (mod T17).
Hence earv = 0. Similarly, by considering R(eg, e1)es, we also have eja = 0.
After combining these with D'es = 0, we conclude that £; has parallel mean
curvature vector in M. Hence T} is a spherical distribution. Similarly, 75 is

also a spherical distribution. Consequently, we obtain statement (c). O

Lemma 4.4. Under the hypothesis of Lemma M s locally a warped

product I X, ) M} x )M22, where t is function such that es = 0y (i.e., e5 =

pa2(t
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%), p1 and ps are two positive functions in t and M, M3 are Riemannian

2-manifolds.

Proof. This lemma follows from Lemma [£.3] and a result of Hiepko [15] (see
also [7, Theorem 4.4, p. 90]). O

Lemma 3.3 and (4.4]) imply that u depends only on ¢t. Thus p = u(t).

Lemma 4.5. Let M be a Lagrangian submanifold of M5(4c) whose second
fundamental form satisfies ([&1) with a,b, u # 0. Then we have ¢ = —v? —
u? < 0. Thus p satisfies ' (t)? = —4p?(t)(c + p3(t)).

Proof. Under the hypothesis, it follows from Gauss’ equation and Lemma
1] that (R(e1,e3)es,e1) = ¢+ p?. On the other hand, the definition of
curvature tensor and Lemma imply that (R(e1,e3)es,e1) = —v2. Thus
¢ = —v?— ;% < 0. By combining this with the definition of v, we obtain the

lemma. O

5. MORE LEMMAS

Next, we consider the case a,p # 0 and b = 0.
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Lemma 5.1. Let M be a Lagrangian submanifold of M5(4c) whose second
fundamental form satisfies [@1)) with a,pu # 0 and b =0. Then we have

€20 esa 40
Velel = Leg + i63 + —64 ves,
3a a 3a
€20
Ve, 2 = —zel - 3w1(eg) 30)%(64)64,
e3a
Veleg = —761 + 3w1 (63)62 + w3(61)€4,
€40
Ve, €4 = —761 + 3w1(e4) €9 — wé(el)eg,
era
Vegel = —3—@62 + 3w1 (63)63 + wy (62)64,
e1a es3a 40
V6262 = L61 + i63 + —64 — ves,
3a a a
e3a
Ve, €3 = —3w1 (e3)e; — 762 + w§(eg)e4, (5.1)
eqa
Ve,€4 = —w%(eg)el - 762 - w3(62)63,
Vese1 = w%(€3)62, Vese2 = w%(eg)el,
Ves€3 = w§(63)64 —ves, Vegeq = wg(eg)eg,
Vee1 = wi(eg)es, Veea = —wi(eq)er,
Ve,e3 = wi(eq)es, Veea = —wi(eq)es — ves,
Ves€3 = ws(es)eq, Vese4 = —ws(es)es,

Vees =ve, 1€ A, Vee; =0, otherwise.

with v = Zes(Inpu) = —es(Ina). Moreover, we have
ejn=0, jeA={1,234}. (5.2)
Proof. Follows from Codazzi’s equations via Lemma 1] and (£.2). O

Lemma 5.2. Under the hypothesis of Lemma [5.1l, we have
(i) Tp is a totally geodesic distribution;

(ii) T3 is a spherical distribution,

where Ty = Span{es} and T3 = Span{ey, ea,e3,€4}.

Proof. Clearly, Ty is integrable. Moreover, since V., e5 = 0 by Lemma [5.1],
integral curves of e5 are geodesics in M®. Thus statement (i) follows. To
prove statement (ii), we observe that the integrability of T3 follows from
(51). Also, (5.1)) implies that the second fundamental form A of a leaf £ of
Ty in M? is given by fz(X,Y) = —vg(X,Y)es for X, Y € TL, where g is the
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metric of £. Since [ej,es5]p = 0 by (E1)) and eju = 0, for j € A, we find
eiesph — ese;in = 2e1v = 0. Therefore T3 is a spherical distribution. O

Lemma 5.3. Under the hypothesis of Lemma [51, M is locally a warped
product I X ;) N*, where t is function such that es = % and p is a positive

function in t and N* is a Riemannian 4-manifold.
Proof. Follows from Lemma and Hiepko’s theorem. O

It follows from (5.2]) and the definition of v that pu = u(t) and v = v(t).

Lemma 5.4. Under the hypothesis of Lemma [51l, we have

dv du

— =3y - —¢, — =2uv. 5.3
T Pt e e =2 (5.3)

Proof. From Gauss’ equation and (5.I) we find (R(ey,es)es, e1) = 3u® + c.
On the other hand, (51)) of Lemma 5.1l yields (R(eq, e5)es, e1) = —esv — v,
Thus we find the first equation of (5.3]). The second one follows immediately
from the definition of v given in Lemma 5.1l O

6. IMPROVED §(2,2)-IDEAL LAGRANGIAN SUBMANIFOLDS OF C®

Theorem 6.1. Let M be an improved §(2,2)-ideal Lagrangian submanifold
in C°. Then it is one of the following Lagrangian submanifolds:

(a) a 0(2,2)-ideal Lagrangian minimal submanifold;

(b) an H-umbilical Lagrangian submanifold of ratio 4;

(¢) a Lagrangian submanifold defined by

e3itan™\/p3/(c2—p3)

L(p,ug, ... uy) = — = d(ug, ... uy), (6.1)
Aut — 2 + ip

where ¢ is a positive real number and ¢(usg, ..., uy,) is a horizontal lift
of a non-totally geodesic 6(2)-ideal Lagrangian minimal immersion
in CP*(4).

Proof. Assume that M is an improved (2, 2)-ideal Lagrangian submanifold
in C°. Then there exists an orthonormal frame {ei,...,e5} such that (@I
holds. If p = 0, then M is a minimal §(2, 2)-ideal Lagrangian submanifold.
Thus, we obtain case (a). If u # 0 and a = b = 0, we obtain case (b).

Now, let us assume a, # 0. Then Lemma implies b = 0. So, by
Lemmas [5.1] we have (5.I)) and eju = 0, j € A. Further, by Lemma 53] M
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is locally a warped product I x,; N 4 with e5 = 9;. Moreover, 1] shows

that the second fundamental form satisfies

h(el,el) = aJel + MJ€5, h(el,eg) = —aJeg,

h(es,e2) = —aJey + pJes,

h(es,es) = h(es, e4) = pJes, (6.2)
h(e;,es5) = pde;, i € A,

h(es,es) = 4pJes, hiei,ej) =0, otherwise.

From Lemma [5.4] we have the following differential system:

dv 2 o dp
= — — = 2uu. .
o 3u” — v, i uv (6.3)

d
Let (t) be a function satisfying d—(’: = —4pu. Consider the map

b = e'¥es. (6.4)

Then (¢, (JE> = 1. It follows from V., e5 = 0, ‘fi—f = —4p and (62) that V., ¢ =
0, where V is the Levi-Civita connection of C°. Thus ¢ is independent of .
Let L denote the Lagrangian immersion of M in C°. Then (6.4)) yields

es =Ly = e ¥p(uy,...,uq), (6.5)

where uy,...,us are local coordinates of N4. For each j € A, we obtain
from V. e5 = ve; of Lemma 5.0l and the first equation of (6.3) that

os(ej) = @ejqﬁ = ei‘p@ej% =e¥(v+ ip)e;. (6.6)
Thus
ﬁej(qﬁ*(ei)) = (v + i,u)@ejei. (6.7)
In view of V..e5 = ve; and (6.2), we may put

ele] = <ka + ink ) — (v —ip)dijes, i,j € A, (6.8)

for some functions Ff] Now, it follows from (64]), ([6:6]), ([6.7), and (6.8)
that

Ve, (0u(e0)) = S (Tl ihly ) o (en) = (u? +v2) 8150
=2
(6.9)

n

=3 (Tl +ihdy) 6 (ex) = (Bules) Du(ey)) 6.

7=2
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Since M is a Lagrangian submanifold in C°, (6.4 and (6.6]) show that i¢ is
perpendicular to each tangent space of M. Hence ¢ is a horizontal immersion
in the unit hypersphere S?(1) € C®. Moreover, it follows from (6.9) that the
second fundamental form of ¢ is the original second fundamental form of M
respect to to the second factor N* of the warped product I x oty NV 4. Hence,
¢ is a minimal horizontal immersion in S?(1). Therefore, ¢ is a horizontal lift
of a minimal Lagrangian immersion in CP*(4). Now, it follows from (6.2)
that ¢ is a horizontal lift of a §(2)-ideal minimal Lagrangian submanifold of
CPY4).

By direct computation we find

?%<L— %,>:0,a:L”w5 (6.10)
v+1u

Thus, by (6.4)), up to translations the Lagrangian immersion L is

—ip
(&
L=

V_i_ilu(zﬁ(ul,...,im), (6.11)

where ¢ is a horizontal minimal immersion in S%(1) and v, o, u satisfy

dv dp du
x o —ve, pn s 24 ( )

dt
From (612]) we find

dv v __3_,u

— = . 6.13
dyp  2p 2u ( )

After solving (6I3]) we get v = ++/c2u~! — pu? for some real number ¢ > 0.

Replacing e5 by —es if necessary, we have

v=+/Aut—p2 (6.14)

It follows from ([6.12) an (6.I4) that ¢'(u) = —2/+/c2p~1 — p2. By solving
the last equation we find ¢ = —3itan™"/u3/(c — ®)+co for some constant
co- Therefore, we have the theorem after applying a suitable translation in
I O

Remark 6.2. Minimal §(2, 2)-ideal Lagrangian submanifolds in complex space
forms C?, CP% and CH?® are classified in [I3]. Also 6(2)-ideal minimal La-
grangian submanifolds in CP* and CH* have been classified recently in
[14].
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Let v(t) be a unit speed curve in C*. We put
30 = (B0, () = 0. (6,19
The following result gives H-umbilical submanifolds of C® with ratio 4.

Proposition 6.3. If M is an H-umbilical Lagrangian submanifold of C° of
ratio 4, then M is an open part of a complex extensor v ® v of the unit hy-
persphere v : S*(1) C E® via a generating curve vy : I — C* whose curvature
satisfies k = 46",

Proof. If M is an H-umbilical Lagrangian submanifold of C® with ratio 4,
then the second fundamental form satisfies

h(ej, e5) = pJes, hlej,es) = pJej, j €A,

hies,es) = 4pdes, hiejer) =0, 1 <j#k <4,

for a nonzero function p. Thus Gauss’ equation yields K (e1 A es) = 3u?.
Hence M is non-flat. Therefore, according to Theorem F, M is an open part
of a complex extensor of ¢ : S"~!(1) C E" via a generating curve v : I — C*.
It follows from [2] that the functions ¢ and p in (41]) are related with the
two angle functions ¢ and 6 by ¢ = ('(t) = k and pu = 6'(t). Thus whenever
~ is a unit speed curve satisfying x = 46’, the complex extensor v ® ¢ is
an H-umbilical Lagrangian submanifold of ratio 4. Conversely, every H-
umbilical Lagrangian submanifold of ratio 4 in C™ can be obtained in such

way. O

7. IMPROVED §(2,2)-IDEAL LAGRANGIAN SUBMANIFOLDS OF CP®

Theorem 7.1. Let M be an improved §(2,2)-ideal Lagrangian submanifold
in CP?(4). Then it is one of the following Lagrangian submanifolds:

(1) a 0(2,2)-ideal Lagrangian minimal submanifold;

(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(p,ug, ... ,ug) = %(\/ﬁei% (V2= —p— iu%)>7 (7.1)

where ¢ is a positive real number, ¢ : N* — S°(1) c C® is a hor-
izontal lift of a mon-totally geodesic §(2)-ideal Lagrangian minimal
immersion in CP*(4), and 0(u) satisfies
o 1
du 2 Aut—p2—1

(7.2)
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Proof. Under the hypothesis there is an orthonormal frame {eq, ..., e5} such
that (£I) holds. If p = 0, then M is a 6(2,2)-ideal Lagrangian minimal
submanifold. Thus we obtain case (1). If 4 # 0 and a,b = 0, then M is an
H-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that a,u # 0. Then Lemma implies b = 0. So, by
Lemmas [5.1] we obtain (5.I)) and (5.2)). Also, in this case M is locally a
warped product I X, N 4 with es = 9, according to Lemma [5.3] From
Lemma [£1] we find

h(e1,e1) = aJey + pJes, h(er,es) = —ades,
h(ez,e3) = —adey + pJes,
(7.3)
h(es,e3) = h(es,es) = pJes, h(es,es) = 4uJes,
hiei,es) = pJe;, i € A, h(e;,e;) =0, otherwise.
By Lemma 5.4 we have the following ODE system:
dv _ 2 o dp
7 1 —v"—3u°, pri 2uv. (7.4)
Let 6(t) be a function on M satisfying
0'(t) = . (7.5)

Let L denote the horizontal lift in S (1) C C° of the Lagrangian immer-
sion of M in C'P°(4) via Hopf ’s fibration. Consider the maps:
I Gy CR e L R U V2 V1T S
Vit Vit '
Then (£,§) = (¢,¢) = 1. From V. .e5 = ve;, j € A, and (Z4), we find
ﬁejg = 0. Moreover, it follows from Lemma [5.1] and (Z.3) that 66565 =

dipes — L. Thus we also hhve@eg)& = 0. Hence £ is a constant unit vector in

CS. Similarly, we also have @e5¢ = 0. So ¢ is independent of ¢t. Therefore,
by combining (Z.6]) we find

_ €i€¢ _ 6310(1/ _ lu)g

VItp2+v?
Since ¢ is orthogonal to &, i, after choosing ¢ = (0,...,0,1) € C® we obtain
1

L= \/ﬁ (eieqﬁ, 0y — iu)) (7.8)

L (7.7)
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It follows from (7.4]) and (7.5 that
dv _1+V2+3,u2 g1

7 — =, 7.9

du 2y T odp 2v (7.9)
Solving the first differential equation in (7.9) gives

v=4vcEut—p2 -1, ce R". (7.10)
By replacing e5 by —es if necessary, we have v = y/c2u~—1 — u2 — 1. Conse-

quently,
1 : .
LZE(Vmﬁ¢w&%v§—wﬁ—u—du%>, (7.11)
It follows from (B.1]), (T3]) and the second formula in (Z.6) that
Ce—i@
Vi
Thus after applying (6.11]) and (ZI2)) we derive that

Ve, ¢ = ej, j€A. (7.12)

@65@6a¢ = Z <]‘—‘f‘:] + lhfj> ¢*(ek) - <¢*(€Z), ¢*(6])> ¢, 0,5 € A, (7'13)
y=2

Hence ¢ is a horizontal immersion in S°(1). Moreover, it follows from (7.13))
that the second fundamental form of ¢ is a scalar multiple of the original
second fundamental form of M restricted to the second factor of the warped
product I x, N. Consequently, ¢ is a minimal horizontal immersion in
S9(1) of a non-totally geodesic §(2)-ideal Lagrangian minimal submanifold
of CP(4).

The converse is easy to verify. O

8. IMPROVED §(2,2)-IDEAL LAGRANGIAN SUBMANIFOLDS OF C'H”®
Theorem 8.1. Let M be an improved §(2,2)-ideal Lagrangian submanifold
in CH°(—4). Then M is one of the following Lagrangian submanifolds:

(i) a 6(2,2)-ideal Lagrangian minimal submanifold;
(ii) an H-umbilical Lagrangian submanifold of ratio 4;

(iii) a Lagrangian submanifold defined by

L(Mvulv s ,U4) = % (\/ﬁeie¢(u27 s 7u4)7e_i6( V #_#3 —c? - I/L%)>,
(8.1)
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where ¢ is a positive number, ¢ : N* — HY(—1) C C?} is a hor-
izontal lift of a mon-totally geodesic §(2)-ideal minimal Lagrangian
immersion in CH*(—4), and 0(t) satisfies % =iV1—p?2—cul;
(iv) a Lagrangian submanifold defined by
1/ . 3 .
L(p, ug, ... ug) = Z (e O =P+ —ip2), /e d(us, ... 7U4)),

(8.2)
where c is a positive number, ¢ : N* — S?(1) C C® is a horizontal lift
of a non-totally geodesic 6(2)-ideal minimal Lagrangian immersion
in CP*(4), and 0(t) satisfies % =1V1—p?+ 2l

(v) a Lagrangian submanifold defined by
1
Lt e = —|2¢ i h 2t — - =
(F s - ua) cosht—isinht( —|—w—|—1<cos (W, ¥) 4>’
1
U, 2t + w + i<cosh2t—(1/1,1/1>+z>> ,

(8.3)
where Y(uy,...,us) is a non-totally geodesic 6(2)-ideal Lagrangian
minimal immersion in C* and up to a constant w(uy, ..., uy) is the
unique solution of the PDE system: wy; = 2 <¢uj, i¢>, 7=1,2,3,4;

(vi) a Lagrangian submanifold defined by
1 1
Lt e = —|2¢ i h 2t — - =
(b, ua) cosht—isinht( —i—w—l—l(cos (W, ¥) 4>7
1
¢17¢27 2t +w +1<COSh2t_<¢7¢> +Z>> )

(8.4)
where 1 = (11,12) is the direct product immersion of two non-totally
geodesic Lagrangian minimal immersions ¥, : N> — C?, a = 1,2,
and up to a constant w(uy, ..., uys) is the unique solution of the PDE
system: wy; = 2 <1/)uj, 11/)>, 7=1234.

Proof. Under the hypothesis there exists an orthonormal frame {eq,...,e5}

such that (@) holds.

Case (1) p = 0. In this case, we obtain case (i) of the theorem.

Case (2): u# 0 and a,b = 0. In this case M is an H-umbilical Lagrangian

submanifold with ratio 4, which gives case (ii).

Case (3): p # 0 and at least one of a,b is nonzero. Without loss of

generality, we may assume a # 0 and g > 0. We divide this into two cases.
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Case (3.a): a,p # 0 and b = 0. By Lemmas [5.] we obtain (5.1)) and (5.2)).
Also, M is locally a warped product I X, N 4 with e5 = 0; according to
Lemma [5.3l From Lemma 1] we find

h(e1,e1) = aJer + pJes, h(er,es) = —ades,

h(ez,ez) = —aJey + pJes,

(8.5)
h(es,e3) = h(es,es) = pJes, h(es,es) = dudes,
hiei,es) = pJe;, i € A, h(e;,e;) =0, otherwise.

Let L be a horizontal immersion of M in H{*(—1) C C¢ of the Lagrangian
immersion of M in CH®(—4) via Hopf ’s fibration and 6(¢) a function sat-

isfying
de
From Lemma [5.4] we obtain the following ODE system:
dv _ o o dp
pri 1—3p* —v7, pri 2uv. (8.7)

It follows from (R.6]) and (8.7) that

dv 1-3p>—1v? do 1
wo_ L (8.8)
du 2uv du  2v

Solving the first differential equation in (B8] gives v = £4/1 — pu2 — kp~—!

for some real number k. By replacing es5 by —es if necessary, we find

1
v=+/1—p?—ku1, 4 _ . (8.9)
dp 24/1—p® — kp™!

It follows from (87) that 4(1 — u? — %) = —2v(1 — p? — v/2). Since this

equation for y(t) = 1 — u? — v? = ku~! has a unique solution for each given

initial condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): p? +v? < 1. In this case, (89) implies k > 0. Thus we may
put k = ¢, ¢ > 0. Consider the maps:

. e 310(es — (v +ip)L) 4= e 0 ((v—ip)es — L). (8.10)

/1_N2_V2 /1_N2_V2
Then (n,m) = 1 and (¢,¢) = —1. From V. .e5 = ve;, j € A, and [B.3]), we
obtain V. ;&€ = 0, where V is the Levi-Civita connection of C$. Lemma [51]
and (&3] give V,e5 = 4ipes + L. Thus we find V. = 0. So 7 is a constant
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unit vector. Also, we find @ES(b = 0. Hence ¢ is independent of . From
BI0) we get

06+ 0w — i)y

-2 =12

Since ¢ is orthogonal to 7,in and 7 is a constant unit space-like vector,

we conclude from (89) and (RII]) that L is congruent to (8. Next, by
applying the same method of the proof of Theorem [7.1] we conclude that ¢ is

L=

(8.11)

a horizontal immersion in H} (—1) whose second fundamental form is a scalar
multiple of the original second fundamental form restricted to the second
factor of I x, N. Consequently, ¢ is a minimal horizontal immersion in
H}(—1) of a non-totally geodesic §(2)-ideal Lagrangian minimal submanifold
of CH*(—4). This gives case (iii).

Case (3.a.2): p%+v? > 1. In this case (88) implies k < 0. Thus we may

put k = —c2, ¢ > 0. Now, we consider the maps:
)= e 31%(e5 — (v +ip)L) e ((v—ip)es — L)
V2 +rv2—1 Vi -1

instead. Then (¢, ») = — (n,n) = 1. By applying similar arguments as case

;= (8.12)

(3.a.1), we know that 7 is a constant time-like vector and ¢ is independent
of t and orthogonal to n,in. Moreover, we may prove that ¢ is a minimal
Legendre immersion in S?(1). Therefore we have case (iv) after choosing
n=(1,0,...,0).

Case (3.a.3): p? + % = 1. In this case system (87) gives % = 2(1? — 1)
and p = £v/1 — 2. Solving these and applying a suitable translations in t,
we find

u = sech2t, v = —tanh 2t. (8.13)

It follows from V.,es = 0, (8X) and (8I3) that the horizontal lift L of
the Lagrangian immersion of M in CH?(—4) C C{ satisfies

Ltt - 41( sech Zt)Lt —L=0. (814)

Solving this second order differential equation gives

d(ui, ..., uq) + B(ui,...,us)(2t + icosh 2t)

L =
cosht —isinht

(8.15)

9

where ¢(ui,...,us) and B(ug,...,us) are C$-valued functions.
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On the other hand, it follows from Lemma [5.1] (835) and (8I3)) that
Ly, = (isech 2t — tanh 2t)L,,;, j € A. (8.16)
Substituting (815) into (816 shows that B is a constant vector . Thus

d(ugy ... ug) (2t + icosh 2t)
L(t . =
(t ;- ) cosht —isinht cosht —isinht

Since (L, L) = —1, (817) implies
— cosh 2t = (¢, B) + (@, (4t 4 2i cosh 2t)¢) + (4t + cosh?(2t)) (¢, ¢) . (8.18)

¢, (8.17)

Since ¢y = 0, by differentiating (8.I8]) with respect ¢ we find
—sinh 2t = 2t (¢, ) + 2sinh 2t (¢, i) + (4t + sinh 4t) (¢, () . (8.19)
We find from (819 at ¢t = 0 that (¢, () = 0. Thus (8I9) gives
0 = sinh 2¢(1 + (¢, i()) + (4t + sinh 4¢) ((, ¢) . (8.20)

Differentiating (8:20)) gives (¢, i¢) = —3—2 (¢, ¢) . Thus (BI7) yields (¢, i¢) =
—% and (¢, () = 0. Now, we find from (BIS8]) that (¢, ¢) = 0. Consequently

we have

(6,0) = (¢.0) = (6,0) =0, (8,i¢) = —3. (8.21)
Since ( is a constant light-like vector, we may put

¢=(1,0,...,0,1), ¢=(aj+ibi,...,ae+ ibg). (8.22)

It follows from (82I)) and (822)) that ag = a; and bs = by + 3. Therefore

¢ = (a1 +ibr, a2 +1iba,...,a1 +i(b1 + 1)) (8.23)
Now, by using (¢, ¢) = 0 and [823]), we find ¢ = (ag + ibg, ..., a5 + ibs)
and b = —i — (1, ¢). Combining these with (8.23]) yields

6= (w=1w.0) - pou i)+ ) (5.24)

with w = a;. It follows from (8.22)) and (8:24)) that <gbuj, §> = <gbuj, i(> =0.
Thus, by applying <Luj, iL> =0, j € A, we find from (817 that <¢uj, i¢> =
0.

On the other hand, (8.24) implies that

<¢“j’ 1¢> = _%ij + <7/)ujy 1¢> (8'25)

with w,; = gT“;. Therefore w satisfies the PDE system: w,,; = 2 <¢uj, 11/)> .



24 B.-Y. CHEN, A. PRIETO-MARTIN, AND X. WANG

Now, we derive from (8I7), (822 and (823]) that
1 1
L=— - <2t+w+i <cosh2t— (4, 1) — Z) ,

cosht —isinht
(8.26)

Y, 2t +w+ i <cosh2t— (1, ) +%>> )

It follows from (B.20]) that

1
Luy = —————(w, = 1,0, oy, —1(6,0),). (8:27)

cosht —isinht

Thus we find <¢uj7¢uk> = cosh 2t <Luj,Luk> which implies that v is an
immersion in C* Also, we find from (827) and (Ly;,iLy,) = 0 that
<¢uj,i1/1uk> = 0. Thus ¢ is a Lagrangian immersion. Now, by applying
an argument similar to the last part of the proof of [I1, Theorem 6.1], we

conclude that
4

i=1
Therefore, according to (8.35]), ¢ is a §(2)-ideal minimal Lagrangian immer-

sion in C%. Consequently, we obtain case (v) of the theorem.

Case (3.b): a,b,u # 0. We obtain case (vi) of the theorem by applying

the same argument as case (3.a.3). 0
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