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EXISTENCE AND UNIQUENESS OF SOLUTION TO SEVERAL KINDS OF
DIFFERENTIAL EQUATIONS USING THE COINCIDENCE THEORY

D. Ariza-Ruiz* and J. Garcia-Falset

Abstract. The purpose of this article is to study the existence of a coincidence
point for two mappings defined on a nonempty set and taking values on a Banach
space using the fixed point theory for nonexpansive mappings. Moreover, this
type of results will be applied to obtain the existence of solutions for some classes
of ordinary differential equations.

1. INTRODUCTION

Some nonlinear problems arising in many areas of the applied sciences can be
formulated under a mathematical point of view involving the study of solutions of
equations of the form

(1) Find u ∈ X such that T (u) = S(u),

whereX is a nonempty set, Y is a Banach space, and T, S : X → Y are two mappings.

It is well known that the existence of a solution to problem (1) is, under appropriate
conditions, equivalent to the existence of a fixed point for a certain mapping. In this
sense, R. Machuca [30] proved a coincidence theorem by using Banach’s contraction
principle. This same principle was used by K. Goebel [18] to obtain a similar result
under much weaker assumptions, Goebel’s theorem allowed the author to give condi-
tions for existence of solutions of the differential equation x′(t) = f(t, x(t)). Recently,
several extensions of the above results due to Machuca and Goebel, as well as some
application to the existence of solutions for various types of functional equations, have
been obtained using generalizations of Banach’s principle, for instance see [5, 13, 35].
On the other hand, in 1977 Gaines and Mawhin [11] introduced coincidence degree
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theory. The main goal for them is to search for the existence of solutions of problem
(1) in some bounded open set X in a Banach space, for T being a linear operator and
S a nonlinear operator using Leray-Schauder degree theory for condensing mappings
(see [14, 39] for some sharpening results).

For more than forty years, the study of the existence of fixed points for nonexpansive
mappings has been an important object of research in Nonlinear Functional Analysis,
especially, the existence of fixed points for this kind of mappings from a closed convex
bounded subset of a Banach space into itself. This theory was started in 1965 by
Browder [4], Göhde [19] and Kirk [25]. This study was mainly based upon the
geometry of the underlyding Banach spaces. Thus, in order to simplify the statement,
it is usual to say that a Banach space X has the fixed point property for nonexpanisve
mappings (FPP for short) whenever each nonexpansive sefmapping of each nonempty
closed convex bounded subset of X has a fixed point. Kirk’s result says that reflexive
Banach spaces with normal structure have the FPP. In particular, uniformly convex
Banach spaces have normal structure (see [26] for more information). Nevertheless, it
is an easy task to find fixed point free nonexpansive sefmappings defined on closed
convex unbounded domains even when the supporting Banach space enjoys the FPP. To
solve this problem, for instance in [12], the authors considered several fixed point results
for nonexpansive mappings with unbounded domains satisfying additional asymptotic
contractive-type conditions in terms of a function G : X×X → R under the following
assumptions:

(a) G(λx, y) ≤ G(x, y) for any x, y ∈ X and λ > 0;
(b) there exists S > 0 such that 0 < G(x, x) for any x ∈ Xwith ‖x‖ ≥ S;
(c) G(x+ y, z) ≤ G(x, z) +G(y, z) for any x, y, z ∈ X ;
(d) for each y ∈ X there exists t > 0, such that if ‖x‖ ≥ t, then |G(y, x)| < G(x, x).

The use of a function G fulfilling the above assumptions yields the following result:
Let X be a Banach space with the FPP and let C be a closed convex unbounded subset
of X , If T : C → C is a nonexpansive mapping satisfying that there exists R > 0
such that for every x ∈ C with ‖x‖ ≥ R the inequality G(Tx, x) ≤ G(x, x) holds,
then T has a fixed point in C. Recently, it has been showed in [16] that, if C is a
closed convex unbounded subset of a Banach space (X, ‖ · ‖) and if T : C → C is a
nonexpansive mapping, then the following statements are equivalent:

1. There exist x0 ∈ C, R > 0 and a function G satisfying conditions (a)–(d) such
that G(Tx− x0, x− x0) ≤ G(x− x0, x− x0) for all x ∈ C,

2. There exist x0 ∈ C and R > 0 such that Tx − x0 �= λ(x − x0) for all λ > 1
and for all x ∈ C with ‖x− x0‖ ≥ R.

This fact is one of the main reasons for which our results will be expressed using
Leray-Schauder condition.
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On the other hand, in 1981, D. Alspach [3] found a fixed point free nonexpansive
mapping leaving invariant a weakly compact convex subset of L1[0, 1], this example
shows that there are Banach spaces without the FPP. In [26, Chapter 2] examples of
fixed point free nonexpansive mappings in a variety of Banach spaces are collected.
Therefore, if we wish to obtain positive fixed point results in Banach spaces without
the FPP, it will be necessary to add some additional conditions on the mapping. In this
sense, it is known [15, Corollary 3.3] that if C is a bounded closed convex nonempty
subset of a Banach space X and T : C → C is a nonexpansive mapping such that
I − T is ϕ-expansive (see definition below), then T has a unique fixed point.

In this paper, we obtain several versions of the coincidence problem (1) when the
Banach space Y has the FPP and also when it fails to have the FPP by using the fixed
point theory for nonexpansive mappings. These results allow us to study the existence
(and uniqueness) of solutions for the following classes of differential equations:

Problem 1.1. A three-point boundary value problem of second order:{
x′′(t)− g

(
t, x(t), x′(t), x′′(t)

)
= 0 for a.e. 0 ≤ t ≤ 1,

x(0) = 0, x′(1) = δx′(η),

where g : [0, 1]× R3 → R is a continuous function, δ �= 1 and η ∈ (0, 1).

The multi-point boundary value problems for differential equations arise from many
fields of applied mathematics and physics. This kind of problems for linear second
order ordinary differential equations was initiated in 1987 by II’in and Moiseev, and
motivated by the work of Bitsadze and Samarski on non-local linear elliptic boundary
problems, see [28] and the references therein.

Problem 1.2. A second order differential equation with homogeneous Dirichlet
condition: {

A(u′′(t))− sin
(
u(t)

)
= g(t), for t ∈ [0, 1]

u(0) = 0, u(1) = 0,

where the fixed function g ∈ C([0, 1]) is called the driving force, and A : R → R is a
certain known function.

This type of equations was motivated by the study of the forced oscillations of finite
amplitude of a pendulum in the absence of a damping force, see [41, Section 4.7].

Problem 1.3. A Cauchy problem with nonlocal initial data for fractional differential
equations of Caputo type:⎧⎨⎩

cDqx(t) = f(t, x(t)) in R+,

x(0) = x0 + g(x),
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where f ∈ C(R+ × R), 0 < q < 1, and cDqx is the Caputo fractional derivative.
Fractional derivatives provide an excellent tool for description of memory and hered-

itary properties of various materials and processes. This is one of the main advantage
of fractional differential equations in comparison with classical integer-order models.
A vast collection of real-world problems is drawn form fractional equations of Caputo
type, see [2] and the references therein.

2. NOTATIONS AND PRELIMINARIES

As it is usual, we shall denote by C(I) the set of continuous functions of I into R,
where I is a subset of R or R

2. We shall use AC([0, 1]) to denote the set of all real
absolutely continuous functions on [0, 1]. We shall also use the usual notation of the
Sobolev spaces W 1,2([0, 1]) and W 2,2([0, 1]) defined by

W 1,2([0, 1]) :=
{
x : [0, 1] → R | x ∈ AC([0, 1]) with x′ ∈ L2([0, 1])

}
,

and

W 2,2([0, 1]) :=
{
x : [0, 1] → R | x, x′ ∈ AC([0, 1]) with x′′ ∈ L2([0, 1])

}
,

where L2([0, 1]) is the classical Hilbert space endowed with its usual norm

‖x‖2 :=
[∫ 1

0

u(t)2ds
] 1

2

.

It is well known thatW 2,2([0, 1]) ⊆ C1([0, 1]) := {u : [0, 1] → R : u′ ∈ C([0, 1])}
with continuous injection.

Let D be a nonempty subset of a normed space (Y, ‖·‖). A mapping T : D → Y
is said to be nonexpansive if ‖T (x) − T (y)‖ ≤ ‖x− y‖ for all x, y ∈ D. Recall that
a Banach space Y satisfies the Fixed Point Property (the FPP, in short) whenever each
nonexpansive self-mapping of each nonempty closed convex bounded subset of Y has
a fixed point.

Let D be a nonempty subset of Y . A mapping T : D → Y is said to have the
range condition if

(2) D ⊆
⋂
λ>0

R(I + λ T ),

where R(I + λ T ) := {y ∈ Y : ∃x ∈ D : y = (I + λT )(x)} and I denotes the
identity mapping. The following result can be found in [31].

Lemma 2.1. Let C be a closed convex subset of a Banach space Y and let h be
a nonexpansive mapping of C into itself. Then I − h has the range condition.
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Recall Goebel’s theorem [18] which will be generalized in Section 4.1.

Theorem 2.1. Let X be an arbitrary nonempty set and let (Y, ρ) be a metric
space. Suppose that S, T : X → Y are two mappings such that T (X) is complete
and S(X) ⊆ T (X). If there exists a constant k ∈ [0, 1) such that ρ(S(x), S(y)) ≤
kρ(T (x), T (y)) for all x, y ∈ X , then the coincidence problem (1) has a solution.

There is a number of generalizations of metric spaces. One such generalization
is semi-metric spaces initiated by Fréchet [10], Menger [32], Chittenden [7] and Wil-
son [44].

Definition 2.1. Let X be a nonempty set. A semi-metric is a nonnegative real
function d : X ×X → R+ such that

(a) d(x, y) = 0 if, and only if, x = y;
(b) d(x, y) = d(y, x) for all x, y ∈ X .

As expected by (X, d) we denote a nonempty set X equipped with a semi-metric d
on X and call it a semi-metric space. Note that every metric space (or, more general,
every quasi-metric space [22]) is semi-metric but not conversely.

Throughout this paper, we shall denote by F the family of all nondecreasing func-
tions f : R+ → R+ such that f(r) = 0 if and only if r = 0.

Definition 2.2. Let (X, d) and (Y, ρ) be two semi-metric spaces. A mapping
A : X → Y is said to be ϕ-expansive if there exists a function ϕ ∈ F such that

ρ(A(x), A(y))≥ ϕ(d(x, y)) for all x, y ∈ X.

Finally, recall Bellman’s inequality which will be used in the last part of this work
(we refer to [34, Chapter XII] for a book treatment).

Lemma 2.2. If x : [0, T ] → R+ is a continuous function, x0 ∈ R, k ∈ L1
loc([0, T ],

R+), and

x(t) ≤ x0 +
∫ t

0

k(s) x(s) ds

for each t ∈ [0, T ], then x(t) ≤ x0 Exp
( ∫ t

0 k(s) ds
)

for all t ∈ [0, T ].

3. COINCIDENCE PROBLEM ASSUMING THE FPP

In this section we present a positive result to problem (1) when Y is a Banach
space enjoying the FPP. Later on, we will apply such result to discuss the existence of
a solution to Problem 1.1.

Theorem 3.1. Let X be a nonempty set and let (Y, ‖·‖) be a Banach space enjoying
the FPP. If T, S : X → Y are two mappings satisfying:
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(i) T (X) is a closed convex subset of Y ,
(ii) S(X) ⊆ T (X) and ‖S(x)− S(y)‖ ≤ ‖T (x)− T (y)‖ for all x, y ∈ X ,

(iii) there exist x0 ∈ X such that

‖T (x) − T (x0)‖ ≥ R ⇒ S(x)− T (x0) �= λ(T (x)− T (x0)) for all λ > 1,

then there exists at least one x in X such that T (x) = S(x).

Proof. Consider h : T (X) → 2T (X) given by h(x) = S(T−1(x)), where
T−1(x) :=

{
y ∈ X : T (y) = x

}
. Notice that the mapping h is single valued: Indeed,

if u, v ∈ h(x) since by definition there exist y, z ∈ T−1(x) such that u = S(y) and
v = S(z), assumption (ii) yields that

‖u− v‖ = ‖S(y)− S(z)‖ ≤ ‖T (z) − T (y)‖ = ‖x− x‖ = 0,

which implies that u = v. Therefore, h : T (X) → T (X) is well defined as a single-
valued mapping.

Now, we are going to see that h is nonexpansive. Indeed, fixed x, y ∈ T (X), there
exist u, v ∈ X with u ∈ T−1(x) and v ∈ T−1(y). Then, from assumption (ii),

‖h(x) − h(y)‖ ≤ ‖S(u)− S(v)‖ ≤ ‖T (u)− T (v)‖ = ‖x− y‖ .

Let us show that h has an almost fixed point (a.f.p. in short) sequence, that is, there
exists a sequence (yn) in T (X) ⊆ Y such that limn→∞(yn − h(yn)) = 0. Let
y0 = T (x0) ∈ T (X). By Lemma 2.1, we know that I − h : T (X) → Y satisfies the
range condition (2). Then, for each n ∈ N there exists yn = T (xn) ∈ T (X) such that

y0 =
(
I + n(I − h)

)
(yn),

that is,

(3)
n+ 1
n

(y0 − yn) = y0 − h(yn).

We claim that {yn}n∈N is bounded. Indeed, we shall prove that ‖yn − y0‖ ≤ R for
all n ∈ N. Assume, for a contradiction, that ‖yn − y0‖ > R for some n ∈ N, that
is, ‖T (xn) − T (x0)‖ > R. Bearing in mind (iii), we have that S(xn) − T (x0) �=
λ(T (xn) − T (x0)) for all λ > 1. From the definition of h, we get that h(yn) − y0 �=
λ(yn − y0) for all λ > 1 which contradicts (3).

Since {yn}n∈N is bounded, by (3), we have that

lim
n→∞ yn − h(yn) = lim

n→∞
1
n

(y0 − yn) = 0.

Let C :=
{
y ∈ T (X) : lim supn ‖yn − y‖ ≤ �

}
, with � := lim supn ‖yn − y0‖. Note

that C is nonempty because y0 ∈ C. It is easy to check that C is closed and convex.
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Moreover, h(C) ⊆ C. Indeed, for any y ∈ T (X), from the nonexpansiveness of h, we
have that

‖yn − h(y)‖ ≤ ‖yn − h(yn)‖+ ‖h(yn) − h(y)‖ ≤ ‖yn − h(yn)‖+ ‖yn − y‖ .

Taking upper limits as n→ ∞, we obtain that

lim sup
n→∞

‖yn − h(y)‖ ≤ lim sup
n→∞

‖yn − y‖ ≤ �,

because {yn}n∈N is an a.f.p. sequence.

Therefore, h|C is a nonexpansive self-mapping. Since Y has the FPP, there exists
at least one y∗ ∈ C ⊆ T (X) such that h(y∗) = y∗. Consider x∗ ∈ T−1(y∗) then
S(x∗) = h(y∗) = y∗ = T (x∗).

In the case that T may be surjective, we can drop some assumptions of the previous
theorem.

Corollary 3.1. Let X be a nonempty set and let (Y, ‖·‖) be a Banach space
enjoying the FPP. If T, S : X → Y are two mappings satisfying:

(i) T is surjective and ‖S(x)− S(y)‖ ≤ ‖T (x)− T (y)‖ for all x, y ∈ X ,
(ii) there exists x0 ∈ X such that

‖T (x) − T (x0)‖ ≥ R ⇒ S(x)− T (x0) �= λ(T (x)− T (x0)) for all λ > 1,

then there exists at least one x in X such that T (x) = S(x).

3.1. An existence principle to Problem 1.1.

The main aim of this section is to establish an existence principle for the three-point
boundary value problem. To be more precise, given g : [0, 1]× R

3 → R a continuous
function, δ �= 1 and η ∈ (0, 1), we shall prove, under appropriate hypotheses, that the
following problem

(P)

{
x′′(t)− g

(
t, x(t), x′(t), x′′(t)

)
= 0 for a.e. 0 ≤ t ≤ 1,

x(0) = 0, x′(1) = δx′(η),

has at least one solution in W 2,2([0, 1]).

Remark 3.1. In 1987 Il’in and Moiseev [24] initiated the study of multi-point
boundary value problems for linear second order ordinary differential equations. Since
then, many authors have studied more general nonlinear multipoint BVPs. Among the
techniques used for this study we highlight: the Leray-Schauder continuation theorem,
nonlinear alternative of Leray-Schauder, or coincidence degree theory. We refer the
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reader to [20, 28, 40] and references therein, for some recent results on this type of
nonlinear multi-point boundary value problems. As far as we know, all these multi-
point boundary value problems have a general differential equation of the form x′′(t) =
f
(
t, x(t), x′(t)

)
+ e(t). Nevertheless, by using Theorem 3.1, we can extend this type

of results to a more general class of differential equations depending on a nonlinear
function of the second derivative.

To study the existence of solution for the three-point boundary value problem (P), we
shall need the following technical results, see [37, Lemma 2.2] and [20, Theorem 2.3]
for their proofs, respectively.

Lemma 3.1. Let h : [0, 1] → R+ be Lebesgue integrable on each closed interval
contained in (0, 1] satisfying the following condition:

(4) There exists � ∈ R+ such that
∫ 1

t
h(s) ds ≤ �

t
for all 0 < t < 1.

Then for each x ∈W 1,2([0, 1]), with x(0) = 0, we have that

(5)
∫ 1

0
h(t) x(t)2dt ≤ 4�

∫ 1

0
x′(t)2dt.

For the sake of simplicity, for any �, we denote by Z(�) the set of non-negative
functions h : [0, 1] → R+ that are Lebesgue integrable on each closed interval contained
in (0, 1] and satisfy ∫ 1

t
h(s) ds ≤ �

t
for all 0 < t < 1.

On one hand, notice that if h ∈ L2([0, 1]) then h2 ∈ Z(�) with � ≥ ‖h‖2
2. However,

there exist functions h : [0, 1] → R with h2 ∈ Z(�), for some � > 0, such that
h �∈ L2([0, 1]). For instance, h(t) = 1

t �∈ L2([0, 1]) but h(t)2 = 1
t2

∈ Z(1).

On the other hand, if h : [0, 1] → R+ is a bounded measurable function with its
boundedness constant κ > 0, then h ∈ Z(κ

4 ).

Remark 3.2. In the case that h is a constant function, inequality (5) is not sharp.
Indeed, in this case, we have the well-known Wirtinger inequality [21, Theorem 256]:
Let x ∈W 1,2([0, 1]) be such that x(0) = 0, then

(6) ‖x‖2 ≤ 2
π

∥∥x′∥∥
2
.

Lemma 3.2. Let δ �= 1, and η ∈ (0, 1) be given. Let x ∈ W 2,2([0, 1]) be such
that x′(1) = δx′(η). Then ∥∥x′∥∥

2
≤ C(δ, η)

∥∥x′′∥∥
2
,
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where

C(δ, η) =

⎧⎨⎩ min
{√

F (δ, η),
2
π

}
if δ ≤ 0,√

F (δ, η) if δ > 0,

and

F (δ, η) =
1

2(δ − 1)2
[
δ2(1− η)2 + (δ2 − 2δ)η2 + 1

]
.

Consider the set X :=
{
u ∈W 2,2([0, 1]) : u(0) = 0, u′(1) = δu′(η)

}
and the

Hilbert space Y = (L2([0, 1]), ‖·‖2). Let T, S : X → Y be defined by T (u)(t) = u′′(t)
and S(u)(t) = g

(
t, u(t), u′(t), u′′(t)

)
. It is easy to see that both mappings T and S

are well-defined. Moreover, the mapping T : X → Y is surjective. Indeed, given a
function u ∈ Y if we consider the function

v(t) =
∫ t

0
(t− s)u(s) ds+

t

1 − δ

[∫ η

0
δu(s) ds−

∫ 1

0
u(s) ds

]
,

clearly, v ∈ X and T (v) = u, that is, T : X → Y is an onto mapping. This fact
allows us to guarantee that S(X) ⊆ T (X).

The following result will be essential in order to show the existence of solutions
for the three-point boundary value problem (P).

Proposition 3.1. Let p : [0, 1] → R be such that p2 ∈ Z(�) for some � ≥ 0, and
let Q,R be two constants. For each x ∈ X ,

(7)
∫ 1

0
p(t) |x(t)| ∣∣x′(t)∣∣ dt ≤ 2

√
� C(δ, η)2

∥∥x′′∥∥2

2
,

(8)
∫ 1

0

[
p(t) |x(t)|+Q

∣∣x′(t)∣∣ ]2dt ≤ [2√�+Q
]2
C(δ, η)2

∥∥x′′∥∥2

2
,

and

(9)
∫ 1

0

[
p(t) |x(t)| +Q

∣∣x′(t)∣∣+ R
∣∣x′′(t)∣∣ ]2dt ≤ Λ2

∥∥x′′∥∥2

2
,

where

(10) Λ :=
(
2
√
�+Q

)
C(δ, η) + R.

Proof. It is clear that (7) is a consequence of Hölder’s inequality, (5) and
Lemma 3.2. Let us prove inequality (8). Using Lemma 3.1, inequality (7) and
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Lemma 3.2, we obtain that∫ 1

0

[
p(t) |x(t)|+Q

∣∣x′(t)∣∣ ]2dt
=
∫ 1

0
p(t)2x(t)2dt+Q2

∫ 1

0
x′(t)2dt+ 2Q

∫ 1

0
p(t) |x(t)| ∣∣x′(t)∣∣ dt

≤ 4�
∥∥x′∥∥2

2
+Q2

∥∥x′∥∥2

2
+ 4Q

√
� C(δ, η)2

∥∥x′′∥∥2

2

≤ 4� C(δ, η)2
∥∥x′′∥∥2

2
+Q2C(δ, η)2

∥∥x′′∥∥2

2
+ 4Q

√
� C(δ, η)2

∥∥x′′∥∥2

2

=
[
2
√
�+Q

]2
C(δ, η)2

∥∥x′′∥∥2

2
.

In order to show (9), we use the previous inequality and Hölder’s inequality∫ 1

0

[
p(t) |x(t)| +Q

∣∣x′(t)∣∣+R
∣∣x′′(t)∣∣ ]2dt

=
∫ 1

0

[
p(t) |x(t)| +Q

∣∣x′(t)∣∣ ]2dt +R2

∫ 1

0
x′′(t)2dt

+2R
∫ 1

0

[
p(t) |x(t)|+Q

∣∣x′(t)∣∣ ] ∣∣x′′(t)∣∣dt
≤
[
2
√
�+Q

]2
C(δ, η)2

∥∥x′′∥∥2

2
+R2

∥∥x′′∥∥2

+2R
∥∥x′′∥∥

2

√∫ 1

0

[
p(t) |x(t)| +Q |x′(t)| ]2dt

≤
[
2
√
�+Q

]2
C(δ, η)2

∥∥x′′∥∥2

2
+R2

∥∥x′′∥∥2

+2R
[
2
√
�+Q

]
C(δ, η)

∥∥x′′∥∥2

2

=
[(

2
√
�+Q

)
C(δ, η) + R

]2 ∥∥x′′∥∥2

2
.

Now, we shall assume the following conditions on the function g

(H1) There exist two constants K2, K3 ≥ 0 and a function k1 : [0, 1] → R, with
k2

1 ∈ Z(�) for some � ≥ 0, such that

|g(t, u1, u2, u3) − g(t, v1, v2, v3)| ≤ k1(t) |u1 − v1|
+K2 |u2 − v2| +K3 |u3 − v3| ,

for all t ∈ [0, 1] and ui, vi ∈ R with i = 1, 2, 3. The function k1 and the
constants K2 and K3 also satisfy

(
2
√
�+K2

)
C(δ, η) +K3 ≤ 1.
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(H2) There exist two functions a1, a4 : [0, 1] → R with a2
1 ∈ Z(m) for some m ≥ 0

and a4 ∈ L2[0, 1], and two constantsA2, A3 ≥ 0 such that
(
2
√
m+A2

)
C(δ, η)+

A3 < 1 and

|g(t, u1, u2, u3)| ≤ a1(t) |u1| +A2 |u2| +A3 |u3| + a4(t)

for all t ∈ [0, 1] and ui ∈ R with i = 1, 2, 3.

Theorem 3.2. Equation (P) has a solution in W 2,2([0, 1]) ⊆ C1([0, 1]) whenever
assumptions (H1) and (H2) are satisfied.

Proof. Using (H1) and inequality (9) in Proposition 3.1, for any u, v ∈ X we
have that

‖S(u)− S(v)‖2
2

=
∫ 1

0

∣∣g(t, u(t), u′(t), u′′(t)) − g(t, v(t), v′(t), v′′(t))
∣∣2 dt

≤
∫ 1

0

[
k1(t) |u(t) − v(t)| +K2

∣∣u′(t) − v′(t)
∣∣+K3

∣∣u′′(t) − v′′(t)
∣∣]2 dt

≤
[(

2
√
�+K2

)
C(δ, η) +K3

]2 ∥∥u′′ − v′′
∥∥2

2

≤ ‖T (u)− T (v)‖2
2 ,

since
(
2
√
�+K2

)
C(δ, η) +K3 ≤ 1.

Finally, we have to check that T and S fulfill Leray-Schauder condition. Indeed,
since T (0) = 0, let us assume that u is a solution of the equation:

(11) T (u) = μS(u), for some μ ∈ (0, 1).

The above equality implies that

u′′(t) = μg
(
t, u(t), u′(t), u′′(t)

)
a.e. in [0, 1].

Assumption (H2) yields

|u′′(t)| ≤ μ
(
a1(t) |u(t)| +A2

∣∣u′(t)∣∣+ A3

∣∣u′′(t)∣∣+ a4(t)
)

a.e. in [0, 1],

hence,

∥∥u′′∥∥2

2
≤ μ2

∫ 1

0

[
a1(t) |u(t)|+ A2

∣∣u′(t)∣∣+A3

∣∣u′′(t)∣∣ ]2dt+ μ2 ‖a4‖2
2

+ 2μ2

∫ 1

0

[
a1(t) |u(t)|+ A2

∣∣u′(t)∣∣+A3

∣∣u′′(t)∣∣ ] a4(t)dt.
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By (9) and Hölder’s inequality, we deduce that∥∥u′′∥∥2

2
≤ μ2

[(
2
√
m+ A2

)
C(δ, η) +A3

]2 ∥∥u′′∥∥2

2
+ μ2 ‖a4‖2

2

+ 2μ2 ‖a4‖2

√∫ 1

0

[
a1(t) |u(t)|+ A2 |u′(t)| +A3 |u′′(t)|

]2
dt

≤ μ2
[(

2
√
m+ A2

)
C(δ, η) +A3

]2 ∥∥u′′∥∥2

2
+ μ2 ‖a4‖2

2

+ 2μ2 ‖a4‖2

[(
2
√
m+ A2

)
C(δ, η) +A3

] ∥∥u′′∥∥
2

= μ2
[((

2
√
m+A2

)
C(δ, η) +A3

) ∥∥u′′∥∥
2
+ ‖a4‖2

]2
.

Consequently

1 ≤ μ2

[(
2
√
m+A2

)
C(δ, η) + A3 +

‖a4‖2

‖u′′‖2

]2

.

Taking limits as ‖u′′‖2 goes to infinity we achieve a contradiction, because
(
2
√
m +

A2

)
C(δ, η) + A3 < 1. Therefore there exists R > 0 such that if u is a solution of

Eq. (11), then ‖T (u)‖ ≤ R.

Bearing in mind that Y is a Hilbert space and therefore it has the FPP, by Theo-
rem 3.1 we conclude that problem (P) has at least one solution in W 2,2([0, 1]).

Now we shall give an example of a family of functions g : [0, 1] × R
3 → R

satisfying hypotheses (H1) and (H2).

Let α : [0, 1] → R be such that α2 ∈ Z(m) for some m ≥ 0. Let f2, f3 : R → R

be two Lipschitzian functions with Lipschitz constants L2 and L3, respectively. Let
β : [0, 1] → R be a function in L2([0, 1]). Consider g : [0, 1]× R3 → R defined by

g(t, u1, u2, u3) = α(t)
2u2

1

1 + u2
1

+ f2(u2) + f3(u3) + β(t).

If ( 3
2

√
3m + L2)C(δ, η) + L3 ≤ 1 then g satisfies (H1) and (H2). Indeed, for any

t ∈ [0, 1] and ui, vi ∈ R, with i = 1, 2, 3, we have that

|g(t, u1, u2, u3) − g(t, v1, v2, v3)| ≤ |α(t)|
∣∣∣∣ 2u2

1

1 + u2
1

− 2v2
1

1 + v2
1

∣∣∣∣
+ |f2(u2) − f2(v2)|+ |f3(u3)− f3(v3)|

≤M |α(t)| |u1 − u2|
+ L2 |u2 − v2| + L3 |u3 − v3| ,
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where M := maxx∈R |f ′1(x)| = 3
√

3
4 with f1(x) = 2x2

1+x2 . Considering k1(t) =
M |α(t)| and Ki = Li for i = 2, 3, we get to (H1) because∫ 1

t
k1(s)2ds = M2

∫ 1

t
α(s)2ds ≤ M2m

t
for all 0 < t < 1,

that is, k2
1 ∈ Z(M2m). Since |f1(x)| ≤ |x| for all x ∈ R and f2, f3 are Lipschitz, we

infer that

|g(t, u1, u2, u3)| ≤ |α(t)| |u1| + L2 |u2| + L3 |u3| + |β(t) + f2(0) + f3(0)| .

Taking a1(t) = |α(t)|, Ai = Li for i =, 2, 3, and a4(t) = |β(t) + f2(0) + f3(0)|, we
have that g satisfies (H2) because by hypothesis a2

1 = α2 ∈ Z(m) and

1 ≥
(

3
2

√
3m+ L2

)
C(δ, η) + L3

>
(
2
√
m+ L2

)
C(δ, η) + L3 =

(
2
√
m+A2

)
C(δ, η) + A3.

Example 3.1. The problem⎧⎪⎨⎪⎩
x′′(t)3 + 2x′′(t)
x′′(t)2 + 3

=
κx(t)2

t+ t x(t)2
+ log

(
t
√

1 + 2ex′(t)
)

for a.e. 0 ≤ t ≤ 1,

x(0) = 0, 10x′(1) + x′( 1
2) = 0

has at least one solution in W 2,2([0, 1]) whenever |κ| ≤ 4π−6
9
√

3
. Indeed, in this case

C(δ, η) = C(−1
10 ,

1
2 ) = 2

π , α(t) = κ
2t ∈ Z(κ2

4 ), β(t) = log(t) ∈ L2([0, 1]), f2(z) =
log
(√

1 + 2ez
)

and
f3(z) =

z

z2 + 3

are two Lipschitzian functions with Lipschitz constants L2 = 1
2 and L3 = 1

3 , respec-
tively. Moreover,(

3
2

√
3m+ L2

)
C(δ, η) + L3 ≤ 1 ⇐⇒

(
3
√

3
2

|κ| + 1

)
1
π

+
1
3
≤ 1

⇐⇒ |κ| ≤ 4π − 6
9
√

3
.

4. COINCIDENCE PROBLEM WITHOUT ASSUMING THE FPP

In this section we establish several positive results to the Coincidence Problem (1)
when Y does not enjoy, necessarily, the FPP. Later on, we will apply such results to
discuss the existence and uniqueness of a solution to Problems 1.2 and 1.3.
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Theorem 4.1. Let (X, d) be a semi-metric space and let (Y, ‖·‖) be a Banach
space. Assume that T, S : X → Y are two mappings satisfying:
(C1) T (X) is a closed convex subset of Y ,
(C2) S(X) ⊆ T (X) and ‖S(x)− S(y)‖ ≤ ‖T (x)− T (y)‖ for all x, y ∈ X ,
(C3) There exists f ∈ F such that f(‖T (x)− T (y)‖) ≤ d(x, y) for all x, y ∈ X ,
(C4) T − S is ϕ-expansive,
(C5) there exist x0 ∈ X and R > 0 such that

‖T (x) − T (x0)‖ ≥ R ⇒ S(x)− T (x0) �= λ(T (x)− T (x0)) for all λ > 1.

Then there exists a unique x in X such that T (x) = S(x).

Proof. Consider h : T (X)→2T (X) given by h(x)=S(T−1(x)), where T−1(x)
:=

{
y ∈ X : T (y) = x

}
. Notice that, the argument developed in the proof of

Theorem 3.1 allows us to infer that h is a single-valued nonexpansive mapping, and
moreover that, there exists a bounded a.f.p. sequence (xn) in T (X).

Let us see that (xn) is a Cauchy sequence. Using (C2) and (C3),

‖(I − h)(xn) − (I − h)(xm)‖ = ‖(T − S)(un) − (T − S)(um)‖
≥ ϕ(d(un, um)) ≥ ϕ

(
f(‖xn − xm‖)),

where un ∈ T−1(xn) and um ∈ T−1(xm). Then, since (xn) is an a.f.p. sequence
it is clear that given ε > 0 there exists n0 ∈ N such that if n,m ≥ n0, then
ψ(‖xn − xm‖) := ϕ ◦ f(‖xn − xm‖) < ε. This means that (xn) is a Cauchy sequence
since ψ ∈ F .

Since T (X) is a closed subset of the Banach space Y there exists y∗ ∈ T (X) such
that xn → y∗. That is, h(y∗) = y∗. Consider x∗ ∈ T−1(y∗) then

S(x∗) = h(y∗) = y∗ = T (x∗).

Moreover, T and S have a unique coincidence point. Indeed, if there exists x′ in X
such that S(x′) = T (x′), then from (C4) we have that

ϕ(d(x∗, x′)) ≤ ∥∥(T − S)(x∗)− (T − S)(x′)
∥∥ = 0.

Since ϕ ∈ F , we obtain that x∗ = x′.

Corollary 4.2. Let (X, d) be a semi-metric space and let (Y, ‖·‖) be a Banach
space. Assume that T, S : X → Y satisfy the following properties:
(C1) T (X) is a closed convex subset of Y ,
(C2) S(X) ⊂ T (X) and ‖S(x)− S(y)‖ ≤ ‖T (x)− T (y)‖ for all x, y ∈ X ,
(C∗

3) T is uniformly continuous,
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(C4) T − S is ϕ-expansive,

(C5) there exist x0 ∈ X and R > 0 such that

‖T (x) − T (x0)‖ ≥ R ⇒ S(x)− T (x0) �= λ(T (x)− T (x0)) for all λ > 1.

Then there exists a unique x in X such that T (x) = S(x).

Proof. It is enough to see that condition (C3) in Theorem 4.1 holds. To this end,
we define the function f : R+ → R+ by

f(r) := inf
x,y∈T (X)
‖x−y‖≥r

{
d(u, v) : u ∈ T−1(x), v ∈ T−1(y)

}
.

It is easy to check that f is well-defined and f ∈ F . Let us prove that if r > 0 then
f(r) > 0. Arguing by contradiction, assume that there exist two sequences {xn} and
{yn} such that ‖xn − yn‖ ≥ r and there exist {un} and {vn} with un ∈ T−1(xn) and
vn ∈ T−1(yn) for each n ∈ N, such that d(un, vn) → 0 as n → +∞. Since T is
uniformly continuous, we get that

r ≤ lim sup
n→∞

‖xn − yn‖ = lim sup
n→∞

‖T (un) − T (vn)‖ = 0,

which is a contradiction.

4.1. A generalization of Goebel’s Theorem

In 1973, Geraghty [17] gave an interesting generalization of the contraction prin-
ciple using the class S of the functions α : R+ → [0, 1) satisfying the following
condition:

(12) lim
n→∞α(tn) = 1 implies lim

n→∞ tn = 0.

In this section we shall give a generalization of Goebel’s Theorem in the setting of
Banach spaces.

Theorem 4.2. Let X be a nonempty set and let (Y, ‖·‖) be a Banach space. If
T, S : X → Y are two mappings such that T is onto and there exists a decreasing
function α ∈ S satisfying

(13) ‖S(x)− S(y)‖ ≤ α
( ‖T (x)− T (y)‖ ) ‖T (x)− T (y)‖ for all x, y ∈ X.

Then, there exists at least one x∗ ∈ X such that T (x∗) = S(x∗). If, in addition, T is
injective, then the coincidence point x∗ is unique.
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Proof. Let us consider the equivalence relation R in X defined by xRy if, and
only if, T (x) = T (y). Given x ∈ X , let x̃ be the corresponding equivalent class and
consider the quotient set

X̃ :=
{
x̃ : x ∈ X

}
.

In X̃ we can define the metric d : X̃ × X̃ → R+ given by d(x̃, ỹ) = ‖T (x) − T (y)‖
where x ∈ x̃ and y ∈ ỹ. By definition of R, we have that the mapping T̃ : X̃ → Y
given by T̃ (x̃) = T (x) is well-defined. By (13), we infer that the mapping S̃ : X̃ → Y

given by S̃(x̃) = S(x) is also well-defined. Indeed, if y1, y2 ∈ x̃, by definition
of R, T (y1) = T (y2). Then, ‖S(y1)− S(y2)‖ ≤ ‖T (y1) − T (y2)‖ = 0, that is,
S(y1) = S(y2).

Now we will show that T̃ and S̃ satisfy the hypotheses of Theorem 4.1. Since
T is onto, Y is a Banach space and 0 ≤ α(t) < 1 for all t ≥ 0, clearly conditions
(C1)–(C2) are satisfied. Moreover, by definition of d and T̃ , we have that T̃ is an
isometry. Hence, condition (C3) holds. Furthermore, for any x, y ∈ X ,

‖(T̃ − S̃)(x̃) − (T̃ − S̃)(ỹ)‖ = ‖(T − S)(x)− (T − S)(y)‖
≥ ‖T (x)− T (y)‖ − ‖S(x)− S(y)‖
≥ ‖T (x)− T (y)‖ − α

( ‖T (x)− T (y)‖) ‖T (x)− T (y)‖
= ϕ(d

(
x̃, ỹ

)
),

that is, T̃ − S̃ is ϕ-expansive with ϕ(t) = (1 − α(t))t, because α is decreasing, i.e.,
condition (C4) is satisfied.

Finally, let us prove condition (C5). Since T is onto, there exists x0 ∈ X such
that T̃ (x̃0) = 0. By contradiction, assume that for each n ∈ N there exist λn > 1
and xn ∈ X , with ‖T (xn)‖ ≥ n, such that Sxn = λn T (xn). Then, using (13),
we have that ‖S(xn) − S(x0)‖ ≤ α

( ‖T (xn)‖ ) ‖T (xn)‖. By the triangle inequality,
λn ‖T (xn)‖ ≤ α

( ‖T (xn)‖ ) ‖T (xn)‖ + ‖S(x0)‖, that is,

1 < λn ≤ α
( ‖T (xn)‖ )+

‖S(x0)‖
‖T (xn)‖ ≤ α

( ‖T (xn)‖ )+
‖S(x0)‖

n
.

Taking limits as n → ∞ and bearing in mind that α(t) < 1 for all t ≥ 0, we obtain
that

(14) lim
n→∞α

( ‖T (xn)‖ ) = 1.

Now, (14) along with the fact that α ∈ S imply that ‖T (xn)‖ → 0 as n → ∞,
which is a contradiction. Therefore, there exists R > 0 such that if ‖T (x)‖ ≥ R, then
S(x) �= λT (x) for all λ > 1. That is, T̃ and S̃ satisfy condition (C5).
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Since T̃ and S̃ fulfill the conditions of Theorem 4.1, there exists a unique x̃∗ ∈ X̃

such that T̃ (x̃∗) = S̃(x̃∗). Using the definition of T̃ and S̃, we conclude that T (x∗) =
S(x∗).

Let us assume now that T is injective. In this case, we only have to show that
x̃∗ = {x∗}. Note that if there exist two points x∗1, x∗2 ∈ x̃∗, then T (x∗1) = T (x∗2) and
the injectivity of T yields that x∗1 = x∗2.

As a consequence of the above result we obtain Goebel’s theorem in the setting of
Banach spaces.

Corollary 4.3. Let A be an arbitrary nonempty set, (N, ‖·‖) be a normed space
and T, S : A→ N are two arbitrary mappings. Assume that S(A) ⊆ T (A), T (A) is
a complete subspace of N and there exists a constant k ∈ [0, 1) such that

‖S(x)− S(y)‖ ≤ k ‖T (x)− T (y)‖ for all x, y ∈ A.

Then, there exists at least one x∗ ∈ A such that T (x∗) = S(x∗). If, in addition, T is
injective, then the coincidence point x∗ is unique.

Proof. Just taking X = A and Y = T (X) with the norm ‖·‖. Since the

function α(t) =
{
k, t > 0
1, t = 0

is decreasing and belongs to S, we deduce the result

from Theorem 4.2.

4.2. On the generalized Ulam-Hyers stability

The stability problem of functional equations originated from a question of Ulam [42],
in 1940, concerning the stability of group homomorphisms. In the following year, Hy-
ers [23] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Thereafter, this type of stability is referred to a Ulam-Hyers stability.

Definition 4.1. [38] Let (X, d) be a semi-metric space and let (Y, ‖·‖) be a Banach
space. The coincidence problem (1) is said to be generalized Ulam-Hyers stable if and
only if there exists ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such
that for every ε > 0 and for each solution w∗ ∈ X of the approximative coincidence
problem

(15) ‖T (w∗)− S(w∗)‖ ≤ ε

there exists a solution z∗ of problem (1) such that

d(w∗, z∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) = ct for each t ∈ R+ then the coincidence problem
(1) is said to be Ulam-Hyers stable.
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Proposition 4.2. Suppose that we are under the assumptions of Theorem 4.1 and
additionally that the function ϕ ∈ F is strictly increasing and onto. Then, the coinci-
dence problem (1) is generalized Ulam-Hyers stable.

Proof. Let ε > 0 and w∗ ∈ X such that

‖T (w∗) − S(w∗)‖ ≤ ε.

Taking u ∈ X as the unique solution of the coincidence problem (1) we have

ε > ‖T (w∗)− S(w∗)‖ = ‖(T − S)(w∗)− (T − S)(u)‖ ≥ ϕ
(
d(w∗, u)

)
,

then d(w∗, u) ≤ ϕ−1(ε). This means that problem (1) is generalized Ulam-Hyers
stable.

Remark 4.3. Notice that if T−S is expansive, that is, there exists a constant c > 0
such that for all x, y ∈ X

‖(T − S)(x)− (T − S)(y)‖ ≥ c d(x, y),

then the coincidence problem (1) is Ulam-Hyers stable.

5. APPLICATIONS

In this section we will give two applications of results from the previous section to
Differential Equations and Fractional Differential Equations.

5.1. An existence and uniqueness result to Problem 1.2

We shall apply our coincidence point result (Theorem 4.1) to study the existence
of classical solutions for the following second order differential equation with homo-
geneous Dirichlet condition

(P)

{
A(u′′(t))− sin

(
u(t)

)
= g(t), for t ∈ [0, 1]

u(0) = 0, u(1) = 0,

where g ∈ C([0, 1]) and A : R → R are certain known functions.
Let Y = (C([0, 1]), ‖·‖∞) be the classical Banach space of the real continuous

functions u : [0, 1] → R endowed with its usual norm ‖u‖∞ := max{|u(t)| : t ∈
[0, 1]}. In the linear space C2([0, 1]) := {u : [0, 1] → R : u′′ ∈ C([0, 1])} we
introduce the following linear subspace

X :=
{
u ∈ C2([0, 1]) : u(0) = u(1) = 0

}
.

Notice that X endowed with the norm ‖u‖∗ := max
{ ‖u‖∞ , ‖u′‖∞ , ‖u′′‖∞

}
is a

Banach space. Using the Mean Value Theorem, one can prove, see [13], that ‖u‖∗ =
‖u′′‖∞ for all u ∈ X .
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Proposition 5.1. With the previous notation, assume that A satisfies the following
two properties:
(A1) A is continuous,
(A2) there exists a function f ∈ F such that f(|A(x) −A(y)|) ≤ |x − y| ≤ |A(x)|

−A(y), for all x, y ∈ R.

Then, problem (P) has a unique solution in C2([0, 1]) and, moreover, (P) is generalized
Ulam-Hyers stable.

Proof. We define T, S : X → Y by

T (u)(t) = A(u′′(t)) and S(u)(t) = sin
(
u(t)

)
+ g(t).

It is immediate to show that S is a nonexpansive mapping and that the Leray-
Schauder condition holds because S is bounded. Moreover, T and S satisfy (C2) in
Theorem 4.1. Indeed, for each u, v ∈ X , the expansiveness of A yields

‖S(u)− S(v)‖∞ = max
t∈[0,1]

|sin(u(t))− sin(v(t))| ≤ max
t∈[0,1]

|u(t) − v(t)|

≤ ∥∥u′′ − v′′
∥∥
∞ = max

t∈[0,1]

∣∣u′′(t) − v′′(t)
∣∣

≤ max
t∈[0,1]

∣∣A(u′′(t))− A(v′′(t))
∣∣

= ‖T (u)− T (v)‖∞ .

Now we shall prove that T satisfies (C3). Let u, v ∈ X . By (A2), we have that

f(|T (u)(t)− T (v)(t)|) = f(
∣∣A(u′′(t))− A(v′′(t))

∣∣) ≤ ∣∣u′′(t) − v′′(t)
∣∣

≤ ∣∣A(u′′(t)) −A(v′′(t))
∣∣ ≤ ‖T (u)− T (v)‖∞ .

Then,
max
0≤t≤1

f(|T (u)(t)− T (v)(t)|) ≤ ‖u− v‖∗ ≤ ‖T (u)− T (v)‖∞ .

Since f is nondecreasing, we obtain that

(16) f(‖T (u)− T (v)‖∞) ≤ ‖u− v‖∗ ≤ ‖T (u)− T (v)‖∞ .

Let us prove that T − S is ϕ-expansive, where ϕ : R+ → R+, given by

ϕ(r) :=

{
r − 2 sin

(
r
2

)
if 0 ≤ r ≤ π,

r − 2 if r > π,
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is onto and strictly increasing, and ϕ ∈ F . Let u, v ∈ X .

Case 1. If ‖u− v‖∗ ≤ π. Notice that for each t ∈ [0, 1] we obtain that

‖(T − S)(u)− (T − S)(v)‖∞
≥ |(T − S)(u)(t)− (T − S)(v)(t)|
=
∣∣A(u′′(t)) −A(v′′(t)) − ( sin(u(t))− sin(v(t))

)∣∣
≥ ∣∣A(u′′(t)) −A(v′′(t))

∣∣− 2
∣∣∣sin (u(t)−v(t)

2

)
cos
(u(t)+v(t)

2

)∣∣∣
≥ ∣∣u′′(t)− v′′(t)

∣∣− 2
∣∣∣sin (u(t)−v(t)

2

)∣∣∣ .
By symmetry we can assume that u(t) ≥ v(t), then sin

(u(t)−v(t)
2

) ≥ 0. In this case,

‖(T − S)(u)− (T − S)(v)‖∞ ≥ ∣∣u′′(t) − v′′(t)
∣∣− 2 sin

(u(t)−v(t)
2

)
≥ ∣∣u′′(t) − v′′(t)

∣∣− 2 sin
(‖u−v‖∗

2

)
,

because the function r �→ sin(r) is increasing in [0, π
2 ]. Then,

‖(T − S)(u)− (T − S)(v)‖∞ ≥ ∥∥u′′ − v′′
∥∥
∞ − 2 sin

(‖u−v‖∗
2

)
= ‖u− v‖∗ − 2 sin

(‖u−v‖∗
2

)
= ϕ(‖u− v‖∗) .

Case 2. Suppose that ‖u − v‖∗ > π. Using (16), we get that

‖(T − S)(u)− (T − S)(v)‖∞ ≥ ‖T (u) − T (v)‖∞ − ‖sin(u) − sin(v)‖∞
≥ ‖u− v‖∗ − 2 = ϕ(‖u− v‖∗) .

By Theorem 4.1 there exists a unique x ∈ X such that S(x) = T (x), that is, x is
a unique solution of the problem (P). Furthermore, using Proposition 4.2 we have that
problem (P) is generalized Ulam-Hyers stable.

Notice that the assumption (A2) in Proposition 5.1 is a natural one, since we can
easily find functions satisfying (A2). For example, given k ∈ R with k ≥ 2, the
function A : R+ → R+ defined by

A(x) :=

{
2
√
x if 0 ≤ x ≤ 1,

k x if x > 1,
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satisfies property (A2) with

f(t) = min
{
t2

4
,
t

k

}
.

To see this, we shall distinguish three cases. Let x, y ∈ R+.

Case 1. Suppose that 0 ≤ y ≤ x ≤ 1. Notice that |A(x)− A(y)| = 2
√
x− 2

√
y ≤ 4

k .
Then,

f(|A(x)− A(y)|) =
(√
x−√

y
)2 ≤ x− y

≤ 1√
ξ

(x− y) =
∣∣A′(ξ)

∣∣ |x− y| = |A(x) −A(y)| ,

where ξ ∈ (x, y).

Case 2. If 0 ≤ y ≤ 1 < x, we have

f(|A(x)− A(y)|) ≤ |A(x)− A(y)|
k

≤ x−√
y ≤ x− y.

Moreover,
|x− y| ≤ |A(x) −A(y)| ⇐⇒ 2

√
y − y ≤ (k− 1)x

which is true because 0 ≤ y ≤ 1 < x and k ≥ 2.

Case 3. Assume that 1 ≤ y ≤ x.

f(|A(x)− A(y)|) ≤ |A(x) −A(y)|
k

= |x− y| ≤ k |x− y| = |A(x) −A(y)| .

Remark 5.1. Note that property (A1) in Proposition 5.1 is necessary, given that (A2)
does not imply the continuity of A. Indeed, just take k > 2 in the previous example.

Recently in [13], the existence and uniqueness of solutions for the following prob-
lem has been proved

(Pa)

{
u′′(t) − a2 sin

(
u(t)

)
= f0(t), for t ∈ [0, 1]

u(0) = 0, u(1) = 0,

where the fixed function f0 ∈ Y is called the driving force, and the constant a �= 0
depends on the length of the pendulum and on gravity. In their result, they required
the hypothesis |a| < 1. We can apply the previous proposition in order to improve this
result assuming that |a| ≤ 1. Indeed, it is enough to take A(r) = r

a2 and g(t) = f0(t)
a2 .
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Remark 5.2. The Ulam-Hyers stability can be used to get a region of localization
of the solution of problem (P) although this solution may be unknown. For instance,
for the previous problem (Pa), with |a| = 1 and f0(t) = sin(πt) (see [41, Section 4.7])
taking the following functions as initial data

w1(t) = 0

w2(t) = (t− 1)
t

4

w3(t) = −sin(π t)
π2

w4(t) = −sin(π t)
π2

+ sin
( sin(π t)

π4

)
,

we obtain the computable results shown in Table 1 and Figure 1 by using Mathematica�

version 9.0.

Initial data ε ψ(ε)
w1(t) 1 2.994600778191
w2(t) 0.5 2.342459305003
w3(t) 0.1011479123607 1.354285018462
w4(t) 0.0103862353036 0.630389524267

Table 1. Results of generalized Ulam-Hyers stability for problem (Pa) in the sense
that if ‖T (wi) − S(wi)‖∞ ≤ ε then ‖wi − x‖∞ ≤ ψ(ε), where x is the
unique solution of (Pa).

Fig. 1. Several regions of localization of the solution of problem (P) for the above initial datum
wi.
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5.2. An application to Fractional Differential Equations
In this section we shall study the Cauchy problem (CP) with the nonlocal conditions

for fractional differential equations of Caputo type

(CP)

⎧⎨⎩
cDqx(t) = f(t, x(t)) in R+,

x(0) = x0 + g(x),

where f ∈ C(R+ × R), 0 < q < 1, cDqx is the fractional derivative of x which is
defined by

cDqx(t) :=
1

Γ(1 − q)

∫ t

0

(t− s)−qx′(s) ds,

where Γ denotes to the Gamma function, x0 ∈ R, and g(x) is defined by

g(x) =
N∑

i=1

gi(x(ti)),

where each gi : R → R is ci-Lipschitziann, and 0 < t1 < t2 < · · · < tN <∞. Notice
that g is Lg-Lipschitzian with Lg =

∑N
i=1 ci, since each gi is ci-Lipschitzian.

Deng [8] used this class of nonlocal condition with gi(x(ti)) = cix(ti), for each i =
1, . . . , N , pointing out that, unlike the classical Cauchy problem with initial condition
x(0) = x0, one can obtain a better effect using the nonlocal condition x(0)+g(x) = x0.
For instance, to describe the diffusion phenomenon of a small amount in a transparent
tube. In this case, the Cauchy problem allows the additional measurements at ti, for
i = 1, . . . , N .

Recently, N’Guérékata [36, Theorem 2.1] proved the following result on the exis-
tence and uniqueness of solution to problem (CP) on a bounded interval.

Theorem 5.1. [36] Suppose that the following conditions are satisfied:

1. f : R × R → R is jointly continuous,

2. |f(t, x)− f(t, y)| ≤ L|x− y|, for all t ∈ R, and for every x, y ∈ R,

3. g : C([0, T ]) → R is continuous and |g(x) − g(y)| ≤ b‖x − y‖∞ for every
x, y ∈ C([0, T ]).

If b < 1
2 and L ≤ Γ(q+1)

2T q , then equation (CP) has a unique solution u ∈ C([0, T ]).

At this point, we have to say that although Theorem 2.1 in [36], in its original
form, is stated in the framework of Banach spaces, here we have only given a particular
version on the real line. By using Corollary 4.3 (see Theorem 5.2) we shall extend this
fact to the unbounded interval [0,+∞).
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On the other hand, the initial value problem (IVP) for fractional differential equa-
tions of Caputo type is a particular case of the Cauchy problem (CP).

(IVP)

{
cDqx(t) = f(t, x(t)) in R+,

x(0) = x0.

Indeed, in this case, g is the null function and thus, for convenience, we may consider
that tN = 0.

Since f is assumed continuous, (CP) is equivalent to the following Volterra integral
equation.

(17) x(t) = x0 + g(x) +
1

Γ(q)

∫ t

0

(t− s)q−1f
(
s, x(s)

)
ds, for t ≥ 0.

Then, every solution of (17) is also a solution of (CP) and vice versa. See [27,
p. 54], or [9, pp. 78, 86, 103], for its proof.

Now, the ideas developed in [6] allow us to obtain the following result.

Theorem 5.2. Let 0 < q < 1. Assume that f : R+ × R → R is a continuous
function. If there exists a positive constant Lf such that

|f(s, u)− f(s, v)| ≤ Lf |u− v| for all u, v ∈ R and a.e. s ≥ 0,

then equation (17) (and, therefore (CP)) has a unique solution in C(R+) whenever

Lf

Γ(q)

(
tqN
q

)
+ Lg < 1.

To show the uniqueness of solutions to problem (CP) we need the following result
which is a consequence of Bellman’s inequality.

Lemma 5.1. Let u : [0, T ] → R+ be a continuous function such that

u(t) ≤ α

∫ t

0
(t− s)q−1u(s) ds for all t ∈ [0, T ],

where α, q > 0. Then, u(t) = 0 for all t ∈ [0, T ].

Proof. Consider p = q+1
q > 1 and p̂ = q + 1. Note that 1

p + 1
p̂ = 1. By Hölder’s

inequality, for each t ∈ (0, T ],

u(t) ≤
∫ t

0
α (t− s)q−1es e−su(s) ds

≤ α

(∫ t

0
(t− s)(q−1)p̂ep̂s ds

) 1
p̂
(∫ t

0

(
e−su(s)

)p
ds

)1
p

< αM(q) et
(∫ t

0

(
e−su(s)

)p
ds

) 1
p

,
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where M(q) :=
(
Γ(q2) (q + 1)−q2) 1

q+1 , because∫ t

0

(t− s)(q−1)p̂ep̂s ds = ep̂t

∫ t

0

r(q−1)p̂e−p̂r dr =
ep̂t

p̂

∫ p̂t

0

(
z
p̂

)(q−1)p̂
e−z dz

=
ep̂t

p̂(q−1)p̂+1

∫ p̂t

0
z(q−1)p̂e−z dz = ep̂t p̂−q2

∫ p̂t

0
zq2−1e−z dz

< ep̂t p̂−q2
Γ
(
q2
)
,

since (q − 1)p̂+ 1 = q2. Then,

(
e−tu(t)

)p ≤ αp M(q)p

∫ t

0

(
e−su(s)

)p
ds for all t ∈ [0, T ].

By Bellman’s inequality,(
e−tu(t)

)p ≤ 0 · Exp
(
αpM(q)p t

)
= 0 for each t ∈ [0, T ].

Therefore, u(t) = 0 for all t ∈ [0, T ].

Now, we can give the proof of Theorem 5.2.

Proof. Since limλ→∞(λLf)q = +∞, we may take a λ > 0 satisfying both
q

Lf tN
< λ and Lf

Γ(q)

(
tqN
q + Γ(q)

(λLf)q

)
+ Lg < 1. Let us consider the set

Xλ :=
{
u ∈ C(R+) : sup

t≥0

|u(t)|
ωλ(t)

<∞
}
,

where ωλ : R+ → [1,∞) is defined by

ωλ(t) :=

⎧⎨⎩
eλLf tN if 0 ≤ t ≤ tN ,

eλLf t if t ≥ tN ,

and also the Banach space Y = BC(R+) of bounded continuous functions endowed
with the norm ‖u‖∞ := supt≥0 |u(t)|. We define the mappings T, S : Xλ → Y given
by

T (u)(t) =
u(t) − x0

ωλ(t)

and

S(u)(t) =
1

ωλ(t) Γ(q)

∫ t

0
(t− s)q−1f(s, u(s)) ds+

g(u)
ωλ(t)

.
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Notice that (17) can be written as a coincidence problem in the following form:

find u ∈ Xλ such that T (u) = S(u).

Let u, v ∈ Xλ. For each t ≥ 0, we have that

|S(u)(t)− S(v)(t)| ≤ 1
ωλ(t) Γ(q)

∫ t

0

(t− s)q−1 |f(s, u(s))− f(s, v(s))| ds

+
|g(u)− g(v)|

ωλ(t)

≤ 1
ωλ(t) Γ(q)

∫ t

0

(t− s)q−1Lf |u(s) − v(s)| ds

+

N∑
i=1

ci |u(ti) − v(ti)|

ωλ(t)

≤ Lf

ωλ(t) Γ(q)

∫ t

0

(t− s)q−1 |u(s) − v(s)| ds

+
N∑

i=1

ci
|u(ti) − v(ti)|

ωλ(ti)
,

since ωλ(t) ≥ ωλ(ti) for all t ≥ 0. Hence,

|S(u)(t)− S(v)(t)| ≤ Lf

Γ(q)

∫ t

0
(t− s)q−1ωλ(s)

ωλ(t)
ds ‖T (u) − T (v)‖∞

+ Lg ‖T (u) − T (v)‖∞ .

Now we shall prove that, for every t ≥ 0,∫ t

0

(t− s)q−1ωλ(s)
ωλ(t)

ds ≤ tqN
q

+
Γ(q)

(λLf)q
.

To this end, we consider two cases.

Case 1. If 0 ≤ t ≤ tN , then
ωλ(s)
ωλ(t)

= 1 for all 0 ≤ s ≤ t. Hence,

∫ t

0
(t− s)q−1ωλ(s)

ωλ(t)
ds =

∫ t

0
(t− s)q−1ds =

tq

q
≤ tqN

q
.

Case 2. If t ≥ tN ,
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∫ t

0

(t− s)q−1ωλ(s)
ωλ(t)

ds

=
∫ tN

0
(t− s)q−1ωλ(s)

ωλ(t)
ds+

∫ t

tN

(t− s)q−1ωλ(s)
ωλ(t)

ds

=
∫ tN

0

(t− s)q−1e−λLf (t−tN )ds+
∫ t

tN

(t− s)q−1e−λLf (t−s)ds

≤ e−λLf (t−tN ) t
q − (t− tN )q

q
+

Γ(q)
(λLf)q

,

since ∫ t

tN

(t− s)q−1e−λLf (t−s)ds =
∫ t−tN

0
xq−1e−λLf xdx

≤
∫ ∞

0
xq−1e−λLf xdx =

Γ(q)
(λLf)q

.

Moreover, for each t ≥ tN we have that
tq − (t− tN )q

q
e−λLf (t−tN ) ≤ tq

q
e−λLf (t−tN) ≤ 1

q
sup
s≥tN

sq e−λLf (s−tN ) =
tqN
q
,

since
q

Lf tN
< λ. Then,

∫ t

0
(t− s)q−1ωλ(s)

ωλ(t)
ds ≤ tqN

q
+

Γ(q)
(λLf)q

.

Therefore, for all t ≥ 0,

|S(u)(t)− S(v)(t)| ≤
[
Lf

Γ(q)

(
tqN
q

+
Γ(q)

(λLf)q

)
+ Lg

]
‖T (u)− T (v)‖∞ .

Then,

‖S(u)− S(v)‖∞ ≤
[
Lf

Γ(q)

(
tqN
q

+
Γ(q)

(λLf)q

)
+ Lg

]
‖T (u)− T (v)‖∞ .

Applying Corollary 4.3, we deduce that there exists a unique u ∈ Xλ such that S(u) =
T (u), that is, problem (CP) has at least one solution in Xλ, in particular, in C(R+).

Now, we prove the uniqueness of solutions to problem (CP) in C(R+). Assume
that there exist two solutions x and y of problem (CP) in C(R+). Let us see that
x(t) = y(t) for all t ≥ 0. Notice that, for each t ≥ 0,

|x(t) − y(t)| ≤ |g(x)− g(y)|+
∫ t

0
(t− s)q−1 |f(s, x(s))− f(s, y(s))| ds

≤
N∑

i=1

ci |x(ti)− y(ti)|+
∫ t

0
(t− s)q−1 Lf |x(s) − y(s)| ds.
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Let t∗ ∈ {t1, . . . , tN} be such that

|x(t∗) − y(t∗)| = max
1≤i≤N

|x(ti) − y(ti)| .

Then, for t = t∗, we have that

|x(t∗)− y(t∗)| ≤ Lg |x(t∗) − y(t∗)|+
∫ t∗

0
(t∗ − s)q−1 Lf |x(s) − y(s)| ds.

Since 0 ≤ Lg < 1, there exists ρ ∈ (Lg, 1). Hence,

|x(t∗) − y(t∗)| <
∫ t∗

0
k(s) |x(s)− y(s)| ds,

where k(s) = (t∗ − s)q−1 Lf

1 − ρ
. By continuity, there exists δ > 0 such that for all

t ∈ [t∗ − δ, t∗ + δ]

|x(t) − y(t)| ≤
∫ t

0
k(s) |x(s) − y(s)| ds.

Using Bellman’s inequality we deduce that for all t ∈ [t∗ − δ, t∗ + δ]

|x(t) − y(t)| ≤ 0 e
∫ t
0 k(s) ds = 0.

In particular, for t = t∗ we obtain x(t∗) = y(t∗). By definition of t∗, we get that
x(ti) = y(ti) for all i = 1, . . . , N . Then, for all t ≥ 0,

|x(t) − y(t)| ≤
∫ t

0
(t− s)q−1 Lf |x(s) − y(s)| ds.

Fix T > 0. By Lemma 5.1, we have that x(t) = y(t) for all t ∈ [0, T ]. Taking
T → ∞, we deduce that x = y.

As a consequence of Theorem 5.2, we get the existence and uniqueness of solutions
of problem (IVP) in C(R+).

Corollary 5.1. If f : R+ × R → R is a continuous function and Lipschitzian with
respect to the second variable, then problem (IVP) has a unique solution in C(R+).
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