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Abstract: In [13] Zamfirescu gave a fixed point theorem that generalizes the classical fi-
xed point theorems by Banach, Kannan and Chatterjea. In this paper, we follow the ideas
of Dugundji and Granas to extend Zamfirescu’s fixed point theorem to the class of weakly
Zamfirescu maps. A continuation method for this class of maps is also given.

1 Introduction
Throughout all this paper, (X, d) will be a metric space, D a subset of X and
f : D → X will be a map. We say that f is contractive if there exists α ∈ [0, 1)
such that, for all x, y ∈ D,

d(f(x), f(y)) ≤ αd(x, y). (C)

The well known Banach’s fixed point theorem asserts that if D = X, f is
contractive and (X, d) is complete, then f has a unique fixed point x ∈ X, and
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for any x0 ∈ X the sequence {Tn(x0)} converges to x. This result has been
extended by several authors to some classes of maps which do not satisfy the
contractive condition (C). For instance, two conditions that can replace (C) in
Banach’s theorem are the following:

(Kannan, [9]) There exists α ∈ [0, 1) such that, for all x, y ∈ X,

d(f(x), f(y)) ≤ α

2
[d(x, f(x)) + d(y, f(y))] . (K)

(Chatterjea [3]) There exists α ∈ [0, 1) such that, for all x, y ∈ X,

d(f(x), f(y)) ≤ α

2
[d(x, f(y)) + d(y, f(x))] . (Ch)

The conditions (C), (K) and (Ch) are independent as it will be showed in Sec-
tion 2 (see also [11] and [5]).

After these three results, many papers have been written generalizing some
of the conditions (C), (K) or (Ch), or even the three conditions simultaneously.
In 1972, Zamfirescu [13], combining the conditions (C), (K) and (Ch), obtained
a fixed point theorem for the class of maps f : X → X for which there exists
ζ ∈ [0, 1) such that

d(f(x), f(y)) ≤ ζ max
{
d(x, y),

1
2
[
d(x, f(x)) + d(y, f(y))

]
,

1
2
[
d(x, f(y)) + d(y, f(x))

]}
.

(Z)

A mapping satisfying (Z) is commonly called a Zamfirescu map. Note that the
class of Zamfirescu maps is a subclass of the class of mappings f satisfying the
following condition: there exists 0 ≤ q < 1 such that

d(f(x), f(y)) ≤ q max
{
d(x, y), d(x, f(x)), d(y, f(y)),

1
2
[
d(x, f(y)) + d(y, f(x))

]}
.

(Q)

The class of mappings satisfying (Q) was introduced and investigated by Ćirić [4]
in 1971, who obtained a fixed point theorem under this contractive condition.
A somewhat different way of generalizing Banach’s theorem was followed by
Dugundji and Granas [6], who extended Banach’s theorem to the class of weakly
contractive maps. The concept of weakly contractive map was introduced in [6]
by replacing the constant α, in (C), by a function α = α(x, y): we say that
f : X → X is weakly contractive if there exists α : X ×X → [0, 1], satisfying
that θ(a, b) := sup{α(x, y) : a ≤ d(x, y) ≤ b} < 1 for every 0 < a ≤ b, such
that, for all x, y ∈ X,

d(f(x), f(y)) ≤ α(x, y) d(x, y).

Following this fashion, it was shown in [2] that Kannan’s fixed point theorem
for Kannan maps (those satisfying (K)) could be extended to the new class of
weakly Kannan maps. An immediate question is whether these arguments also
work for maps of type Chatterjea (those satisfying (Ch)). More generally, we
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may pose the question of whether condition (Q) in Ćirić’s theorem could be
replaced by the corresponding weak concept, as done by Dugundji and Granas
with the concept of weakly contractive maps. But this question has a negative
answer, as it was shown by Sastry [12] by giving a simple example. Nevertheless,
we are able to show that the above question has an affirmative answer for the
class of Zamfirescu maps. This will be done in Section 3. In Section 2 we include
several examples that separate each of the conditions (C), (K) and (Ch) from
the others, and the same is done for the corresponding weak concepts. Finally,
in Section 4 we give a continuation method for the class of maps introduced in
this paper.

2 Weakly Zamfirescu maps
Although Rhoades [11] showed that the conditions (C) and (K) are independent,
as far as we know nothing more is known on this question. The aim of this
section is to separate definitively the concepts (C), (K) and (Ch), as well as the
corresponding weak concepts.

The concept of contractive map was generalized by Dugundji and Granas [6]
as follows.

Definition 1. We say that f : D → X is a weakly contractive map if there exists
α : D ×D → [0, 1], satisfying that

θ(a, b) := sup{α(x, y) : a ≤ d(x, y) ≤ b} < 1

for every 0 < a ≤ b, such that, for all x, y ∈ D,

d(f(x), f(y)) ≤ α(x, y) d(x, y). (1)

Remark 2. As in the case of a contractive map, any weakly contractive map has
at most one fixed point.

Remark 3. Notice that if f : D ⊂ X → X is a weakly contractive map and we
define αf (x, y) on D ×D as

αf (x, y) =


d(f(x),f(y))

d(x,y) , if x 6= y;

0, otherwise,
(2)

then αf is well defined, takes values in [0, 1], satisfies sup{αf (x, y) : a ≤
d(x, y) ≤ b} < 1 for all 0 < a ≤ b, and αf is smaller than any α associated
to f , and also satisfies (1), with α replaced by αf , for all x, y ∈ D. Conversely,
if αf is defined as in (2) and satisfies the above set of conditions, then f is
a weakly contractive map, establishing in this way an equivalent definition for
weakly contractive maps.

The following two examples show that the class of weakly contractive maps
is larger than the class of contractive maps.

Example 4. Consider the subset D = [0, π/2] of the metric space X = R with
the usual metric d(x, y) = |x− y|, and let f : D → X be the function defined as
f(x) = sin(x). Then f is a weakly contractive map, but not a contractive map.
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First of all, we will see that the map f does not satisfy the contractive
condition (C). To do this, simply note that

lim
x→0

d(f(x), f(0))
d(x, 0)

= lim
x→0

sin(x)
x

= 1.

To check that f is a weakly contractive map, consider the function αf : [0, π/2]×
[0, π/2]→ R given by (2). This function is well defined and also takes values in
[0, 1], since for every x, y ∈ [0, π/2], we have | sin(x)− sin(y)| ≤ |x− y|.

Next, assume that 0 < a ≤ b and let us see that θ(a, b) = sup{α(x, y) : a ≤
d(x, y) ≤ b, x, y ∈ [0, π/2]} < 1. To this end, just notice that if x, y ∈ [0, π/2]
with 0 < a ≤ |x− y| ≤ b, then

a

2
≤ x+ y

2
,

and use the monotonicity of the cosine function to obtain

αf (x, y) =
|sin(x)− sin(y)|

|x− y|

=

∣∣2 cos
(
x+y

2

)
sin
(
x−y

2

)∣∣
|x− y|

≤ cos
(
x+y

2

)
≤ cos

(
a
2

)
< 1.

The following class of mappings was introduced by Kannan [9] in 1968.

Definition 5. We say that a mapping f : D → X is a Kannan map if there
exists κ ∈ [0, 1) such that

d(f(x), f(y)) ≤ κ

2
[
d(x, f(x)) + d(y, f(y))

]
, (3)

for all x, y ∈ D.

Remark 6. Rhoades proved that the concepts of contractive map and Kannan
map are independent (see [11], Theorem 1, (iii)).

Recently this concept has been generalized in [2], obtaining the so-called
weakly Kannan maps.

Definition 7. We say that f : D → X is a weakly Kannan map if there exists
κ : D ×D → [0, 1], satisfying that

θ(a, b) := sup{κ(x, y) : a ≤ d(x, y) ≤ b} < 1

for every 0 < a ≤ b, such that, for all x, y ∈ D,

d(f(x), f(y)) ≤ κ(x, y)
2

[
d(x, f(x)) + d(y, f(y))

]
. (4)

Remark 8. In [9], Kannan noted that if a Kannan map has a fixed point then
it is unique. Using the same reasoning we have that any weakly Kannan map
has at most one fixed point.
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Remark 9. Notice that if f : D ⊂ X → X is a weakly Kannan map and we
define κf (x, y) on D ×D as

κf (x, y) =


2 d(f(x),f(y))

d(x,f(x))+d(y,f(y)) , if d(x, f(x)) + d(y, f(y)) 6= 0;

0, otherwise,
(5)

then κf is well defined, takes values in [0, 1], satisfies sup{κf (x, y) : a ≤
d(x, y) ≤ b} < 1 for all 0 < a ≤ b, and κf is smaller than any α associated
to f , and also satisfies (4), with κ replaced by κf , for all x, y ∈ D. Conversely,
if κf is defined as in (5) and satisfies the above set of conditions, then f is a
weakly Kannan map, establishing in this way an equivalent definition for weakly
Kannan maps.

The following example shows that the class of weakly Kannan maps is larger
than the class of Kannan maps.

Example 10 (see [2], example 2.5). Let D = [0,∞) the subset of the metric
space X = R with the usual metric d(x, y) = |x− y|. The map f : D → X
defined as f(x) = 1

3 log(1 + ex) is a weakly Kannan map, but not a Kannan
map.

The following two examples show that the concepts of weakly contractive
map and weakly Kannan map are independent.

Example 11. Let f be the mapping of Example 4, i.e., f : [0, π/2] ⊂ R → R
with f(x) = sin(x). We know that f is weakly contractive. Moreover, f is not
weakly Kannan, since

κf (0, π2 ) =
4

π − 2
>

7
2
.

Example 12 (see [2], Example 3.4). Consider the subset D = [−1, 1] of the
metric space (X, d), where X = R and d(x, y) = |x− y|, and let f : [−1, 1]→ R
be the map given as

f(x) =

 − sin(x) if − 1 ≤ x < 1,

0 if x = 1.

This mapping is weakly Kannan, but not weakly contractive.

In 1972, Chatterjea [3] considered a type or contractive condition similar to
that of Kannan but independent of it, and which does not imply the continuity
of the operator.

Definition 13. We say that a mapping f : D → X is a Chatterjea map if there
exists ξ ∈ [0, 1) such that, for all x, y ∈ D,

d(f(x), f(y)) ≤ ξ

2
[
d(x, f(y)) + d(y, f(x))

]
. (6)

The following example shows that a Chatterjea map need not be of contrac-
tive type neither of Kannan type.
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Example 14. Consider the metric space (X, d), where X = [0, 1] and d is the
usual metric in R. The mapping f : [0, 1]→ [0, 1] given as

f(x) =

 1 if 0 < x ≤ 1,

2/3 if x = 0.

is a Chatterjea map, but not a contractive map neither a Kannan map.

That f is not contractive is immediate, since f is not continuous. To see
that f is not a Kannan map, observe that

lim
x→1−

2d(f(x), f(0))
d(x, f(x)) + d(0, f(0))

= lim
x→1−

2
∣∣1− 2

3

∣∣
|x− 1|+

∣∣0− 2
3

∣∣ = lim
x→1−

2
3

5
3 − x

= 1.

To see that f is a Chatterjea map, observe that for x ∈ (0, 1] and y = 0,

2d(f(x), f(y))
d(x, f(y)) + d(y, f(x))

=
2
3∣∣x− 2
3

∣∣+ 1
≤ 2

3
.

Hence, taking ξ ∈ [2/3, 1), we have

d(f(x), f(y)) ≤ ξ

2
[
d(x, f(y)) + d(y, f(x))

]
,

for every x, y ∈ [0, 1].

The following two examples show that the concept of Chatterjea map is
independent of the concepts of contractive map and Kannan map.

Example 15. Let X be R2 with its usual euclidean norm, ‖·‖2, and let D be
the closed unit ball, D = {(x1, x2) ∈ R2 : ‖(x1, x2)‖2 ≤ 1}. Define f : D → X

as f(x1, x2) = α (−x2, x1), where α ∈ [1/
√

3, 1). Then f is a contractive map,
but not a Kannan map neither a Chatterjea map.

Obviously, f is a contractive map, since 0 ≤ α < 1, and any rotation is an
isometry. To see that f is not a Kannan map neither a Chatterjea map, just
consider x = (1, 0) and y = (−1, 0), and use that α ≥ 1√

3
to obtain

d(f(x), f(y)) ≥ 1
2
[
d(x, f(x)) + d(y, f(y))

]
and

d(f(x), f(y)) ≥ 1
2
[
d(x, f(y)) + d(y, f(x))

]
.

Example 16. Consider the metric space (X, d), where X = [0, 1] and d is the
usual metric in R. The mapping f : [0, 1]→ [0, 1] given as

f(x) =

 1/3 if 0 ≤ x < 1,

0 if x = 1,

is a Kannan map, but not a Chatterjea map.
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To see that f is not a Chatterjea map, it suffices to note that

2d(f(0), f(1))
d(0, f(1)) + d(1, f(0))

=
2
∣∣ 1
3 − 0

∣∣
|0− 0|+

∣∣1− 1
3

∣∣ = 1.

To show that f is a Kannan map, observe that if x ∈ [0, 1) and y = 1,

2d(f(x), f(1))
d(x, f(x)) + d(1, f(1))

=
2
3∣∣x− 1
3

∣∣+ 1
≤ 2

3
,

and hence, taking κ ∈ [2/3, 1), we have

d(f(x), f(y)) ≤ κ

2
[
d(x, f(x)) + d(y, f(y))

]
,

for all x, y ∈ [0, 1].

Next, as done for contractive maps and Kannan maps, we introduce the
corresponding weak concept for Chatterjea maps, and study its relations with
the previous concepts.

Definition 17. We say that f : D → X is a weakly Chatterjea map if there
exists ξ : D ×D → [0, 1], satisfying that

θ(a, b) := sup{ξ(x, y) : a ≤ d(x, y) ≤ b} < 1

for every 0 < a ≤ b, such that, for all x, y ∈ D,

d(f(x), f(y)) ≤ ξ(x, y)
2

[
d(x, f(y)) + d(y, f(x))

]
. (7)

Remark 18. As in the case of Chatterjea maps, any weakly Chatterjea map
has at most one fixed point. Indeed, suppose that u and v are fixed points of
a weakly Chatterjea map f , with u 6= v. Then ξ(u, v) ≤ θ( r2 , r) < 1, where
r = d(u, v) > 0. So, by (7), we have

d(u, v) = d(f(u), f(v))

≤ ξ(u, v)
2

[
d(u, f(v)) + d(v, f(u))

]
≤ ξ(u, v) d(u, v)
≤ θ( r2 , r) d(u, v).

which is a contradiction, since θ( r2 , r) < 1.

Proposition 19. Let D be a nonempty subset of a metric space (X, d). A map
f : D → X is weakly Chatterjea if only if f satisfies the following conditions:

(P0) if x, y ∈ D, with y = f(x) and x = f(y), then x = y;

(P1) the mapping ξf : D ×D → R given as

ξf (x, y) =


2d(f(x),f(y))

d(x,f(y))+d(y,f(x)) , if d(x, f(y)) + d(y, f(x)) 6= 0;

0, otherwise,
(8)

takes values in [0, 1] and satisfies sup{ξf (x, y) : a ≤ d(x, y) ≤ b} < 1 for
all 0 < a ≤ b.
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Remark 20. Condition (P0) is is essential. For example, if we take the metric
space X = {−r, r}, where r is any fixed positive real number, with the Eu-
clidean metric and the mapping f : X → X is given as f(t) = −t, then f
satisfies (P1) (since ξf is null mapping), but not (P0), and moreover f is not a
weakly Chatterjea map.

Example 21. Consider the metric space (X, d), where X = [0, 1] and d is the
usual metric. The mapping f : [0, 1]→ [0, 1] given as

f(x) =


2
3x if 0 ≤ x < 1,

0 if x = 1,

is a weakly Chatterjea map, but not a Chatterjea map. Moreover, f is not
weakly contractive neither weakly Kannan.

Since

lim
x→1−

2d(f(x), f(1))
d(x, f(1)) + d(f(x), 1)

= lim
x→1−

4
3x

x+ 1− 2
3x

= 1,

there exists no ξ ∈ [0, 1) such that d(f(x), f(y)) ≤ ξ
2

[
d(x, f(y))+d(y, f(x))

]
for

every x, y ∈ [0, 1]. Hence, f is not a Chatterjea map.
That f is not weakly contractive is immediate, since f is not continuous. To

see that f is not a weakly Kannan map, just observe that

κf (0, 1
2 ) =

2
∣∣f(0)− f( 1

2 )
∣∣

|0− f(0)|+
∣∣ 1
2 − f( 1

2 )
∣∣ =

2
∣∣0− 1

3

∣∣
|0− 0|+

∣∣ 1
2 −

1
3

∣∣ = 4.

Next, we shall check that f is weakly Chatterjea. To this end, we shall use
Proposition 19. First we show that f satisfies (P0). Suppose x, y ∈ [0, 1] with
x = f(y) and y = f(x). Without loss of generality we can assume that x ≤ y.
Note that if y = 1, then x = f(1) = 0 and so y = f(0) = 0, which is a
contradiction. Thus, 0 ≤ x ≤ y < 1. From the definition of f , we have
x = f(y) = 2

3y = 2
3f(x) = 4

9x. Thus, x = 0 and y = 0. Therefore, f
satisfies (P0). Now we shall show that f verifies (P1). We need to check that
ξf only takes values in [0, 1] and that θ(a, b) := sup

{
ξf (x, y) : a ≤ |x− y| ≤

b, x, y ∈ [0, 1]
}
< 1 for all 0 < a ≤ b. In fact, all this follow if we just show that,

for 0 < a ≤ 1,

θ(a, 1) ≤ min
{

4
5
,
4(1− a)
4− a

}
.

Thus, assume that 0 < a ≤ 1 and that x, y ∈ [0, 1], with a ≤ |x− y| ≤ 1.
Without loss of generality we may also assume that x < y, since ξf is symmetric.
Note that, in this case,

ξf (x, y) =



4x
3+x , if y = 1;

4(y−x)
x+y , if 0 < 2

3y ≤ x < y < 1;

4
5 , if 0 ≤ x < 2

3y.
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Hence, if y = 1 we have x ≤ 1− a, and then

ξf (x, 1) =
4x

3 + x
= 4− 12

x+ 3
≤ 4− 12

3 + (1− a)
=

4(1− a)
4− a

.

On the other hand, if 0 < 2
3y ≤ x < y < 1 we have

ξf (x, y) =
4(y − x)
x+ y

≤
4(y − 2

3y)
2
3y + y

=
4
5
.

The following two examples, together with the previous one show that the
concepts of weakly Chatterjea map, weakly Kannan map and weakly contractive
map are independent.

Example 22. Fix ω > 0. Let D = [0,∞) be the subset of the metric space
X = R with the usual metric d(x, y) = |x− y|. Consider the mapping f : D →
X defined as f(x) = ω2/(ω + x). Then f is a weakly contractive map, but not
a weakly Chatterjea map. Moreover f is not a contractive map, since

lim
x→0+

d(f(x)), d(f(0))
d(x, 0)

=

∣∣∣∣∣ lim
x→0+

ω − ω2

ω+x

x

∣∣∣∣∣ = lim
x→0+

ω

ω + x
= 1 .

To check that f is a weakly contractive map, consider the function αf : [0,∞)×
[0,∞) → R given by (2). This function is well defined and also takes values in
[0, 1], since for every x, y ∈ [0,∞), with x 6= y, we have

αf (x, y) =
ω2

(ω + x)(ω + y)
≤ 1.

Moreover, for 0 < a ≤ b we have that

θ(a, b) = sup {αf (x, y) : a ≤ d(x, y) ≤ b, x, y ∈ [0,∞)} ≤ ω

ω + a
2

< 1.

Finally, since

ξf (0, ω) =
2 |f(0)− f(ω)|

|0− f(ω)|+ |ω − f(0)|
=

2
∣∣ω − ω

2

∣∣∣∣0− ω
2

∣∣+ |ω − ω| = 2,

then f is not weakly Chatterjea.

Example 23. Let be f : [−1, 1]→ R the map of Example 12, i.e.,

f(x) =

 − sin(x) if − 1 ≤ x < 1,

0 if x = 1.

As mentioned in Example 12, this mapping is weakly Kannan. However, f is
not weakly Chatterjea, since

ξf (−1, 1) =
2 |f(−1)− f(1)|

|−1− f(1)|+ |1− f(−1)|
=

2 sin(1)
2− sin(1)

≥ 1.
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3 A fixed point theorem
Our aim in this section is to give a fixed point theorem for the class of weakly
Chatterjea maps. Indeed, this will be done for a wider class of maps: those
which satisfy the weak condition associated to the condition (Z) introduced by
Zamfirescu [13].

Definition 24. Let (X, d) be a metric space, D ⊂ X and f : D → X. We
say that f is a weakly Zamfirescu map if there exists α : D × D → [0, 1], with
θ(a, b) := sup{α(x, y) : a ≤ d(x, y) ≤ b} < 1 for every 0 < a ≤ b, such that, for
all x, y ∈ D,

d(f(x), f(y)) ≤ α(x, y)Mf (x, y), (Zw)
where

Mf (x, y) := max
{
d(x, y),

1
2
[
d(x, f(x)) + d(y, f(y))

]
,

1
2
[
d(x, f(y)) + d(y, f(x))

]}
.

We first give three propositions in which some properties of those functions
f satisfying (Zw) are established.

Proposition 25. Let (X, d) be a metric space and D ⊂ X. If f : D → X is a
weakly Zamfirescu map, then f has at most one fixed point in D.

Proof. Suppose that u and v are fixed points of f , with u 6= v. Then α(u, v) ≤
θ( r2 , r) < 1, where r = d(u, v) > 0. So, by (Zw), we have

d(u, v) = d(f(u), f(v)) ≤ α(u, v)Mf (u, v) = α(u, v) d(v, u) ≤ θ
(
r
2 , r
)
d(u, v),

which is a contradiction.

Recall that a self-mapping f on a metric space (X, d) is said to be asympto-
tically regular at x0 ∈ X if

lim
n→∞

d(fn(x0), fn+1(x0)) = 0.

Proposition 26. Let (X, d) be a metric space. If f : X → X is a weakly
Zamfirescu map, then f is asymptotically regular at each point in X.

Proof. Let x0 ∈ X and define the Picard iterates xn = f(xn−1) = fn(x0) for
n = 1, 2, . . .. We first prove that, for all n ≥ 1,

d(xn, xn+1) ≤ α(xn−1, xn) d(xn−1, xn), (9)

where α is the function associated to f by the condition (Zw).
Observe that, for all n ≥ 1,

Mf (xn−1, xn) = max
{
d(xn−1, xn), 1

2

[
d(xn−1, f(xn−1)) + d(xn, f(xn))

]
,

1
2

[
d(xn−1, f(xn)) + d(xn, f(xn−1))

]}
= max

{
d(xn−1, xn), 1

2

[
d(xn−1, xn) + d(xn, xn+1)

]
,

1
2

[
d(xn−1, xn+1) + d(xn, xn)

]}
= max

{
d(xn−1, xn), 1

2

[
d(xn−1, xn) + d(xn, xn+1)

]
,

1
2 d(xn−1, xn+1)

}
.

10



To end the proof of (9), we shall appeal to condition (Zw), and hence, we
consider the following three cases:

Case 1. If Mf (xn−1, xn) = d(xn−1, xn),

d(xn, xn+1) ≤ α(xn−1, xn) d(xn−1, xn).

Case 2. If Mf (xn−1, xn) = 1
2

[
d(xn−1, xn) + d(xn, xn+1)

]
,

d(xn, xn+1) ≤
α(xn−1, xn)

2
[
d(xn−1, xn) + d(xn, xn+1)

]
,

i.e.,

d(xn, xn+1) ≤
α(xn−1, xn)

2− α(xn−1, xn)
d(xn−1, xn) ≤ α(xn−1, xn) d(xn−1, xn).

Case 3. If Mf (xn−1, xn) = 1
2 d(xn−1, xn+1),

d(xn, xn+1) ≤
α(xn−1, xn)

2
d(xn−1, xn+1)

≤ α(xn−1, xn)
2

[
d(xn−1, xn) + d(xn, xn+1)

]
,

i.e.,

d(xn, xn+1) ≤
α(xn−1, xn)

2− α(xn−1, xn)
d(xn−1, xn) ≤ α(xn−1, xn) d(xn−1, xn).

Thus, relation (9) is proved
As a consequence, we obtain that the sequence {d(xn, xn+1)} is nonincrea-

sing, since 0 ≤ α(xn−1, xn) ≤ 1. Then, it is convergent to the real number

d = inf
{
d(xn−1, xn) : n = 1, 2, . . .

}
.

It suffices to prove that d = 0. Suppose that d > 0 and arrive to a contradiction
as follows: use that for all n ∈ N

0 < d ≤ d(xn, xn+1) ≤ d(x0, x1)

and the definition of θ = θ(d, d(x0, x1)) to obtain that α(xn−1, xn) ≤ θ. This,
together with (9) gives that

d ≤ d(xn, xn+1) ≤ θnd(x0, x1)

for all n ∈ N, which is impossible since d > 0 and 0 ≤ θ < 1. Therefore, f is
asymptotically regular at x0.

Although a weakly Zamfirescu map f may be discontinuous at some point,
the following proposition shows that the discontinuity cannot occur at a fixed
point for f .

Proposition 27. Let (X, d) be a metric space and f : X → X a weakly
Zamfirescu map. If f has a fixed point, say u, then f is continuous at u.

11



Proof. Let {xn} be a convergent sequence to u = f(u). For any n ∈ N, we have
that

d(f(xn), f(u)) ≤ α(xn, u)Mf (xn, u)

≤ max
{
d(xn, u), 1

2

[
d(xn, f(xn)) + d(u, f(u))

]
,

1
2

[
d(xn, f(u)) + d(u, f(xn))

]}
= max

{
d(xn, u), 1

2 d(xn, f(xn)),

1
2

[
d(xn, u) + d(f(u), f(xn))

]}
≤ max

{
d(xn, u), 1

2

[
d(xn, u) + d(f(u), f(xn))

]
,

1
2

[
d(xn, u) + d(f(u), f(xn))

]}
.

Hence, for all n ∈ N,

0 ≤ d(f(u), f(xn)) ≤ d(xn, u),

so that {f(xn)} converges to f(u). Therefore, f is continuous at u.

Now proceed to prove the main result of this section.

Theorem 28. Let (X, d) be a complete metric space and f : X → X a weakly
Zamfirescu map. Then, f has a unique fixed point u ∈ X and at this point u
the mapping f is continuous. Moreover, for each x0 ∈ X, the sequence {fn(x0)}
converges to u.

Proof. Let x0 ∈ X and define xn+1 = f(xn) for n ∈ N. We may assume that
d(x0, x1) > 0 because otherwise we have finished. We shall prove that {xn} is a
Cauchy sequence and that its limit is a fixed point for f . To do it, let us prove
that

d(xn+k+1, xn+1) ≤ α(xn+k, xn) d(xn+k, xn) + 2d(xn+1, xn) (10)

for all n, k ∈ N.
Let n, k ∈ N. By (Zw),

d(xn+k+1, xn+1) = d(f(xn+k), f(xn))
≤ α(xn+k, xn)Mf (xn+k, xn),

where

Mf (xn+k, xn) = max
{
d(xn+k, xn),

1
2
[
d(xn+k, f(xn+k)) + d(xn, f(xn))

]
,

1
2
[
d(xn+k, f(xn)) + d(xn, f(xn+k))

]}
= max

{
d(xn+k, xn),

1
2
[
d(xn+k, xn+k+1) + d(xn, xn+1)

]
,

1
2
[
d(xn+k, xn+1) + d(xn, xn+k+1)

]}
.

We consider the following three cases:

12



Case 1. If Mf (xn+k, xn) = d(xn+k, xn), then (10) is obvious.

Case 2. If Mf (xn+k, xn) = 1
2

[
d(xn+k, xn+k+1) + d(xn, xn+1)

]
, then

d(xn+k+1, xn+1) ≤
α(xn+k, xn)

2
[
d(xn+k, xn+k+1) + d(xn, xn+1)

]
.

Applying (9)
d(xn+k, xn+k+1) ≤ d(xn, xn+1).

So,

d(xn+k+1, xn+1) ≤ α(xn+k, xn) d(xn+k, xn) + 2d(xn+1, xn).

Case 3. If Mf (xn+k, xn) = 1
2

[
d(xn+k, xn+1) + d(xn, xn+k+1)

]
, then

d(xn+k+1, xn+1) ≤
α(xn+k, xn)

2
[
d(xn+k, xn+1) + d(xn, xn+k+1)

]
≤ α(xn+k, xn)

2
[
d(xn+k, xn+1) + d(xn, xn+1)

+ d(xn+1, xn+k+1)
]
.

Then,(
1− α(xn+k, xn)

2

)
d(xn+k+1, xn+1) ≤

α(xn+k, xn)
2

[
d(xn+k, xn+1)

+ d(xn+1, xn)
]
,

i.e.,

d(xn+k+1, xn+1) ≤
α(xn+k, xn)

2− α(xn+k, xn)
[
d(xn+k, xn+1) + d(xn+1, xn)

]
≤ α(xn+k, xn)

[
d(xn+k, xn+1) + d(xn+1, xn)

]
≤ α(xn+k, xn)

[
d(xn+k, xn) + 2d(xn, xn+1)

]
≤ α(xn+k, xn) d(xn+k, xn) + 2d(xn+1, xn).

To prove that {xn} is a Cauchy sequence, suppose that ε > 0 and use Proposi-
tion 26 to obtain N ∈ N such that

d(xN+1, xN ) <
1
6
(
1− θ

(
ε
2 , ε
))
· ε. (11)

We will prove inductively that d(xN+k, xN ) < ε for all k ∈ N. It is obvious for
k = 1, and assuming d(xN+k, xN ) < ε, let us see d(xN+k+1, xN ) < ε.

Note that using (10) we have that

d(xN+k+1, xN ) ≤ d(xN+k+1, xN+1) + d(xN+1, xN )
≤ α(xN+k, xN ) d(xN+k, xN ) + 3d(xN+1, xN ) (12)

Thus, if d(xN+k, xN ) < ε/2 it follows from (11) and (12) that

d(xN+k+1, xN+1) ≤ d(xN+k, xN ) + 3d(xN+1, xN )

<
ε

2
+ 3 · 1

6
(
1− θ

(
ε
2 , ε
))
· ε

≤ ε.
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And if d(xN+k, xN ) ≥ ε/2, applying the induction hypothesis, we have that
α(xN+k, xN ) ≤ θ( ε2 , ε). Then, from (11) and (12), we conclude that

d(xN+k+1, xN+1) ≤ α(xN+k, xN ) d(xN+k, xN ) + 3d(xN+1, xN )

< θ
(
ε
2 , ε
)
· ε+ 3 · 1

6
(
1− θ

(
ε
2 , ε
))
· ε

≤ ε.

Since (X, d) is complete, then {xn} is convergent, say to u ∈ X. That u is a
fixed point for f follows from standard arguments which we include for the sake
of completeness: for any n ∈ N, we have that

d(u, f(u)) = lim
n→∞

d(xn+1, f(u))

= lim
n→∞

d(f(xn), f(u))

≤ lim sup
n→∞

α(xn, u)Mf (xn, u)

≤ lim sup
n→∞

Mf (xn, u)

=
1
2
d(u, f(u)) ,

since

lim sup
n→∞

Mf (xn, u) = lim sup
n→∞

max
{
d(xn, u),

1
2
[
d(xn, f(xn)) + d(u, f(u))

]
,

1
2
[
d(xn, f(u)) + d(u, f(xn))

]}
= lim sup

n→∞
max

{
d(xn, u),

1
2
[
d(xn, xn+1) + d(u, f(u))

]
,

1
2
[
d(xn, f(u)) + d(u, xn+1)

]}
= max

{
0,

1
2
[
0 + d(u, f(u))

]
,
1
2
[
d(u, f(u)) + 0]

}
.

By Proposition 25 and Proposition 27, u is the unique fixed point of f and f is
continuous at u.

As a consequence of the previous theorem, we obtain the following local
result, which will be used in the next section to prove the continuation method.

Corollary 29. Assume that (X, d) is a complete metric space, x0 ∈ X, r > 0
and that f : B(x0, r)→ X is a weakly Zamfirescu map with associated function
α satisfying (Zw). If θ is defined as usual, and

d(x0, f(x0)) <
1
3

min
{r

2
, r
[
1− θ

(
r
2 , r
)]}

,

then f has a fixed point.

Proof. Bearing in mind Theorem 28, it suffices to show that the closed ball
B(x0, r) is invariant under f . Consider any x ∈ B(x0, r) and obtain the relation

d(x0, f(x)) ≤ d(x0, f(x0)) + d(f(x0), f(x))
≤ d(x0, f(x0)) + α(x0, x)Mf (x0, x) ,
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where

Mf (x0, x) = max
{
d(x0, x), 12

[
d(x0, f(x0)) + d(x, f(x))

]
,

1
2

[
d(x0, f(x)) + d(x, f(x0))

]}
.

We now consider three cases:

Case 1. If Mf (x0, x) = d(x0, x),

d(x0, f(x)) ≤ d(x0, f(x0)) + α(x0, x) d(x0, x).

Case 2. If Mf (x0, x) = 1
2

[
d(x0, f(x0)) + d(x, f(x))

]
,

d(x0, f(x)) ≤ d(x0, f(x0)) +
α(x0, x)

2
[
d(x0, f(x0)) + d(x, f(x))

]
≤ d(x0, f(x0)) +

α(x0, x)
2

[
d(x0, f(x0)) + d(x, x0)

+ d(x0, f(x0))
]
,

from which, having in mind that α(x0, x) ≤ 1,

d(x0, f(x)) ≤ 2d(x0, f(x0)) + α(x0, x) d(x0, x) .

Case 3. If Mf (x0, x) = 1
2

[
d(x0, f(x)) + d(x, f(x0))

]
,

d(x0, f(x)) ≤ d(x0, f(x0)) +
α(x0, x)

2
[
d(x0, f(x)) + d(x, f(x0))

]
≤ d(x0, f(x0)) +

α(x0, x)
2

[
d(x0, f(x)) + d(x, x0)

+ d(x0, f(x0))
]
,

from which, having in mind that α(x0, x) ≤ 1,

d(x0, f(x)) ≤ 3d(x0, f(x0)) + α(x0, x) d(x0, x) .

Therefore, in any case,

d(x0, f(x)) ≤ 3d(x0, f(x0)) + α(x0, x) d(x0, x) .

To end the proof, obtain that d(x0, f(x)) ≤ r through the above inequality
by considering two cases: if d(x0, x) ≤ r/2, then d(x0, f(x)) ≤ r because
d(x0, f(x0)) ≤ r/6. Otherwise, we would have r/2 ≤ d(x0, x) ≤ r, and con-
sequently α(x0, x) ≤ θ(r/2, r), from which

d(x0, f(x)) ≤ r
[
1− θ

(
r
2 , r
)]

+ r θ
(
r
2 , r
)

= r .
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4 Homotopy invariance
The property of having a fixed point is an invariant by homotopy for some
classes of nonlinear operators, such as contractive maps and compact maps.
Usually, these maps are defined on a subset of a Banach space, the jump from the
Banach space setting to the metric space setting was given by Granas [8] in 1994,
who gave a homotopy result known as a continuation method for contractive
maps. After Granas, Frigon [7] gave a similar result for weakly contractive
maps, and the corresponding result for weakly Kannan maps was given in [2].
In this section, we give an analogous result for weakly Zamfirescu maps. For
multivalued mappings this property has been studied by Altun [1], Moţ and
Petruşel [10], among others.

Theorem 30. Let (X, d) be a complete metric space, U a bounded open subset
of X and H : U × [0, 1]→ X satisfying the following properties:

(P1) H(x, λ) 6= x for all x ∈ ∂U and all λ ∈ [0, 1];

(P2) there exists α : U × U → [0, 1] satisfying

θ(a, b) := sup {α(x, y) : a ≤ d(x, y) ≤ b} < 1 for all 0 < a ≤ b,

such that for all x, y ∈ U and λ ∈ [0, 1] we have

d(H(x, λ), H(y, λ)) ≤ α(x, y)Mλ
H(x, y), (H)

where

Mλ
H(x, y) := max

{
d(x, y),

1
2
[
d(x,H(x, λ)) + d(y,H(y, λ))

]
,

1
2
[
d(x,H(y, λ)) + d(y,H(x, λ))

]}
;

(P3) H(x, λ) is continuous in λ, uniformly for x ∈ U . That is, for any ε > 0
there exists δ > 0 such that d(H(x, t), H(x, s)) ≤ ε for all x ∈ U and
t, s ∈ [0, 1] with |t− s| < δ, where δ is independent of x.

If H(·, 0) has a fixed point in U , then H(·, λ) also has a fixed point in U for all
λ ∈ [0, 1].

Proof. Consider the nonempty set

A = {λ ∈ [0, 1] : H(x, λ) = x for some x ∈ U}.

We just need to prove that A = [0, 1], and for this it suffices to show that A is
both closed and open in [0, 1].

We first prove that A is closed in [0, 1]: suppose that {λn} is a sequence in
A converging to λ ∈ [0, 1] and let us show that λ ∈ A. By definition of A, there
exists a sequence {xn} in U with xn = H(xn, λn). We shall prove that {xn}
converges to a point x0 ∈ U with H(x0, λ) = x0, therefore λ ∈ A.

In the first place, we shall prove that, for all n,m ∈ N,

d(xn, xm) ≤ α(xn, xm) d(xn, xm)

+
(

1 +
α(xn, xm)

2

)[
d(H(xm, λm), H(xm, λ))

+ d(H(xn, λn), H(xn, λ))
]
.

(13)
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To do it, observe that, if n,m ∈ N,

d(xn, xm) = d(H(xn, λn), H(xm, λm))

≤ d(H(xn, λn), H(xn, λ)) + d(H(xn, λ), H(xm, λ))
+ d(H(xm, λ), H(xm, λm))

≤ d(H(xn, λn), H(xn, λ)) + α(xn, xm)Mλ
H(xn, xm)

+ d(H(xm, λ), H(xm, λm)),

where

Mλ
H(xn, xm) = max

{
d(xn, xm),

1
2
[
d(xn, H(xn, λ)) + d(xm, H(xm, λ))

]
,

1
2
[
d(xn, H(xm, λ)) + d(xm, H(xn, λ))

]}
.

To continue with the above chain of inequalities, just consider the following
three possibilities for Mλ

H(xn, xm):

Case 1. If Mλ
H(xn, xm) = d(xn, xm), then (13) is obvious.

Case 2. If Mλ
H(xn, xm) = 1

2

[
d(xn, H(xn, λ)) + d(xm, H(xm, λ))

]
,

d(xn, xm) ≤ d(H(xn, λn), H(xn, λ))

+
α(xn, xm)

2
[
d(xn, H(xn, λ)) + d(xm, H(xm, λ))

]
+ d(H(xm, λ), H(xm, λm))

=
(

1 +
α(xn, xm)

2

)[
d(H(xm, λm), H(xm, λ))

+ d(H(xn, λn), H(xn, λ))
]
.
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Case 3. If Mλ
H(xn, xm) = 1

2

[
d(xn, H(xm, λ)) + d(xm, H(xn, λ))

]
,

d(xn, xm) ≤ d(H(xn, λn), H(xn, λ))

+
α(xn, xm)

2

[
d(xn, H(xm, λ)) + d(xm, H(xn, λ))

]
+ d(H(xm, λ), H(xm, λm))

≤ d(H(xn, λn), H(xn, λ))

+
α(xn, xm)

2

[
2d(xn, xm) + d(H(xm, λm), H(xm, λ))

+ d(H(xn, λn), H(xn, λ))
]

+ d(H(xm, λ), H(xm, λm))

= α(xn, xm) d(xn, xm)

+
(

1 +
α(xn, xm)

2

)[
d(H(xm, λm), H(xm, λ))

+ d(H(xn, λn), H(xn, λ))
]
.

Hence, (13) is proved.
We claim that {xn} is a Cauchy sequence. Otherwise, there exist a po-

sitive constant δ and two subsequences of {xn}, {xnk
} and {xmk

}, such that
d(xnk

, xmk
) ≥ δ for all k ∈ N. Consequently, if M = diamU , we have that

α(xnk
, xmk

) ≤ θ(δ,M), and then (13) leads to

d(xnk
, xmk

) ≤ θ(δ,M) d(xnk
, xmk

)

+
(

1 +
θ(δ,M)

2

)[
d(H(xmk

, λmk
), H(xmk

, λ))

+ d(H(xnk
, λnk

), H(xnk
, λ))

]
,

and so

δ ≤ d(xnk
, xmk

) ≤ 2 + θ(δ,M)
2
(
1− θ(δ,M)

)[d(H(xmk
, λmk

), H(xmk
, λ))

+ d(H(xnk
, λnk

), H(xnk
, λ))

]
.

(14)

Since, by (P3), d(H(xmk
, λmk

), H(xmk
, λ)) → 0 as k → ∞, we reach a contra-

diction from (14). Hence, {xn} is a Cauchy sequence. Write x0 = limxn and
let us see that x0 ∈ U and also that x0 = H(x0, λ). That x0 = H(x0, λ) is a
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consequence of the following relation:

d(xn, H(x0, λ)) ≤ d(xn, H(xn, λ)) + d(H(xn, λ), H(x0, λ))

≤ d(H(xn, λn), H(xn, λ))

+ max
{
d(xn, x0),

1
2
[
d(x0, H(x0, λ)) + d(xn, H(xn, λ))

]
,

1
2
[
d(x0, H(xn, λ)) + d(xn, H(x0, λ))

]}
≤ d(H(xn, λn), H(xn, λ))

+ max
{
d(xn, x0),

1
2
[
d(x0, H(x0, λ)) + d(xn, H(xn, λ))

]
,

1
2
[
d(x0, xn) + d(H(xn, λn), H(xn, λ))

+ d(xn, H(x0, λ))
]}
,

and that x0 ∈ U is straightforward from (P1).

We now turn to prove that A is open in [0, 1]. Suppose that λ0 ∈ A and let
us show that (λ0 − δ, λ0 + δ) ∩ [0, 1] ⊂ A, for some δ > 0. Since λ0 ∈ A, there
exists x0 ∈ U with x0 = H(x0, λ0). Consider r > 0 with B(x0, r) ⊂ U and use
(P3) to obtain δ > 0 such that

d(H(x0, λ0), H(x0, λ)) <
1
3

min
{r

2
, r
[
1− θ

(
r
2 , r
)]}

for all λ ∈ (λ0 − δ, λ0 + δ) ∩ [0, 1].
To show know that any λ ∈ (λ0 − δ, λ0 + δ)∩ [0, 1] is also in A, it suffices to

prove that the map H(·, λ) : B(x0, r) → X has a fixed point. This follows by
Corollary 29, since

d(x0, H(x0, λ)) = d(H(x0, λ0), H(x0, λ))

<
1
3

min
{r

2
, r
[
1− θ

(
r
2 , r
)]}

.
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