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A POINTWISE ESTIMATE FOR THE KERNEL OF A
PSEUDO-DIFFERENTIAL OPERATOR, WITH APPLICATIONS

J. ALVAREZ, J. HOUNIE and C. PEREZ

1. Introduction

Given a pseudo-differential operator L in the Hérmander class L7, it is a classical
result, (cf. [8]) that the distribution kernel k(z,y) of L will be a C* function away
from the diagonal and will decay rapidly with all its derivatives as |z —y| — oo, if
0<p<1,0<6<1. Moreover, k(z,y) will coincide with a C7 function in all R* x IR",
provided m+n+;j <0. In [7], we completed the analysis, by proving a sharp estimate for
k(z,y), when m+n+j>0. We used, however, a non standard partition of unity, which

forced us to consider separately the cases p =1,0<p<]1.

We give here a much simpler proof of that estimate, using a standard partition
in dyadic rings. The rest of the paper is devoted to show several new applications of
the estimates, to other integral estimates, weak type (p, q), etc. Specially, in Section
6 we combine this estimates with a pointwise estimate for a modified sharp maximal
function, to obtain LP weighted estimates with A,, weights for a class of oscillatory
integrals closely related to those studied by D. Phong and E. Stein. Particularly, we
have in this class pseudo-differential operators of order <—n+1)(1-p), which generalizes
the weighted estimates obtained in [14].

The organization of the paper is as follows. In Section 2, we precise the definition of
the class LT}, and state some classical properties for the distribution kernel. In Section
3 we complete the analysis by proving a sharp estimate when m+n+j >0 for some j. In
Section 4 an integral estimate in the spirit of the one considered in [17] is proved. This
generalizes [15], Lemma 2.1. In Section 5, we prove a weak type (1,¢),¢> 1 estimate
in L;,m <-n(1-p), by estimating the operator in terms of a fractional integral Ia.
Finally, Section 6 is mainly devoted to weighted estimates for a class of oscillatory

integrals.
The notation used in this paper is the standard in the subject.
2. The class L7

Following [3], we will denote by S7';,m € IR,0< p, § <1, the class of C*°(R" x IR")
functions p(z, £) such that
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|D2 D? p(z, €)| < C(ax, B)(1+]¢|)mlehlel

for every a,f € IN™.

Given p € SJ's, we define the pseudo-differential operator L in the Hérmander class
LT (cf. [8]), as
p,6 ’

Lf(z) = / e tp(z, )f(€)dE, f € CP(R™.

The operator L is uniquely defined by p, which is called for that reason the symbol
of L. '

L defines a linear and continuous operator from C§°(IR") into C®°(IR"). Let
kK(z,y) € D'(IR" x IR"™) be its distribution kemel. It is defined by

(2.1) (k,f @)= f &+ p(z, € (€)g(z)dzde.

The following theorem summarizes several classical properties. We refer to (8] for
proofs.

Theorem 2.1 (cf. [8]). Let L € L7s,m € IR,0<6,p<1, be a pseudo-differential

operator with symbol p(z, €) and let k(z,y) be the distribution kernel of L. Assume that
0<p and §<1. Then,

a). (Pseudo-local property). The distribution k(z,y) coincides with a C™® function
outside the diagonal in IR™ x IR™. Moreover, given a, f € IN", there exists Ny € IN
such that for each N > Ny,

sup |¢—y|¥| D3 DEk(z,y)| < 00
z#y

b). Suppose that the symbol p(z,£) has compact support in € uniformly with respect
to . Then, the distribution k(z,y) is ¢ C™ function in IR" x IR" and given
a,feIN", N € IN, we have

sup  |z—y|N|DZDk(z,y)| < o0
R xIR"

c). Assume that m4+n+M <0, for some M € IN. Then, the distribution k(z,y) is e
bounded continuous function with bounded continuous derivatives of order <M.

The case m4n+M = 0 for some M € IN is not considered in [8]. When m+n+N = 0
a logarithmic estimate can be proved and when m+n+4+ M > 0, we obtain the sharf.:
pointwise estimate we referred to in the introduction. Both cases can be obtained!
simultaneously as it will be proved in the next section.
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Under the hypothesié of Theorem 2.1, the distribution kernel k(z,y) can be written
as a well defined oscillatory integral,

vk(z, y) = (27];),. /e;(H).EP(zy €)d¢

ifz #y.
This representation is obtained from (2.1) by repeated integrations by parts.

3. The pointwise estimate for the kernel

Theorem 3.1: Let L € LT};,m € IR,0<6<1, 0<p<1 be a pseudo-differential
operator with symbol p(z,£) and let k(z,y) be the distribution kernel of L. Then,

a) if m+n+M =0 for some M € IN, there ezists C >0 such that

sup |D2DEk(z,y)|<Clloglz—yll, = #y.
|atfl=M

b) if m4+n+M >0 for some M € IN, there ezists C >0 such that

(3.1) sup |DEDEk(z,y)| S Cla—y[{mmDle 52y,
|lot8|=M

Proof: We first observe that if k(z,y) is the kernel of a pseudo-differential operator
in L%, it follows that D‘;‘Dz‘,g k(z,y) is the kernel of a pseudo-differential operator of
order < m+|a|+|B|. Hence, it is enough to prove the above inequalities with & = 8 = 0.

Also, according to Theorem 2.1, parts a) and b), it sufices to estimate k(z,y) for
0< |z—y| <1 assuming that the symbol p(z, &) vanishes for €| < 1.

Now, let ¢ € C§°(IR) be such that ¢ >0,supp(p) C [1/2, 1],f0°°\£(;ﬂdt =1

Then, we can write

r.y) = 1 = ilzy)€ T (ﬂ)d ﬁ
k(z,y) (%)n_[ /{lﬂme p(z, &) T ) 43

{1¢>1} t

let

Given § € IN", we can write .

(@=9)k(z,y,t) = gC(a,ﬂ,) /{ o =9 €Dep(z,6)DF 7 o (@) de.
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The function £ — ¢ (Ll) belongs to S . Moreover, for each v € IN", we have

the estimate

0z (1) 1cmeia iy
Thus,
(e—9)°k(z,3,)| <> Cla, H) / (14]emrlaHesl,
o<p {lep1}
Xsuppewlel/ ()1 PdE,
where x4 denotes the characteristic function of the set A. Since |¢| > 1 implies

t> 1, we can estimate the expression above by C (ﬂ)t"’“‘"”lﬂl.

Thus, we obtain
le—y|Ve#N |k(z, y, )| 2 C()e™*,

when |8| = N. Or,

tmin

| (32) lk(z’yat)lSC(N)1+|z_y|thN'

Thus,
min—1

Ik(z,4)| SC(V) /1 ” mlf;wdt

N2> [ﬂpﬁ] +1, the integral converges. We can write

!"‘i”l_]

P

; c o
< ds.
|k(z,y)|_ |$_y|(m+v'l)/ﬂ ‘/p_y‘ 1+3N *

Thus, if |z—y| # 0 we have |k(z,y)| < C|log|z—y|| when m+n = 0 and |k(z,y)| <
C|z—y|(™™)/? when m+n>0. This completes the proof of the theorem.

It can be shown that these estimates are sharp, (cf. [7]).
If m<—+n+1)(1—p), we obtain from (3.1) the estimates,

1

k <Clo—y| ™ —
Mz, SCla—y| ™57, p#t —

IVz,yk(z,y)| < Clz—y[™.

b

Since we know that k is rapidly decreasing as |z—y| — oo, we deduce that the operators
in the class L"("H)(1 #) are associated tc standard kernels in the sense of R. Coifman

and Y. Meyer, (cf [10]). Moreover, these kernels are bounded by integrable convolution
kernels, when 0 < p <1. This observation gives the L? continuity result, 1 <p< oo, (cf.

(11)).
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If m <-—n(1-p), the estimates we obtain from (3.1) are

|k(z,y)|<Clz—y[™

3.3
(33) IV yk(2,4)| < Cla—y[ils.

Thus, operators in the class L ‘-p) are associated to weakly strongly singular
kemnels, (cf. [12]), that is to say, kernels more singular at the diagonal than standard
kernels, but not too singular to prevent the operators to be continuous in L?,;1<p<oo.

C. Fefferman has proved, (cf. [13]), that pseudo-differential operators in the class
L;(nﬁ)(l_p) 0<§ < p<1 are bounded in L?, for 1 < p < oo, but this is not longer true
if m>—(n/2)(1—p). Thus, {n/2)(1—p) is the maximum order for which a pseudo-
differential operator can be considered weakly strongly singular. For this class the
estimates on the kernel will be

k(z,y) < Cla—y[(+D)/2
|V2yk(z,y)| < C|z—y|‘“[(i+1)/2]-1/p.

These are the weakly strongly estimates (3.3) only when p = 1. However, it is
possible to prove for these kernels integral conditions resembling those considered by
J.L. Rubio de Francia, F. Ruiz and J.L. Torrea, (cf. [7]).

This will be shown in the next section, using the pointwise estimate already ob-
tained for the kernel k(z,y).

4. An integral estimate for the kernel

Theorem 4.1: Let L € L7;,m >2—n+1)1—p)ym+n+1> 0. Then, given
1<p<co,3 {d;} € I',0<6< 1, such that:

Ifo<r<l,

1/p

|:_z|<r ( (lk(I y) (z, y)|P+|k(y, x)—k(y,z)lp)dy> <

2i rffy—z }<2J"’1 rf

('4‘1)

|/\

o



189

Ifr2>1,

1/p
< (Ik(z,y)—k(z,y)IP +|k(y, z)— k(y,Z)l‘”)dy) <
(4.2) Ir—=|<r zu<1y-z|<2: r

<C
<5 B

Proof: Using (3.1) with M =1, we obtain by the mean value theorem that

|z—2|

43) k(= y)=k(z,y)|+|k(y, )= k(y, Z)ISCW’

if 2|z —z| < |y—2z|.

Let us first prove (4.1). It suffices to consider one of the terms in the left hand side.

Using (4.3), we can write

1/p
(/ . Ik(z,y)—k(z,y)l"dy) <
27 riy—zj2i 1 rf
1/p
o=z
—_— <
¢ (/2ir'<|,,-z|<25+1,.a ly—zl(m'HH'l)P/de =

co 1/p
Cr ( / tn.l.@/p)(mﬂmdt)
2778

Since {n-+1)(1-p)>-n—1+£n for p>0,1<p, we have that n— %(m+n+1) <0.
Thus, the integral above converges to C r(27r®)[*(p/2)(mn+Dl/?p  Since (n+1)(1—p)>
—n(1-p)—1, the condition m>—(n+1)(1—p) implies that the exponent of 27 is<0. On
the other hand, we want the exponent of r to be >0. Or, 1—6 ( > ) 20. This is

equivalent to the condition
1

mintl _ "
s

6<

Let us now consider (4.2). As before, it is enough to look at the first term in the left

hand side. We obtain

1/p
(/, _IM%M-H%@P@) <
2J r<y—z|<2ittr

1/p
—2|P
2iry—zl2itir |y_zl(p v

(-
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C(2ry™(U/p) p(23r)n(1/PYnp/p(mint)) 1y

Once again, the exponent of 27 is n—ﬂ*pEﬂ < 0. This time we want the exponent
of r to be <0, which it is, since m >2—(n+1)(1—p).

Finally, we have showed that (4.1) and (4.2) hold with

d; = C(2)~=%*

(4.4) ) 0<95min{1,-———-—| lll__n}
P

This completes the proof of Theorem 4.1. Let us observe that when m = (n+
1)(1-p), we can choose in (4.4) 6 = 1. When m = —n(1-p) (4.4) holds for § = p.
Finally, when m = —2(1—p), we can choose § = %. In [15], S. Chanillo and A.
Torchinsky proved an estimate similar to (4.1) with m =—3(1—p) and p = 2 and asked
whether a similar estimate would hold for p> 2.

5. A» weak type estimate in the class L7,

We will now obtain as an application of Theorem 3.1, that operators in L7';, -n <
m <-n(l1—p) can be estimated, pointwisely, in- terms of a fractional integral I,. This
estimate will immediately lead to weak type estimates.

Theorem 5.1: Let L € Ls,-n<m<—n(l-p), 0<p<1,0<6<1. Then, there
exists C >0 such that for each f € C§°(IR"),z € R", ‘

m+n

Lf@ISC Lfl)z), a=n-""2

Proof: According to Theorem 2.1 b), it suffices to assume that the symbol p(z, £)
vanishes for || <1.

Using the same notation as in Theorem 3.1, we have

Li@)= [ = na ) [ ol T ierat =
M—-oo

: M iz. [ L _
= Jm [0 [ et oetlni© F & =

M ) d
= Jim o [ [ [ st et e T A e



191

For M fixed, let
M ; dt
barleh) = Gorge [ R D01/

From the inequality (3.2), there exists C >0 depending on M such that

M tﬂﬂ'ﬂ—l d
r < —_—dt<
|kM($:y)|—C/ 1+(|.’B yltp)N -

c tn’r+-n—1 _m
< t.
/ T+(lz—ylte)V

Thus,
| /. kM(:r,y)f(y)dy)t _ Eaelz,v)f(y)dy| <
o ez I YAy
Wl
¢ %Lj+l>|r—y‘>2i ll'—yl("ﬂ“)/l’ v
JE
O, o) _mtn
C/R" |z —y|™™ Yy «(|f)(z), a p

Finally, Lf(z) = limpm—co | kM(z,y)f(y)dy. Thus,

ILf(2)|<C La(lf])(2).

This completes the proof of the theorem.

Corollary 5.2: Let L € Lz s <m<n(l-p),0<p<1,0<56<1. Then L is of
weak type (1,%), for some 0<f<1.

Proof: This result is an immediate consequence of the fact that I, is of weak type
(1,q9), where e =1-2,(cf. [9], p.120).
Thus, § = np .
This completes the proof of the corollary.
6. LP weighted estimates for a a class of oscillatory integrals
It is true that, for most operators in Harmonic Analysis, boundedness on
LP(IR™), 1< p< oo, will imply boundedness on LP(IR";w),1<p< oo, w € Ap.

However, there is a remarkable theorem, due to R. Coifman, (cf. [1]), which states
Ny that for a classical singular-integral operator,

Tf(z) =po [ Ka=v) f0) dy
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a deeper result holds. Namely, ‘
6 [ Ifwrewise [ MIGPR)y,  f € (R,

where 0 <p<oco,w € A, C = C(p, w) >0 and where M denotes de Hardy- thtlewood
maximal operator.

Coifman’s proof of (6.1) is based on a difficult good A inequality involving the
maximal operator T, defined as

T* f(z) = sup f € C§°(IR™),
0

J/ Kz, ) f(W)dy|
ly—zpe

and the operator M.

We describe in [2] a different proof of (6.1), under conditions that allow for con-

sideration of a wider class of operators. Our approach combines the following two
ingredients.

First, we prove a pointwise estimate. Indeed, we show that there exist 0 < s <
1,C = C(s)>0, such that

(6.2) M¥(Tf)(z)<C Mf(z), z€R", fe€Cy(R"),

where M#* is»the s-sharp maximal operator, defined as
(6.3) M#(g) = [M*(lg"))'°,

M# being the sharp maximal operator of C. Fefferman and E. Stein, (cf. [3]),

ceC

(64) Moo = int (157 /) lot)—cliv)

where supp(,) means that the supremum is taken over all the balls centered at z and
| B|, as usual, is the volume of B = B(z).

Second, we use an estimate due to C. Fefferman and E. Stein, (cf. [3]). Namely,
65 [ MIGPear<e [ M fGPutd, £ € O

where 0<p<oo,w € A, C = C(p,w) >0.
A simple proof of (6.5) can be found in [4], p.42.

Then, in order to conclude (6.1), we combine (6.2) and (6.5) in the following way.
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JﬁR" (T (y)Pro(y)dy < fw [M(TFI) )P w(y)dy <
<C /Rn [M#(IT1*) )P *w(y)dy =
—c ]]Rn [MA(TF)(w)Pwly)dy <

<c| [ MO P i)y,

Coifman’s result could be extended in two directions. One, allowing T to be a more
general operator. The other, allowing w to belong to a larger class of weights. It is clear
that estimate (6.2) will deal with the first generalization, while (6.3) will have to do
with the second. In this respect there are some extensions of the class Ao, for which
(6.3) still holds, (cf. [5]). However, the focus of [2] is on proving the estimate (6.2) and
extending it to operators other than Calderén-Zygmund operators. Among them, it is
mentioned in [2] a class of oscillatory integrals related to those studied by D. Phong
and E. Stein, (cf. [6]).

Our purpose now is to prove the estimate (6.2) for these operators, thus obtaining
weighted L? estimates for them, with A, weights.

We will first precise the class of operators under consideration and show some
properties.

Given a distribution K(z,y) € D'(IR" x IR"™) and given a real bilinear form E(z, y),
we define the operator

(6.6) (Lef,9) = (k(z,y), =N f ® g), for f,g € C(IR™).

When k(z,y) is the distribution kernel of a Calderén-Zygmund operator, (6.6)
coincides with the class studied by D. Phong and E. Stein.

When k(z,y) is the distribution kernel of a pseudo-differential operator, an alter-
native description can be given. Indeed, given a symbol p(z, £) in the Hérmander class
Spsym € IR,0< p, 6§ <1 and given a real bilinear form E(z,y), the integral

[ tna A5 flee,

where f € C§°(IR") and F, denotes the Fourier transform in the variable y, is well

defined pointwise, since F| e'Z@Y) f(3)](€) decays rapidly as a function of ¢, for each z
fixed. :
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Lemma 6.1: Assume that 0< p<1,0<6<1 and let k(z,y) be the distribution
kernel of a pseudo-differential operator L with symbol p(z,£). Then, if f € C§°(IR")
and if & supp(f), we have,

©1) [y @) dy = [ plz, OFFE fIEE

Proof: Let n € C§°(IR") be such that supp(n) C {|¢| <2} and n(¢) =1 if [¢|<1.
We can write the right hand side of (6.7) as

[ pa em@F B s@ee+ [ = pla, O1-n(€)F, (5 OGS

Let us consider the first term.

e [ pan 0n(©) [ e )y at =

= [ [ [ otoemerae] = sy o

The expression between brackets defines a function, k;(z,y). Integrating by parts we
can see that & € C®°(IR" x IR") and each derivative decays rapidly as |z—y| — oco.
Let us now consider the second term.

As in Theorem 5.1, we have

[ = pla 0-nEOIF [ Fu)e)dg

M )
= limp—oo / ) /1 [ﬁ /IR,,e'("y"‘p(z,ﬁ)(l—n(&))so(I€I/t)d6?e‘5"'”)f(y)dy-

M
o [ o S e Oullel/ e T

kM(x7 y) =

Again integrating by parts, we can prove that {kp} converges in C=°(IR" x IR"\
diagonal) to a function k2(z,y).

Thus, if |z —y| > 0, we deduce that the distribution kernel of L coincides with
k1(z,y)+k2(z, y) and that (6.7) holds.

This completes the proof of the lemma.
Theorem 6.2: Let p(z,£) € S5, n<m<—n(l-p),0<p<1,0<6<1 and let E

be a real bilinear form.

Then, the operator Lg given by (6.7) is of weak type (1, ”—';"L)
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Proof: According to the proof of Corollary 5.2 it suffices to show that Lgf(z) can
be estimated in terms of a fractional integral I,|f|(z).

And to prove this pointwise estimate, we will follow the proof of Theorem 5.1. With
the notation used in this theorem, we can write,

Lef(@) = Jim [ P Dhag(z,)f(0) d.

Now,

I/B" e FEDkyy(2,4)f (v) dy‘ -

5 foap b)) <
e =y

If ()l

dy =
/2‘5+‘>l::—'yb25 |x_yln—a Y

< <
- Z /2j+1>l=v—y|>2i |kM(:c,y)f(y)| dy<C Z
b=/ jell

o O e, e
-c /]R dy = C L(|f|)(z), if e,

" |-yl

Thus
ILef(2)| <C L(lf)()-
This completes the proof of the theorem.

It is clear that the same result will be true for any oscillatory factor e*5(*¥ where
S is a real function. :

We are now ready for the main result.

Theorem 6.3: Let k(z,y) be the distribution kernel of a Calderon-Zygmund op-
erator and let E(z,y) be a real bilinear form. Assume that k is rapidly decreasing as
|z—y| —» 0o. Thus, there ezist 0<s<1, C>0 such that

MF(Le(f))(20) SC M(f)(zo)
for every f € C§°(IR™), zo € IR".

Proof: According to (6.3) and (6.4) it suffices to find 0<s<1 and C >0 such that
for each E = E(z,) and for some ¢ € C, '

1/s
(65) (157 [Lieesor-iorir)  <c M(eo)

Let B = B(zq,7) be a ball centered at zo with radius r.



196

Given f € C?(R"),.we write

f =fXB(1:o,2r)+fXB‘(:o,2r)nB¢(;°,§)+
+fXB°(::o,2r)nB°(::o,}) = fl +f2+f31

where x denotes a characteristic function and B€is the complement of B.

Let c = CB = fmn eiE(z°’H°)k(.’l:o, 'y)fz(y) dy

Replacing in the left hand side of (6.8), and observing that |e*E(:%)| = 1 for every
T,y we get

~EE@20) (Lp fi+ Lef3)(z) +e EE2) L fo(z)|* —|cp|*|dz 1/"<
(IBI/ lle (Lefi+LEfs)(z)+e€ efa(z)|*—leB|*| ) S

1/s
<(i57 [ I@shirLem@iast i [ 18 o) -eolids) <

(69) <c (IFI / |LEf1|’dz)”’+c (1‘51 /. lLEf3|=dz)”'+

+¢ (17 [ | o €565 -
) s l/a
- /e'E(”’”_“)k(zo,y) f2(y) dy d:c) .

Let us consider each term separately.

For the first term in (6.9), we observe that the operator Lg is of weak type (1,1),
(cf. [6]). Thus, using the Kolmogorov condition, (cf. [13]), we have the estimate,

1 S\
(ELILEfII dx) SCW/!flld-TSC Mf(zo).

Let us consider the second term in (6.9).
2
We observe that in supp(f3), we have [y—zo|>2r and also ly—zo|> %. Moreover,
|z—zo| <.
Thus, if 0< r <1, |[y—z| > |y—zo|-|z—20| > %——r >1. Andifr>1,|y—z|>2r—r =r>1.

In any case, we can use the fact that the kernel k(z,y) is rapidly decreasing as
lz—y| — oo.
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Thus,
LefEISC | E'—_f”;(cz—l)},+—ldyg
(6.10) chlirqy—xowmr El'%%l)—l"ﬁdys
=C i(?r)*“l / _1f(®)ldy<C Mf(zo).
i=1 ly=ol2itir

Finally, let us consider the third term in (6.9).

l/ e‘E("H°)k(z,y)f(y) dy—
ly-zol2/r

e Bzor=20) (24, 4) f(y) dy|<

~/2-T<!!—20|<2/"

(6.11) |ei B0 ¥20) k(2 y) —k(z0,y)| |f(¥)] dy <

Afﬂﬂo@/f
< / e Be=20.=0) 1| k(z, y)| () ldy+
1‘<]Ho|<2/"

+f bz, 9)~ Kz, )| @) .
2ry—=ol2/r

The first term in (6.11) can be estimated as

rdy—zol2/r Iy o | ly—zotz2/r [Y— ol
C’r f _f)l
: 79 frdy-zolz-it jr [Y—To|™

o<

— = dy <Cr Z(Z"/r
j=0

/  fWldy<C - Mf(o).
|y—zolzitifr |

Let us consider the second term in (6.11). Since 2|z —zo| < 2r < |y —zo|, we can
estimate it by,

T—I
=

2dlyzof [V=2

As in (6.10), this integral is < C M f(zo).

This completes the proof of the theorem. The proof of Theorem 6.3 uses several
ideas from [6]. Particularly, the decomposition of the function f. However, our assump-
tion that the kernel k(z,y) is rapidly decreasing as |z—y| — oe allows us to work with
any real bilinear form, not necessarily nondegenerate. The natural setting in which this
hypothesis on % holds is the class L7's. Thus, we obtain from Theorem 6.3 the following
consequence.
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Corollakry 6.4: Let L € L};,m S—(n+i)(1—p), 0<56<1,0<p<1 be a pseudo-
differential operator with distribution kernel k(z,y) and let E(z,y) be a real bilinear
form. Then, there ezist C>0,0<s<1 such that

M#*(Lef)(zo) SC Mf(zo)

for every o € IR", f € CS°(IR™).

Proof: If suffices to observe that the estimates (3.1) imply in this case that L is a
Calderon-Zygmund operator. ‘

When E = 0, we obtain
MF(Lf)(z0) SC Mf(zo)

from which weighted L? estimates with A., weights are obtained. This generalizes [14].
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