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1 .  Introduction 
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Given a pseudo-differential operator L in the Hormander class L:;-:6 '  it is a classical 
result , (cf. [8] ) that the distribution kernel k(x, y) of L will be a Coo function away 
from the diagonal and will decay rapidly with all its derivatives as I x  - y l  --t 00 ,  if 
0 <  p ::; 1 , 0 ::;  b < 1 . Moreover, k(x, y) will coincide with a Cj function in all mn x mn , 
provided m+n+j < O .  In [7], we completed the analysis, by proving a sharp estimate for 

k( x , y ) ,  when m + n +j ;::: O .  \""Ie used, however, a non standard partition of unity, which 
forced us to consider separately the cases p = 1 , 0 < p < 1 .  

We give here a much simpler proof of that estimate, using a standard partition 
in dyadic rings . The rest of the paper is devoted to show several new applications of 
the estimates, to other integral estimates, weak type (p, q), etc .  Specially, in Section 
6 we combine this estimates with a pointwise estimate for a modified sharp maximal 
function, to obtain LP' weighted estimates with Aoo weights for a class of oscillatory 
integrals closely related to those studied by D. Phong and E. Stein. Particularly, we 
have in this class pseudo-differential operators of order ::;-{ n+l )( I-p), which generalizes 
the weighted estimates obtained in [14]. 

The organization of the paper is as follows .  In Section 2, we precise the definition of 

the class L:;-:6 and state some classical properties for the distribution kernel. In Section 

3 we complete the analysis by proving a sharp estimate when m+n+j ;::: 0 for some j .  In 
Section 4 an integral estimate in the spirit of the one considered in [ 17] is proved. This 

generalizes [15] , Lemma 2 . 1 .  In Section 5, we prove a weak type ( l , q ) , q >  1 estimate 
in L:;-:o , m < --n(I - p) ,  by estimating the operator in terms of a fractional integral Jo . 
Finally, Section 6 is mainly devoted to weighted estimates for a class of oscillatory 

integrals . 

The notation used in this paper is the standard in the subject . 

2.  The class L:;-:6 

Following [3] , we will denote by S;::6 '  m E  m, 0 ::; p, b ::;  1, the class of COO(mn x mn) 
functions p( x, e) such that 
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for every 0: ,  {3 E Il'r .  
Given p E 5;::6 '  we define the pseudo-differential operator L in the Hormander class 

L;::6 (cf. [8] ) ,  as 

The operator L is uniquely defined by p, which is called for that reason the symbol 
of L. 

L defines a linear and continuous operator from C�(JR") into COO(JR"). Let 
k(x , y) E D'(JRn x JR") be its distribution kernel. It is defined by 

(2. 1 )  

The following theorem summarizes several classical properties. We refer to  [8] for 
proofs. 

Theorem 2 .1  (cf. [8J) . Let L E L;::6 , m E JR, O 5:. <5, p 5:. 1, be a pseudo-differential 
operator with symbol p( x , e) and let k( x, y) be the distribution kernel of L. Assume that 

0 <  p and <5 < 1 .  Then, 

a). (Ps eudo - local property). The distribution k(x, y) coincides with a Coo function 
o'utside the diagonal in JRn X JRn. Moreover, given 0:, fJ E lNn, there exist., No E lN 
such that for' each N ? No , 

sup Ix -yIN ID�D: k(x , y) l < oo 
xi'y 

b). Suppose that the symbol p(x, () has compact support in e uniformly with respect 
to x . Then, the distribution k( x ,  y) is a Coo fundion in JR" x JR" and given 
0: ,  (3 E INn,  N E IN, we have 

c). Assume that m+n+M < 0, for some M E IN. Then, the dis tribution k(x, y) is a 
bounded continuous function with bounded continuous derivatives of order 5:. M. 

'-ci The case m+n+M = 0 for some M E IN is not considered in [8) . When m+n+N = 0 
a logarithmic estimate can be proved and when m + n + M > 0, we obtain the sharJ,: 
pointwise estimate we referred to in the introduction . Both cases can be obtained1 
simultaneously as it will be proved in the next section. 
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Under the hypothesis of Theorem 2. 1 ,  the distribution kernel k(x , y) can be written 
as a well defined oscillatory integral, 

if x I- y. 

This representation is obtained from (2.1 )  by repeated integrations by parts. 

3. The pointwise estimate for the kernel 

Theorem 3 . 1 :  Let L E L;'6 ' m E JR, O :S;  8 < 1, 0 < p :S;  1 be a pseudo. differential 
operator with symbol p(x , e) and let k(x , y) be the distribution kernel of L. Then, 

a) if m+n+M = 0 for some M E IN, there exists C > O  such that 

sup ID�D:k(x , y) I :S; Cl log lx -y l l , x l- y. 
lo+Pl=M 

b) if m+n+ M > O  for some M E IN, there exists C > O  such that 

(3. 1 )  sup ID�D�k (x , y) I :S; C lx - yrm+n+M)/p x I- y. 
Ia+PI=M 

Proof: We first observe that if k( x , y) is the kernel of a pseudo-differential operator 
in L;'6 ' it follows that D� D: k( x , y) is the kernel of a pseudo-differential operator of 
order :S; m+ lal+ I,8 I .  Hence, it is enough to prove the above inequalities with a = ,8  = o. 

Also, according to Theorem 2. 1 , parts a) and b) , it sufices to estimate k(x, y) for 
0 <  Ix -y l  < 1 assuming that the symbol p(x ,  e) vanishes for I{ I :S; 1 .  

let 

Now, let 'P E CO"(JR) be such that 'P > 0 , sUPP('P) C [1 /2 , l] , ioOO, Pipdt = 1 . 
Then, we can write 

k(X ' Y) = --n . e,(z--y) ·ep(x , O'P - de-
1 100 1 ' .  ( l e i ) dt 

(271") . 1 { l e l2:1 }  t t 

k( x , y , t) = 1 ei(x-y) oep(x, O'P (ill) de· 
{ l e l2:1 } t 

Given ,8 E INn, we can write 
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The function e ---+ rt' {lfl) belongs to St� . Moreover, for each "'I E JNn, we have 
the estimate 

Thus, 

l (x - y)Pk(x, y, t) I ::5 L C(a, P) 1 (1 + le lyro-plarHa-PI.  
or9 { le�l } 

·X.uppe ".( Ie l /t) (e)rla-Pl de, 

where XA denotes the characteristic function of the set A. Since le i ;::: 1 implies 
t ;::: 1, we can estimate the expression above by C(p)tmin-pIPI . 

Thus, we obtain 

when IP I = N. Or, 

(3 .2) 

Thus, 

Ix _y iN tpN lk(x, y, t) l ;::: C(N)tmtn, 

tmtn Ik(x , y, t) 1 ::5 C(N) 1+ lx -yINtPN · 

100 tmifl-l Ik(x , y) 1 ::5 C(N) 1 1 + ( lx _y ltP)N dt. 

IT N ;::: [7-] + 1 , the integral converges. We can write 

C roo s�-l 
I k(x , Y) I ::5 lx _ y l (mtfl)/p 11;..,, 1 l +sN cIs. 

Thus, if I x - y l ::/= 0 we have I k(x , y) 1 ::5 C i log lx - yi l when m + n  = 0 and I k(x , y) 1 ::5 
C lx - y l (mfn)/p when m+n> O. This completes the proof of the theorem. 

. 

It can be shown that these estimates are sharp, (d. [7] ) .  
IT m ::5-{n + l) ( I - p) ,  we obtain from (3. 1 ) the estimates, 

I k(x , y) I ::5 Clx _y l -n+ �-l , 
IV' x , y k( x , y) I ::5 C lx -y r-1 • 

1 p ::/= n+l ' 

Since we know that k is rapidly decreasing as Ix-y l ---+ 00 ,  we deduce that the operators . 
in the class L�r;tl) ( l-P) are associated to standard kernels in the sense of R. Coifman 
and Y. Meyer, (cf. [10] ) . Moreover, these kernels are bounded by integrable convolution 
kernels, when 0 < p < 1 . This observation gives the LP continuity result , 1 < p < 00, (cf. 
[ 11] ) . 
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If m �--n(l -p) , the estimates we obtain from (3 .1)  are 

(3.3) 
I k(x , Y) I � Clx-yr 
1'\7 z,yk(x; y ) 1 � Clx _y l-fl-l/P• 

Thus, operators in the class L-;:P-p) are associated to weakly strongly singular 
kernels, (cf. [12] ) , that is to say, kernels more singular at the diagonal than standard 
kernels, but not too singular to prevent the operators to be continuous in LP , 1 < p < 00 . 

C. Fefferman has proved, (cf. [13] ) , that pseudo-differential operators in the class 
L�;/2) (1-P) 0 � D < p � 1 are bounded in LP ,  for 1 < p < 00, but this is not longer true 
if m > -(n/2)(1 - p) .  Thus, -(n/2)(1 - p) is the maximum order for which a pseudo­
differential operator can be considered weakly strongly singular. For this class the 
estimates on the kernel will be 

I k(x ,  y) � Clx -yr(;+1)/2 

1'\7 z ,y k(x, y) 1 � Clx -yr-n[( ;+1)/2)-1/P . 

These are the weakly strongly estimates (3.3) only when p = 1 .  However, it is 
possible to prove for these kernels integral conditions resembling those considered by 
J.L.  Rubio de Francia, F .  Ruiz and J.L. Torrea, (cf. [7] ) .  

This will be shown in the next section, using the pointwise estimate already ob­
tained for the kernel k( x ,  y ) . 

4. An integral estimate for the kernel 

Theorem 4 .1 :  Let L E L;:6 , m 2: -(n + 1)(1 - p), m + n + 1  > O. Then, gwen 
1 < p < 00, 3 {dj }  E I1 , O < /:k 1,  such that: 

Ij O < r < l , 

(4. 1 )  ( ) 1 h 
sup 1 ( I k(x ,  y )- k(z ,  y) i P + lk(y, x) - k(y, z ) iP )dy � I z-z I<r 2i rB <I y-z l<2if,l r9 

d ·  
< c }IJ / . - IB(z , 2J r ) 1 1-1 p 



(4.2) 
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If r ? l , 

sup (1 ( lk(X , y) - k(Z , y) IP + lk(y , X) - k(y , Z) IP )dy)
I /P 

� 1 x-z l<r 2i r<1 y-z 1<2;+1 r 
d · < C  . 1IJ / . 

- IB(z , 21 r ) 11-1 P 

Proof: Using (3 . 1 ) with M = 1 , we obtain by the mean value theorem that 

(4.3) Ix -z l I k (x , y) - k(z , y) l + I k(y, x) - k(y, z) l 5: C I y-z l (mffl+l) / p ' 

if 2 lx- z l < I y-z l . 
Let us first prove (4 . 1 ) . It suffices to consider one of the terms in the left hand side. 

Using (4.3) , we can write 

Since -(n+ 1)( 1 - p) > -n - 1 + in for p > 0, 1 <p, we have that n - ;(m + n + 1) < 0. 
Thus, the integral above converges to C r(2irIJ)[n-{p/p) (mtn+1)lIP . Since -{n + 1)(1 -p» 
-n(l -p)-l , the condition m ?-{n+ 1)(1 -p) implies that the exponent of 2i is < O. On 
the other hand, we want the exponent of r to be ? O. Or, 1 - 8  (� - n) ? O. This is 
equivalent to the condition 1 8 � !!!±!!±l . -n p 

Let us now consider (4 .2) . As before, it is enough to look at the first term in the left 
hand side. We obtain 
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Once . again, the exponent of 2; is n - � < O. This time we want the exponent 
of r to be :S 0, which it is, since m �-{n+1)( 1 - p). 

Finally, we have showed that (4.1 )  and (4.2) hold with 

(4 .4) O < (} :Smin {I , �
- n
} ' 

This completes the proof of Theorem 4. 1 .  Let us observe that when m = -{n + 
1 ) ( 1 - p),  we can choose in (4.4) (} = 1 .  When m = -n(1 - p) (4.4) holds for () = p. 
Finally, when m = --¥( 1 - p), we can choose () = 2tn�i-p) '  In [15] , S.  Chanillo and A.  
Torchinsky proved an estimate similar to (4. 1 )  with m = -¥-{1-p) and p = 

2 
and asked 

whether a similar estimate would hold for p > 2. 

5. A weak type estimate in the class £1;:'6 
We will now obtain as an application of Theorem 3 . 1 ,  that operators in L';:,6 ' -n < 

m < -n(l - p) can be estimated, pointwisely, in terms of a fractional integral la . This 
estimate will immediately lead to weak type estimates . 

Theorem 5 . 1 :  Let L E L';:,6 ,-n < m < -n(1 - p),  0 < p :S 1 , 0 :S  6' < 1 .  Then, there 

exists C > O  such that for each f E Cgo(IRn) , x  E IRn, 

ILf(x) I :S C la( lf l )(x), m+n 
a = n - --· .  

p 

Proof: According to Theorem 2 . 1 b) , it suffices to assume that the symbol p(x , �) 
vanishes for I � I :S 1 .  

Using the same notation as in  Theorem 3 . 1 ,  we have 

i . .  100 dt A Lf(x) = e"" '�p(x ,  0 'P( I� I /t) -f(�)d� = IRn 1 t 
1M 

i 
. e . A dt = lim e'X '  p(x ,  Ocp( I� I /t)f(O- d� = 

M-+oo 1 IRn t 

1 
h l

M

i . 
dt 

= lim -(2 
) e,( x-y) .ep(x ,  O'P( I� I /t)d� -f(y)dy. M-+oo 7r n IRn 1 IRn t 
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For M fixed, let 

From the inequality (3.2), there exists C > ° depending on M such that 

Thus, 

1M tm+n-l 
I kM (X , y ) I :::; C 1 l + ( lx _ yltP)N dt :::; 

< c dt. 
100 tm+n-l 

- 1 l + ( lx - y jtP)N 

2: r kM(X , y)f(y)dy :::; 
jE7J, J2i+1>jX-y1>2i 

C '" r If(y) 1 dy = 
j7lz J2i+1>\X-y1>2i I x _ y l (mtfl)/ P 

C r I f(y) 1 dy = C lar ( lf l ) (x) , a = n - m +n lInn I x -y ln-o p 

Finally, Lf(x) = limM_oo J kM(x , y)f(y)dy. Thus, 

ILf(x) I :::; C lar( l f l )(x) . 

This completes the proof of the theorem. 

Corollary 5 . 2 :  Let L E L;;:s ,-n < m < -n(l - p), O < p :::; l , O :::; S < l . Then L is of 

weak type ( 1 ,  �) ,  for some 0 <  e < 1 .  

Proof: This result i s  an immediate consequence of the fact that lar i s  of weak type 
(l , q) , where � = 1 - � , (d. [9] , p .120) . 

Thus e = !!!:f11 . , np 
This completes the proof of the corollary. 

6. LP weighted estimates for a a class of oscillatory integrals 

It is true that , for most operators in Harmonic Analysis, boundedness on 

Y(IRn) ,  1 < p <  00, will imply boundedness on Y(IRn j w), 1 < p <  00, w E  Ap. 
However, there is a remarkable theorem, due to R. Coifman, (cf. [1 ] ) , which states 

.,,� that for a classical singular· integral operator, 

Tf(x) = p.v f k(x -y) fey) dy 
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a deeper result holds. Namely, 

(6. 1 ) { ITf(y) IPw(y)dy � c 
( [Mf(y)]Pw(y)dy, f E Cgo(IRn) , lIR" . lIR" 

where O <p < oo, w E Aoo, C = C(p, w) > 0  and where M denotes de Hardy-Littlewood 
maximal operator. 

Coifman's proof of (6. 1 ) is based on a difficult good A inequality involving the 
maximal operator T* , defined as 

T*f(x) = sup I ( k(X, Y)f(Y)dy l , f E Cgo(IRn) , 
£>0 llv-o:tx 

and the operator M. 

We describe in [2] a different proof of( 6 . 1 ) , under conditions that allow for con­
sideration of a wider class of operators. Our approach combines the following two 
ingredients. 

First,  we prove a pointwise estimate. Indeed, we show that there exist 0 < 8 < 
1 , C = C(8» 0 ,  such that 

( 6 . 2 )  

where M! i s  the s-sharp maximal operator, defined as 

(6 .3) 

M# being the sharp maximal operator of C. Fefferman and E. Stein, (d. [3] ) , 

(6 .4) M#(g)(x) = sup inf ( IB
1

1 
( Ig(y) - c ldy) B(z) cE(J;' lB 

where sUPB(z) means that the supremum is taken over all the balls centered at x and 
IB I ,  as usual, is the volume of B = B(x) . 

Second, we use an estimate due to C. Fefferman and E. Stein, (cf. [3] ) . Namely, 

(6 .5) { [Mf(y)]Pw(y)dy � C ( [M# f(y)]Pw(y )dy, f E cgo(IRn) lIR" lIRn 
where O < p < oo, w E Aoo, C = C(P, w) > 0. 

A simple proof of (6.5) can be found in [4] , p.42. 

Then, in order to conclude (6. 1 ) , we combine (6 .2) and (6.5) in the following way. 
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{ ITf(y) IPw(y)dy �  { [M( ITf l � ) (y)]P/�w(y)dy �  JJRn JJRn 
� C { [M#( ITfI S )(y)]P/BW(y)dy = JJRn 
= C { [M!(Tf)(y )]Pw(y)dy �  JJRn 
� C l [M(f)(y)]Pw(y)dy. JJRn 

Coifman's result could be extended in two directions. One, allowing T to be a more 
general operator. The other, allowing w to belong to a larger class of weights. It is clear 
that estimate (6 . 2) will deal with the first generalization, while (6.3) will have to do 
with the second. In this respect there are some extensions of the class Aoo for which 
(6 .3 )  still holds, (cf. [5] ) .  However, the focus of [2] is on proving the estimate (6 .2) and 
extending it to operators other than Calder6n-Zygmund operators . Among them, it is 
mentioned in [2] a class of oscillatory integrals related to those studied by D .  Phong 
and E. Stein, (d. [6] ) . 

Our purpose now is to prove the estimate (6 .2)  for these operators , thus obtaining 

weighted LP estimates for them, with Aoo weights. 

Vle will first precise the class of operators under consideration and show some 
properties. 

Given a distribution K(x, y) E D'(JRn x JRn) and given a real bilinear form E(x, y), 
we define the operator 

(6 .6) (LEf, g) = (k (x , y) , eiE(z ' Y) f 0 g) , for f, g E Cg"(JRn ). 

When k(x , y) is the distribution kernel of a Calder6n-Zygmund operator, (6.6) 
coincides with the class studied by D .  Phong and E. Stein. 

When k( x , y) is the distribution kernel of a pseudo-differential operator, an alter­
native description can be given. Indeed, given a symbol p(x, e) in the Hormander class 
5;'0 ' Tn E JR, 0 � p, S � 1 and given a real bilinear form E(x, y) ,  the integral 

where f E Cg" (.1Rn) and Fy denotes the Fourier transform in the variable y, is well 
defined pointwise, since F,[eiE(z ,y) f(y)] (O decays rapidly as a function of e, for each x �. fixed. 
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Lemma 6 . 1 :  AS8ume that 0 < p � 1 , 0 � 6 < 1 and let k(x, y) be the di.9tribution 
kernel of a p8eudo�di.tferential operator L with 8ymbol p(x, e) . Then, if f E C�{1Rn) 
and if x ¢ 8Upp(f), we have, 

Proof: Let TJ E C�{1Rn) be such that supp(TJ) C { le l � 2} and TJ(e) = 1 if l e l � 1 . 
We can write the right hand side of (6.7) as 

Let us consider the first term. 

The expression between brackets defines a function, k1 (x , y ) .  Integrating by parts we 
can see that kl E COO (mn x mn ) and each derivative decays rapidly as I x - y l  ---+ 00. 
Let us now consider the second term. 

As in Theorem 5 . 1 , we have 

J e ix . ep(x , O(l - TJ(O).ry [e iE ( x , y) f(y) ) (Ode 

M 
= limM_oo 1

m
" h [ (2;)n 1m" ei (:I>-Y) .(p(x , e)( l -7](e))cpC le l /t)de-�!eiE("' ,y) f(Y)dY] . 

Again integrating by parts ,  we can prove that {kM}  converges in COO(mn x mn\ 
diagonal) to a function k2 (x, y) .  

Thus, if  I x  - y l  > 0 ,  we deduce that the distribution kernel of L coincides with 
k1 (x ,  y) + k2 (x,  y) and that (6 .7) holds . 

This completes the proof of the lemma. 

Theorem 6.2 :  Let p(x , e) E S;';6 ,-n < m < -n(l - p) ,  0 < p ::;  1 ,  0 � c5 < 1 and let E 
be a real bilinear form. 

Then, the operator LE given by (6. 7) is of weak type ( 1 ,  �) . 
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Proof: According to the proof of Corollary 5.2 it suffices to show that .LEf(x) can 
be estimated in terms of a fractional integral 1a lfl(x). 

And to prove this pointwise estimate, we will follow the proof of Theorem 5. 1 .  With 
the notation used in this theorem, we can write, 

LEf{x) = lim f eiE(x 'Y) kM(x, y)f(y) dy. 
M->oo }mn 

Now, 

Thus 

ILEf(x ) 1 � C 1a( lf l )(x) .  

This completes the proof of the theorem. 

It is clear that the same result will be true for any oscillatory factor eiS( x ,y) ,  where 
S is a real function. 

\Ve are now ready for the main result. 

Theorem 6.3: Let k(x , y) be the distribution kernel of a Calderon-Zygmund op­
erator and let E(x, y) be a real bilinear form. Assume thu,t k is rapidly decreasing as 

I X '- Y I -� 00 . Thu:l, there exi:lt O < s <  1 ,  C > O  :luch that 

M!(LE(f))(XO ) � C  M(f)(xo ) 

for every f E CO"(IRR ) ,  Xo E IRR .  
Proof: According to (6 .3) and (6.4) it suffices to find 0 < s < 1 and C > 0 such that 

for each E = E(xo ) and for some e E �, 

(6 .8) 

Let B = B( Xo , r) be a ball centered at. Xo with radius r .  
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Given ! E Co(IRn) ,  we write 

! = !XB(zo ,2r) + !XBC(zo ,2r)nBC(zo , :)+ 

+!XBC(zo,2r)nBC(zo , � )  = h + 12 + /a,  
where X denotes a characteristic function and B e  i s  the complement of B. 
Let C = CB = fIR" 

eiE(zo ,Y-:Z:O) k(xo , Y)h (Y) dy 

Replacing in the left hand side of (6.8),  and observing that l e-iE(z ,y) I = 1 for every 

x, y  we get 

(6 .9)  

Let us consider each term separately. 

For the first term in (6 .9) ,  we observe that the operator LE is of weak type ( 1 , 1 ), 
(cf. [6) ) .  Thus, using the Kolmogorov condition, (cf. [13]) ,  we have the estimate, 

Let us consider the second term in (6 .9) .  

We observe that in supp(/a) ,  we have ly -xo l > 2r and also Iy - xo l > � · Moreover, 

Ix - xo l < r . 

Thus, if O < r <  1 , Iy-x l  � Iy-xo l-Ix-xo l > �-r > 1 .  And if r �  1 ,  I y-x l > 2r-r = r � 1 .  

In  any case, we can use the fact that the kernel k(  x ,  y) i s  rapidly decreasing as 
I x -y l ---t 00 . 



197 

Thus, 

( 6 . 10 )  

ILEfa (x) I � C l 
1 

If(Y��1 dy � 
ly-:toi>2r y-- xo 

� C 
� 1; ,.qy-:to!<)i+l r ly�����1 dy � 

� C �(2j r  )-11-1 �y-xo!<)i+l r I
f(y) ldy � C M f(xo ) . 

Finally, let us consider the third term in (6 .9) .  

I r eiE(x ,y-:to) k(x , y )f(y) dy-I 12 r<1 !t-x ° !<)/r 
- 1  eiE(xo ,y-:tO) k(xo , y)f(y) dy i � 2,.q y-:t 0 j<:) / r 

( 6 . 1 1 )  1 l eiE(x-xo ,y-:tO) k(x, y) - k(xo , y) l lf(y) 1 dy �  
2 r<l y-:t 0 j<:) / r 

� r l eiE(x-xo ,y-:to) - l l l k(;r, y) l lf(y) ldyt 12,.qy-:t ° j<:) / r 
+ r I k( x , y) - k(xo , y) l lf(y) 1 dy. 12,.q y-:t 0 j<:) / r 

The first term in ( 6 . 1 1 )  can be estimated as 

C r 1 ;r - xo l l y - xo l lf(Y) ldy � Cr 1 If(Y)�_l dy = 12,.qy-:to l<2/r Iy- xo l Iy-:toj<:)/r I y -xo l  

Cr f r . , I f(Y)�
l dy � Cr f(Ti /r)�l 

. j=O 1Z-J /r<ly-xo j<:)-J+l /r I y - xo l 
j=O 

r I f (y ) l dy :S C , Mf(xo ) . 11y-:to!<ri+1 /r . 
Let us consider the second term in (6 . 11 ) .  Since 2 lx - xo l < 2r < I y - xo l ,  we can 

estimate it by, 1 
I x-xo l 

If( ) Id c I ' 1,*1 Y y. 2r.qy-:to l  y-xo 

As in ( 6 . 10 ) ,  this integral is � C Mf(xo ) . 

This completes the proof of the theorem. The proof of Theorem 6.3 uses several 
ideas from [6] . Particularly, the decomposition of the function f. However, our assump­
tion that the kernel k(x , y) is rapidly decreasing as ! x-yl --} 00 allows us to work with 

w any real bilinear form, not necessarily nondegenerate. The natural setting in which this 
hypothesis on k holds is the class L;'o ' Thus, we obtain from Theorem 6.3 the following 
consequence. 
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, 
Corollary 6.4: Let L E L;!:6 , m :5 -{n + 1)(1 - p), 0 :5  c5 < 1 , 0 < p :5 1  be a ps eudo ­

differential operator with di8tribution kernel k(x ,  y) and let E(x, y) be a real bilinear 

form. Then, there exist C > 0, 0 < s < 1 .  such that 

M!(LEf)(XO ) :5 C Mf(xo ) 

for every X o E IRn , f E C:'(IRn ) .  
Proof: If suffices to  observe that the estimates (3. 1) imply in  this case that L i s  a 

Calderon-Zygmund operator. 

When E = 0, we obtain 

M! (Lf) (xo ) :5 C Mf(xo ) 

from which weighted LP estimates with A"" wei.e;hts are obtained .. This generalizes [141 .  
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