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ABSTRACT. We study weak-type (1,1)weighted inequalities for
the fractional integral operator Iα. We show that the fractional
maximal operatorMα controls these inequalities when the weight
is radially decreasing. However, we exhibit some counterexam-
ples which show that Mα is not appropriate for this control on
general weights. We do provide, nevertheless, some positive re-
sults related to this problem by considering other suitable maxi-
mal functions.

1. INTRODUCTION

The purpose of this paper is to study certain weighted estimates related to the
fractional operator, defined by

Iαf (x) =
∫
Rn

f (y)
|x −y|n−α dy,

and to the fractional maximal operator

Mαf(x) = sup
x∈Q

1
|Q|1−α/n

∫
Q
|f(y)|dy,

where 0 < α < n. To be more precise, the problem we want to analyze is the
following:
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Given a weightw (i.e., a positive, locally integrable function), find the
best (”smallest”) weight W such that

(1.1) w({x ∈ Rn : |Iαf (x)| > λ}) ≤ C
λ

∫
Rn
|f(x)|W(x)dx,

for every λ > 0 and for suitable functions f .
Similar results have been considered for other kind of operators like the Hardy-

Littlewood maximal function ([5]), the fractional maximal operator (see (1.4)), the
Hilbert transform and Singular Integral operators ([2], [13]), the Kakeya maximal
function ([10]), etc.

We recall that, for p > 1, the weights (w,W) for which the weak-type (p,p)
version of (1.1) holds, were characterized by E. Sawyer ([15]). The characteriza-
tion is as follows: the inequality

w({x ∈ Rn : |Iαf (x)| > λ}) ≤ C
λp

∫
Rn
|f(x)|pW(x)dx

holds if and only if there is a constant C such that for every cube Q

∫
Q
(Iα(χQw)(x))

p′W(x)1−p′ dx ≤ C
∫
Q
w(x)dx.

It is known that (1.1) is equivalent to checking the inequality on finite linear
combinations of Dirac deltas (see [7] and [9]). In particular, taking in (1.1) f =
δx0 (the Dirac mass at x0), we obtain that Iαf (x) = |x −x0|α−n, and hence, for
regular weights W ,

w({x ∈ Rn : Iαδx0(x) > λ}) = w({x ∈ Rn : |x − x0|α−n > λ})
=
∫
{|x−x0|<λ1/(α−n)}

w(x)dx

≤ C
λ

∫
Rn
W(x)dδx0(x) =

C
λ
W(x0),

and consequently, a necessary condition for (1.1) to hold is that

(1.2) Mαw(x) ≤ CW(x), a.e.

In view of (1.2), it seems natural to consider whether the extreme case works; that
is,

(1.3) w({x ∈ Rn : |Iαf (x)| > λ}) ≤ C
λ

∫
Rn
|f(x)|Mαw(x)dx,
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where C is independent of λ, f and, possibly, of w too. This question was raised
by the second author during the Spring School on Analysis: Function Spaces and
Their Applications, held at Paseky nad Jizerou, Czech Republic, in 1999.

An indication that this might be true can be found in the statement of Theo-
rem 4.2, which says that there exists a constant C, depending only on dimension,
so that for every λ > 0, all measurable functions f and all radial decreasing weights
w, (1.3) holds.

The main result of this paper (Theorem 2.1) shows that (1.3) is false, how-
ever, for general weightsw and for any α ∈ (0, n). (A first result in this direction,
for certain values of α and n, was given by Jan Malý [8].) This should be com-
pared with the following well known estimate, which follows as a consequence of
classical covering lemmas ([5]):

(1.4) w({x ∈ Rn : Mαf(x) > λ}) ≤ C
λ

∫
Rn
|f(x)|Mαw(x)dx.

These results naturally suggested the following problem: to determine which
other maximal operators T may replace Mα so that inequality (1.1) holds with
W = Tw. Theorems 3.1 and 4.2 below are particular solutions to this question.
The paper is organized as follows. We present in Section 2 the counterexamples
to inequality (1.3). The remaining part of the paper is devoted to the study of
the aforementioned question. In Section 3 we show that a good substitute for Mα
is given by the composition of Mα with a generalized Hardy-Littlewood maximal
function associated to logarithmic Orlicz norms. Finally, in Section 4 we prove
Theorem 4.2 for radial weights as a consequence of a more general approach,
which also produces a different kind of “admissible” mappings w → Tw = W for
general weights.

2. THE COUNTEREXAMPLES

We will prove in this section that (1.3) does not hold in general. The precise result
is the following.

Theorem 2.1. Given 0 < α < n, there exists a weight w such that for every
finite constant C, one can find λ > 0 and a function f so that

(2.1) w({x ∈ Rn : |Iαf (x)| > λ}) > C
λ

∫
Rn
|f(x)|Mα(w)(x)dx.

Proof. We will construct initially the weightw depending on the value of C.
A simple argument by iteration will allow us to remove later that constraint. The
proof is based on the discretization results of [7] and [9], and the main idea, for
general α ∈ (0, n), is to choose the densities specially located on a suitable Cantor
set. We also present a second example in the case α ∈ N.

Let 0 < δ < 1 be the solution to the equation 2α(1−δ)n−α = 1, and consider
the following Cantor set (see [4]):
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Let E0 be the unit cube in Rn, and delete all but the 2n corner cubes {Q1
k}, of

side (1−δ)/2 to obtain E1. Continue in this way, at the Nth stage replacing each
cube of EN−1 by the 2n corner cubes {QNk }, of side ((1−δ)/2)N to get EN . Thus
EN contains 2nN cubes of volume ((1 − δ)/2)nN , and hence |EN| = (1 − δ)nN .
(If E = ⋂

N EN , then it can be shown that E has Hausdorff dimension n − α.)
For each k, ` ∈ {1, . . . ,2nN}, we say that QNk and QN` are j-relatives, j = 1, . . . ,
N, if j is the smallest index for which there exists a (unique) cube QN−jm such
that QNk ,Q

N
` ⊂ Q

N−j
m , where Q0

m = E0. Thus QNk has (2n − 1) 1-relatives, and
(2n−1)2(j−1)n j-relatives, j = 2, . . . , N. Moreover, ifQNk andQN` are j-relatives,
xk ∈ QNk and x` ∈ QN` , then it is easy to see that

(2.2) |xk − x`| ≈
(

1− δ
2

)N−j
.

Now, in order to prove (2.1), we take w = χEN , and by the result of [7] and [9], it
suffices to consider a finite sum of Dirac deltas, instead of a function f . For this,
we choose xk to be the center of the cube QNk , and f =∑2nN

k=1 δxk . Given x ∈ EN
we find a lower bound for Iα(f )(x) as follows: if x ∈ QNk0

,

Iα(f )(x) =
2nN∑
k=1

1
|x − xk|n−α

≥
∑
k≠k0

1
|x − xk|n−α ≈

N∑
j=1

(2n − 1)2n(j−1)

((1− δ)/2)(N−j)(n−α)

≈
(

2
1− δ

)N(n−α) N∑
j=1

2jα

(1− δ)−j(n−α) ≈ N
(

2
1− δ

)N(n−α)
.

Therefore, if we take λN ≈ N(2/(1− δ))N(n−α), we have

w({Iα(f ) > λN}) = |EN| = (1− δ)nN.

On the other hand, if we show that

(2.3) MαχEN (xk) ≈
(

2
1− δ

)−Nα
,

then (2.1) follows by taking N � C, since

1
λN

2nN∑
k=1

MαχEN (xk) ≈
1
N

(
2

1− δ
)N(α−n)

2nN
(

2
1− δ

)−Nα
= |EN|

N
.
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To prove (2.3), fix xk and assume xk ∈ Qjm, j = 0, . . . , N. If j = 0,

|Q0
m ∩ EN|

|Q0
m|1−α/n = |EN| =

(
2

1− δ
)−Nα

.

If j = 1, . . . , N, then Qjm ∩ EN is equal to the union of all the 2n(N−j) cubes
QN` ⊂ Q

j
m, and hence

|Qjm ∩ EN|
|Qjm|1−α/n

= ((1− δ)/2)nN2n(N−j)

((1− δ)/2)nj(1−α/n) =
(

2
1− δ

)−Nα
.

Now, if xk ∈ QNk , take any cube Q centered at the point xk, and let j ∈
{1, . . . , N} be the largest index for which Q has nontrivial intersection with a
cube QN` which is a j-relative of QNk (if Q meets only QNk , the estimate is trivial).
Then by (2.2),

|Q| ≥ C
(

1− δ
2

)n(N−j)
,

and Q ∩ EN contains only cubes QN` which are `-relatives of QNk , ` ∈ {1, . . . , j}.
Since there are at most 2nj of such cubes, we get

|Q∩ EN|
|Q|1−α/n ≤ C

2nj((1− δ)/2)nN
((1− δ)/2)n(N−j)(1−α/n) ≈

(
2

1− δ
)−Nα

,

which proves (2.3).

A second example for α ∈ N: When α is a positive integer, the proof simpli-
fies considerably as can be seen in the following construction. Given n ≥ 2, let us
take α ∈ {1, . . . , n− 1}. For large N ∈ N, define the rectangle in Rn

R =
n−α times︷ ︸︸ ︷

(0, N]× · · · × (0, N]×
α times︷ ︸︸ ︷

(0,1]× · · · × (0,1],

and consider the net {xk}k of points with integral coordinates inside R. Let µ =∑
k δxk . Then, the total mass of µ and the volume of R coincide and equal

‖µ‖ = |R| = Nn−α.

It is easy to see that for x ∈ R one has

∑
k≥1

1
|x − xk|n−α ≥ c

N∑
m=1

mn−α−1 1
|m|n−α ≈ logN,



632 M.J. CARRO, C. PÉREZ, F. SORIA & J. SORIA

where c denotes a small constant depending only on dimension, so that

R ⊂ {x : Iαµ(x) > c logN}.
Also, if we set w = χR, then Mαw(xk) ≈ 1. Hence,

w({x : Iαµ(x) > c logN}) = |R| = Nn−α,
whereas

∑
k Mαw(xk) ≈ ‖µ‖ = Nn−α. This shows, as in the first example, that

sup



λw({x : Iαµ(x) > λ})∫

Mαw(x)dµ(x)


 = ∞,

the supremum taken over all λ > 0, all linear combinations of Dirac deltas µ and
all weights w.

Let us now show how we can iterate the above examples in order to construct
a weight w for which inequality (1.3) fails. We will only consider the second
example, the construction for the first example being similar.

Given j ∈ N, set N = 22j and let R be the rectangle constructed above for
such N. Write Rj = R − zj , where zj ∈ R will be chosen later. Let {xjk}k be the
net of points with integral coordinates inside Rj and µj =

∑
k δxjk

. In this way

Rj ⊂ {x : Iαµj(x) > c2j}. Put wj = χRj and

dµ =
∑
j∈N

cj dµj ; w =
∑
j∈N

cjwj, with cj = 1
j|Rj|1/2 .

Choose finally the sequence {zj} sufficiently separated so that the rectangles {Rj}
are disjoint and, moreover, we have Mαw(x

j
k) ≈ Mα(cjwj)(xjk) ≈ cj for each j.

We now have for every m ∈ N
w({x : Iαµ(x) > c cm2m}) ≥ w(Rm) = cm|Rm|,

whereas∫
Rn
Mαw(x)dµ(x) =

∑
k,j
cjMαw(x

j
k) ≈

∑
j
c2
j‖µj‖ =

∑
j

1
j2 <∞.

If inequality (1.3) were true, we should have

cm|Rm| ≤ C
cm2m

,

for a certain finite constant C independent of m. But this is clearly false, for the
above would imply 2m ≤ Cm2, ∀m ∈ N. This finishes the proof of Theorem
2.1. ❐
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3. LOGARITHMIC MAXIMAL FUNCTIONS

We are now going to consider alternative solutions to (1.1) in terms of weights W
which are obtained by means of certain maximal operators defined in [11]. In or-
der to do that, we introduce some additional notation and give several definitions
(see [1]).

We will write, as usual, the weak-Lp norm of a function, with respect to the
measure w(x)dx as:

‖f‖Lp,∞(w) = sup
t>0

tw({x ∈ Rn : |f(x)| > t})1/p.

If B is a Young function, the mean Luxemburg norm of a measurable function f
on a cube Q is defined by

(3.1) ‖f‖B,Q = inf

{
λ > 0 :

1
|Q|

∫
Q
B
( |f |
λ

)
dx ≤ 1

}
.

When B(t) = t log(e + t)β, this norm is also denoted by ‖ · ‖L(logL)β,Q. When

β = 0 we have the usual average |f |Q = (1/|Q|)
∫
Q
|f |. We define the maximal

function
ML(logL)αf (x) = sup

Q3x
‖f‖L(logL)α,Q.

For α = 0 we get the standard Hardy-Littlewood maximal function Mf .
More generally, for any B we define

MBf(x) = sup
Q3x

‖f‖B,Q.

The main result in this section is contained in the following theorem. Here,
M2 denotes the composition of M with itself.

Theorem 3.1. Let 0 < α < n and δ > 0. Then

(3.2) ‖Iαf‖L1,∞(w) ≤ C
∫
Rn
|f(x)|Mα(ML(logL)δ(w))(x)dx,

and in particular,

(3.3) ‖Iαf‖L1,∞(w) ≤ C
∫
Rn
|f(x)|Mα(M2(w))(x)dx.

That is, (1.1) holds with W = Mα(M2w).
We now make the observation that (3.2) is not as sharp as

‖Tf‖L1,∞(w) ≤ C
∫
Rn
|f(x)|ML(logL)δ(w)(x)dx,
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derived in [13], where T is any classical Calderón-Zygmund singular integral op-
erator. Indeed, observe that Mα(ML(logL)δ(w)) ≥ Mα(ML(w)) = Mα(M(w)).
Hence, when α = 0 we simply haveM2, which is bigger thanML(logL)δ(w). Prob-
ably, (3.2) holds for the weight Mα(M(w))

Theorem 3.1 is an immediate consequence of the next theorem, using also
(1.4) and the fact that ML(logL)δ(w) ≤ CM2(w), for 0 ≤ δ ≤ 1 ([13]).

Theorem 3.2. Let 0 < α < n and δ > 0. Then

(3.4) ‖Iαf‖L1,∞(w) ≤ C‖Mαf‖L1,∞(ML(logL)δ (w)).

The method used to prove this theorem combines ideas from [11] and [12].
We begin by recalling the following decomposition lemma.

Lemma 3.3 ([11, Lemma 3.1]). Let f and g be L∞ positive functions with
compact support, and let µ be a nonnegative measure finite on compact sets. Let
a > 2n, then there exist a family of cubes Qk,j and a family of pairwise disjoint
subsets {Ek,j}, Ek,j ⊂ Qk,j , with

(3.5) |Qk,j| < 1
1− 2n/a

|Ek,j|,

for all k, j, and such that

(3.6)
∫
Rn
Iαf (x)g(x)dµ(x)

≤ C
∑
k,j

|Qk,j|α/n
|Qk,j|

∫
3Qk,j

f (y)dy
1

|Qk,j|
∫
Qk,j

g(y)dµ(y)|Ek,j|.

We will also make use of the so called RH∞ condition, which we now recall.

Definition 3.4. A weight v satisfies the RH∞ condition if there is a constant
C > 0 such that for each cube Q

ess sup
x∈Q

v(x) ≤ C
|Q|

∫
Q
v dx.

It is very easy to check that RH∞ ⊂ A∞ (see [3]).

Lemma 3.5. Let v be a weight satisfying the RH∞ condition. Then, there is a
constant C such that for any weight w and all positive f ,

(3.7)
∫
Rn
Iαf (x)w(x)v(x)dx ≤ C

∫
Rn
Mα(f)(x)Mw(x)v(x)dx.
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Proof. We start with inequality (3.6) with g replaced by w, and dµ replaced
by v(x)dx:

∫
Rn
Iαf (x)w(x)v(x)dx

≤ C
∑
k,j

|Qk,j|α/n
|Qk,j|

∫
3Qk,j

f (y)dy
∫
Qk,j

w(y)v(y)dy

≤ C
∑
k,j

|Qk,j|α/n
|Qk,j|

∫
3Qk,j

f (y)dy
∫
Qk,j

w(y)dy ess sup
Qk,j

v

≤ C
∑
k,j

|Qk,j|α/n
|Qk,j|

∫
3Qk,j

f (y)dy
1

|Qk,j|
∫
Qk,j

w(y)dyv(Qk,j).

Since v ∈ A∞ and by the properties of the sets {Ek,j}, we have v(Qk,j) ≤
Cv(Ek,j) for each k, j. Combining this with the fact that the family {Ek,j} is
formed by pairwise disjoint subsets, with Ek,j ⊂ Qk,j , we continue with

∫
Rn
Iαf (x)w(x)v(x)dx

≤ C
∑
k,j

|Qk,j|α/n
|Qk,j|

∫
3Qk,j

f (y)dy
1

|Qk,j|
∫
Qk,j

w(y)dyv(Ek,j)

≤ C
∑
k,j

∫
Ekj
Mα(f)(x)Mw(x)v(x)dx

≤ C
∫
Rn
Mα(f)(x)Mw(x)v(x)dx. ❐

The second lemma gives interesting examples of RH∞ weights.

Lemma 3.6 ([3]). Let g be any function such that Mg is finite a.e. Then
(Mg)−α ∈ RH∞, α > 0.

Theorem 3.7. If 0 < p ≤ 1, then

(3.8)
∫
Rn
|Iαf (x)|pw(x)dx ≤ C

∫
Rn
(Mα(f)(x))pMw(x)dx.

Proof. To prove (3.8) we will use the appropriate duality for the spaces Lp,
p < 1: if f ≥ 0,

‖f‖p = inf
{∫

fu−1 : ‖u−1‖p′ = 1
}
=
∫
fu−1,
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for some u ≥ 0 such that ‖u−1‖p′ = 1, where p′ = p/(p − 1) < 0. This follows
from the “reverse” Hölder’s inequality:∫

fg ≥ ‖f‖p ‖g‖p′ ,

which is a consequence of the usual Hölder’s inequality.
We start the proof by choosing a nonnegative g, with ‖g−1‖Lp′ (Mw) = 1, and

such that

‖Mαf‖Lp(Mw) =
∫
Rn
Mα(f)(x)

Mw(x)
g(x)

dx

≥
∫
Rn
Mα(f)(x)

Mw(x)
M(gδ)1/δ(x)

dx,

where we have used the Lebesgue differentiation theorem for any δ > 0. We apply
both Lemma 3.5 and Lemma 3.6 to the weight M(gδ)−1/δ, to continue with

‖Mαf‖Lp(Mw) ≥
∫
Rn
Iα(f )(x)

w(x)
M(gδ)(x)1/δ dx

≥ ‖Iα(f )‖Lp(w) ‖M(gδ)−1/δ‖Lp′ (w),
and everything is reduced to prove

‖M(gδ)−1/δ‖Lp′ (w) ≥ ‖g−1‖Lp′ (Mw).
Since p′ < 0, this is equivalent to saying that∫

Rn
M(gδ)−p

′/δ(x)w(x)dx ≤
∫
Rn
g−p

′
(x)Mw(x)dx.

But, if we choose 0 < δ < p/(1 − p), we have that −p′/δ > 1 and this follows
from the classical weighted norm inequality of C. Fefferman and E. Stein ([5]):∫

Rn
(Mf)p(x)w(x)dx ≤

∫
Rn
|f(x)|pMw(x)dx, p > 1. ❐

Proof of Theorem 3.2. By standard density arguments, we may assume that
both f and the weight w are bounded, nonnegative functions and with compact
support.

Raising the quantity ‖Iαf‖L1,∞(w) to the power 1/p, with p > 1 (which will
be chosen at the end of the proof ), then

∥∥Iαf∥∥1/p
L1,∞(w) = ‖(Iαf )1/p‖Lp,∞(w)

= sup
g∈Lp′ ,1(w), ‖g‖Lp′ ,1 (w)=1

∫
Rn
(Iαf (x))1/p g(x)w(x)dx.
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The last equality follows since Lp′,1(w) and Lp,∞(w) are associate spaces (this
equality can also be proved as a consequence of Kolmogorov’s identity). Fixing
one of these g’s we use (3.8) to continue with

∥∥Iαf∥∥1/p
L1,∞(w) ≤ C

∫
Rn
(Mαf(x))1/p M(gw)(x)dx

= C
∫
Rn
(Mαf(x))1/p M(gw)(x)

M̃w(x)
M̃w(x)dx,

where M̃ is an appropriate (maximal type) operator to be chosen soon. We con-
tinue with Hölder’s inequality for Lorentz spaces (the underlying measure is now
M̃w(x)dx):

∥∥Iαf∥∥1/p
L1,∞(w) ≤ C‖(Mαf)1/p‖Lp,∞(M̃w)

∥∥∥∥M(gw)M̃w

∥∥∥∥
Lp′ ,1(M̃w)

= C∥∥Mαf∥∥1/p
L1,∞(M̃w)

∥∥∥∥M(gw)M̃w

∥∥∥∥
Lp′ ,1(M̃w)

.

To conclude we just need to show that

∥∥∥∥M(gw)M̃w

∥∥∥∥
Lp′ ,1(M̃w)

≤ c‖g‖Lp′ ,1(w),

or equivalently

(3.9) S : Lp
′,1(w)→ Lp

′,1(M̃w), where Sf = M(fw)
M̃(w)

.

To do this we choose M̃ pointwise bigger than M; that is, such that Mw ≤ M̃w
for each w. With this choice we trivially have

S : L∞(w) → L∞(M̃w).

Therefore by the Marcinkiewicz’s interpolation theorem for Lorentz spaces due to
R. Hunt ([1]) it will be enough to show that for some ε > 0

(3.10) S : L(p+ε)
′
(w) → L(p+ε)

′
(M̃w),

which amounts to proving

(3.11)
∫
Rn
(M(wf)(y))(p+ε)

′
(M̃w(y))1−(p+ε)′ dy

≤ C
∫
Rn
(f (y))(p+ε)

′
w(y)dy,
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for any f ≥ 0 bounded and with compact support. But this result follows from
[12]: indeed it is shown there that, for r > 1 and η > 0,

(3.12)
∫
Rn
(M(f)(y))r

′
(ML(logL)r−1+η(w)(y))1−r ′ dy

≤ C
∫
Rn
(f (y))r

′
w(y)1−r ′ dy.

We finally choose the appropriate parameters and weight. Let r = p + ε, η = ε,
and pick the weight

M̃w = ML(logL)p−1+2ε (w).

This shows that for any p > 1 and ε > 0,

‖Iαf‖L1,∞(w) ≤ c‖Mαf‖L1,∞(ML(logL)p−1+2ε (w)).

We conclude the proof of (3.4) by choosing p = 1 + δ − 2ε and ε such that
0 < 2ε < δ. ❐

4. LOCAL AND GLOBAL PARTS. RADIAL WEIGHTS

The purpose of this section is to prove Theorem 4.2 below. In fact, we are a going
to show a more general result from which the theorem easily follows.

Following arguments from [16] we shall construct a collection of operators T
such that (1.1) holds for any weight w, with W = Tw.

Let k ∈ Z and set

Jk = {y ∈ Rn : 2k ≤ |y| < 2k+1},
and

J∗k = {y ∈ Rn : 2k−1 ≤ |y| < 2k+2}.

Let f be a positive function and, for each k ∈ Z, let us write

f = fk,0 + fk,1, fk,0 = fχJ∗k .

Then,

Iαf (x) =
∑
k∈Z
(Iαf (x))χJk(x)

≤
∑
k∈Z
(Iαfk,0(x))χJk(x)+

∑
k∈Z
(Iαfk,1(x))χJk(x)

= I0
αf(x)+ I1

αf(x).

I0
α is called the local part and I1

α the global part of the operator Iα.
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Clearly,

w({x ∈ Rn : Iαf (x) > λ}) ≤

≤ w
({
x : I0

αf(x) >
λ
2

})
+w

({
x : I1

αf(x) >
λ
2

})

=
∑
k∈Z

w
({
x ∈ Jk : Iαfk,0(x) >

λ
2

})
+
∑
k∈Z

w
({
x ∈ Jk : Iαfk,1(x) >

λ
2

})

= L(w)+G(w).

We shall estimate L(w) and G(w) separately.

The global part: To estimate the global part, we observe that if x ∈ Jk and
y ∉ J∗k , then |x −y| ≈ |x| + |y|, and hence, for every x ∈ Jk,

Iαfk,1(x) ≤ C
∫
Rn

f (y)
(|x| + |y|)n−α dy ≤ CMαf(x)+ C

∫
{|y|>|x|}

f(y)
|y|n−α dy.

Therefore,

G(w) ≤ w
({
x ∈ Rn : Mαf(x) >

λ
2C

})

+ w
({
x ∈ Rn :

∫
{|y|>|x|}

f(y)
|y|n−α dy >

λ
2C

})
:= Ḡ(w).

Using (1.4) in the first term and Chebyshev’s inequality in the second, we get that

G(w) ≤ C
λ

∫
Rn
f (y)Mαw(y)dy.

This shows that estimate (1.3) does hold for general weights w, if we replace Iα
by its global part I1

α.

The local part: To estimate this part we use that Iα is self adjoint:

L(w) ≤ 2
λ

∑
k∈Z

∫
Jk
Iαfk,0(x)w(x)dx

= 2
λ

∑
k∈Z

∫
J∗k
f (y)Iα(wχJk)(y)dy

= 2
λ

∫
Rn
f (y)T(w)(y)dy,

where

(4.1) T(w)(y) =
∑
k∈Z

∫
Jk

w(x)
|x −y|n−α dxχJ∗k (y).
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Now, observe that if x ∈ Jk and y ∈ J∗k , then |x − y| ≤ 2k+3, and hence the
inner integral can be estimated by

∫
|x−y|≤2k+3

w(x)
|x −y|n−α dx ≤

k+3∑
j=−∞

1
2j(n−α)

∫
|x−y|≤2j

w(x)dx := Sk.

Let (h(j))j∈Z be any positive sequence such that, for every k ∈ Z,

(4.2) H(k) =
k+3∑
j=−∞

1
h(j)

<∞.

Then,

Sk ≤ H(k) sup
j∈Z

h(j)
2j(n−α)

∫
x∈Jk

|x−y|≤2j
w(x)dx,

and if we denote by

Mα,hf (x) = sup
j∈Z

h(j)
2j(n−α)

∫
|x−y|≤2j

f (y)dy,

we obtain
T(w)(y) ≤

∑
k∈Z

H(k)Mα,h(wχJk)(y)χJ∗k (y).

Thus, if y ∈ J∗k ,

(4.3) Mα,h(wχJk)(y) ≤ sup
j∈Z

h(j)
2j(n−α)

∫
|x−y|≤2j

|y|/4≤|x|<4|y|
w(x)dx := Cαh(w)(y).

Finally, combining these estimates we have that

L(w) ≤ C
λ

∫
Rn
f (y)H̄(y)Cα,h(w)(y)dy,

where
H̄(y) =

∑
k∈Z

H(k)χJ∗k (y).

Therefore, we have obtained the following result.

Theorem 4.1. With the above definitions and notations, for every positive se-
quence h satisfying (4.2), we have that

w({y ∈ Rn : |Iαf (y)| > λ}) ≤ C
λ

∫
Rn
|f(y)|W(y)dy

holds, with

(4.4) W(y) =Mαw(y)+ H̄(y)Cα,h(w)(y).
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Examples. We present here several interesting consequences of the above the-
orem.

(i) If h(j) = 2−αj , then Mα,h ≤ CM, where M is the Hardy-Littlewood
maximal operator, and we get that (1.1) holds for

W(y) = Mαw(y)+ |y|αM(w)(y).
Now, if w is a radial decreasing weight, then

M(w)(y) ≈ 1
|y|n

∫
|x|≤|y|

w(x)dx,

and, therefore, |y|αMw(y) ≤ Mαw(y). A corollary of this gives the following
result announced in the introduction.

Theorem 4.2. There is a constant C such that if w is a radial decreasing weight,
then

(4.5) w({x ∈ Rn : |Iαf (x)| > λ}) ≤ C
λ

∫
Rn
|f(x)|Mα(w)(x)dx.

Remark 4.3. It should be mentioned that reference [14] contains a particular
form of Theorem 4.1, closely related to the result above, Theorem 4.2. We are
thankful to the referee for pointing out to us this reference. We want to stress,
nonetheless, that Theorem 4.2 as well as some of the arguments of this Section 4,
are implicitly described and based on ideas from the paper [16], where the case of
“radially decreasing weights” for singular integrals is considered.

A similar argument to that in the proof of Theorem 4.1, shows that in the
case h(j) = 2−αj we are considering, one can also see that (1.1) holds for

W(y) =Mαw(y)+M(w|x|α)(y),
as well as for

W(y) = sup
r>0

max(r , |y|)α
rn

∫
|y−x|≤r

w(x)dx.

(ii) If 0 < β < α and we take h(t) = 2(β−α)t, then

Mα,hw(y) ≤ 1
α− β |y|

α−βCβw(y),

where
Cβw(y) = sup

r>0

1
rn−β

∫
|x−y|≤r

|y|/4≤|x|<4|y|
w(x)dx,

and, hence, we get that (1.1) holds for

W(y) =Mαw(y)+ 1
α− β |y|

α−βCβw(y).
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(iii) If we take an increasing h defined on [0,∞), such that

∞∑
j=0

1
h(j)

<∞,

then in (4.1) we obtain

T(w)(y) ≤
∑
k∈Z

( k+3∑
j=−∞

1
2j(n−α)

∫
|x−y|≤2j

w(x)dx
)
χJ∗k (y)

=
∑
k∈Z

( k+3∑
j=−∞

h(k+ 3− j)
h(k+ 3− j)2j(n−α)

∫
|x−y|≤2j

w(x)dx
)
χJ∗k (y)

≤
∑
k∈Z

(
sup
j≤k+3

h(k+ 3− j)
2j(n−α)

∫
|x−y|≤2j

w(x)dx
)
χJ∗k (y)

∞∑
j=0

1
h(j)

= C
∑
k∈Z

(
sup
j∈Z

h((log 2)−1 log+(2k+3/2j))
2j(n−α)

∫
|x−y|≤2j

w(x)dx
)
χJ∗k (y)

≤ C
∑
k∈Z

(
sup
j∈Z

h((log 2)−1 log+(16|y|/2j))
2j(n−α)

∫
|x−y|≤2j

w(x)dx
)
χJ∗k (y)

≤ C sup
j∈Z

h((log 2)−1 log+(16|y|/2j))
2j(n−α)

∫
|x−y|≤2j

w(x)dx.

In particular, if we define, for t > 0,

h(t) = (1+ t)(1+ log(1+ t))1+δ,

then we get that (1.1) holds with

W(y) = sup
r>0

(1+ log+(|y|/r))(1+ log(1+ log+(|y|/r)))1+δ

rn−α

×
∫
|x−y|≤r

w(x)dx.

(iv) Finally, we can also prove that, for every 0 < β < α, (1.1) holds for

W(y) = 1
α− βCβw(y)+Mα((1+ log+ | · |)w(·))(y).

To see this, we observe that

Tw(y) ≤
( ∑
k≤0

+
∑
k>0

)( k+3∑
j=−∞

1
2j(n−α)

∫
|x−y|≈2j

w(x)χJk(x)dx
)
χJ∗k (y)

= I + II.
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Let us take the following sequence {h(j)}j∈Z

h(j) =
{

2−j(α−β), j < 0,
1, j ≥ 0.

Then, we have

I ≤
∑
k≤0

2k(α−β)

α− β sup
j

(
1

2j(n−β)

∫
|x−y|≈2j

w(x)χJk(x)dx
)
χJ∗k (y)

≤ 1
α− βCβw(y).

On the other hand, II can be estimated as follows

II ≤
∞∑
k=1

0∑
j=−∞

2j(α−β)Cβw(y)χJ∗k (y)+
∞∑
k=1

(k+ 3)Cαw(y)χJ∗k (y)

≈ 1
α− βCβw(y)+ Cα((1+ log+ | · |)w(·))(y),

where we have used that if x ∈ Jk, with k ≥ 1, then k+ 3 ≈ 1+ log |x|.
Acknowledgment. We are grateful to one of the referees for pointing out ref-

erence [14].
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