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ABSTRACT. We give Ap-type conditions which are sufficient
for the two-weight, weak-type (p,p) inequalities for fractional
integral operators, Calderón-Zygmund operators and commuta-
tors. For fractional integral operators, this solves a problem posed
by Sawyer and Wheeden [28]. At the heart of all of our proofs
is an inequality relating the Hardy-Littlewood maximal function
and the sharp maximal function which is strongly reminiscent of
the good-λ inequality of Fefferman and Stein [13].

.1 INTRODUCTION

Let M be the Hardy–Littlewood maximal operator. Given a pair of weights
(u,v) and p, 1 < p <∞, it is well known that the weak-type inequality

u({x ∈ Rn : Mf(x) > t}) ≤ C
tp

∫
Rn
|f |pv dx(1.1)

holds if and only if (u,v) ∈ Ap: there exists a positive constant K such that for
all cubes Q, (

1
|Q|

∫
Q
udx

)(
1
|Q|

∫
Q
v−p

′/p dx
)p/p′

≤ K.(1.2)

697
Indiana University Mathematics Journal c©, Vol. 49, No. 2 (2000)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51404991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


698 D. CRUZ-URIBE, SFO & C. PÉREZ

For other classical operators, however, the Ap condition is not sufficient for the
weak (p,p) inequality. In fact, of the operators we are interested in, a necessary
and sufficient condition for the weak (p,p) inequality is known only for fractional
integral operators. (See Sawyer [27].) This result is interesting and important, but
it has the drawback that the condition involves the fractional integral operator.

Sufficient, Ap-type conditions can also be gotten from sufficient conditions
for the strong (p,p) inequality. Neugebauer [18] showed that

(
1
|Q|

∫
Q
ur dx

)1/rp (
1
|Q|

∫
Q
v−rp

′/p dx
)1/rp′

≤ C, r > 1,(1.3)

is sufficient for the strong (p,p) inequality for the maximal operator, for Calderón-
Zygmund operators and commutators. Sawyer and Wheeden [28] showed that for
0 < α < n,

|Q|α/n
(

1
|Q|

∫
Q
ur dx

)1/rp (
1
|Q|

∫
Q
v−rp

′/p dx
)1/rp′

≤ C, r > 1,(1.4)

is sufficient for the strong-type (p,p) inequality for fractional integral operators.
(Additional sufficient conditions are found in [20], [21], and [24]. We give precise
definitions of these operators in Section 2 below.)

In general, sufficient conditions for the weak (p,p) inequality which are de-
rived from strong (p,p) conditions are not sharp. The purpose of this paper is
to show that for the operators we consider, there are conditions that are weaker
than (1.3) and (1.4), which are sufficient for the weak-type inequality. Roughly, it
suffices to strengthen the Ap condition (1.2) by introducing a “power bump” on
the left-hand term alone, rather than on both terms as in (1.3) and (1.4).

Our first result is for fractional integral operators. It solves a problem posed
by Sawyer and Wheeden [28].

Theorem 1.1. Given a pair of weights (u,v), p, 1 < p <∞, and α, 0 < α <
n, suppose that for some r > 1 and for all cubes Q,

|Q|α/n
(

1
|Q|

∫
Q
ur dx

)1/rp (
1
|Q|

∫
Q
v−p

′/p dx
)1/p′

≤ C <∞.(1.5)

Then the fractional integral operator Iα satisfies the weak (p,p) inequality

u({x ∈ Rn : |Iαf(x)| > t}) ≤ C
tp

∫
Rn
|f |pv dx.(1.6)

Our second result is for Calderón-Zygmund operators.
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Theorem 1.2. Let T be a Calderón-Zygmund operator. Given a pair of weights
(u,v) and p, 1 < p <∞, suppose that for some r > 1 and for all cubes Q,

(
1
|Q|

∫
Q
ur dx

)1/rp (
1
|Q|

∫
Q
v−p

′/p dx
)1/p′

≤ C <∞.(1.7)

Then T satisfies the weak (p,p) inequality

u({x ∈ Rn : |Tf(x)| > t}) ≤ C
tp

∫
Rn
|f |pv dx.(1.8)

Remark 1.3. Though for clarity we have stated Theorem 1.2 for Calderón-
Zygmund operators, it is true for a much larger class of operators. To be precise: if
there exists some δ, 0 < δ < 1, and a constant Cδ such that for every f ∈ C∞0 (Rn),

M#(|Tf |δ)(x)1/δ ≤ CδMf(x),(1.9)

then (1.7) implies (1.8).
Alvarez and Pérez [3] showed that inequality (1.9) holds for Calderón-

Zygmund operators. In this case it can be thought of as extending the classical
estimate

M#(Tf)(x) ≤ CrM(|f |r )(x)1/r ,(1.10)

where T is a regular singular integral operator and r > 1, (see Garcı́a-Cuerva and
Rubio de Francia [14, p. 204]). In some sense, (1.9) contains more information
than (1.10) since the latter does not suffice to prove Theorem 1.2.

Alvarez and Pérez also showed that inequality (1.9), and so Theorem 1.2,
hold for the following operators: weakly strongly singular integral operators (see
C. Fefferman [12]), some pseudo-differential operators in the Hörmander class
(see Hörmander [15]), and a class of oscillatory integral operators related to those
introduced by Phong and Stein [25]. They used (1.9) to generalize Coifman’s
theorem [7] relating the Lp norm of singular integral operators and the maximal
function.

Remark 1.4. For Calderón-Zygmund operators we have been able to prove
stronger results; see [11]. By different methods we showed that we may replace the
“power bump” in (1.7) by a “bump” in the scale of Orlicz spaces. More precisely,
we replace the Lr norm by the L(logL)p−1+δ norm with δ > 0. However we are
unable to extend these results to the broader class of operators discussed in the
previous remark.
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Remark 1.5. Conditions (1.5) and (1.7) are sufficient for the fractional max-
imal operator and the Hardy-Littlewood maximal operator to be bounded from
Lp′(u−p′/p) to Lp′(v−p′/p). (See [21], [22].) We conjecture that the bounded-
ness of the corresponding maximal operator is itself sufficient for inequalities (1.6)
and (1.8) to hold. In particular we believe that the Orlicz space conditions given
in [21] and [22] are sufficient.

Our last result is about (linear) commutators. These operators are defined by

Ck
bf(x) =

∫
(b(x)− b(y))kK(x,y)f(y)dy,

where K is a kernel satisfying the standard estimates and b is a locally integrable
function. (See Section 2 for a precise definition.)

Since commutators have a greater degree of “singularity” than the correspond-
ing Calderón-Zygmund operators, we need a slightly stronger condition. Roughly,
we need to “bump” the right-hand term as well, but it suffices to do so in the scale
of Orlicz spaces. Recall that if B is an increasing Young function and if Q is
any cube, we define the mean Luxemburg norm of a measurable function f with
respect to B by

‖f‖B,Q = inf

{
λ > 0 :

1
|Q|

∫
Q
B
( |f |

λ

)
dx ≤ 1

}
.

(For more information on Orlicz spaces, see Section 2 below.)

Theorem 1.6. Let T be a Calderón-Zygmund operator and b a function in
BMO. Given a pair of weights (u,v), p, 1 < p < ∞, and k ≥ 0, suppose that
for some r > 1 and for all cubes Q,

(
1
|Q|

∫
Q
ur dx

)1/rp

‖v−1/p‖Ck,Q ≤ C <∞,(1.11)

where Ck(t) = tp′ log(e + t)kp′ . Then the commutator Ck
b satisfies the weak (p,p)

inequality

u({x ∈ Rn : |Ck
bf(x)| > t}) ≤ C

tp

∫
Rn
|f |pv dx.(1.12)

When k = 0, C0
b = T , and so in this case Theorem 1.6 reduces to Theorem

1.2.
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Remark 1.7. As a corollary to Theorem 1.6 we get a new proof of the one-
weight, strong (p,p) norm inequality for commutators, which was first proved
in a more general form by Alvarez, Bagby, Kurtz, and Pérez [2] and Segovia and
Torrea [29]. If w ∈ Ap, then w and w−p′/p both satisfy the reverse Hölder
inequality and so inequality (1.11) holds for some r > 1 and for p ± ε. The
strong-type inequality follows by interpolation.

The proofs of Theorems 1.1, 1.2 and 1.6 all follow the same outline. Each
relies on our so-called principal lemma, Theorem 3.4 below, which relates the
Hardy-Littlewood maximal operator and the Fefferman-Stein sharp maximal op-
erator via an inequality strongly reminiscent of a good-λ inequality. To apply
Theorem 3.4 we use three results which relate the given operator, the sharp max-
imal operator and the maximal operator. For Calderón-Zygmund operators this
is inequality (1.9). Similar inequalities hold for fractional integral operators and
commutators: see Lemmas 4.4 and 6.1.

The remainder of this paper is organized as follows: in Section 2 we give
a number of definitions and lemmas needed in later sections. The heart of the
paper is Section 3, where we prove Theorem 3.4. Finally, in Sections 4, 5, and 6
we prove Theorems 1.1, 1.2, and 1.6.

Throughout this paper all notation is standard or will be defined as needed.
All cubes are assumed to have their sides parallel to the coordinate axes. Given
a cube Q, #(Q) will denote the length of its sides and for any r > 0, rQ will
denote the cube with the same center as Q and such that #(rQ) = r#(Q). We
will denote the collection of all dyadic cubes by ∆ and by ∆(Q) the collection of
all dyadic subcubes relative to the (not necessarily dyadic) cube Q. By weights we
will always mean non-negative, locally integrable functions which are positive on
a set of positive measure. Given a Lebesgue measurable set E and a weight w, |E|
will denote the Lebesgue measure of E and w(E) =

∫
E w dx. Given 1 < p < ∞,

p′ = p/(p − 1) will denote the conjugate exponent of p. Finally, C will denote a
positive constant whose value may change at each appearance.

.2 PRELIMINARY IDEAS

In this section we give a number of definitions and lemmas needed in later
sections.

The main operators. First we define the operators in Theorems 1.1, 1.2, and
1.6.
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Fractional integral operators. Given α, 0 < α < n, define the fractional
integral operator of order α by

Iαf(x) =
∫
Rn

f (y)
|x −y|n−α dy.

For more information, see Stein [31, pp. 117-120].

Calderon-Zygmund operators. Given a kernel K on Rn×Rn—i.e. a locally
integrable, complex-valued function defined off the diagonal—we say that it sat-
isfies the standard estimates if there exist δ, 0 < δ ≤ 1, and C finite such that for
all distinct points x and y in Rn, and all z such that |x − z| < 1

2 |x −y|:
(1) |K(x,y)| ≤ C|x −y|−n;
(2) |K(x,y)−K(z,y)| ≤ C|x − z|δ|x −y|n+δ;
(3) |K(y,x)−K(y, z)| ≤ C|x − z|δ|x −y|n+δ.

A bounded linear operator T : C∞0 (Rn) → D′(Rn) (here D′ is the space of
distributions) is said to be associated with a kernel K if

〈Tf ,g〉 =
∫
Rn

∫
Rn

K(x,y)g(x)f(y)dx dy

for all f and g in C∞0 (Rn) with supp(f ) ∩ supp(g) = ∅. T is said to be a
Calderón-Zygmund operator if its associated kernel satisfies the standard estimates
and it extends to a bounded linear operator on L2. For more information, see
Coifman and Meyer [8] and Christ [6].

Important examples of such operators are the Calderón-Zygmund singular
integral operators:

Tf(x) = p. v.
∫
Rn

k(x −y)f(y)dy,

where k ∈ L1
loc(R

n\{0}) and K(x,y) = k(x−y) satisfies the standard estimates.
For more information see Garcı́a-Cuerva and Rubio de Francia [14, p. 192].

Commutators. Given a Calderón-Zygmund operator T and a function b in
BMO, let Mb denote multiplication by b. We define the linear operators Ck

b by
C0
b = T , C1

b = [Mb, T] = MbT − MbT , and for k > 1, Ck
b = [Mb,Ck−1

b ]. If
f ∈ C∞0 (Rn), then

Ck
bf(x) =

∫
(b(x)− b(y))kK(x,y)f(y)dy, x �∈ supp(f ).
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Commutators were introduced by Coifman, Rochberg and Weiss [9], who showed
they are bounded on Lp, 1 < p <∞.

Maximal operators. Key to the proofs of our results are a number of maxi-
mal operators. For completeness we give their definitions here.

The maximal operator. Given a locally integrable function f and α, 0 ≤
α < n, define

Mαf(x) = sup
Q�x

1
|Q|1−α/n

∫
Q
|f |dy.

If α = 0 this is the Hardy-Littlewood maximal operator and we write Mf for
M0f ; if 0 < α < n this is the fractional maximal operator of order α. We use the
Hardy-Littlewood maximal operator to control Calderón-Zygmund operators and
commutators, and the fractional maximal operator to control fractional integral
operators. (See inequality (1.9) and Lemmas 4.4 and 6.1.)

We define the dyadic maximal and fractional maximal operators Md and Md
α

similarly except the supremums are restricted to dyadic cubes containing x. Given
δ > 0 we define the δ-maximal operator by Mδf(x) = M(|f |δ)(x)1/δ. We
define Md

δ similarly. From the context there should be no confusion between the
fractional maximal operator and the δ-maximal operator.

The sharp maximal operator. Given a locally integrable function f and a
cube Q, let fQ denote the average of f over Q:

fQ = 1
|Q|

∫
Q
f dx.

Define the sharp maximal function of f by

M#f(x) = sup
Q�x

1
|Q|

∫
Q
|f(y)− fQ|dy.

The sharp maximal function was introduced by Fefferman and Stein [13]. Again,
define the dyadic sharp maximal function M#,d by restricting the supremum to
dyadic cubes. Given δ > 0, define the sharp δ-maximal function by

M#
δf(x) = M#(|f |δ)(x)1/δ,

and define M#,d
δ similarly.
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Orlicz spaces. In Section 6 we will need the following facts about Orlicz
spaces. (For further information see Bennett and Sharpley [4] or Rao and Ren
[26].) A function B : [0,∞) → [0,∞) is a Young function if it is convex and
increasing, and if B(0) = 0 and B(t)→∞ as t →∞.

Given a Young function B, define the mean Luxemburg norm of f on a cube
Q by

‖f‖B,Q = inf

{
λ > 0 :

1
|Q|

∫
Q
B
( |f |

λ

)
dy ≤ 1

}
.

When B(t) = tp, 1 ≤ p <∞,

‖f‖B,Q =
(

1
|Q|

∫
Q
|f |p dx

)1/p

;

that is, the Luxemburg norm coincides with the (normalized) Lp norm. There
is another characterization of the Luxemburg norm, due to Krasnosel’skĭı and
Rutickĭı [17, p. 92] (also see Rao and Ren [26, p. 69]) which we will need:

‖f‖B,Q ≤ inf
s>0

{
s + s

|Q|
∫
Q
B
( |f |

s

)
dx

}
≤ 2‖f‖B,Q.(2.1)

Given three Young functions A, B, and C such that for all t > 0,

A−1(t)C−1(t) ≤ B−1(t),(2.2)

then we have the following generalized Hölder’s inequality due to O’Neil [19]: for
any cube Q and all functions f and g,

‖fg‖B,Q ≤ 2‖f‖A,Q ‖g‖C,Q.(2.3)

Define the maximal operator MB by

MBf(x) = sup
Q�x

‖f‖B,Q.

The dyadic maximal operator Md
B is defined in similarly, except the supremum

is restricted to dyadic cubes containing x. It follows from an inequality due to
Stein [30] that for k ≥ 1, if Bk(t) = t log(e + t)k−1, then Mkf ≈ MBkf , where
Mk = M ·M · · ·M is the k-th iterate of the maximal function. (See Carozza and
Passarelli di Napoli [5] and the references given there.)
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The Calderón-Zygmund decomposition. Our proofs depend heavily on the
Calderón-Zygmund decomposition and a generalization of it to Orlicz space norms.
To be precise and to establish notation, we state the result here. For a proof see
[22]; this is an adaptation of the classical proof given in Garcı́a-Cuerva and Rubio
de Francia [14, p. 137].

Lemma 2.1. Given a Young function B, suppose f is a non-negative function
such that ‖f‖B,Q tends to zero as #(Q) tends to infinity. Then for each t > 0 there
exists a disjoint collection of dyadic cubes {Ct

i } such that for each i, t < ‖f‖B,Ct
i
≤

2nt,

{x ∈ Rn : Md
B f(x) > t} =

⋃
i
Ct
i ,

{x ∈ Rn : MBf(x) > 4nt} ⊂
⋃
i

3Ct
i .

Moreover, the cubes are maximal: if Q is a dyadic cube such that Q ⊂ {Md
B f(x) > t},

then Q ⊂ Ct
i for some i.

To recapture the classical lemma, let B(t) = t and note that if f ∈ Lq for
some q, 1 ≤ q <∞, then

‖f‖B,Q = 1
|Q|

∫
Q
f dx → 0 as |Q| → ∞.

More generally, to apply Lemma 2.1 it suffices to assume that f is bounded and
has compact support.

.3 THE PRINCIPAL LEMMA

In this section we prove our principal lemma: an inequality linking the sharp
maximal function and the Hardy-Littlewood maximal function. In spirit, though
not in detail it resembles the good-λ inequality of Fefferman and Stein [13]. (Also
see Garcı́a-Cuerva and Rubio de Francia [14, pp. 161-3] and Journé [16, p. 41].)

To state the principal lemma we first need a definition and a lemma.

Definition 3.1. Given r > 1 and a weight u, define the set function Ar
u on

measurable sets E ⊂ Rn by

Ar
u(E) = |E|1/r

′
(∫

E
ur dx

)1/r
= |E|

(
1
|E|

∫
E
ur dx

)1/r
.

(The second equality holds provided |E| > 0.)
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Lemma 3.2. For any r > 1 and weight u, the set function Ar
u has the following

properties:

(1) If E ⊂ F , then Ar
u(E) ≤ (|E|/|F|)1/r ′Ar

u(F);
(2) u(E) ≤ Ar

u(E);
(3) If {Ej} is a sequence of disjoint sets and

⋃
j Ej = E, then

∑
j
Ar

u(Ej) ≤ Ar
u(E).

Proof. Condition (1) follows immediately from Definition 3.1, and Condi-
tion (2) is just Hölder’s inequality. Condition (3) also follows from Hölder’s in-
equality:

∑
j
|Ej|1/r ′

(∫
Ej
ur dx

)1/r

≤
∑

j
|Ej|

1/r ′ ∑
j

∫
Ej
ur dx

1/r

= |E|1/r ′
(∫

E
ur dx

)1/r
. ❐

Remark 3.3. The key property is Condition (1), which plays the same role
that the A∞ condition plays in the proof of weighted good-λ inequalities. (See,
for example, Journé [16, p. 41].) If Au were another set function which satisfied
Conditions (2) and (3) of Lemma 3.2, satisfied

Au(E) ≤ϕ
( |E|
|F|

)
Au(F), ϕ(t)→ 0 as t → 0,(3.1)

and for some r > 1 satisfied (for technical reasons in the proof ) Au(E) ≤ CAr
u(E),

we could immediately derive corresponding conditions governing weak-type norm
inequalities for the operators we are interested in.

Originally, we had hoped to replace the “power bumps” in (1.5), (1.7), and
(1.11) by Orlicz space conditions. Intuitively, the appropriate set function would
be A(E) = |E| ‖u‖B,E , where B is some Young function—for example, B(t) =
t log(e + t)δ, δ > 0. For such B, Conditions (2) and (3) hold; we will show this
in the course of proving Lemma 5.1 below. However, Condition (1) fails.
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Remark added in proof. The first author and A. Fiorenza have characterized
the class of Young functions B for which A(E) = |E|‖u‖B,E satisfies (3.1). This
class includes Orlicz functions which grow slower than tr for any r > 1. These
results will appear in [10].

We can now state and prove our principal lemma.

Theorem 3.4. Given a non-negative function f ∈ Lq for some q, 1 ≤ q < ∞,
r , 1 < r ≤ q′, a weight u, and δ > 0, then there exists ε > 0 such that for each
t > 0 there exists a subcollection {Qt

j} of dyadic cubes from the Calderón-Zygmund

decomposition of fδ at height tδ, {Ctδ
i }, with the property that

 1
|Qt

j|

∫
Qt

j

|fδ − (fδ)Qt
j
|dx

1/δ

> ε1/δt,

and such that for all p ≥ q/r ′,

sup
t>0

tpu({x ∈ Rn : Md
δf(x) > t}) ≤ C sup

t>0
tp
∑
j
Ar

u(Q
t
j).(3.2)

The constants ε and C depend only on r , p, and n.

As a corollary to the proof we have the following stronger inequality.

Corollary 3.5. With the same hypotheses and notation as Theorem 3.4, we have
that

sup
t>0

tp
∑
i
Ar

u(C
tδ
i ) ≤ C sup

t>0
tp
∑
j
Ar

u(Q
t
j).(3.3)

Remark 3.6. In our applications of these results we always have f ∈ Lq for
any q > 1, so we can get any value of p ≥ 1. If r can be taken close to 1, then we
can get any p > 0.

Proof. First note that it will suffice to prove this result for δ = 1. For arbitrary
δ > 0, Md

δf(x) > t is equivalent to Md(fδ)(x) > tδ, so the general case follows
if we replace f by fδ and t by tδ.

Second, we may assume that u is bounded and has compact support. To
see that the general case follows, fix a weight u and let uk = min(u, k)χB(0,k).
Since uk is bounded, inequalities (3.2) and (3.3) hold with u replaced by uk.
Since limn uk = supn uk = u, if we take the limit as n tends to infinity we may
exchange limit and supremum and apply the monotone convergence theorem to
get the desired result.
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Fix p, q/r ′ ≤ p < ∞, and fix f . For each t > 0, let Ωt = {x ∈ Rn :
Mdf(x) > t}. Now fix N = 2n + 1 (the reason for this choice will be clear
below); by the Calderón-Zygmund decomposition, Lemma 2.1, ΩNt =

⋃
k CNt

k
and Ωt =

⋃
i Ct

i . By maximality, for each k, CNt
k ⊂ Ct

i for some i. By Lemma 3.2,
Conditions (2) and (3),

tpu(ΩNt) = tp
∑
k
u(CNt

k )

≤ tp
∑
k
Ar

u(C
Nt
k )

= tp
∑
i

∑
CNt
k ⊂Ct

i

Ar
u(C

Nt
k )

≤ tp
∑
i
Ar

u(ΩNt ∩ Ct
i ).

Fix ε < N−pr ′ ; again the reason for this choice will be clear below. Divide the
indices i into two sets: i ∈ F if

1
|Ct

i |

∫
Ct
i

|f − fCt
i
|dx ≤ εt,

and i ∈ G if the opposite inequality holds. The cubes {Ct
i : i ∈ G} are the cubes

in the conclusion of the theorem, and we relabel them {Qt
j}.

If i ∈ F , then we claim that

Ar
u(ΩNt ∩ Ct

i ) ≤ ε1/r ′Ar
u(C

t
i ).

By Lemma 3.2, Condition (1), it will suffice to show that

|ΩNt ∩ Ct
i | ≤ ε|Ct

i |.

By the maximality of the Calderón-Zygmund decomposition, if x ∈ ΩNt ∩ Ct
i ,

then

Mdf(x) = Md(fχCt
i
)(x).

Hence,

ΩNt ∩ Ct
i = {x ∈ Ct

i : Md(fχCt
i
)(x) > Nt}

= {x ∈ Ct
i : Md(fχCt

i
)(x)− fCt

i
> Nt − fCt

i
}

⊂ {x ∈ Ct
i : Md(|f − fCt

i
|χCt

i
)(x) > t}.
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Since the dyadic maximal operator is weak-type (1,1) with constant 1 (see
Journé [16, p. 10]), and since i ∈ F ,

|ΩNt ∩ Ct
i | ≤

1
t

∫
Ct
i

|f − fCt
i
|dx ≤ ε|Ct

i |.

Therefore, we have shown that

tp
∑
k
Ar

u(C
Nt
k ) ≤ tp

∑
i
Ar

u(ΩNt ∩ Ct
i )(3.4)

≤ tp
∑
i∈F

Ar
u(C

t
i )+ tp

∑
i∈G

Ar
u(C

t
i )

≤ ε1/r ′tp
∑
i
Ar

u(C
t
i )+ tp

∑
j
Ar

u(Q
t
j).(3.5)

Therefore, if we take the supremum of (3.5) over 0 < t < M and the supre-
mum of (3.4) over 0 < t < M/N, we get

sup
0<t<M/N

tp
∑
k
Ar

u(C
Nt
k ) ≤ sup

0<t<M
ε1/r ′tp

∑
i
Ar

u(C
t
i )+ sup

0<t<M
tp
∑
j
Ar

u(Q
t
j);

equivalently,

sup
0<t<M

tp
∑
i
Ar

u(C
t
i ) ≤ ε1/r ′Np sup

0<t<M
tp
∑
i
Ar

u(C
t
i )+Np sup

0<t<M
tp
∑
j
Ar

u(Q
t
j).

To get the desired inequality we need to re-arrange terms; to do this we need to
show that for each M > 0,

sup
0<t<M

tp
∑
i
Ar

u(C
t
i ) <∞.

But for fixed t, by Condition (3) of Lemma 3.2 and the definition of Ar
u,

tp
∑
i
Ar

u(C
t
i ) ≤ tpAr

u(Ωt) = tp|Ωt|1/r ′
(∫

Ωt

ur dx
)1/r

.

Let B be the support of u; by assumption |B| < ∞. Further, u is bounded.
Therefore,

tp
∑
i
Ar

u(C
t
i ) ≤ |B|1/r‖u‖∞tp|Ωt|1/r ′ .

Since f ∈ Lq, by the weak (q, q) inequality for the dyadic maximal operator,

tp
∑
i
Ar

u(C
t
i ) ≤ |B|1/r‖u‖∞tp−q/r

′‖f‖q/r ′q .
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Therefore, since p − q/r ′ ≥ 0,

sup
0<t<M

tp
∑
i
Ar

u(C
t
i ) < |B|1/r‖u‖∞Mp−q/r ′‖f‖1/r ′

q <∞.

Thus we can re-arrange terms; since ε < N−pr ′ , we get

sup
0<t<M

tpu({x ∈ Rn : Mdf(x) > t}) ≤ sup
0<t<M

tp
∑
i
Ar

u(C
t
i )

≤ Np

1− ε1/r ′Np sup
0<t<M

tp
∑
j
Ar

u(Q
t
j).

Since this holds for all M > 0, if we take the limit as M tends to infinity, we get
inequalities (3.2) and (3.3). ❐

.4 FRACTIONAL INTEGRAL OPERATORS

In this section we prove Theorem 1.1. The proof depends on three lemmas;
the first two are due to Sawyer and Wheeden [28].

Lemma 4.1. Given a non-negative function f and α, 0 < α < n, there exists a
constant Cα, depending only on α and n, such that for any cube Q0,

∑
Q∈∆(Q0)

|Q|α/n
∫
Q
f dx ≤ Cα|Q0|α/n

∫
Q0

f dx.

Definition 4.2. Given α, 0 < α < n, and z ∈ Rn, define the translated
dyadic fractional integral operator Idα,z by

Idα,zf (x) =
∑

Q+z∈∆
Q�x

|Q|α/n−1
∫
Q
f dy.

If z = 0, we write Idα for Idα,0.

Lemma 4.3. Given a weight u, α, 0 < α < n, and p, 1 < p < ∞, then there
exists a constant C such that for every function f ,

sup
t>0

tpu({x ∈ Rn : |Iαf(x)| > t}) ≤ C sup
z∈Rn

sup
t>0

tpu({x ∈ Rn : |Idα,zf (x)| > t}).
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Lemma 4.4. Given α, 0 < α < n, there exists a constant Dα such that for any
function f , dyadic cube Q0 and x ∈ Q0,

1
|Q0|

∫
Q0

|Idαf − (Idαf)Q0|dx ≤ DαMd
αf(x).

Proof. By the definition of Idα, for x ∈ Q0,

Idαf(x) =
∑

x∈Q∈∆
Q⊂Q0

|Q|α/n−1
∫
Q
f dx +

∑
Q∈∆
Q0⊆Q

|Q|α/n−1
∫
Q
f dx;

hence,

1
|Q0|

∫
Q0

Idαf dx = 1
|Q0|

∑
Q∈∆
Q⊂Q0

|Q|α/n
∫
Q
f dx +

∑
Q∈∆
Q0⊆Q

|Q|α/n−1
∫
Q
f dx.

Therefore, by Lemma 4.1,

1
|Q0|

∫
Q0

|Idαf − (Idαf)Q0|dx ≤
2
|Q0|

∑
Q∈∆
Q⊂Q0

|Q|α/n
∫
Q
|f |dx

≤ 2Cα|Q0|α/n−1
∫
Q0

|f |dx

≤ 2CαMd
αf(x). ❐

Proof. [Proof of Theorem 1.1] By Lemma 4.3, it will suffice to prove inequal-
ity (1.6) with Iα replaced by Idα,z and with a constant independent of z. In the
proof that follows it will be clear that all the constants are independent of z, so in
fact it will suffice to prove inequality (1.6) for Idα.

Since Idα is a positive operator, by a standard argument we may assume that
f is non-negative, bounded and has compact support. Fix p, 1 < p < ∞; then
Idαf ∈ Lq, where q > 1 is such that p ≥ q/r ′, so we can apply Theorem 3.4 to it.
Let δ = 1. Then there exists ε > 0 such that for each t > 0 there exists a sequence
of disjoint dyadic cubes {Qt

j} such that

1
|Qt

j|

∫
Qt

j

|Idαf − (Idαf)Qt
j
|dx > εt(4.1)
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and (by the Lebesgue differentiation theorem)

sup
t>0

tpu({x ∈ Rn : |Idαf(x)| > t}) ≤ sup
t>0

tpu({x ∈ Rn : Md(Iαf)(x) > t})

≤ C sup
t>0

tp
∑
j
Ar

u(Q
t
j).

Fix t; then by Lemma 4.4, for each j,

Qt
j ⊂ {x ∈ Rn : Md

αf(x) > εD−1
α t}.

By an argument analogous to that for the dyadic maximal operator (cf. Lemma
2.1), we can write the right-hand side as the union of disjoint dyadic cubes {Pt

k}
such that for each k,

|Pt
k|α/n−1

∫
Pt
k

f dx > εD−1
α t.

Further, the Pt
k’s are maximal with this property; in particular, for each j there

exists k such that Qt
j ⊂ Pt

k. Therefore, by Lemma 3.2, Condition (3),

tp
∑
j
Ar

u(Q
t
j)

= tp
∑
k

∑
Qt

j⊂Pt
k

Ar
u(Q

t
j) ≤ tp

∑
k
Ar

u(P
t
k)

≤ (ε−1Dα)p
∑
k
|Pt

k|
(

1
|Pt

k|

∫
Pt
k

ur dx
)1/r (

|Pt
k|α/n−1

∫
Pt
k

f dx
)p

.

By Hölder’s inequality and inequality (1.5),

≤ C
∑
k
|Pt

k|αp/n
(

1
|Pt

k|

∫
Pt
k

ur dx
)1/r (

1
|Pt

k|

∫
Pt
k

v−p
′/p dx

)p/p′ ∫
Pt
k

f pv dx

≤ C
∑
k

∫
Pt
k

f pv dx ≤ C
∫
Rn

fpv dx.

The constant is independent of t, so if we take the supremum over all t > 0
we get inequality (1.6). ❐

Remark 4.5. At the cost of a more complex argument similar to that for
Calderón-Zygmund operators (cf. Lemma 5.1 below) we could dispense with
the dyadic fractional integral operator and prove Theorem 1.1 directly for Iα.
The key inequality is the non-dyadic analogue of Lemma 4.4 due to Adams [1]:
M#(Iαf)(x) ≤ CMαf(x).
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.5 CALDERÓN-ZYGMUND OPERATORS

In this section we prove Theorem 1.2. The proof is similar to that of Theorem
1.1, but is complicated by the fact that we cannot pass to an equivalent dyadic
operator. To compensate we need the following lemma which is also needed in
the proof of Theorem 1.6.

Lemma 5.1. Let B be a Young function. Suppose that for some function f ∈ Lq,
1 ≤ q < ∞, and for some t > 0 there exist a constant µ, 0 < µ ≤ 1, and a collection
of dyadic cubes {Qj} such that for each j,

|Qj ∩ {x ∈ Rn : MBf(x) > t}| ≥ µ|Qj|.

Then there exists a constant ν > 0, depending on n and µ, and a subcollection {Pk}
of the Calderón-Zygmund decomposition with respect to B of f at height νt, {Cνt

i },
such that for each j, Qj ⊂ 3Pk for some k.

If we replace MB by Md
B in the hypothesis, then we can strengthen the conclusion

by finding Pk’s such that Qj ⊂ Pk and by letting µ = ν.

Proof. We first consider the non-dyadic case. By Lemma 2.1,

Et = {x ∈ Rn : MBf(x) > t} ⊂
⋃
i

3Cγt
i ,

where γ = 4−n. If we had Qj ⊂ 3Cγt
i for some i we would be done, but this need

not be the case, even if µ = 1. However, for each j there is a collection of indices
Aj such that

Qj ∩ Et ⊂
⋃
i∈Aj

3Cγt
i and 3Cγt

i ∩Qj ≠∅, i ∈ Aj.

There are two possibilities: first, there exists i ∈ Aj such that #(Qj) ≤ #(3Cγt
i ).

Then Qj ⊂ 9Cγt
i and by inequality (2.1),

2‖f‖B,9Cγt
i
≥ inf

s>0

s + s
|9Cγt

i |

∫
9Cγt

i

B
( |f |

s

)
dx


≥ 9−n inf

s>0

s + s
|Cγt

i |

∫
Cγt
i

B
( |f |

s

)
dx


= 9−n‖f‖B,Cγt

i
> 9−nγt.
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Alternatively, #(Qj) > #(3Cγt
i ) for all i ∈ Aj . But then for each i ∈ Aj , 3Cγt

i ⊂
3Qj , and so

2|3Qj|‖f‖B,3Qj ≥ inf
s>0

{
s|3Qj| + s

∫
3Qj

B
( |f |

s

)
dx

}

≥
∑
i∈Aj

inf
s>0

{
s|Cγt

i | + s
∫
Cγt
i

B
( |f |

s

)
dx

}

=
∑
i∈Aj

|Cγt
i |‖f‖B,Cγt

i
> 3−nγt

∑
i∈Aj

|3Cγt
i |

≥ 3−nγt|Qj ∩ Et| ≥ 9−nµγt|3Qj|.

So in either case, for each j there exists a cube Q̄j containing Qj such that

‖f‖B,Q̄j
>

µγt
2 · 9n .

Now by the same argument that is used to prove the Calderón-Zygmund
decomposition, Lemma 2.1, we can show that there exists a subcollection {Pk} of
{Cνt

i }, ν = 1
2µγ36−n = 1

2µ144−n, such that for each j, Qj ⊂ Q̄j ⊂ 3Pk for some
k. This completes the proof for MB .

The proof in the dyadic case is very similar, but is simplified considerably by
the fact that if two dyadic cubes intersect then one is contained in the other. ❐

Proof. [Proof of Theorem 1.2] By a standard argument, we may assume that
f ∈ C∞(Rn) and has compact support. Fix p, 1 < p < ∞; then Tf ∈ Lq, where
q > 1 is such that p ≥ q/r ′. Hence, we may apply Theorem 3.4 to it. Fix δ < 1.
Then there exists ε > 0 such that for each t > 0 there exists a sequence of disjoint
dyadic cubes {Qt

j} such that

 1
|Qt

j|

∫
Qt

j

∣∣|Tf |δ − (|Tf |δ)Qt
j

∣∣dx
1/δ

> ε1/δt

and

sup
t>0

tpu({x ∈ Rn : |Tf(x)| > t}) ≤ sup
t>0

tpu({x ∈ Rn : Md
δ (Tf)(x) > t})

≤ C sup
t>0

tp
∑
j
Ar

u(Q
t
j).
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As we noted in the Introduction, T satisfies inequality (1.9). Therefore, for each
j,

Qt
j ⊂ {x ∈ Rn : M#

δ(Tf)(x) > ε1/δt} ⊂ {x ∈ Rn : Mf(x) > βt},

where β = C−1
δ ε1/δ.

By Lemma 5.1 (with µ = 1), for each t > 0 there exists a sequence of disjoint
dyadic cubes {Pt

k} such that for each j, Qt
j ⊂ 3Pt

k for some k, and such that

1
|Pt

k|

∫
Pt
k

|f |dx > ρt,

where ρ > 0 depends only on β and n. Then by Lemma 3.2, Condition (3), for
each t > 0,

tp
∑
j
Ar

u(Q
t
j)

= tp
∑
k

∑
Qt

j⊂3Pt
k

Ar
u(Q

t
j)

≤ tp
∑
k
Ar

u(3P
t
k)

≤ ρ−p
∑
k
|3Pt

k|
(

1
|3Pt

k|

∫
3Pt

k

ur dx
)1/r (

1
|Pt

k|

∫
Pt
k

|f |dx
)p

.

By Hölder’s inequality and inequality (1.7),

≤ C
∑
k

(
1

|3Pt
k|

∫
3Pt

k

ur dx
)1/r (

1
|3Pt

k|

∫
3Pt

k

v−p
′/p dx

)p/p′ ∫
Pt
k

|f |pv dx

≤ C
∑
k

∫
Pt
k

|f |pv dx

≤ C
∫
Rn
|f |pv dx.

The constant is independent of t, so if we take the supremum over all t > 0
we get inequality (1.8). This completes our proof. ❐
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.6 COMMUTATORS

In this section we prove Theorem 1.6. The proof depends on Theorem 1.2
and the following analogue of inequality (1.9) for commutators.

Lemma 6.1. Given a Calderón-Zygmund operator T , a function b in BMO,
constants δ0 and δ1, 0 < δ0 < δ1 < 1, and k ≥ 1, there exists a constant K,
depending on the BMO norm of b, such that for every function f ∈ C∞0 (Rn) and
any x ∈ Rn,

M#,d
δ0

(Ck
bf)(x) ≤ K

k−1∑
i=0

Md
δ1
(Ci

bf )(x)+KMk+1f(x).

This result is found in [23, 24]. As given there, the non-dyadic maximal
operator appears in the first term on the right-hand side, but it is immediate from
the proof that it is still true with the dyadic maximal operator there.

Proof. [Proof of Theorem 1.6] When k = 0, Theorem 1.6 reduces to The-
orem 1.2, so we may fix k ≥ 1. By a standard argument we may assume that
f ∈ C∞(Rn) and has compact support. Fix p, 1 < p <∞; then Ci

bf ∈ Lq, where
0 ≤ i ≤ k and q > 1 is such that p ≥ q/r ′. Hence, we may apply Theorem 3.4
to Ck

bf . Fix δ0 and δ1, 0 < δ0 < δ1 < 1. Then there exists ε > 0 such that for
each t > 0 there exists a sequence of disjoint dyadic cubes {Qt

j} such that

 1
|Qt

j|

∫
Qt

j

∣∣|Ck
bf |δ0 − (|Ck

bf |δ0)Qt
j

∣∣dx
1/δ0

> ε1/δ0t

and

sup
t>0

tpu({x ∈ Rn : |Ck
bf(x)| > t}) ≤ sup

t>0
tpu({x ∈ Rn : Md

δ0
(Ck

bf)(x) > t})

≤ C sup
t>0

tp
∑
j
Ar

u(Q
t
j).

By Lemma 6.1, for each j and t,



Two-weight, Weak-type Norm Inequalities 717

Qt
j ⊂

k−1⋃
i=1

{x ∈ Rn : Md
δ1
(Ci

bf )(x) > βt}

∪{x ∈ Rn : Md
δ1
(Tf)(x) > βt}

∪{x ∈ Rn : Mk+1f(x) > βt}

≡
( k−1⋃

i=1

Fβt
i

)
∪ Fβt

0 ∪ Fβt
k ,

where β = ε1/δ0K−1(k+1)−1. For each j and t we cannot have that |Qt
j ∩Fβt

i | <
(k+ 1)−1|Qt

j| for all i. Hence, for some i, |Qt
j ∩ Fβt

i | ≥ (k+ 1)−1|Qt
j|; if this is

the case, we write Qt
j ∈ F

βt
i . Thus,

sup
t>0

tp
∑
j
Ar

u(Q
t
j) ≤

k∑
i=0

sup
t>0

tp
∑

Qt
j∈F

βt
i

Ar
u(Q

t
j).

To complete the proof we will show that each term of the outer sum on the
right-hand side is dominated by

C
∫
Rn
|f |pv dx.

There are three cases.

9 Case 1: Cubes in Fβt
k . As we noted in Section 2, there exists a constant

β′ > 0 such that

{x ∈ Rn : Mk+1f(x) > βt} ⊂ {x ∈ Rn : MBf(x) > β′t},

where B(t) = t log(e + t)k. Therefore, by Lemma 5.1 (with µ = (k + 1)−1),
there exists a constant ν > 0 such that, for each t > 0 there exists a collection of
disjoint dyadic cubes {Pt

#} such that for each j, Qt
j ⊂ 3Pt

# for some # and such
that ‖f‖B,Pt

#
> νt. We now proceed exactly as we did at the end of the proof

of Theorem 1.2. Since Ck(t) = tp′ log(e + t)kp′ , C−1
k (t) ≈ t1/p′ log(e + t)−k,
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and so t1/pC−1
k (t) ≤ B−1(t). Then, by Lemma 3.2, Conditions (2) and (3), the

generalized Hölder’s inequality (2.3) and inequality (1.11),

sup
t>0

tp
∑

Qt
j∈F

βt
k

Ar
u(Q

t
j)

≤ sup
t>0

tp
∑
#

Ar
u(3P

t
#)

≤ C sup
t>0

∑
#

|3Pt
#|
(

1
|3Pt

#|

∫
3Pt

#

ur dx
)1/r ∥∥f∥∥pB,Pt

#

≤ C sup
t>0

∑
#

(
1

|3Pt
#|

∫
3Pt

#

ur dx
)1/r ∥∥v−1/p∥∥p

Ck,Pt
#

∫
Pt
#

|f |pv dx

≤ C sup
t>0

∑
#

(
1

|3Pt
#|

∫
3Pt

#

ur dx
)1/r ∥∥v−1/p∥∥p

Ck,3Pt
#

∫
Pt
#

|f |pv dx

≤ C sup
t>0

∑
#

∫
Pt
#

|f |pv dx

≤ C
∫
Rn
|f |pv dx.

9 Case 2: Cubes in Fβt
0 . Given t > 0, let s = (βt)δ1 . Again by Lemma

5.1 (the dyadic case), if Qt
j ∈ F

βt
0 , then for some i, Qt

j ⊂ Cs
i , where {Cs

i } is the
Calderón-Zygmund decomposition of |Tf |δ1 at height s. Hence, by Lemma 3.2,
Conditions (2) and (3),

sup
t>0

tp
∑

Qt
j∈F

βt
0

Ar
u(Q

t
j) ≤ sup

t>0
tp
∑
i
Ar

u(C
s
i ).

By Corollary 3.5, there exist ε > 0 and a subcollection {Q̄t
j} of {Cs

i } such that if

x ∈ Q̄t
j , then M#,d

δ1
(Tf)(x) > β′′t, where β′′ = ε1/δ1β, and such that

sup
t>0

tp
∑
i
Ar

u(C
s
i ) ≤ C sup

t>0
tp
∑
j
Ar

u(Q̄
t
j).

We can now argue exactly as we did in the proof of Theorem 1.2 to get

sup
t>0

tp
∑

Qt
j∈F

βt
0

Ar
u(Q

t
j) ≤ C

∫
Rn
|f |pv dx.
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9 Case 3: Cubes in Fβt
i , 1 ≤ i ≤ k−1. Fix i; then arguing exactly as we did

in Case 2, by Corollary 3.5 there exist ε > 0 and a collection of disjoint dyadic
cubes {Q̄t

j} such that if x ∈ Q̄t
j , then M#

δ1
(Ci

bf )(x) > β′′t, where β′′ = ε1/δ1β,
and such that

sup
t>0

tp
∑

Qt
j∈F

βt
i

Ar
u(Q

t
j) ≤ C sup

t>0
tp
∑
j
Ar

u(Q̄
t
j).

We now apply Lemma 6.1 and repeat the argument at the beginning of this
proof. When we do so we reduce the degree of the highest order commutator
appearing from i to i−1. Therefore, after repeating our argument a finite number
of times, we will reduce to collections of cubes satisfying conditions such as those
in Case 1 and Case 2. Repeating those arguments will then give us the desired
inequality. ❐
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[20] C. PÉREZ, Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49

(1994), 296-308.
[21] , Two weighted inequalities for potential and fractional type maximal operators, Indiana

Math. J. 43 (1994), 663-683.
[22] , On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator

between weighted Lp-spaces with different weights, Proc. London Math. Soc. 71 (1995), 135-57.
[23] , Endpoint estimates for commutators of singular integral operators, J. Func. Anal. 128

(1995), 163-185.
[24] , Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood

maximal function, J. Fourier Anal. Appl. 3 (1997), 743-756.
[25] D.H. PHONG & E.M. STEIN, Hilbert integrals, singular integrals and Radon transforms, Acta

Math. 157 (1985), 99-157.
[26] M.M. RAO & Z.D. REN, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
[27] E.T. SAWYER, A two weight weak type inequality for fractional integrals, Trans. Amer. Math. Soc.

281 (1984), 339-345.
[28] E.T. SAWYER & R. WHEEDEN, Weighted inequalities for fractional integrals on Euclidean and

homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
[29] C. SEGOVIA & J.L. TORREA, Weighted inequalities for commutators of fractional and singular

integrals, Publ. Mat. 35 (1991), 209-235.
[30] E.M. STEIN, Note on the class L logL, Studia Math. 32 (1969), 305-310.
[31] , Singular Integrals and Differentiability Properties of Functions, Princeton University Press,

Princeton, 1970.

D. CRUZ-URIBE, SFO
Department of Mathematics, Trinity College
Hartford, CT 06106-3100, U. S. A.
EMAIL: david.cruzuribe@mail.trincoll.edu



Two-weight, Weak-type Norm Inequalities 721

C. PÉREZ
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