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ABSTRACT. Given any quasi-Banach function space X over Rn it is
defined an index αX that coincides with the upper Boyd index ᾱX
when the space X is rearrangement-invariant. This new index is de-
fined by means of the local maximal operator mλf . It is shown then
that the Hardy-Littlewood maximal operator M is bounded on X if
and only if αX < 1 providing an extension of the classical theorem of
Lorentz and Shimogaki for rearrangement-invariant X.

As an application it is shown a new characterization of the Muck-
enhoupt Ap class of weights: u ∈ Ap if and only if for any ε > 0 there
is a constant c such that for any cube Q and any measurable subset
E ⊂ Q,

|E|
|Q| logε

( |Q|
|E|

)
≤ c

(
u(E)
u(Q)

)1/p

.

The case ε = 0 is false corresponding to the class Ap,1.
Other applications are given, in particular within the context of the

variable Lp spaces.

1. INTRODUCTION

The main purpose of this paper is to provide a new way of defining the upper
Boyd index for general function quasi-Banach spaces X overRn with respect to the
Lebesgue measure but not necessarily rearrangement-invariant. To do this we first
investigate the question on the boundedness of the Hardy-Littlewood maximal
operator M on X. This problem is characterized in Theorem 1.2 below.
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We give several applications of our main result. The most interesting is a
new characterization of the Ap class of weights. This characterization is best un-
derstood if we compare it with the Ap,1 class of weights. Recall that a weight u
satisfies the Ap,1 condition if there is a constant c such that for any cube Q and
any measurable subset E ⊂ Q,

(1.1)
|E|
|Q| ≤ c

(
u(E)
u(Q)

)1/p

,

where, as usual, u(E) =
∫
E
u(x)dx. This class of weights is interesting because it

characterizes the weights for which M is of restricted weak type (p,p), namely,

sup
t>0
tpu{x : MχE(x) > t} ≤ cu(E),

which, as it is well known, is equivalent to M : Lp,1u → Lp,∞u . Observe that Ap ⊂
Ap,1, although the inclusion is proper (see [7,16] and also [17,28]). We will show
that u ∈ Ap if and only if condition (1.1) is slightly “bumped” by multiplying
the left-hand side by ψ(|Q|/|E|) where ψ is so that limt→∞ψ(t) = +∞. As an
special case we show that u ∈ Ap if and only if for any ε > 0 there is a constant c
such that for any cube Q and any subset E ⊂ Q,

|E|
|Q| logε

( |Q|
|E|

)
≤ c

(
u(E)
u(Q)

)1/p

.

The case ε = 0 is false corresponding to the class Ap,1. See Theorem 2.4 for the
precise and more general statement of the result.

In the classical setting, if X is any rearrangement-invariant Banach function
space, then the well-known result due to Lorentz [19] and Shimogaki [25] about
the boundedness ofM on X is formulated in terms of the upper Boyd index ᾱaX .
It establishes that M is bounded on X if and only if ᾱaX < 1. This result was
extended by Montgomery-Smith [20] to the case of any rearrangement-invariant
quasi-Banach function space. In both cases, the key ingredient of the proofs was
the fact that (Mf)∗(t), the non-increasing rearrangement of Mf , is pointwise

equivalent to (1/t)
∫ t

0
f∗(τ)dτ. Then, since X is rearrangement-invariant, the

problem is reduced to the study of the boundedness of the Hardy operator. Thus,
the rearrangement-invariance of X is crucial in this approach.

However, in Analysis there are lots of important spaces that are not rearrange-
ment-invariant in general. Examples include weighted Lebesgue, Lorentz or Orlicz
spaces, Musielak-Orlicz spaces. For some particular spaces different criteria of the
boundedness of M are well known. The aim of this paper is to provide a unified
approach to the study of the boundedness of M on any quasi-Banach function
space within spirit of the Lorentz-Shimogaki theorem.
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To pursue this direction we introduce a generalized definition of the upper
Boyd index. In this new approach, the main role is played by the so-called local
maximal operator mλf defined for any measurable function f by

mλf(x) = sup
Q3x

(fχQ)
∗(λ|Q|) (0 < λ < 1),

where the supremum is taken over all cubes Q containing x, and f∗ denotes the
non-increasing rearrangement of f .

We give the following generalization of the upper Boyd index.

Definition 1.1. For any quasi-Banach function space X over Rn, we de-
fine the non-increasing function ΦX on (0,1) as the operator norm of mλ on
X, namely,

ΦX(λ) = ‖mλ‖X = sup
‖f‖X≤1

‖mλf‖X (0 < λ < 1).

We define the generalized upper Boyd index as

(1.2) αX = lim
λ→0

logΦX(λ)
log(1/λ)

.

We observe that ΦX(λ) ≥ 1, 0 < λ < 1, since |f | ≤ mλf a.e. (see [18,
Lemma 6]). We will show below that the limit defining αX exists because eitherΦX ≡ ∞ or ΦX is equivalent to a finite submultiplicative function on (0,1], whenΦX(λ0) <∞, for some small positive λ0.

Our main result is the following theorem, which can be regarded as an exten-
sion of the Lorentz-Shimogaki theorem.

Theorem 1.2. Let X(Rn) be any quasi-Banach function space. The following
statements are equivalent:

(i) M is bounded on X;
(ii) αX < 1;

(iii) ΦX ∈ L1(0,1);
(iv) limλ→0 λΦX(λ) = 0.

Moreover, if the space X is rearrangement-invariant, then αX coincides with the upper
Boyd index of X, ᾱX .

As a consequence of this result, we can show that if X satisfies any of the condi-
tion of the theorem, then X has a certain kind of self-improving property. Indeed,
if we let Mrf(x) = M(|f |r )(x)1/r , 0 < r < ∞, for many particular spaces X,
it has been observed that the boundedness of M on X implies the boundedness
of Mr on X for some r > 1. This property is well known for weighted Lebesgue
spaces [6, 21], and also for Lorentz spaces [2, 5] and for variable Lp spaces [10].
However, each case requires its own proof. For instance, in the case of weighted
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Lebesgue spaces, it is easy to see that this is equivalent to the fact that the Ap
condition of Muckenhoupt implies the Ap−ε condition for some ε > 0. Theorem
1.2 implies easily that such a phenomenon occurs for any X, namely, we have the
following result.

Corollary 1.3. Let X(Rn) be any quasi-Banach function space. Then M is
bounded on X if and only if Mr is bounded on X for some r > 1.

The paper is organized as follows. In Section 2 we state some applications
of Theorem 1.2 to weighted Lebesgue and Lorentz spaces, and also to variable
Lp spaces. The results of Section 2 reveal a new approach to many previous well
known results, as well as yielding some new results. The remaining sections of
the paper provide the proofs of the results stated in Sections 1 and 2. Section 3
contains some preliminary information, Section 4 gives the proofs of Theorem
1.2 and Corollary 1.3, and, finally, Section 5 provides proofs of the results about
applications stated in Section 2.

2. APPLICATIONS

2.1. Weighted Lebesgue and Lorentz spaces As usual, by a weight we mean
any non-negative locally integrable function. Given a weight u, we denote by Lpu,
p > 0, the space of all measurable f for which

‖f‖Lpu ≡
(∫

Rn
|f(x)|p u(x)dx

)1/p
<∞.

We say that a weight u satisfies the Ap, 1 < p <∞, condition if

sup
Q

(
1
|Q|

∫
Q
u(x)dx

)(
1
|Q|

∫
Q
u(x)−1/(p−1) dx

)p−1
<∞.

Given a locally integrable function f on Rn, the Hardy-Littlewood maximal op-
erator M is defined by

Mf(x) = sup
Q3x

1
|Q|

∫
Q
|f(y)|dy,

where the supremum is taken over all cubes Q containing x.
The following fundamental theorem was proved in [21] (see also [11, Chapter

4] or [27, Chapter 5]).

Theorem 2.1 (Muckenhoupt [21]). Let 1 < p < ∞. Then M is bounded on
Lpu if and only if u ∈ Ap.

As we mentioned in the Introduction, u ∈ Ap,1 is equivalent to the condition
that M be of restricted weak type (p,p) with respect to u. Thus, Ap ⊂ Ap,1; on
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the other hand, by the Stein-Weiss interpolation theorem [3, p. 233], Ap,1 ⊂ Ap+ε
for any ε > 0. From this and from the fact that Ap implies Ap−ε for some
ε > 0 (see [6]), one can deduce the following well-known proposition, which is
implicitly contained in [7, 16].

Proposition 2.2. Let 1 < p < ∞. Then u ∈ Ap if and only if there exists
1 < q < p such that u ∈ Aq,1.

Observe that Ap 6≡ Ap,1; for example, u(x) = |x|n(p−1) satisfies Ap,1 but not
Ap.

Our Theorem 1.2 yields several characterizations of the Ap condition. One of
them is equivalent to Proposition 2.2; however its proof is much simpler, without
the use of interpolation and the property Ap ⇒ Ap−ε. Another characterization
seems to be new; it gives us a new and clearer way of formulating the difference
between Ap and Ap,1.

First of all, we calculate the generalized upper Boyd index of Lpu. Given a
weight u, we define the function νu defined by

νu(λ) = inf
Q

inf
E⊂Q:|E|=λ|Q|

u(E)
u(Q)

(0 < λ < 1).

Theorem 2.3. For any p > 0 we have

(2.1) ΦLpu(λ) � 1
ν1/p
u (λ)

and

(2.2) αLpu =
1
p

lim
λ→0

log(1/νu(λ))
log(1/λ)

.

Denote byA the class of increasing functionsψ on [1,∞) such that limt→∞ψ(t) =
+∞, and ψ(t) = O(tε) for any ε > 0. We have the following application of The-
orem 1.2.

Theorem 2.4. Let 1 < p < ∞. Given a weight u, the following statements are
equivalent.

(i) M is bounded on Lpu;
(ii) limλ→0 νu(λ)/λp = +∞;

(iii) limλ→0 log(1/νu(λ))/ log(1/λ) < p;
(iv) if ψ ∈A, then for any cube Q and any subset E ⊂ Q,

(2.3)
|E|
|Q|ψ

( |Q|
|E|

)
≤ c

(
u(E)
u(Q)

)1/p

.
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Some interesting examples to which the theorem can be applied are ψ(t) =
logε t or ψ(t) = log logε(e + t), t ≥ 1, ε > 0, but the theorem is false for such
functions when ε = 0.

The proof of this theorem completely bypasses the Ap condition. In particular,
it avoids the use of the well known “reverse Hölder” property of the Ap class of
weights (see [11] for several proofs of the classical theorem of Muckenhoupt).
However, it is interesting to stress the following corollary.

Corollary 2.5. Let 1 < p < ∞. The Ap condition is equivalent to any of the
conditions above.

We remark that it is easy to show that condition (iii) is equivalent to Proposi-
tion 2.2. Conditions (ii) and (iv) seem to be new and (iv) reveals that the difference
between the Ap and Ap,1 conditions is precisely the presence or absence of a factor
ψ(|Q|/|E|), where ψ is an arbitrary slowly increasing function. We also remark
that the proofs of both Theorems 2.3 and 2.4 use only basic properties of M such
as the weak type and the reverse weak type inequalities. Also, using only these
basic properties, it is shown directly in next proposition that the Ap condition
implies (2.3).

Proposition 2.6. Let 1 < p < ∞; then the Ap condition implies (2.3) with
ψ(t) = log1−1/p(1+ t).

Consider now the weighted Lorentz spaces Λpu(w). Let u and w be weights
defined on Rn and R+ respectively. The space Λpu(w),p > 0, consists of all
measurable f for which

‖f‖Λpu(w) =
(∫∞

0
(f∗u (t))pw(t)dt

)1/p
< ∞,

where f∗u (t) is the non-increasing rearrangement of f with respect to u defined
by

f∗u (t) = inf
{
α > 0 : u{x ∈ Rn : |f(x)| > α} ≤ t

}
(0 < t < u(Rn)).

A full characterization of the boundedness of M on Λpu(w) for arbitrary u
and w was obtained recently by Carro, Raposo, and Soria [5]; we also refer to [5]
for a complete account of related results in this area. Here we mention only that
in the case w = 1 and p > 1, Λpu(w) becomes the standard Lpu spaces, and by
Muckenhoupt’s theorem, umust satisfy theAp condition. On the other hand, the
case of Λp(w) (i.e., when u = 1) was characterized by Ariño and Muckenhoupt
[2]; in this case w must satisfy the so-called Bp condition.

Denote W(t) =
∫ t

0
w(s)ds. In [5, Theorem 3.3.5], among others, the fol-

lowing characterization was obtained.
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Theorem 2.7 ([5]). Let 0 < p < ∞. M is bounded on Λpu(w) if and only if
there exists q < p such that for some constant c and for every finite family of cubes
and sets (Qj, Ej)j with Ej ⊂ Qj .

(2.4)
W
(
u
(⋃

j Qj
))

W
(
u
(⋃

j Ej
)) ≤ cmax

j

( |Qj|
|Ej|

)q
.

It is also mentioned in [5] that for a wide class of w, for instance for w(t) =
tα, α > −1, (2.4) is equivalent to the same condition but with a unique Q and
E ⊂ Q. Thus, Theorem 2.7 represents a generalized version of Proposition 2.2.

We show that Theorems 2.3 and 2.4 and their proofs can be generalized with
minor changes to the spaces Λpu(w). To be more precise, given weights u and w,
we associate the function νu,w defined by

νu,w(λ) = inf
{Qj}

inf
{Ej}:Ej⊂Qj, minj |Ej|/|Qj|=λ

W
(
u
(⋃

j Ej
))

W
(
u
(⋃

j Qj
)) ,

where the infimum is taken over all finite families of cubes {Qj} and over all
families of sets {Ej} such that Ej ⊂ Qj with minj |Ej|/|Qj| = λ.

Theorem 2.8. For any p > 0 we have

(2.5) ΦΛpu(w)(λ) � 1
ν1/p
u,w(λ)

and

(2.6) αΛpu(w) = 1
p

lim
λ→0

log(1/νu,w(λ))
log(1/λ)

.

Theorem 2.9. Let 0 < p <∞. Given weights u andw, the following statements
are equivalent.

(i) M is bounded on Λpu(w);
(ii) lim

λ→0

νu,w(λ)
λp

= +∞;

(iii) lim
λ→0

log(1/νu,w(λ))
log(1/λ)

< p;

(iv) if ψ ∈ A, then for any finite family of cubes {Qj} and any family of sets {Ej}
with Ej ⊂ Qj ,

min
j

|Ej|
|Qj| ψ

( |Qj|
|Ej|

)
≤ c

(
W
(
u
(⋃

j Ej
))

W
(
u
(⋃

j Qj
)))1/p

.
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Exactly as in Theorem 2.4, item (iii) here is a reformulation of Theorem 2.7
but with a different proof; items (ii) and (iv) are new.

2.2. Variable Lp spaces Let p : Rn → [1,∞) be a measurable function. De-
note by Lp(·)(Rn) the space of all measurable f on Rn such that for some λ > 0,

∫
Rn

∣∣∣∣f(x)λ
∣∣∣∣p(x) dx <∞,

with norm

‖f‖Lp(·) = inf
{
λ > 0 :

∫
Rn

∣∣∣∣f(x)λ
∣∣∣∣p(x) dx ≤ 1

}
.

The spaces Lp(·)(Rn) are a special case of Musielak-Orlicz spaces (cf. [22]).
The behavior of some classical operators in harmonic analysis on Lp(·)(Rn) has
been intensively investigated in recent years.

Denote by P(Rn) the class of all measurable functions p for which M is
bounded on Lp(·)(Rn). Given any measurable function p, let

p− = ess infx∈Rn p(x) and p+ = ess supx∈Rn p(x) .

Assume that p− > 1 and p+ < ∞. It has been proved by Diening [9] that if
p satisfies the following uniform continuity condition:

(2.7) |p(x)− p(y)| ≤ c
log(1/|x −y|) , |x −y| < 1

2 ,

and if p is a constant outside some large ball, then p ∈ P(Rn). After that, the sec-
ond condition on p has been improved independently by Cruz-Uribe, Fiorenza,
and Neugebauer [8] and Nekvinda [23]. It is shown in [8] that if p satisfies (2.7)
and

(2.8) |p(x)− p∞| ≤ c
log(e+ |x|)

for some p∞ > 1, then p ∈ P(Rn). In [23], the boundedness of M is deduced
from (2.7) and from an integral condition more general than (2.8) : there exist
constants c, p∞ such that 0 < c < 1, p∞ > 1, and

(2.9)
∫
Rn
|p(x)− p∞|c1/|p(x)−p∞| dx <∞.

We make several remarks about (2.9). First, since p is bounded, it is clear that
(2.9) concerns the behavior of p at infinity. Next, (2.9) can be stated in a simpler
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way. Indeed, for any c1 one can take c2 < c1 and a constant k depending on c1,
c2 such that c1/x

2 ≤ kxc1/x
1 for any x ≥ 0. Therefore, (2.9) is equivalent to saying

that there exist α, p∞ such that 0 < α < 1, p∞ > 1, and

(2.10)
∫
Rn
α1/|p(x)−p∞| dx <∞.

It is easy to see that (2.8) implies (2.10) with α < e−nc .
Using Theorem 1.2, we give a different approach to Nekvinda’s theorem. We

note that in the following result the requirement p− > 1 is replaced by p− > 0.

Theorem 2.10. Let p be a bounded positive function with p− > 0 satisfying
(2.7) and (2.10) for some α ∈ (0,1) and p∞ > 0. Then

‖mλf‖Lp(·) ≤ c
λ1/p−

‖f‖Lp(·) (0 < λ < 1),

where c depends only on p and n.

Since (2.10) necessarily implies p∞ ≥ p−, in the case p− > 1 the conditions
of Theorem 2.10 coincide with the conditions of Nekvinda’s theorem. In this case
Theorem 2.10 clearly yields αLp(·) ≤ 1/p− < 1, and thus, by Theorem 1.2, the
boundedness of M on Lp(·).

We should mention that when proving Theorem 2.10, we use a much simpli-
fied variant of Nekvinda’s argument, from [23].

3. PRELIMINARIES

3.1. Local maximal operator First of all, we recall that the non-increasing
rearrangement of a measurable function f is defined by

f∗(t) = inf
{
α > 0 :

∣∣{ x ∈ Rn : |f(x)| > α }∣∣ ≤ t} (0 < t <∞).

Recall that the local maximal operator mλf is defined for any measurable
function f by

mλf(x) = sup
Q3x

(fχQ)
∗(λ|Q|) (0 < λ < 1),

where the supremum is taken over all cubes Q containing x. Then, it follows
directly from the definitions that for any f and for all x ∈ Rn,

(3.1) mλf(x) > α ⇐⇒ Mχ{|f |>α}(x) > λ.

In particular, for any measurable set E,

(3.2) mλ(χE)(x) = χ{M(χE)>λ}(x).
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We will use the following simple properties ofmλ:

(mλf(x))δ =mλ(|f |δ)(x) (δ > 0) ,(3.3)

mλ(f + g)(x) ≤mλ/2f(x)+mλ/2g(x) .(3.4)

They follow immediately from the corresponding properties of the rearrangements
(see [3, p. 41]).

Lemma 3.1. Let 0 < λ < 1. For any measurable function f ,

(3.5) f∗(2nλt) ≤ (mλf)∗(t) ≤ f∗(λt/3n) (t > 0),

and

(3.6) m2nλξf (x) ≤mξ(mλf)(x) (x ∈ Rn, ξ < 1
2n
).

Proof. By (3.1) and the reverse weak type (1,1) inequality for the maximal
function [26],

∣∣∣{ x ∈ Q :mλf(x) > α
}∣∣∣ ≥ 1

2nλ

∣∣∣{ x ∈ Q : |f(x)| > α }∣∣∣,
whenever |{x ∈ Q : |f(x)| > α}| ≤ λ|Q|. Therefore, settingα = ((mλf)χQ)

∗(t)
we obtain

(3.7) (fχQ)
∗(2nλt) ≤ ((mλf)χQ)

∗(t).

In particular, when Q = Rn, (3.7) gives the left-hand inequality in (3.5). On the
other hand, putting in (3.7) t = ξ|Q|, we immediately get (3.6).

Similarly, by (3.1) and the weak type (1,1) property of M,

|{x :mλf(x) > α}| ≤ 3n

λ

∣∣∣{x : |f(x)| > α}∣∣∣,
which is equivalent to the right-hand inequality in (3.5). ❐

3.2. Quasi-Banach function spaces. Let M0 be the set of all real-valued mea-
surable functions on Rn. A quasi-Banach function space X over Rn is a subspace
of M0 equipped with a complete quasi-norm ‖ · ‖X such that:
• ‖f‖X = 0 ⇐⇒ f = 0 a.e., ‖αf‖X = |α| ‖f‖X , ‖f + g‖X ≤ c(‖f‖X + ‖g‖X);
• |f | ≤ |g| a.e. ⇒ ‖f‖X ≤ ‖g‖X ;

• |E| <∞ ⇒ ‖χE‖X <∞;

• 0 ≤ fk ↑ f a.e. ⇒ ‖fk‖X ↑ ‖f‖X .
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We will essentially use a version of the Aoki-Rolewicz theorem (see [1, 24] or
[15, p. 3]), which asserts that for any f1, . . . , fk one has

(3.8)
∥∥∥ k∑
i=1

fi
∥∥∥
X
≤ 41/ρ

( k∑
i=1

∥∥fi∥∥ρX)1/ρ
,

where 0 < ρ ≤ 1 is given by c = 21/ρ−1 where c is the “quasi-norm” constant.
We recall that two functions f and g from M0 are said to be equimeasurable

if they have the same distribution function. A function space X is said to be
rearrangement-invariant (‘r-i’ from now on) if ‖f‖X = ‖g‖X for every pair of
equimeasurable functions f and g.

3.3. The upper Boyd index. Originally, the notion of the upper Boyd index
was given for r-i Banach function spaces (see [4] and [3, p. 149]). We refer to
[3, Chapter 1] for a complete account concerning these spaces.

We briefly recall how the upper Boyd index is defined in [3, 4]. Indeed, the
Luxemburg representation theorem [3, p. 62] says that for any r-i Banach function
space X over Rn there is a r-i Banach function space X̄ over (0,∞) such that
‖f‖X = ‖f∗‖X̄ . Given any function ϕ on (0,∞) the dilation operator Et , 0 <
t < ∞, is defined by Et(ϕ)(s) = ϕ(st), 0 < s < ∞; we denote by hX(t) the
operator norm of E1/t from X̄ to X̄, that is,

hX(t) = sup
‖ϕ‖X̄≤1

‖E1/t(ϕ)‖X̄ (t > 0).

Finally, the upper Boyd index ᾱX of X is defined by

(3.9) ᾱX = inf
1<t<∞

loghX(t)
log t

= lim
t→∞

loghX(t)
log t

.

Observe that the function hX(t) can be defined more naturally, without the use of
the space X̄. Namely, given the dilation operator Da defined on Rn by Daf(x) =
f(ax),a > 0, it is easy to see that hX(t) is the operator norm of D(1/t)1/n from
X to X. Indeed, given any ϕ on (0,∞), one can consider the function Aϕ(x) =
ϕ∗(vn|x|n) on Rn, where vn is the volume of the unit ball. Then (Aϕ)∗(t) =
ϕ∗(t) (we emphasize that here on the left-hand side the rearrangement is “n-
dimensional”, while on the right-hand side it is “one-dimensional”). Also, we use
that (Daf)∗(t) = f∗(ant). Thus, for any function ϕ on (0,∞)

‖E1/t(ϕ)‖X̄ = ‖(E1/t(ϕ))∗‖X̄ = ‖(D(1/t)1/nAϕ)∗‖X̄ = ‖D(1/t)1/nAϕ‖X.

On the other hand,
‖D(1/t)1/nf‖X = ‖E1/tf∗‖X̄ .
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From the last two identities we easily have that

(3.10) hX(t) = sup
‖f‖X≤1

‖D(1/t)1/nf‖X (t > 0).

Consider now the case of the quasi-Banach r-i space X. Curiously enough, we
were not able to find in the literature the precise definition of Boyd indices of X
over Rn; for definitions given in the one-dimensional case we refer to [12,14,20].
Given any quasi-Banach r-i space X(Rn), we define its upper Boyd index ᾱX by
equality (3.9), where the function hX is defined by (3.10).

3.4. Submultiplicative functions. Recall that the generalized upper index
given in Definition 1.1 is given in terms of

ΦX(λ) = ‖mλ‖X = sup
‖f‖X≤1

‖mλf‖X (0 < λ < 1).

In this section we show that this function is essentially equivalent to a sub-
multiplicative function. We first give some properties of this class of functions
that will be used in the proof of Theorem 1.2.

Let E be any subset of R+ such that E ·E ⊂ E. A non-negative function ϕ on
E is said to be submultiplicative if

ϕ(ξλ) ≤ ϕ(ξ)ϕ(λ) (λ, ξ ∈ E).

Proposition 3.2 ([3, p. 147]). Let ψ be any non-decreasing submultiplicative
function on [1,∞) with ψ(1) = 1. Then

∫∞
1
ψ(t)

dt
t2 <∞ ⇐⇒ ᾱ(ψ) < 1 ,

where

ᾱ(ψ) = lim
t→∞

logψ(t)
log t

= inf
t>1

logψ(t)
log t

.

Proposition 3.3. Let ϕ be any non-increasing submultiplicative function on
(0,1] with ϕ(1) = 1. Then

∫ 1

0
ϕ(λ)dλ < ∞ ⇐⇒ ᾱ(ϕ) < 1 ⇐⇒ lim

λ→0
λϕ(λ) = 0

where

ᾱ(ϕ) = lim
λ→0

logϕ(λ)
log(1/λ)

= inf
λ<1

logϕ(λ)
log(1/λ)

.
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The first equivalence follows from the previous proposition, and the second
one is trivial.

The following lemma shows that except for the trivial case ΦX ≡ ∞, ΦX is
equivalent to a finite non-increasing submultiplicative function near the origin.
This is enough to give meaning to the limit in Definition 1.1 since, by Proposition
3.3, the limit defining αX exists:

αX = lim
λ→0

logΦX(λ)
log(1/λ)

.

Lemma 3.4. Let X be any quasi-Banach function space. If ΦX(λ0) < ∞,
for some λ0 ∈ (0,1/4n] then there is a non-increasing, submultiplicative on (0,1]
function Φ̃X such that Φ̃X(1) = 1, and

(3.11) cΦX(λ) ≤ Φ̃X(λ) ≤ ΦX(λ) (0 < λ < 1),

where c depends only on X.

Proof. It follows from (3.6) that

‖m2nλξf‖X ≤ ‖mξ(mλf)‖X ≤ ΦX(ξ)‖mλf‖X ≤ ΦX(ξ)ΦX(λ)‖f‖X,
and thus,

(3.12) ΦX(2nλξ) ≤ ΦX(ξ)ΦX(λ) (λ < 1, ξ <
1

2n
).

Set now Φ̃X(λ) = sup
0<ξ<1

ΦX(ξλ)ΦX(ξ) (0 < λ ≤ 1).

It is clear that Φ̃X is submultiplicative on (0,1] and Φ̃X(1) = 1. Next, Φ̃X is
non-increasing because ΦX is so. Also, due to the fact that ΦX is non-increasing,
the left-hand inequality in (3.11) holds trivially with c1 = 1/ΦX(1−). Further, it
follows from (3.12) that

ΦX(ξλ)ΦX(ξ) ≤ ΦX(ξ/2n)ΦX(ξ) Φ(λ) ≤ ΦX(1/4n)Φ(λ),
which proves the right-hand inequality in (3.11) with c2 = ΦX(1/4n). Observe
that c2 is finite since ΦX(λ0) <∞, 0 < λ0 ≤ 1/4n. ❐

4. PROOF OF THE MAIN RESULTS

Denote M2f =MMf . We start with the following simple lemma.
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Lemma 4.1. There is a constant c such that for any 0 < λ < 1 and measurable
function f

(4.1) mλf(x) ≤ c
λ log(1/λ)

M2f(x) (x ∈ Rn).

Proof. Set

f∗∗(t) = t−1
∫ t

0
f∗(τ)dτ .

Then, using the well-known estimate f∗∗(t) ≤ c(Mf)∗(t) [3, p. 122], we get

(fχQ)
∗(λ|Q|) ≤ 1

λ|Q|
∫ λ|Q|

0
(fχQ)

∗(τ)dτ

≤ 1
λ log(1/λ)|Q|

∫ λ|Q|
0

(fχQ)
∗(τ) log

|Q|
τ

dτ

≤ 1
λ log(1/λ)|Q|

∫ |Q|
0
(fχQ)

∗∗(τ)dτ

≤ c
λ log(1/λ)|Q|

∫ |Q|
0
(M(fχQ))

∗(τ)dτ.

Since for some geometric constant c,

M(fχQ)(x) ≤ c inf
Q
Mf , x ∉ 2Q,

we have ∫ |Q|
0
(M(fχQ))

∗(τ)dτ ≤ c|Q| inf
Q
Mf +

∫
2Q
Mf ≤ c

∫
2Q
Mf ,

which, along with the previous estimate, implies (4.1). ❐

Proof of Theorem 1.2. The equivalences (ii) ⇐⇒ (iii) ⇐⇒ (iv) follow from
Lemma 3.4 combined with Propositions 3.3. We will show that (i) ⇒ (iv) and
(ii) ⇒ (i).

If M is bounded on X, then M2 is. Thus, by Lemma 4.1,

‖mλf‖X ≤ c
λ log(1/λ)

‖f‖X,

and hence, ΦX(λ) ≤ c
λ log(1/λ)

.
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Therefore limλ→0 λΦX(λ) = 0, which proves (i) ⇒ (iv).
Assume now that (ii) holds. This means that there are constants c > 0 and

δ < 1 such that for any f ,

(4.2) ‖mλf‖X ≤ cλ−δ‖f‖X.

We next observe that for any cube Q,

1
|Q|

∫
Q
|f | =

∫ 1

0
(fχQ)

∗(λ|Q|)dλ,

and hence,

Mf(x) ≤
∫ 1

0
mλf(x)dλ ≤

∞∑
i=1

2−im2−if (x).

From this and from (3.8) along with (4.2), we obtain

‖Mf‖X ≤
∥∥∥ ∞∑
i=1

2−im2−if
∥∥∥
X
≤ 41/ρ

( ∞∑
=1

‖2−im2−if ‖ρX
)1/ρ

≤ c
( ∞∑
i=1

2−(1−δ)ρi
)1/ρ ‖f‖X ≤ c′‖f‖X.

This completes the proof of (ii) ⇒ (i).
Let us show now that if the space X is r-i space, then αX = ᾱX . Consider the

spherically symmetric rearrangement of f defined by

f?(x) = f∗(vn|x|n),

where vn is the volume of the unit ball. Note that the functions f and f? are
equimeasurable. It follows from (3.5) that

(D(2nλ)1/nf )?(x) ≤ (mλf)?(x) ≤ (D(λ/3n)1/nf )?(x).

Therefore,
‖D(2nλ)1/nf‖X ≤ ‖mλf‖X ≤ ‖D(λ/3n)1/nf‖X

and

hX
( 1

2nλ

)
≤ ΦX(λ) ≤ hX(3n

λ

)
.

From this and from the definitions (1.2) and (3.9), we readily obtain that
αX = ᾱX . ❐
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Proof of Corollary 1.3. The boundedness of Mr on X is equivalent to the
boundedness of M on the space Xr with the norm∥∥f∥∥Xr = ∥∥ |f |1/r | ∥∥rX.
From (3.3) we easily obtain that

ΦXr (λ) = ΦX(λ)r ,
and therefore

αXr = rαX.
By Theorem 1.2, αX < 1, and hence αXr < 1 for some r > 1. Applying Theorem
1.2 again, we conclude that M is bounded on Xr . ❐

5. PROOFS RELATED TO THE APPLICATIONS

5.1. Weighted Lebesgue and Lorentz spaces. In order to prove Theorem 2.3,
we will need the following two lemmas.

Lemma 5.1. Let p > 0. We have

(5.1) ΦLpu(λ) =
(

sup
E

u{x : MχE(x) > λ}
u(E)

)1/p

(0 < λ < 1),

where the supremum is taken over all measurable sets E with 0 < u(E) < ∞.

Proof. Denote the function on the right-hand side of (5.1) by ψp(λ). It
follows from the definition of ΦLpu and from (3.2) that for any set E with 0 <
u(E) < ∞,

ΦLpu(λ) ≥ ‖mλ(χE)‖Lpu
‖χE‖Lpu

=
(
u{x : MχE(x) > λ}

u(E)

)1/p

.

Therefore, taking the supremum over all such E, we obtain

(5.2) ψp(λ) ≤ ΦLpu(λ).
On the other hand, by (3.1), for any measurable f we have

u{x :mλf(x) > α} = u{x : Mχ{|f |>α}(x) > λ}
≤ ψp(λ)pu{x : |f(x)| > α} (0 < α <∞).

Multiplying this inequality by pαp−1 and then integrating with respect to α ∈
(0,∞), we get

‖mλf‖Lpu ≤ ψp(λ)‖f‖Lpu.
Thus, ΦLpu(λ) ≤ ψp(λ), which, along with (5.2), proves (5.1). ❐
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Lemma 5.2. Let ϕ be any non-increasing positive function on (0,1). Given a
weight u, the following statements are equivalent.

(i) There is a positive constant c such that for any measurable set E,

(5.3) u{x : MχE(x) > λ} ≤ cϕ(λ)u(E) (0 < λ < 1);

(ii) there is a positive constant c such that for any cube Q and any subset E ⊂ Q
with |E| < |Q|,

(5.4)
1

ϕ(|E|/|Q|) ≤ c
u(E)
u(Q)

.

Proof. In the particular case of ϕ(t) = tp, this lemma was proved in [16].
Almost the same proof works in a more general situation. We briefly outline the
details.

Suppose that (5.3) holds. Let E ⊂ Q. Then, setting in (5.3) λ = |E|/|Q|, we
easily get (5.4). Assume now that we have (5.4). Then u is doubling (i.e., there
is a constant c such that u(2Q) ≤ cu(Q) for any cube Q). Next, it follows from
(5.4) that

M(χE)(x) > λ ⇒ 1
ϕ(λ)

≤ c Mu(χE)(x),

where Mu is the weighted maximal function. Since u is doubling, Mu is of weak
type (1,1) with respect to u, and hence,

u{x : M(χE) > λ} ≤ u
{
x : Mu(χE)(x) >

1
cϕ(λ)

}
≤ c′ϕ(λ)u(E),

proving (5.3). ❐

Proof of Theorem 2.3. We have to prove that

ΦLpu(λ) � 1
ν1/p
u (λ)

,

where we recall that

νu(λ) = inf
Q

inf
E⊂Q:|E|=λ|Q|

u(E)
u(Q)

(0 < λ < 1).

It follows from Lemmas 5.1 and 5.2 that

1ΦLpu(|E|/|Q|) ≤ c
(
u(E)
u(Q)

)1/p

(E ⊂ Q),
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and therefore,

(5.5)
1
ν1/p
u
(λ) ≤ c ΦLpu(λ).

On the other hand, by the definition of νu,

νu

(
|E|
|Q|

)
≤ u(E)
u(Q)

(E ⊂ Q).

It is clear also that ϕ(λ) = 1/νu(λ) is non-increasing. Hence, by Lemma 5.2,

u
{
x : M(χE)(x) > λ

}
≤ c u(E)

νu(λ)
(0 < λ < 1).

From this and from Lemma 5.1 we obtain

ΦLpu(λ) ≤ c
ν1/p
u (λ)

,

which, along with (5.5), yields (2.1). Next, from (2.1) we trivially have (2.2). ❐

Proof of Theorem 2.4. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) follow from
Theorems 1.2 and 2.3. To prove that (i)–(iii) are equivalent to (iv), we show that
(iv) ⇒ (ii) and (iii) ⇒ (iv).

It follows from (2.3) that λψ(1/λ) ≤ cν1/p
u (λ) or, in other words,

ψ(1/λ)p ≤ c νu(λ)
λp

.

Since limt→∞ψ(t) = +∞, we have that (iv) ⇒ (ii).
It follows from (iii) that there is δ < 1 such that λδ ≤ cν1/p

u (λ). Therefore,(
|E|
|Q|

)δ
≤ c

(
u(E)
u(Q)

)1/p

or, equivalently,
|E|
|Q|

( |Q|
|E|

)1−δ
≤ c

(
u(E)
u(Q)

)1/p

.

Since ψ(t) = O(tε) for all ε > 0, we have

|E|
|Q|ψ

( |Q|
|E|

)
≤ c

(
ω(E)
ω(Q)

)1/p

,

which completes the proof. ❐
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Proof of Proposition 2.6. The proof is based on three well-known facts. The
first one is that the Ap condition is trivially equivalent (see, e.g., [27, p. 195]) to
that there exists c > 0 such that for any function f and any cube Q,

(5.6)
1
|Q|

∫
Q
|f |dx ≤ c

(
1

u(Q)

∫
Q
|f |pu dx

)1/p

.

The second fact is that any Ap weight is a doubling weight (this follows easily
from (5.6)). The third fact is that for any doubling weight u one has (see, e.g.,
[13, p. 175] for the unweighted case; the proof readily works for any doubling
weight)

(5.7)
∫
Q
Mu,Qf(x)u(x)dx ∼

∫
Q
|f(x)| log

(
1+ |f(x)||f |Q,u

)
u(x)dx,

where Mu,Qf is the weighted maximal function supported in Q, and fQ,u is the
weighted mean value of f over Q.

By (5.6) we have, for any Q and for all x ∈ Q, that

MQf(x) ≤ c
(
Mu,Q(|f |p)(x)

)1/p.

Therefore, setting in (5.6) MQf instead of f , we get

1
|Q|

∫
Q
MQf dx ≤ c

(
1

u(Q)

∫
Q
Mu,Q(|f |p)udx

)1/p

Setting here f = χE, where E ⊂ Q, and applying (5.7), we obtain

(5.8) B
(
|E|
|Q|

)
≤ c

(
B
(
u(E)
u(Q)

))1/p

,

where B(t) = t log(1+ 1/t). On the other hand, it is easy to see that

B−1(B(t)p) ∼ tp log(1+ 1/t)p−1 (0 < t < 1),

and therefore (5.8) implies

(
|E|
|Q|

)p
logp−1

(
1+ |Q||E|

)
≤ c u(E)

u(Q)
,

which proves (2.3) with ψ(t) = log1−1/p(1+ t). ❐
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The proofs of Theorems 2.8 and 2.9 are almost identical to the proofs of Theorems
2.3 and 2.4. In order to prove Theorem 2.8, we will need two lemmas similar to
Lemmas 5.1 and 5.2. We outline their proofs briefly. Then we give a brief proof of
Theorem 2.8. We omit the proof of Theorem 2.9, since it follows from Theorem
2.8 exactly in the same way as Theorem 2.4 follows from Theorem 2.3.

Recall that W(t) =
∫ t

0
w(s)ds.

Lemma 5.3. Let p > 0. We have

(5.9) ΦΛpu(w)(λ) =
(

sup
E

W(u{x : MχE(x) > λ})
W(u(E))

)1/p

(0 < λ < 1),

where the supremum is taken over all measurable sets E with 0 < u(E) < ∞.

Proof. Denote the function on the right-hand side of (5.9) by ψp(λ). Ob-
serve that (χE)

∗
u(t) = χ(0,u(E))(t). From this and from (3.2) we easily obtain

that
ψp(λ) ≤ ΦΛpu(w)(λ).

On the other hand, by (3.1),

(5.10) W
(
u
{
x :mλf(x) > α

}) ≤ ψp(λ)pW(u{ x : |f(x)| > α }).
Since

W(u{x : |f(x)| > α}) =
∫
{t:f∗u (t)>α}

w(t)dt,

we obtain from (5.10) that

‖mλf‖Λpu(w) ≤ ψp(λ)‖f‖Λpu(w)
Thus, ΦΛpu(w)(λ) ≤ ψp(λ),
which along with the opposite inequality proves (5.9). ❐

Lemma 5.4. Let ϕ be any non-increasing positive function on (0,1). The fol-
lowing statements are equivalent.

(i) There is a positive constant c such that for any measurable set E,

(5.11) W(u{x : MχE(x) > λ}) ≤ cϕ(λ)W(u(E)) (0 < λ < 1);

(ii) there is a positive constant c such that for any finite family of cubes {Qj} and
any family of sets {Ej} of positive measure with Ej ⊂ Qj ,

(5.12) min
j

1
ϕ
(|Ej|/|Qj|) ≤ c W

(
u
(⋃

j Ej
))

W
(
u
(⋃

j Qj
)) .
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Proof. The proof of this lemma even simpler that the one of Lemma 5.2,
since it follows directly from the definitions.

First we show that (i) ⇒ (ii). Let Ej ⊂ Qj , j = 1, . . . , J. Denote E = ⋃j Ej
and λ = minj |Ej|/|Qj|. Then, clearly,

⋃
j Qj ⊂ {MχE > λ}. From this and

from (5.11) we obtain

W
(
u
(⋃
j
Qj
))
≤ W(u{MχE > λ}) ≤ cϕ(λ)W(u(E))
≤ cmax

j
ϕ
( |Ej|
|Qj|

)
W(u(E)),

proving (5.12).
Conversely, for any compact set K there exists a finite family of cubes {Qj}

such that K ∩ {MχE > λ} ⊂
⋃
j Qj and |Qj ∩ E| > λ|Qj|. Hence, by (5.12),

W(u(K ∩ {MχE > λ})) ≤ W
(
u
(⋃
j
Qj
))

≤ max
j
ϕ
( |Ej|
|Qj|

)
W
(
u
(⋃
j
E ∩Qj

))

≤ϕ(λ)W(u(E)).
From this, by a limiting argument, we get (5.11). ❐

Proof of Theorem 2.8. Recall that νu,w is defined by

νu,w(λ) = inf
{Qj}

inf
{Ej}:Ej⊂Qj, minj |Ej |/|Qj|=λ

W
(
u
(⋃

j Ej
))

W
(
u
(⋃

j Qj
)) ,

where the infimum is taken over all finite families of cubes {Qj} and over all
families of sets {Ej} such that Ej ⊂ Qj with minj |Ej|/|Qj| = λ.

Now, by Lemmas 5.3 and 5.4,

min
j

1ΦpΛpu(w)(|Ej|/|Qj|) ≤ c
W
(
u
(⋃

j Ej
))

W
(
u
(⋃

j Qj
)) (Ej ⊂ Qj),

and hence

(5.13)
1ΦpΛpu(w)(λ) ≤ cνu,w(λ).

Next, from the definition of νu,w we easily have

min
j
νu,w

( |Ej|
|Qj|

)
≤ W

(
u
(⋃

j Ej
))

W
(
u
(⋃

j Qj
)) (Ej ⊂ Qj).
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From this and from Lemmas 5.3 and 5.4 we obtain the opposite estimate to (5.13),
which proves the theorem. ❐

5.2. Variable Lp spaces.

Lemma 5.5. Let r , q and ϕ be non-negative functions such that r− > 0 and
0 ≤ϕ ≤ 1. Then for any constant 0 < α < 1 and for all x ∈ Rn,

ϕ(x)r(x) ≤ α1/|r(x)−q(x)| +
((

1
α

)1/r−
+ 1

)
ϕ(x)q(x).

Proof. Set E1 = {x : r(x) < q(x)} and

E2 = {x ∈ E1 : ϕ(x) ≤ α1/r(x)(q(x)−r(x))}, E3 = E1 \ E2.

Then

ϕ(x)r(x) =ϕ(x)r(x)χE2
+
(

1
ϕ(x)

)q(x)−r(x)
ϕ(x)q(x)χE3

+ϕ(x)r(x)χEc1

≤ α1/(q(x)−r(x))χE2
+
(

1
α

)1/r(x)
ϕ(x)q(x)χE3

+ϕ(x)q(x)χEc1 ,

proving the lemma. ❐

Proof of Theorem 2.10. By the definition of the Lp(·)-norm, the statement of
the theorem is equivalent to that there exists a constant c > 0 (not depending on
f and λ) such that

(5.14)
∫
Rn

(
λ1/p−mλf(x)

)p(x) dx ≤ c
whenever

∫
Rn
|f(x)|p(x) dx ≤ 1. Fix such an f , and set f1 = fχ{|f |>1} and

f2 = f − f1.
Let us show that for any x,

(λ1/p−mλ/2f1(x))p(x) ≤ cλmλ/2(f
p(·)
1 )(x) ,(5.15)

(λ1/p−mλ/2f2(x))p(x) ≤ c
(
ψ(x)+ λmλ/4(f

p(·)
2 )(x)

)
,(5.16)

with ψ ∈ L1, where c and ‖ψ‖L1 depend only on p and n. Assuming for a mo-
ment (5.15) and (5.16) to be true, we note that they easily imply (5.14). Indeed,
the second inequality in (3.5) implies

(5.17) ‖mλf‖L1 ≤ 3n

λ
‖f‖L1
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and since
∫
Rn
|f(x)|p(x) dx ≤ 1, (5.17) shows that the L1-norms of the right-

hand sides of (5.15) and (5.16) are bounded by the constants depending only on
p and n. Observing also that, by (3.4),

(λ1/p−mλf(x))p(x) ≤ 2p+
(
(λ1/p−mλ/2f1(x))p(x) + (λ1/p−mλ/2f2(x))p(x)

)
,

we have that (5.15) and (5.16) imply (5.14).
To prove (5.15), fix an arbitrary cube Q containing x. We claim that

(5.18) F(Q,x) ≡
(
λ1/p−(f1χQ)

∗
(
λ
|Q|
2

))p(x)−p−(Q)
≤ c,

where p−(Q) = ess infx∈Q p(x). Indeed, by Chebyshev’s inequality,

λ1/p−(f1χQ)
∗
(
λ
|Q|
2

)
≤
(

2
|Q|

)1/p−

‖f1‖p−

≤
(

2
|Q|

)1/p− (∫
Rn
|f1(x)|p(x) dx

)1/p−

≤
(

2
|Q|

)1/p−

.

Hence, if diamQ ≥ 1
2 , we trivially obtain (5.18). If diamQ < 1

2 , applying (2.7)
yields

F(Q,x) ≤
(

2
|Q|

)c/p− log(1/diamQ)

≤ (2e√n)nc/p− log 2,

proving (5.18). Now, it follows from (5.18) and (3.3) that

(
λ1/p−(f1χQ)

∗
(
λ
|Q|
2

))p(x)
≤ c

(
λ1/p−(f1χQ)

∗
(
λ
|Q|
2

))p−(Q)

= cλp−(Q)/p−(fp−(Q)1 χQ)
∗
(
λ
|Q|
2

)
≤ cλmλ/2(f

p(·)
1 )(x),

proving (5.15).
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To prove (5.16), we apply Lemma 5.5 twice along with (3.3) and (3.4) which
gives

(λ1/p−mλ/2f2(x))p(x)

≤ α1/|p(x)−p∞| + ((1/α)1/p− + 1)(λ1/p−mλ/2f2(x))p∞

≤ α1/|p(x)−p∞| + ((1/α)1/p− + 1)(λmλ/2(|f2|p∞)(x))

≤ α1/|p(x)−p∞| + ((1/α)1/p− + 1)
(
λmλ/4(α1/|p(·)−p∞|)(x)

+ ((1/α)1/p∞ + 1)λmλ/4(|f2|p(·))(x)
)

where we have used that p∞ ≥ p−. This proves (5.16) with

ψ(x) = α1/|p(x)−p∞| + λmλ/4(α1/|p(·)−p∞|)(x).

It remains to note that, by (5.17) and (2.10), ‖ψ‖L1 depends only on p and n.
Thus, we have proved (5.15) and (5.16) which proves the theorem. ❐
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Departamento de Análisis Matemático
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