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Abstract. The main goal of this article is to prove the existence of a random attractor for a
stochastic evolution equation driven by a fractional Brownian motion with Hurst parameter H €
(1/2,1). We would like to emphasize that we do not use the usual cohomology method, consisting
of transforming the stochastic equation into a random one, but we deal directly with the stochastic
equation. In particular, in order to get adequate a priori estimates of the solution needed for the
existence of an absorbing ball, we will introduce stopping times to control the size of the noise.
In the first part of this article we shall obtain the existence of a pullback attractor for the non-
autonomous dynamical system generated by the pathwise mild solution of an nonlinear infinite-
dimensional evolution equation with a nontrivial Holder continuous driving function. In the second
part, we shall consider the random setup: stochastic equations having as a driving process a fractional
Brownian motion with H € (1/2,1). Under a smallness condition for that noise we will show the
existence and uniqueness of a random attractor for the stochastic evolution equation.
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1. Introduction. This article shows the existence of random attractors for a new
class of stochastic evolution equations. These equations contain a nontrivial fractional
noise with a Hurst parameter H > 1/2. In particular, it generalizes the results of the
conference proceedings by Garrido-Atienza, Maslowski, and Schmalfuss [12], where
random attractors are studied for ordinary stochastic equations containing a fractional
noise. The idea of this article is based on the modern theory of stochastic integration
for fractional Brownian motions (fBm) with H > 1/2; see, for instance, Zéhle [27].
These integrals are related to the Young integration [26] and one of its presentations is
based on a sort of generalized integration by parts formula with respect to fractional
derivatives. The main advantage of this integration with respect to the classical It6
integration theory, where the integrator is a white noise (or equivalently a fractional
Brownian motion with Hurst parameter H = 1/2), is that integrals can be defined
pathwise. However, It6 integrals are only defined almost surely and exceptional sets
may depend on the integrand. But this fact contradicts the definition of a random
dynamical system, where initial state dependent exceptional sets are not allowed. By
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using fractional derivatives to define stochastic integrals we are able to avoid this
dependence on exceptional sets.

We remark that the results presented in this article do not cover the white noise
case. For the existence of pathwise solutions for this case (and more generally for the
cases in which H € (1/3,1/2]) we refer to [10], [11] and the forthcoming paper [9].
We want to emphasize here that the techniques to obtain such a pathwise solution
are qualitatively different from the methods presented in this article.

This article is divided into two parts. In the first part, sections 2 and 3, we
mention that nonlinear infinite-dimensional evolution equations driven by a Holder
continuous function with Holder index greater than 1/2 have a pathwise mild solution
which generates a nonautonomous dynamical system, and we obtain the existence of
a unique pullback attractor associated to it if we restrict this dynamical system to
a discrete time set. Existence results for this kind of equation have been studied in
Maslowski and Nualart [20] and in Garrido-Atienza, Lu, and Schmalfuss [8] when
the driving function is an fBm with H > 1/2, and very recently by Chen, Gao,
Garrido-Atienza, and Schmalfuss [5]. In this last paper, the authors were able to
overcome the lack of the regularity of the semigroup generated by the linear part of
the evolution equation by considering suitable modifications of the space of S-Hdolder
continuous functions as phase space, where 8 > 1/2 is related to the Holder index of
the driving function, and they established the existence and uniqueness of a pathwise
mild solution. These results are thus briefly included as a preliminary step, where
the construction of the integral for Holder continuous integrators is the main tool.
Then, by standard arguments we can consider the pathwise mild solution to be a
nonautonomous dynamical system.

According to Flandoli and Schmalfuss (7] or Schmalfuss [23], in order to prove
the existence of a nonautonomous or pullback attractor, appropriate a priori esti-
mates of the solution are necessary. In particular (see Theorem 2.2 below), we should
construct a compact pullback absorbing set belonging to a certain family. However,
by the particular structure of the estimates of the pathwise integrals, the standard
Gronwall lemma is not available and, therefore, we have to formulate a special Gron-
wall lemma for discrete time, which will be shown to work only when the estimates
of these integrals are not too large. To ensure that this smallness condition holds
true we will introduce (non-Markovian) stopping times with the property that they
themselves satisfy the cocycle property, and assuming that these stopping times have
special asymptotic properties, the existence of a unique pullback attractor is obtained.

Then, in the second part of the article (section 4), we show how to adapt the
previous results to obtain the random attractor associated to stochastic evolution
equations driven by an fBm with H > 1/2. In fact, by choosing the canonical version
of the fBm, we show that the nonautonomous dynamical system becomes a random
dynamical system and that the stopping times are measurable. In addition, it suffices
to choose fractional noises with covariance operators having small trace, since this
condition ensures that the required asymptotical properties of the stopping times
hold with probability one. All the previous study finally concludes with the existence
and uniqueness of a random attractor.

To finish the introduction, we would like to stress that there are a few papers
whose main concern is the study of the random attractor for stochastic differential
equations and stochastic partial differential equations (SPDEs) driven by an {Bm with
H > 1/2; see [13], [15], [16], and [17]. But in all these papers the noise has a special
structure (more precisely, either pure additive noise or a very simple multiplicative
noise) making it possible to use the cohomology method, and hence the random
attractor is obtained by transforming the stochastic equation into a random one. Our
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aim here is to consider more general noisy terms with the challenge of getting the
random attractor with no transformation. We also should mention that in [12] the
existence of the random attractor for a stochastic differential equation driven by such
an fBm was successfully obtained without using the cohomology method. Indeed the
technique we are going to follow here has some similarities to the one used in [12],
in the sense that there the authors also considered stopping times and the discrete
nonautonomous dynamical system as a preliminary step to get the random attractor.
However, since the nature of infinite dynamical systems is different from that of their
finite counterparts, the construction of the absorbing set in this paper in much more
involved, mainly due to the lack of regularity of the semigroup and the way of getting
the compactness of the absorbing ball.

2. Preliminaries. In this section we collect definitions and properties of dy-
namical systems and present the construction of the integral with Holder continuous
integrator and Holder exponent greater than 1/2. Although this construction has
already been done in the recent paper [5], we present it here for the sake of complete-
ness, since a good understanding of this integral is the starting point to obtain the
cocycle property and afterward the random attractor associated to the corresponding
stochastic evolution equation.

2.1. Dynamical systems. Let (V]| |) be a Banach space and let T+ = R" or
Z%. A mapping ¢ : TT x V — V having the semigroup property

sp(t7 ) o SO(Ta UO) = SD(t + 7, UQ), SD(O,UO) = Uo ta T E T+7 Ug € ‘/7

is called an (autonomous) dynamical system. A dynamical system ¢ has a global
attractor A C V with respect to the set system D, consisting of the bounded sets of
V, if A is nonempty, compact, and invariant, that is,

o(t,A) = A forall t € T
and

lim dist(p(t, D), A) =0 forevery D € D.

T+ot—o00

dist(X,Y") denotes the Hausdorff semidistance defined by

dist(X,Y) = sup inf |z — y|.
zex yeY

A comprehensive presentation of the concept of attractors can be found in the work
by Babin and Vishik [2], Hale [18], or Temam [25].

We want to consider a generalization of the concept of global attractors to non-
autonomous and random dynamical systems given by the pullback attractors. As a
first ingredient, for the time set T = R or Z, we introduce the flow (6;)tc on the set
Q of nonautonomous perturbations by

0:T xQ—Q,
000, =011, bw=w fort,7€T, wel

The easiest example for such a flow is given by 2 =T and 0;i =i+ j for j € T\

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/13/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

2284 H. GAO, M. J. GARRIDO-ATIENZA, AND B. SCHMALFUSS

As a generalization of the semigroup property we consider a cocycle to be a map-
ping ¢ : T x Q2 x V — V such that

(2.1) o(t + 7,w,u0) = p(t, 0w, -) o (T, w, uo),

(p(ov W, uO) = Ug

forallt, 7 € TT, up € V, and w € Q. ¢ is also called a nonautonomous dynamical
system.

Let us now equip (£2,6) with a measurable structure. Consider the probability
space (2, F, P) where F is a o-algebra on © and P is a measure, which is supposed
to be invariant and ergodic with respect to . Then (2, F, P,0) is called an ergodic
metric dynamical system. A B(Tt) ® F @ B(V'), B(V) measurable mapping ¢ having
the cocycle property (2.1) is called a random dynamical system with respect to the
metric dynamical system (Q, F, P, 0).

Before we give the notion of an attractor for a nonautonomous dynamical system
we introduce set systems that will be attracted by that attractor. Let D be a set of
families (D(w))weq such that § # D(w) C V and satisfies a general property P, which
will be determined later. In addition we assume the following completeness condition
for D: let D' = (D' (w))weq such that ) # D'(w) C V and satisfies the property P;
if there exists a D € D such that D'(w) C D(w) for w € Q, then D’ € D. For a
given v > 0, an example of such a system is the backward v-exponentially growing
sets DY: D = (D(w))weq is an element of this set system if there exists a mapping
Q3w r(w) € RY such that § # D(w) C By (0,r(w)) and

log™ (6
(2.2) Jimsup 128 "(0:)
T 3t——oc0 |t|

By (0,7(w)) denotes the ball in V' with center 0 and radius r(w). We also stress that
sometimes we write D |, or Df, |, to emphasize the corresponding time set. We note
that it is enough to consider these properties along an orbit ( J,.,{6:;w}. However, we
define families for (D(w))ueq-

We now consider these families of sets in a random setup. Assuming that V is
a separable Banach space, we consider D = (D(w))weq such that § # D(w) C V is
closed and verifies the following property P: the mapping

w— dist({u}, D(w))

is a random variable for u € V. Then D is a random set; see Castaing and Valadier
[4, Chapter III]. Indeed, we are interested in considering the set D of random sets
having backward and forward subexponential growth (v = 0), which means that for a
random set D there exists a positive random variable r such that D(w) C By (0,r(w))
and

(2.3) lim log™ r(f.w)

=0 for w € Q.
T3t—+o0 [t]

These sets are also called the random tempered sets. In this case we are only interested
in the time set T' = R.

By the following lemma it is only interesting to consider the case v = 0.

LEMMA 2.1. Let (2, F, P) be an ergodic metric dynamical system. If D is a v-
exponentially growing random set (v < o0), then D is just subexponentially growing.
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The result follows directly, since by Arnold [1, Proposition 4.1.3] we have that

(2.4) i 108 r0w) o JogTr(0)

t—+o00 t t——o0 |t|

€ {0, 4o0}.

A family A = (A(w))weq is a pullback attractor for the nonautonomous dynamical
system ¢ with respect to D if A € D is nonempty, compact, and invariant in the sense
that

o(t,w, Aw)) = A(Qyw) forallt € TH we Q,
and

lim  dist(¢(t, 0_tw, D(0_1w)), A(w)) =0 forallw e Q, D e D.
T>t—+oo
In the case that ¢ is a random dynamical system and D consists of the random
tempered sets introduced above, we call A a random attractor. This notion has been
introduced in Schmalfuss [23].
Finally, a family B = (B(w))weq is called pullback absorbing for D if

@(t,0_yw,D(0_w)) C B(w) fort>T(D,w)eT™

for any D € D and w € Q. T(D,w) is the so-called absorption time.

We have the following main theorem about the existence of a pullback/random
attractor (see Flandoli and Schmalfuss [7] or Schmalfuss [24]).

THEOREM 2.2. Let ¢ be a continuous nonautonomous dynamical system. Suppose
that @ has a compact pullback absorbing set B in D. Then ¢ has a unique pullback
attractor with respect to D. If ¢ is a random dynamical system and D = D consists
of the tempered sets, then the associated pullback attractor is a random attractor. In
both cases

Aw)= [ et 0w, BO_w)),

7>To(B,w) t>T
where To(B,w) is the absorption time corresponding to B.

2.2. Integrals in Hilbert spaces for Holder continuous integrators with
Holder exponent > 1/2. We begin this subsection by introducing some function
spaces. Assume (V, (-, -),|-|) is a separable Hilbert space with the complete orthonor-
mal base (e;)ien. Let CP([T1,Ty];V) be the Banach space of Hélder continuous
functions with exponent § > 0 having values in V. A norm on this space is given by

lullg = lullgrr. = sup |u(s)| + [l[ulllg7, 1
se[Ty,T>

with

u(t) — u(s)|
ulllgrym =  sup  ———.
||| |||5 1,T2 T <act<Ty |t—8|'8

C([T1,Tz]; V') denotes the space of continuous functions on [T, T5] with values in V/
with finite supremum norm, and let C%~([Ty, T»]; V) C C([T1,T»]; V) be equipped
with the norm

(t) — u(s)|

u
ST, = sup |u(s)|+ sup (s —Ty)" | 5
S€[T1,T2] Ty <s<t<Tj [t — s

[ullg,~ = llul
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For every p > 0 we can consider the equivalent norm

(2.5) lullg.pmir, = sup e PCTTu(s)|
sE€[T1,Ts]
b s (s e s 10— u(o)
Ty <s<t<T, [t — s|?

When no confusion is possible, we will write ||u||g,,,~ instead of ||u||g,p,~ 7,15

LEMMA 2.3 (see [5]). C?~([T1,Ts); V) is a Banach space.

Now we introduce integrals where the integrator is a Holder continuous function.
The definition of these integrals shall have as a foundation the definition and properties
of the pathwise integrals given by Zihle [27]. Let us then assume that V, V are
separable Hilbert spaces; then for 0 < o < 1 and general measurable functions K :
[Ty, T5) — V and w : [T1, Ts] = V, we define the following Weyl fractional derivatives:

o __ 1 K(r) " K(r) - K(q) :
DA = T ) (7 nr v [ i) < 7,
w(r) —w T2 ) —w ~
where wp,_ (1) = w(r) — w(Te—), w(To—) is the left side limit of w at Ts, and I'(+) is

the Gamma function.

Let f € L1((T1,T2); R) and o > 0. Following Samko, Kilbas, and Marichev [22],
the left-sided and right-sided fractional Riemann-Liouville integrals of f of order o
are defined for almost all x € (11, T%) by

300 = g [ o=t

T

I, f(z) = U™ /T2 (r =) f(r)dr
"o () Js
respectively. Denote by I , (Ly((T1,72); R)) (vesp., If, (L, ((T1,72); R))) the image
of L,((T1,T2); R) (vesp., Ly ((T1,T2); R)) by the operator If, | (resp., I, ).
Suppose now that k € If | (L, ((T1,T2); R)), (1, € I};_"‘(Lp/((Tl,Tg);R)) with
1/p+1/p’ <1, where ap < 1, and that k(71+), the right-side limit of k at T3, exists.
Then following Zahle [27] we define

T T
(2.6) kd¢ = (-1)* | D, k[r]Dy, Cr,[r]dr,
T Th
where (p,— (1) = ((r) —((To—), for r € (T1,T3). In fact, under the above assumptions,
the appearing fractional derivatives in the integrals are well defined taking V = V =R.
Consider now the separable Hilbert space La(V') of Hilbert—Schmidt operators on

V with the usual norm | - ||,y and inner product (-,-)r,(v). A base in this space is
given by
0 AR

Let us consider mappings K : [T1,T2] = Lo(V) and w : [T1,T5] — V such that kj; =
(K, Eji)ryvy € 17, (Lp((Th,T2); R)) and kj;(T1+) exists and ap < 1. Moreover,
Cim— = (wr—(1),€:) € Iilpz_f‘(Lp/((Tl,Tg);R)), where 1/p+ 1/p’ < 1. In addition,
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(11, T3] > v = || D3, K[r]]| vy | Dgy 2w~ 1] € La((T1, T2); R).-

We then introduce

T2 T2
(2.8) Kdw := (1) D%l_i_K[T]D%FQ__O‘wTQ_[T]dT.
T1 Tl

Due to Pettis’s theorem and the separability of V', the integrand is weakly measurable
and hence measurable. In addition, we can present this integral by

T>
Kdw = Z <Z /T Dg, | kj; [r]DlTngz[r]dr> ej

J

Ts

T
with norm given by

[l (2

T

[ V)
N————
N

J

T
< /T 1%,y K]l oy | Db @wr,—[r] dr.
1

T
3 /T DS, kjsF) DY Gy [rldr
i 1

For H > 1/2, in what follows we fix parameters 1/2 < 8 < 3’ < ” < H. Under
this choice, let 2 be the (6;)c p-invariant set of paths w : R — V which are 8”-Holder
continuous on any compact subinterval of R and are zero at zero. Later we will need
to formulate asymptotical conditions for the set of these paths.

As the flow (0;)ter on Q of nonautonomous perturbations we consider

(2.9) 6:RxQ—Q, Ow(-) = w(t+-) —w(t).

LEMMA 2.4 (see [5]). Suppose that K : [Th,Tz] — Lo(V') is B-Hélder continuous
where 1 — 8 < a < 8. Then the integral

T
K(r)dw(r) eV
T

is well defined in the sense of (2.8). If for 0 < 7 < Ty the mapping K : [Ty — 7,Ts] —
Lo(V) is B-Holder continuous, then

T2 T2 —T

K(r)dw(r) = / K(r+7)d0,w(r).

T1 T1 —T

3. Evolution equations driven by a Holder continuous function. We now
consider the following evolution equation on [0, T7:

(3.1) du = Audt + F(u) dt + G(u) dw, u(0) =up €V,

driven by a Hélder continuous path w. The integral with respect to dw is interpreted
in the sense of the previous section.

In what follows we describe the different terms on the right-hand side of (3.1).
Let —A be a strictly positive and symmetric operator with a compact inverse which
is the generator of an analytic exponential decreasing semigroup S on V. For § > 0 we
introduce the spaces Vs := D((—A)%) with norm | - |y; = |(—A)? - | such that V = Vj.
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The spaces Vs, § > 0 are supposed to be compactly embedded in V. From now on,
assume that (e;);cn is the complete orthonormal base generated by the eigenelements
of —A with associated eigenvalues (\;);en-

Let L(Vs,V,) denote the space of continuous linear operators from Vs into V.
Then there exists a constant ¢ > 0 such that we have the estimates

32)  [SM)|Lva,vy) = (=A)SO)lLva,v) <

— A1t
<sSeM foryza, e (07),

e

(3.3) 1S(t) —id|rv,,vpe,y S ct” % for0>0, o€(0,1+0], peR;

see [6, Chapter 2]. In particular, formula (1.14) on p. 83 of that book becomes (3.2)
above in bounded intervals, where we shall use it.

From these inequalities, for p, n € (0,1] and 0 < 6 < 4 p there exists a ¢ > 0
such that for 0 < ¢ <r < s <t, we can derive that

[S(t=7) = St = Dl vy < elr = @)t =),
1S(t—7) = S(s—1) =St —q) + S(s — )|y < clt —8)"(r —q)"(s —r)~HFm,

As usual, L(V') denotes L(V, V).

Coming back to (3.1), the mapping F' : V. — V is supposed to be Lipschitz
continuous, but we are going to assume that F' = 0, simplification that we make for
the sake of brevity since the dt-nonlinearity is not the interesting term in system (3.1),
and of course that we would achieve the same existence results as we obtain below
assuming that F' were Lipschitz. However, for the existence of an attractor we also
would need to assume that F' has a sufficiently small Lipschitz constant.

The nonlinear operator G : V' — Lo(V) is assumed to be a twice continuously
Fréchet-differentiable operator with bounded first and second derivatives. Let us
denote, respectively, by cpg, cp2g the bounds for these derivatives and set c¢g =
|G(0)]| £o(vy- Then, for ui, uz, vi, va € V, we have

1G(u1) = G(v1)llLy(v) < epalua — o1l
G (u)llLo(vy < ca + epgluil,
1G(u1) — G(v1) = (G(uz) = G(v2))ll o (v)
< epglur —v1 — (uz — v2)| + ep2glur — uz|(Jur — vi] + [uz — v2l).
(The proof of the last inequality can be found in [20].)
Finally, the driving function w € C?'([0,7};V) for 1/2 < 8 < ' < H and

1 -0 < a< 8. We are then interested in solving (3.1) in a mild sense, which means
that for ¢t € [0,7] we have to solve

(3.4) u(t) = Styuo + /O S(t = )G (u(r))dw.

According to the definition of the integral given in the previous section, we need
to estimate the fractional derivative of the term S(t — -)G(u(+)).

LEMMA 3.1 (see [5]). Let S be the semigroup generated by —A, assume that G is
Lipschitz and u € C?~([T1,T2]; V). Then for the orthonormal base (e;)ien of V, for
any i, j €N,

(ei, S(t = )G(u(-)e;) € Iz, 4 (Lp((T1, T2); R))
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if ap < 1. In addition, the mapping r — Dg  S(t — )G(u(-))[r] is measurable on
[Ty,t] for t < Ty and satisfies the estimate

o o r—Tp)°
105, 5(¢ =GN < 1+ [l ) =072 (14 T ).
Similarly, assuming that u € CP([T1,Tz); V), then

r—11 B
105, (t = GOl < 1+ ) =072 (14 =10+ =200,

In addition, (wr,—(t),e;) € I};_o‘(Lp/((Tl, T); R)) for anyp’ > 1 andw € CP ([Ty, To); V)
for ' >1—«a, and
| D 2wr, - [r]] < elllwlllr 2 (T2 — )+,

Existence of solutions of (3.4) has been investigated in [20] and [8] when consider-
ing as integrators of the integrals a fractional Brownian motion with Hurst parameter
in (1/2,1) and certain phase spaces, which are not as natural as the space of Holder
continuous functions. In this article we present the existence theory in the space of
Holder continuous solutions for appropriate exponents. More precisely, we have the
following existence result, whose proof can be found in [5].

THEOREM 3.2 (see [5]). If ug € V, then for every T > 0, (3.4) has a unique
solution u in C%~([0,T]; V).

If ug € Vs, then for every T > 0, (3.4) has a unique solution u in CP([0,T]; V).

The main reason to consider the space C#~([0,T]; V) is that t — S(t)ug is not a
B-Holder continuous function but an element of that space. However, if vy € V3, then
t > S(t)ug is an element of C?([0,T]; V). Considering the equivalent norm from (2.5)
on C#~([0,T); V), we are able to adapt p to the data of our problem (in particular
to T') such that the right-hand side of (3.4) forms an operator which satisfies the
conditions of the Banach fixed point theorem if up € V. In particular (see [5]), we
obtain estimates of the integral like

55

s r)G(u(r»de < erlllelllsror+ ulls o),
0 B,~,0,T

(3.6)

[ s~ r)G(u(r))de < erlllelllg o + [ullsor).
0 8,0,T

Assuming that ug € V, the corresponding solution u of (3.4) satisfies u(T") € Vg for
every T > 0, due to
(3.7) [w(T)lv, < T~ Pluo| + exll|wllls 0.0 (1 + [lulls,~01) < 0.

The constant c¢p in the above formulas depends on the operators S, G and is bounded
when T is bounded. ¢ can be chosen independently of w.

In addition to the previous estimates we also have the following one.

LEMMA 3.3. For 1 — ' <a < B andu € C?([0,T];V),

T
/OS(T—T)G(U(T))dw < erll|wll|g0,r (1 + [[ullg,0,7)-
\Z
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Proof. Take 1 > o/ > « such that o/ + 5 < a+ '; then the following inequalities
hold:

‘ /s _ ) (r))dw‘

1S(T —r)(=A)PG(u(r))|
= (1 —a)/o ( ra
b [ 1800 =80 —)-arGE,,
0

(r—g)t*
+a/ 1S(T — ¢)(=A)°(G(u(r) — G(u(q)))|
0

(r—a)

dq) lwlllpr,0,0(T — )5 tar

r 1
< / 1 T 3
< cfflwlllpr0,0 (1 + [Jull.0,7) ; (Ta(T )P

T g P e g)f ey
[ Fre gt <T—r>ﬂ<r—q>1+adq)(T )T

< er|||lwlllgr 0.7 (1 + ||ullg01),

where the last inequality is true due to the choice made for the parameters. d

3.1. Nonautonomous dynamical system associated to (3.4). According
to Lemmas 2.4 and 3.1, for t,7 € R yields

/THT S(t+ 7 — )Gl / S(t = 1)Glulr +7))dbrw(r),

where S and G satisfy the corresponding conditions of Lemma 3.1. From this for-
mula it follows easily that the solution of (3.4) generates a nonautonomous dynamical
system ¢ on RT with state space V:

(3.8) P R"xQxV =V,
o(t,w,ug) = uo—l—/St—r (r))dw.

However, later on from ¢ we shall derive another nonautonomous dynamical system
but with discrete time set Z7.

Next we introduce some stopping times which are generated by elements of (2.
These stopping times are needed to keep [||w]|||s: small, which is necessary to obtain
appropriate a priori estimates for the solution.

In a first step, fix g > 0 and define the stopping times as follows:

(3.9) T(w) = inf{r > 0: [|wlllo0r + a7 > ),
T(w) = sup{r < 0: [|[wlllyro + 7|7 > ).

LEMMA 3.4. For w € Q we have that T'(w), —T(w) are in (0,1]. In addition,
T(w) = —-T(0pww) and T'(w) = —T(GT(w)w).

Proof. Tt is easily seen that |T'(w)|, |T'(w)| < 1. Moreover, since w has a finite
B"-Holder seminorm and ' < 8" we have

I Lo =
limn [[|el[] 0.+ = 0,
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and, in addition,

tim_|lJwlllpr0.r +pr' =" = +oo,

T—+00
where we suppose that this condition holds for any w € €.

Therefore, thanks to the intermediate value theorem, we only need to prove the
continuity of the strictly increasing mapping 7 — |||wl||g,0.- + u7'~" to ensure that

there is a time 7y such that |||w|||,0,7 +u%§_5, = p, which means that we can replace
the inequality of (3.9) by an equality.
Fixed 79 > 0 and define w™ given by
ror o Jw(s) : fors <,
wr(s) = {w(ro) . for s > 7.
Thus, for 7 > 79,
wlllgr 0.7 = lewlllgr0.70 = lllwlllgr 0.7 = [[lw™ 57,0, < [llww=w™]llgr0.7 = l[lwlllg.70,7»

and because

lim |||w|llg7,7o,r < Lim [[|w|llgr o, (7 = 70)7 77" < lim ||]||g7,0,- (T — 70)* ~7 =0,
770 Tl70 770

then the mentioned continuity property is true. Note that we could obtain a similar
conclusion when taking 7 1 79. Moreover, because T' + |||w|||g. 0.7 +pT*~# is strictly
increasing and T+ |||w||| g 1.0 + p|T|* 7" is strictly decreasing, it is easily seen that

= lwlllg 0,0 + T @) = 102wl 5 #0700 w0 T #T Om@w) ™,

GT(w)w
which is possible only if T'(w) = ~T(Or(w). O

From T'(w), T(w) we derive a sequence of stopping times. For w € Q we define
0 : i =0,
(3.10) Ti(w) = Ti—1(w) + IA’(GTH(W)w) : 1€ N,
Tit1(w) + T(9Ti+1(w)w) : 1€ —N.

Then (T;(w));cz satisfies the cocycle property: for i, j € Z we have
To(w) =0, Tl(w) + Tj(ﬁTi(w)w) = Ti+j (OJ)
Note that with the previous notation we are identifying 7'(w) with 7 (w) and T'(w)

with T_l(w).
LEMMA 3.5. Let t1 <ty. Then

tl + T(HtlLU) S tQ + T(9t2w).
_ Proof. Suppose that the contrary inequality holds, which means that T(Qtlw) >
T(0s,w). Therefore, (—1(0;,w))*=# < (=T(0,w))*~# and moreover
= |||9t2w|||,3/,:ﬁ(9t2w)70 + N(_T(etzw))l_ﬁ

|W(t) - OJ(S)| + ILL(_T(Gmw))l*IB/

= s

T(0yw)+ta<s<t<ts

w(t) —wl(s - ,
> wp ROZCOl g0
T(9t1W)+t1§S<t§t1 |t B S|

= |||9t1w|||,8’,:ﬁ(9tlw)70 +N(_T(9t1°~’))176 = M.

However, this chain of inequalities causes a contradiction. a
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If to + T(Gth) < t1 < tg, then iterating the formula in the previous lemma we
obtain that the stopping times enjoy the following order property:

(3.11) o<t + T (0 w) + T(9t1+’f'(0t1w)w)
<ty + T(0w) + T(O,, 75,00 w)
w) <

<ty +T(0y,w) <ty +T(O,w) <t <to.

3.2. Global attractor for the nonautonomous dynamical system asso-
ciated to (3.4). As a preparation of the next key result, Lemma 3.7 below, we
formulate the following Gronwall-like lemma.

LEMMA 3.6. Let A, vo, ko, k1 < 1, ko be positive numbers and let (t;);cz+ be a
sequence of positive numbers, with to = 0, such that

2
(312) ti—l — ti_Q S —X 10g kl for ¢ Z 2.

Suppose that for a sequence of positive numbers (U;);cn the following inequalities hold
true:

i—1
(313) U; < kovoei)\ti*l + Z klUmeiA(m*litm)
m=1
1—1

+ 3 e Mty Ly i=1,2,3,.

m=1
Then we have!
(3.14) U < (kovo + ko) (1 + k)i~ te 3t
+ i 2ky(1+ k)1 Me 2t for i =1,2,3,....
m=1

Proof. First, note that the inequality
(3.15) ki+e ™ <(1+k)e 2

holds true for x € [0, —2logk;].

Denote the right-hand side of (3.13) by Z; and the right-hand side of (3.14) by
S;. We want to prove that U; < S; for all ¢ > 1, for which it is enough to prove by
induction that Z; < S;.

For i = 1, from (3.13) we have Uy < Z; = kovo + k2. From (3.14) we have
S1 = kovg + ko, so Z1 = S1.

For i = 2, from (3.13) we have Zy = kgvge ™t 4 k1U; + 2ko. From (3.14) we have
Sy = (kovo + ko) (1 + k1)e 2% + 2k, It suffices to take into account that from (3.15)
we have

ki 4+ e M < (1+ kl)e_%tl,

! The sum Zz;:ll is assumed to be zero for ¢ = 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/13/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

RANDOM ATTRACTORS FOR SPDEs DRIVEN BY AN FBM 2293

since by (3.12) in particular A\t; < —2logk;, Therefore,
Zy = kovoe M + ky Uy 4 2k < (kovo + ka)e ™ + ky (kovo + ka) + 2k
< (kovo + k2)(1 + k1)e™ 21 4 2ky = S,
For ¢ > 3 we apply induction. First note that
e Mt 7, | = Z; — kyUs_q — 2k + kpe M1 7ti=2)
and thereby, assuming that Z;_; < S;_1, thanks to (3.12) and (3.15),
Uy < Z; <e M=tz 4 U g 4 2k < (e 174-2) 4 k)2, ) + 2k,
< (e AMbimimtio2) L k)G ) 4+ 2k < (14 k1)€7%(t“17t“2)5’i71 + 2ky = 5;. O

Next we obtain an appropriate a priori estimate for the solution of our equation
when assuming that the initial condition is regular, namely, ug € V3. Later on this
a priori estimate will be the key to obtain an absorbing set, the main ingredient to
ensure the existence of a pullback attractor for the system.

In what follows, ¢ shall denote a positive constant whose value is unimportant
and can of course change from line to line, and may depend on .S and G but not on w.

LEMMA 3.7. For w € Q let u be a solution of (3.1) where ug € Vg and let
(T3 (01, (wyw))icz be the sequence of stopping times defined by (3.10). Then we have
that

_)\1Ti—1(0T]‘ w) |UO|V3 -+ CNHu||ﬁ,Ti—1(9Tjw),Ti(9Tj w)

”u||5,Ti—1(9Tjw),Ti(9Tjw) Sce
1—1

+ Z Cluef,\l(Tq:fl(GTjw)me(eTjw))||u||37Tm,1(9Tjw)7Tm(0Tjw)
m=1

i—1
+ Z e—Al(Ti_l (GTjw)—Tm(OT]. w))

m=1

cp+cp,

where T; = T;(w), and A1 is the smallest eigenvalue of —A.

The proof of this lemma can be found in the appendix.

The cocycle property of (7;(w));cz allows us to introduce a discrete nonau-
tonomous dynamical system ® on V with time set 7T = ZT for every w € Q. In
particular, we consider the new shift given by

0:Zx2— 27
defined by 6,5 = i+ j, for i,j € Z. Then we define
:ZTxZxOxV =V

as
Ti(GTj(w)w)
@(i,j,w,uo) = S(E(QTJ(W)OJ))UO + / S(E(QTJ(W)OJ) — r)G(u(r))dGTJ (w)w
0

= 90(111 (eTj (w)w)a aTj (W)W u0)~

Note that ®(i, j,w, uo) is given by the solution u of (3.4) for the noise path 07, ,yw
at time T;(07, ()w). We would like to emphasize that, in the definition of ®, w only
acts as a parameter.
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We now specify the constant p. Let ¢ > 0 be the constant from Lemma 3.7.
We choose o sufficiently small such that for ki (u) = cu/(1 — cu) < 1 the following
inequality holds:
2
(3.16) 1< ——logki(u).
A1
Let us also define

A=A, ko=

T _Ccﬂ, ko = k1 = ki(p), t: = Ti(01, (wyw)-

As we will show in Corollary 3.8 below, the choice done in (3.16) ensures the
condition (3.12), and with it we will prove the existence of an absorbing ball for ®
(see Lemma 3.9).

COROLLARY 3.8. Let ug € Vg and suppose that p is chosen such that (3.16) is
satisfied. Then the following inequality holds true:?

. A
(3.17) @i, j,w,uo)| < (14 k1) e 2 T @) (ko ugly, + ko)
7—1
+ ) 2ka(1+ iy )i 1™ F (Tima (0, 00) =T (O ),

m=1
Proof. We only need to take into account that, by definition,
@, j, w, w0)| = [(TilOr; (w)@) < |ullg. 11 (07, (0yw). T3 (0, ()

and therefore, thanks to Lemma 3.7, we obtain the desired estimate due to the above
choice of kg, k1, ko, T; if in addition we take vg = |u0|Vﬂ. We would like to stress that
we can apply the Gronwall-like Lemma 3.6 in this situation since the stopping times
satisfy for sufficiently small p the condition (3.12). Actually, the cocycle property and
(3.16) imply

2
ti1—ti_o = ﬂ_l(GTj(w)w)—ﬂ_Q(GTj(w)w) = T1 (0T172+j(w)w) < 1< —/\—1 10g kl (,u) 0

Now we formulate a smallness condition for all w € Q. We assume that the
stopping times satisfy

T3 (w)|

(3.18) 1> liminf > g > 20og(d + ky(p)) +v)

iv—oo |1 A1 7

where v € [0, d—’z\l) is the parameter describing backward v-exponentially growing sets
D7y . In addition assume that

(3.19) v+d> 1.

We also assume that the sequence (|T'(07,(.)w)|~?)icz is subexponential growing
for w €

log™ (|T (07, (yw)|
(3.20) i 8 (1T (1, w)w) ")

i——00 |Z|

=0.

2 Again, the sum Zz;:ll is assumed to be zero for i = 1.
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Later on, in section 4, we will give an example of a set (2 of w fulfilling conditions
(3.18), (3.19), and (3.20) that is (0;):cp-invariant.

We now consider the discrete nonautonomous dynamical system ® with the set
of nonautonomous perturbations Z and shifts 0, 7 =14 7. Recall that the set system
DYy is given by the family of sets (D(i))iez such that D(i) C V is included in a ball
with center zero and radius r(i), where

log™ r(i
lim sup LT(Z) < v.
1—>—00 |Z|

Our next aim is to prove that the discrete nonautonomous dynamical system @
has an absorbing set consisting in a ball B contained in D7 y,, which means that in
particular B is in V.

LEMMA 3.9. Suppose that (3.16), (3.18), (3.19), and (3.20) hold. Then ® has a
DY -absorbing set B(w) = (B(i,w))icz, where B(i,w) is given by a ball in V with
center 0 and radius

0
A
(3.21) Ri,w)=2 Y 2ka(1+ky) e m0naae),

m=—0oQ

Proof. We want to get a D7 y,-absorbing set B for ®. In Corollary 3.8 we have
obtained estimates for ® when the initial condition ug € Vg, so in this proof in a first
step we have to ensure that picking any D € D7 ;, we can build an appropriate set F
depending on D such that F' € DE,V5~ This property will be the key to later proving
that B is an absorbing set for ®.

Define for D € DY ,, the set

F(j,w) :=®(1,j — 1,w,D(j — 1)).

Such an F' is a backward v-exponentially growing set in V3, since if vg € D(j — 1) we
know that

(3.22) @(l,j — 1,(,0,’()0) = U(T1(9Tj,1(w)w)) = S(Tl(Hijl(w)w))vo
Tl(eijﬂw)“’)
+/ S(T1 (07, _, (wyw) — )G (u(r))dor,_, (wyw.
0
From (3.7),
C
(3.23) [@(1,j — Lw,v0)lvy < 7510
? |T1(9Tj_1(w)w)|6
+clllwlllg 0,11 (07, w1+ llul

,3,~,07T1(9Tj,1(w>w))'

The last term in the previous expression can be estimated by the technique of Lemma
3.7 for i = 1 but using the || - |\57N70’T1(9Tj_1(W)w)-norm together with (3.5), getting
that

(1 - C:LL)||u||B7N7O,T1(0T].71(&,)w) S C|UO| + C:LL
and therefore

sup  |®(1,j — 1,w,v0)|v,
vo€D(j—1)

< ( ¢ I o > sup  |vg| +cp (1 + )
< 0 .
T2 (07,_, (yw)|? L —=cu) woen(i-1) L—cp
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The first term on the right-hand side is backward v-exponentially growing, which
follows from the assumption that (|T'(0r,.)w)|™?)icz is subexponentially growing.
Indeed it is a product of two terms where one factor satisfies (2.2) while the other is
v-exponentially growing.

Therefore, for any D € DY , the set F' (Jyw) € D;’Vﬂ and then there is a sequence
(By;, (0, p(i,w)))ic z backward v-exponentially growing such that these balls in V3 with
center zero and radius p(i,w) contain the sets F'(i,w). Moreover, from Corollary 3.8
we immediately have that

S im1 —ALTi (0, (W) .
sup |¢’(Z,] - W, U0)| < (1 + kl) e =il (kop(.] - va) + kQ)
ugEF(j—1,w)
1—1
) A
+ 3 k(1 + ky )it BT 0n )T O

m=1

Taking into account that the stopping times satisfy the cocycle property, it holds that

Ti1(07,_; ()W) = T(O7,_ (@) = Tic1-m (01,4 ()W) = =T ipm+1(07,_, (w)w)

and thus

) A
(3-24) |(I)(’i,j - i,w,u0)| < (1 + kl)lfleTIT—i-H(eTj_l(w)w)(kop(j _ i,w) n kg)
i—1
T Z 2ka(1 + kl)iilime%T_H'm*'l(GTj—l(“’)w)

m=1

. A
=1+ kl)zfle%T_i-H(GTj_l(w)w)(kop(j — i, w) + k2)

0
A
+ 2k52(1 +k1)_m871Tm(9Tj—1(w)w).

m=2—1

Note that for every ¢ > 0 there is an m. > 0 such that for m < 0, |m| > m., then
| T (07, _, (w)w)| > (d — €)|m]|, or equivalently, %Tm(ﬁgpj_l(w)w) < mA(d — €), which
is a consequence of the second inequality in (3.18). Therefore,

A Y
(1+ kl)—me%Tm(GTj,l(w)w) — o mlog(1+k1)+ 5 T (07 _y (w)w)

< em(flog(lJrkl)Jr%(dfe)) < evm

where the last estimate is true since 4-d — log(1 + k1) — v — &te > 0 for small € > 0,
which follows from the last inequality of (3.18). Hence, the sum on the right-hand
side of (3.24) converges to @ when i — oco.

On the other hand, the first term in (3.24) converges to zero for i — oo due to
(3.18).

To obtain the absorbing property it remains to mention that, thanks to the cocycle
property for @, for sufficient large i € Z T,

[P+ 1,7 —i—1Lw,v)| =|P(4,5 —i,w,P(1,j —i — 1,w,vp))]
<(1+ kl)ie%&Ti("Tjﬂ:flww)
X (k0|q)(17.7 —1— 17W7v0)|Vg + k?) + R(])/27
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hence
sup |(I)(i+17j_i_1awavo)| S sup |(I)(iaj_i7w7u0)| <R(])
vo€D(j—i—1) wEF(j—i,w)
for sufficient large i € Z7. O

LEMMA 3.10. Under the conditions of Lemma 3.9, the absorbing set B(w) given
by (3.21) is contained in DYy, .

Proof. We show that (R(7))icz is v-exponentially growing, for which we will use
(3.18). Since

Tin(O7,_, ()W) = Tingi—1(w) = Tim1(w) = Tingim1(w) + Toin1 (01, ()W)

we obtain that

0
A
R(Z) =2 Z 2]{52(1 + kl)_me%Tm(GT«L—NW)W)

m=—0o0

0
A
—9 Z 2k2(1_|_kl)—me%(Tm+i—1(w)+T—i+1(9Ti_1(w)w)).

m=—0o0

Furthermore, due to (3.18), for any sufficiently small § there exists jo(d) € Z~ such
that for j < jo(d) we have

.0,

which together with T ;1 (07,_, (yw) < —i + 1 implies that

0
R(i) <2 Z Uen(1 + k)M P (Tonsimr (@) =dlitm=1)) bd(iHm—1)~(i-1))

0
<2 Z 2k2(1+kl)7me%(6\i+m71\+d(i+m71)f(i71))
2L§li—1| (1—d)]i—1]| ° —m AL (5|m|+dm)
< 2e7 e Z 2ko(1 4+ k1) ™e™ .

For sufficiently small 6 the sum on the right-hand side is finite. Moreover, for v >
(1 —d) (see (3.19)) and § > 0 small
0
lim " R(i) <220 lim e 0MHie0=@limtl §™ oy (1 4 y)~me s Clmitdm —g

1——00 1——00
m=—oo

such that B C D7 y,. O

The conditions of the last two lemmas are always grantable if the nonautonomous
perturbation is small in the following sense: p could be chosen small. Then, if v > 0
is also small, d should satisfy essentially the next three conditions:

d<1, d+v>1, d>2v/\.

And we can always find an appropriate d solving these three inequalities. Note that
the worst case happens when the first eigenvalue \; is small, which forces v to be
chosen small enough and d to be close to one. But d close to one means that the
stopping times T; are close to one in the average, in the sense of the second inequality
in (3.18), or in other words, that the contribution of |||w||| 0, for the construction
of the stopping time is small in the average; see (3.9).
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THEOREM 3.11. Consider w € Q such that the assumptions of Lemma 3.9 hold.
Then the discrete nonautonomous dynamical system ®(-,w) has a pullback attractor
{A(i,w) }icz with respect to the system of v-exponentially growing sets DY, ., .

Proof. Note that ®(7,j,w,-) is continuous on V. Let B(w) C D%y be the
absorbing set from Lemma 3.9. For any j € Z, let T(B,j,w) be the absorption
time of B(j,w) € D%y by itself. Set T* = T*(j) = T(B,j,w). Notice that
O(T*, -T* — 1+ j,w, B(—T* — 1+ j,w)) is absorbing, and set

O(jvw) = (I)(lv -1 +j7w7q)(T*v —-T*-1 +jvva(_T* -1 +jvw))) - B(jvw)'

Hence, the definition of 7™ ensures that C(w) = (C(j,w))jez is Dy -pullback ab-
sorbing and contained in D7 ;.. In addition, by (3.7) and the compact embedding of
Vg C V the sets C(j,w) are also compact. Now we can apply Theorem 2.2, giving the
existence of a pullback attractor {A(i,w)}icz for ®. O

The conclusion of the last theorem will be used to study ¢ as a nonautonomous
dynamical system. In particular we show that this dynamical system has a pullback
attractor.

3.3. Attracting sets for the nonautonomous dynamical systems asso-
ciated to (3.4). We now study the nonautonomous dynamical system ¢ given by
(3.4). For this purpose it would be enough to consider this mapping ¢ along one orbit
Uierlbiw} for a fixed arbitrary w € Q. However, we are going to consider measurable
mappings ¢ on the entire set 2. In this sense the following definition is given.

Consider the family of closed nonempty sets (D(w))weq C D%y with D(w) =
By (0,7(w)) such that

1 +
lim sup w = 0.
R3t——o0 [t]
For such a D define the sets (G(i,w));cz by
(3.25) Gli,w) = U D(b,w), i€ Z,

Te(Ti—1(w),Ti(w)]

which are elements of D%,v- In the contrary case, we would find an w, a subsequence
(i'(i,w))iez-, V' (i,w) =1 € Z7, ty € [Ty_1(w), Ty (w)], and uy € D(f;,w) such that

log™ |uir
0 < limsup M
P ——00 |Z |
But we can estimate this expression by
log™ |uir Ty log™ |uir Ty
lim sup og” [uy| lim sup “71(0‘))' < limsup 0g " |uy| lim sup M =0,
i'—s—oo |Tir—1(W)] i'5—oo |4'] i's—co  |ter] v o—oo i’

due to the fact that uy € D(6;,w). Let us emphasize that, by the definition of the
stopping times, the last factor in the last term is finite.

We then can conclude the following.

LEMMA 3.12. For D € DOR}V we have that

(3.26) Ep(i,w) = U U {o(7,0 707, (yw, u0) }

—7€[T(07, (wyw),0] w0ED (070, ()W)
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defines a set in DY ;. In addition,

HD(i,W) = U U {(,0(’7', eTi(w)wauo)}

TE [O’T(eTi(u)W)] wo €D (i,w)

is in Dy, provided D € Dy /.
Proof. First, similar to the proof of Lemma 3.9 we obtain that

(1 =epllullgn0m0r, e < cluol + 1)-

On the other hand, for —s € [T(ﬁTi(w)w), 0], due to (3.5) we have

|(p(83 0—50T4(w)w7u0)| < C|U()| +

/ S(s — r)G(u(r))dG_SGTi(w)w‘
0
< cluo| + (1 + [[ull g,~,0,7(0, 0y ) 0= ()|l 57.,0,5

and because |||0_s07, wywl|[s,0,s < |||9T4(w)w|||,8',T(9T,.(w>w)70 < i, we obtain that

(3.27) lo(s, 0507, (wyw, uo)| < clug| + cu(l + : —Cc,u|u0| + : iﬂcu)'

Hence the norm of any element in F(i,w) is bounded by

c c
sup c|u0|(1+—u) —|—cu<1—|— a >
uo €G(i,w) 1- Cp 1—cu

for G(i,w) introduced in (3.25), which gives the desired property.

The second property follows similarly. O

LeEMMA 3.13. Under the conditions of Theorem 3.11, define the family of sets
A by A(w) := A(0,w), where A(i,w) has been defined in Theorem 3.11. Then A is
imwvariant and attracting for elements from D%’V with respect to .

Proof. For t > 0 there exists a unique i* = i*(w) € Z~ such that —t €
(Ti+ (w)—1 (W), T () (w)]. Because of T« (01,.w) = —Tj(w), due also to the cocycle
property and the relationship between ¢ and ®, we can conclude that for D € D%’V

o(t,0_w, D(0_4w))
= (T (01,. W), O7,. (wyw, p(t — T (07, W), 0_¢ 1. O7,. 0, D(0_¢_7,. 01, W)))
= ®(—i", " w, ot = T+ (1. w), 0—t—7,. 07,  w, D(0_4_7,. 01, w)))
C O(—i*,i" w, Ep(i*,w)),

where Ep € DY, is defined by (3.26) and which can be also written as

Ep(i,w) = U U {e(Tiw) = 70, 1,001y, w0)}-
TE[Ti—1(w),Ti (w)] up€eD(0,rw)

Hence A attracts D with respect to ¢ since
0 < dist(p(t, 01w, D(0_w)), Alw)) < dist(P(—i,4, w, Ep(i,w)), A(0,w)),
and

lim dist(®(—i,4,w, Ep(i,w)), A(0,w)) = 0.

71— — 00
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Now we prove the invariance of A. For ¢ > 0 we denote by i'(w) the largest i such
that Ty (w) < t for any w € Q. Hence by (3.11) for to = ¢, t; = Ty (w)

e < Ti/,l(w) < T,l(ﬁtw) +t<Ty (OJ) <t
< Ti/+1(w) < Tl(ﬂtw) +t< ﬂ/+2(w) < Tg(@tw) +t <

Since (A(7 + j,w))jez is pullback attracting with respect to @, by (3.23) the same
property is true for the following compact set:

A, 010) = p(t — Ty (W) + T5(010), O, ()@, A(E + 5, w)).
Because of [t — T ;(w) +T;(0iw)| <1 and {A(j,w)}jez € Dy, applying the second
part of Lemma 3.12 we have that A(j, fiw) € DY . Furthermore

d(1, 4, 0w, A7, Orw))
= (T (01, (8,)0tw), 01, (9,0) 01w, p(t + T (Orw) — Tiry5(w), 9T¢/+]‘(W)w’ A+ 7,w)))
= o(t + Tj1(0ww) — Ty (w), 9T1,+j(w)w, A + j,w))
= ot + Tjs1(0w) — Tyrgjo1 (W), 01, (yw, A + 5+ Lw)) = A(j + 1, w),

+i+1

which shows that A(-,6;w) is a compact invariant set in Dy for the cocycle
®(-,-,0w,-). Since A(-,0;w) € DY, it is attracted by A(-,6;w), and due to the
invariance of the former

(3.28) A(j, 0rw) C A(J, Orw).
Now we define

A 4§+ Lw) = @(Tigj1 (W) — t — T(0:w), 01, (9, e, A, Orw) ),

which implies that A has qualitatively the same properties as A. In particular,
A(j,w) C A(j,w). But we have
(329) A(ﬁtw) = A(O, Otw)

(17 =1, 0w, A(_la 0tw)) = (p(t 7 (Ld), oT,i/(w)wa A(i/(LU), LU))

=
C (p(t - T%' ((.U), 0Ti/ (W)W, A(i/(LU), LU)) = "4(07 otw)

such that, by (3.28) and (3.29), A(0, 6,w) = A(f,w) and
o(t,w, Aw)) = ot — Ty (w), 01, ()W, O, 0,w, A0, w)) = A(Oyw),

and hence A is invariant. d
LEMMA 3.14. Suppose that
5 T; s T
(3.30) 1> d:=limsup | (_w)|, d := liminf | (w)| >d> 0.
T S T
v/d

(i) We have that A € Dy .
(ii) Suppose that d > d and v > 0. Then there exists an w € Q and D € D;{g,

such that the restriction of t — D(0iw) to (T;(w))icz is in DZ?‘//J but not in Dy,
along an orbit | J,c p{0iw}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/13/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

RANDOM ATTRACTORS FOR SPDEs DRIVEN BY AN FBM 2301

(iti) If D € DYy then the restriction of t — D(0iw) to (Ti(w))ien is in DY .
Proof. (i) As A(f7,()w) = A(i,w), we obtain
Jiam sup 1Og+(supue¢4(9n<w>w) Jul) < lim sup 1Og+(supu€«4(i7w) |ul) Jim sup ||
i——o0 | T (w)| T o0 |4 is—oo |Ti(w)]

In addition, we can show a similar estimate for (¢, 07, (,,)w, uo)| as in (3.27). By
using that estimate we obtain the desired result simply taking ¢ € (T;—1(w), T3 (w)]
and applying the above convergence result.

(ii) Let 7’ be a sequence such that

On some orbit (J,cp{0iw} we define an element D € D};{é by D(fw) = {0} for
t # Ty (w). In addition, for a sufficiently small € > 0 we choose a sequence (u;); such
that

log™ Juy|

lim ——— =

14
= — €
i/ ——00 |Tz/(w)| d

and set D(07, yw) = {uy}. We have that

1Og+ (SupueD(eTq,(w)w) |U|)

lim sup - = lim sup
i——00 |Z| i——00

1Og+ (SupuED(GT,i(w)W) |u|) |Tl (w)|
T (w)] d

i’ ——o0

(Z—e)d<y—fi
d d

and it is bigger than v when e > 0 is chosen sufficiently small.
(iii) This follows similar to the proof of (ii). O
We would like to emphasize the following: by part (ii) in the above result we know

. (108" (5uPuep(or,, e [Ul) 1T ()]
= lim - =
|Tis (w)] i’

that the restriction of particular elements D € D;{ ?, to the discrete time sequence
(T;(w))icz is only in Ddz'j‘//d but not in D7, in general. Therefore, that restriction is
not attracted by (A(i,w))icz if d > d, and consequently the set A is not an attractor

for ¢, since in that case it should attract all sets in D’;{/ ;i/.

By these reasons A is only called a partially attracting set, since it is contained in
D;{ {1, but we cannot prove that A is attracting for the entire system D;{ f/. However,
in Theorem 4.6 below and in a measurable setting, we will prove stronger growth

conditions for A4, which will allow us to conclude that A is a (random) attractor.

4. Attractors for random dynamical systems of SPDEs with fractional
Brownian motion. In this section we study the nonautonomous dynamical system
under measurability assumptions. In particular, we need to introduce a metric dynam-
ical system. It will be crucial that the integrals with Holder continuous integrators
are defined pathwise. This is a qualitative difference to the definition of the classical
stochastic integral where the integrand is a white noise. We recall that the pathwise
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definition of the former integral just gave us the nonautonomous dynamical system ¢
from section 3.1 defined by (3.8).

A one-dimensional fBm is a centered Gauss process on R with Hurst parameter
H € (0,1) having the covariance

1
R(s,t) = S (1t + [ = |t = s[*7)

defined on an appropriate probability space. Similarly we can define an fBm with

values in V and covariance @), where @) is a positive symmetric operator on V' of trace

class. It is known that @ has a discrete spectrum (g¢;);en related to the complete

orthonormal system in V' given by (f;)ien. This process has a version w in Cy(R, V),
1

the space of continuous functions which are zero at zero, and ¢, ?m;w are indepen-
dently and identically distributed one-dimensional fBm, where 7; is the projection on
the ith mode of the base (f;)icn, such that we can define the integrals as in subsection
2.2. For simplicity we identify in the following the base (f;);cn with the base (¢;)ien -

In what follows we consider a canonical version of this process given by the prob-
ability space (Co(R,V),B(Co(R,V)), P), where P is the Gauss measure generated
by the fBm. On this probability space we can also introduce the shift d,w(-) =
w(-+1) —w(t).

LEMMA 4.1. (Co(R,V),B(Co(R,V)), P,0) is an ergodic metric dynamical sys-
tem.

The proof of this lemma can be found in [21] and with a deeper analysis in [14].

This (canonical) process has a version which is 8”-Hélder continuous on any
interval [—k, k] for 8" < H.

Let us denote by Qg» C Co(R, V) the set of elements which are 5”-Holder con-
tinuous on any interval [—k, k], k € N, and are zero at 0.

LEMMA 4.2 (see [5]). We have Qg € B(Co(R,V)). In addition, Qg is (0¢)ter-
invariant.

Choose pu, v such that (3.18) holds. Then by the ergodic theory there exists a
(0¢)te p-invariant set Oy € B(Co(R,V)) of full measure such that

1
1 t sup,. 07, w "1, —+ BT 7
(41) lim _/ p €[0,1] ||| +q |||5 1,0 M dq
t—+oo ¢ 0 L

101 +u\

su rW "o BT —37
=Ep< Prefo,1] 5,~1,0 u) e
m 0

For the construction of the invariant set €2 we refer to Arnold [1, p. 538, Ergodic
Theorem (iv)]. The above expectation can be controlled by choosing a @ with small
trace such that d is close to 1; see, for instance, the construction of the random
variable K in Kunita [19, Theorem 1.4.1]. Let us also choose tr @ small enough such
that (3.19) holds true, i.e.,

v+4+d>1.

In addition, there exists a (0;):c p-invariant set Qo € B(Co(R, V)) of full measure such
that R 5 t > sup,¢joq [|[0¢+-wl|[g7,—1,0 has a sublinear growth, which follows by
Arnold [1, Proposition 4.1.3]. Indeed, sup,¢jo 11 [||6rwl|[g7,—1,0 < [|[w]l[g7,—1,1, where
the right-hand side of this inequality has finite moments of any order, by Kunita [19,
Theorem 1.4.1].

Setting Q@ = Q; N Qs N Qgr, let F be the trace-c-algebra of B(Cy(R,V)) with
respect to €2, and let us consider the restriction of the measure P to this o-algebra,
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which we denote again by P. Since 2 is (6;):c g-invariant it is not hard to see that the
restriction of 6 to R x Q is a random flow and that (Q, F, P,0) is an ergodic metric
dynamical system; see [3] for a general proof of these properties.

We are now in a position to derive from the non—autonomous dynamical system
¢ a random dynamical system.

LEMMA 4.3. (i) Let ¢ be the nonautonomous dynamical system given by (3.8).
Then this mapping is B(RT) @ F @ B(V), B(V) measurable, and hence o is a random
dynamical system.

(ii) The stopping times T, T are measurable.

Proof. First note that (r,w) ~ w(r) is measurable such that (r,w) + Dy “wp_[r]
is measurable. Assuming in addition that (r,w) — k(r,w) € Ly(V') is measurable and
that for any w the product ||D8‘+k(-,w)[r]||L2(V)|D%F__O‘wT_[r]| is integrable, then the
stochastic integral

T
w »—)/O S(T = 1)G(ulr, w))dw

is measurable, since k(r,w) = G(u(r,w)) has the above properties.

Since the solution w of (3.4) is given by the Banach fixed point theorem, it can
be constructed by successive iterations in the space C#~([0,T]; V), starting this pro-
cedure with the constant function ug. Although these approximations are given on
different time intervals [T;(w), T;+1(w)] they can be finitely concatenated to one ap-
proximation on [0, T] converging to a solution of (3.4) in the separable Banach space
C(]0,T]; V) which is measurable.

If we pick initial conditions in a sufficiently small neighborhood of ug, the con-
traction constants for the corresponding mapping in the Banach fixed point theorem
can be chosen to be the same, and therefore ug — ¢(t,w, up) is continuous. Then, by
Castaing and Valadier [4], the mapping ¢ is measurable on B([0, T]) @ FQB(V), B(V).
Hence, the B(R™) ® F @ B(V), B(V) measurability of this expression follows immedi-
ately.

(ii) Since w > [||wl|||p’,0,+ is measurable, the measurability of w + T'(w) follows.
In the same manner we can argue for T. o

In order to establish the growth of the stopping times we need the following
lemma.

LEMMA 4.4. Let N(w) € N be the random number of stopping times in [—1,0]
defined by (3.9) and (3.10). Then we have for w € Qgn

1
N(w) < <|||w|||/3"71,0 + u) e
N p

Proof. The following estimates follow easily on Qg :

w(t) — wis)|

+ u(=T(w)"

p= s /
T(w)<s<t<0 |t — sl

w(t) —w(s - —_g" - v_g

< (s T ) T
Pwy<s<t<o L s

< (Nlwlllgr 1,0 + ) (=T (w))?" =*#
such that

1
A B —p7
T(w)| > (—“ ) .
Nlwlllg—1.0 +
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The same estimate holds for 7'(f_, (w)w) as long as T(OTf,i(w)w)+T_i(w) =T ;- 1(w) >
—1. For the smallest number ¢ having this property we set N(w) =4+ 1. Then due
to the definition of the stopping times (3.10) we conclude that

N(w)—1 1
™ ’LL B//_ﬂ/
12 Tym@l = S [F(0r @) = Nw) (—) ,
) ; ) MNwllls7,—1.0 + 1
and then the result follows. |

LEMMA 4.5. On Q we have

lim inf |75 ()| = lim inf —Tk(w) >d>0,
k——o0 |]{,‘| k——o0 k
where d has been defined in (4.1). On this set |T (O, yw)| ™" is subezponentially
growing for i — —oo.
Proof. Let M;(w) be the number of stopping times Tj(w) in (j — 1, j].
For j € —Z™ let k;(w) be the biggest integer such that T} (,,) < j. Then choosing
ty = j and t1 = Tj,(u)(w) from (3.11) we know

< Tiyy2@) < G+ TO0) + T(0pg,0y4,%) = J + T-a(Bj)
< Tk 1(w) <j+ T(ij) =7+ T_l(ij) < Tkj(w)(w) <jJ

such that M;(w) = N(ij) or Mj(w) = N(0jw) — 1, where N(w) has been introduced
in Lemma 4.4. Hence

n—1 n—1
. ijo M_j(w) . ijo N(0—;w)
limsup ———— < limsup —————
n—oo,n>1 n—1 n—oo,n>1 n—1
1
FIT 37T
anl 0—swlllgr —1,0+tH pr=8
Jj=0 ©
< limsup ,
n—oo,n>1 n—1

which follows from Lemma 4.4 for w € Qg~. The terms under the sum of the numerator
on the right-hand side can be estimated by

<SuPre[0.,1] |||0r+q—jw|||ﬂ”,—1-,0 T
o

BT —g7
) for any ¢ € [—1,0]

and hence

1
0 (Supre[m] 110r+q—jwlllg7,—1,0 + N) e dq

N6 < [ -

-1
Then we obtain the estimate for n > 1

"y 1
E o N(0-;w) - 1 /0 SUP,¢[o,1] [[10r+qwll|g7,—1,0 + 1 ﬂ//_B,d

where the right-hand side converges to 1/d for w € ©; and n — oo by (4.1). Then we
have

‘T Sy M j(w )(W)‘
lim inf — > —_— >
n—o00 Ej:O M_j(LU) n—o00 Ej:O Mj—l(w)
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To see that finally the conclusion holds true, choose for every k € —N an n = n(k,w)
such that

n n—1
— ZM_J'(LU) <k<-— Z M_j(w).
=0 =0
Thus
T ()] T sty w)(@) T sndnyw)(@)
lim inf ———— > lim inf - > liminf pra
k—o0 k| n——oo ijo M_; (w) n——oo Zj:() M_; (w) + N(0_,w)
—1
= lim inf "

n—1 z
nomee Yo M—j(w)
by the sublinear convergence of n — N (6,w) (thanks to the ergodic theorem) and the
at least asymptotical linear growth of n — Z;:Ol M_j(w) + N(O_pw).

To prove the second part of the statement, note that similar to the estimate of T
in the proof of Lemma 4.4, for w € (),

B
107, wywlllg7,01 + M) BT =F

Tﬁ,ww_5<(
|(T1())| [

for large |i[, which follows from the fact that the mapping i — ||[07, )w|||s7,0,1 grows
sublinearly in 2 C 3, and therefore, the previous inequality shows the subpolynomial
growth of [T'(07, (w)| 7. 0

We can finally prove the main result of this section.

THEOREM 4.6. The pullback attractor stated in Lemma 3.13 is a random attractor
attracting the random tempered sets D, where D has been defined in (2.3).

Proof. Since the stopping times T; are random variables we obtain that the radii
of the absorbing balls R(i,w) are random variables, and therefore the balls B(i,w)
are random sets. Note that

Aw)= (1 U @6 —i,w, B(=i,w)).

JjEZtTicZt i>j

® inherits the measurable properties of ¢ and in particular v — ®(i, —i,w,u) is
continuous. Hence ®(i, —i,w, B(—i,w)) is a random set. Then by [7] we have that A

is a random set. On the other hand, we have that A(67,)w) C B(i,w) and A € DE,V

for d given by (3.30). Furthermore, Lemma 2.1 shows that A is a set in D, and since
DcC DOR}V the conclusion follows from Lemma 3.13. 0

5. Appendix. We present here the proof of Lemma 3.7.

Proof. We have to estimate

llull g, 7,1 (02, 0), 73 (0, 0) = sup lu@®)] + [llulll, 7y (0r, ), T (07, w)-
’ ’ Ti—1 (07, w) <t<T; (07, w) ! !

First, considering ug € V3, from (3.2) and (3.3) we obtain

7)\1T¢,1(9Tjw

1SC)uollg. 11 (0, ), Ti(0r,0) < cE ol v,

Thanks to the additivity of the above integral (see [5]), for t € [T;_1(07,w), T;(01,w)]
the following splitting holds true:
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/ S(t—r)G(u(r))dor,w = / St —r)G(u(r))dir;w
0

T,i,l(@q-jw)
i—1

Tm(GTjw)
Y / S(t — )G (u(r))dbr,w,

m=1 Tm_l(GTjw)

and therefore, in particular,

s || st ety

B, Ti—1(07;w),Ti(07;w)

S(-— T)G(u(r))dGTjw‘

‘ ‘ ‘ Ti—l(eT-W) ,B,Ti,l(GTijTq' (GTjw)

9T u))

—1)G(u(r))dor,w

m= Trn— 1(0T W) HB7T1'1(0T_7'°J)7T1'(9T]‘W)

Regarding the first term on the right-hand side of (5.1), notice that for s < ¢ €
[T;-1(01,w), T;(01,w)], we have that

‘ / St —r)G(u(r))dor;w — /S S(s —r)G(u(r))dor, w
Tq 1(97" UJ) T,i,l(@q-jw)
/ S(t — 1)Gu(r))dfr,w + / (S(t— ) — 1d)S(s — T)G(u(r))dGTjw‘
i—l(eT]-W)

¢
< ‘ / St —r)G(u(r 4+ Ti—1(0r,w)))dbr,, ,_,w

3

+c(t' — s’)ﬁ‘ / S(s" = r)Gu(r + Ti—1(0r,w)))dOr, ., ,w
0 Vs

where we have performed the change of variable 7 = r — T;_1(67,w) and later on
renamed 7 as r; see Lemma 2.4. Therefore, in the previous expression, s’ = s —
Ti1(0r,w), t' =t — T;_1(67,w). Note that then s’ <t € [0,T1(07,,,_,w)].

The first term on the right-hand side of (5.2) can be estimated in the following

t/
‘/ St —r)G(u(r—FTi1(6‘Tjw)))d6‘;pi+jlw‘

' ) ) =Ai(t' =)
(cq + cpglu(r + Ti—1(0;w))|)e” ™
< c|||9T1+J 1w|||ﬁ/OT(0T1+J 1‘*)) // < ’

(r—g)e
[ et el TG0,
. TPl g
T —A1(t' =) ) ) _ : . /
+ / CDGE |’U,(T' + ?1(1]:1)1) u(q + zjzfl(ejw)” dq) (t/ _ T‘)B +a71d,r,
s’ r—q

< |07, wlllg 0,10 ; ),T,i(eTjw))(tl—Sl)B

itj— e )(

S C:u’(]‘ + ||u||B7T471(0Tjw)7T4(9Tjw))(t - S)ﬁ
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We have used the fact that, by definition, in the interval [0, 77 (67,4;—1w)] the norm
of the noise paths is smaller than y and that T3 (67, , ,w) < 1.

Furthermore, for the last term on the right-hand side of (5.2), applying Lemma
3.3 yields that

s’)@‘ AS S(s" —r)G(u(r+ T;-1(07;w)))dOr,, ;_ w

Vs
< (tl - SI)BCM(l + ”u||5,Ti_1(9Tjw),Ti(9Tjw))
= (t — ) cp(L+ ||ull p,7:_y (62, ). T2 (0r,))-

Moreover, for the terms of the sum on (5.1), for ¢ € [T;_1(07,w), Ti(07,w)],

T (HTjw)
/ St —r)G(u(r))dor,w

Trnfl(eTjW)
Tl(GTm+]_1w)
_ / S(t — (1 + T (07,0))) G (u(r + Tou1 (07,))) 0, .,
0

T (9T7n+171“’>
_ / St + Tiy (02,0) — 1 — To1 (07, 0))
0

x G(u(r+ Tm_l(HTjw)))dHT LW
= S(t/ + ﬂ_l(GTjw) — Tm(GTjw))

Ty (eTm+_7 1 )
<[ S0, ) — P)G(ulr + Ton1 (Br,))) O,
0

for t' =t —T;_1(0r;w) € [0,T1(01,,, ,w)]. We have used above that T}, _1(07,w) =
T (07,w) — T1(01,,,,_,w). Therefore, for s’ <t' € [0,T1(07,,, ,w)] we have

‘S(t/ + Ti_l(GTj w) — T (0Tj w))
Tl (0T7n+]71)
<[ S(T(6r,, ., w) — )C(ulr + Ty (9r,0)))dbr,, ., 0
0
— S(s" + Ti1(0r,w) — Tin(O1,w))
Tl(eTm+_7 1)
“ / S(T(0r,, . w) — )G (u(r + T (6r,0)))d0r,, .\ ‘
0
< ‘(S(t’ — ") —Id)S(s" + Ti—1(01,w) — T (01, w))
Tl (0T7n+]71)
« [ S<wTﬂ1>—wGwv+n%a%wmwTﬂl‘
0
S (tl _ S/)Be—Al(Ti_l(GTjw)—Tm(OTjw))
Tl(eTmA»] 1)
</ S(T(0n,.., 1w) — )G(ulr + To_1(0r,0)))d0r,, .,
0

S (t _ S),Bef)\l(Tq;,l(HTjw)me(HTjw))

Vs
(X4 ullg. 1,01 (02,0, (0, 0))-
Note that to estimate

sup |u(?)]
Ti; 1 (OTjw)gthi(GTjw)
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it is enough to estimate |u(T;—1(fr,w))| and |||U|||,8,Ti71(9Tjw)7Ti(9Tjw)- For the former,
following the same steps as above, we obtain

T,i,1(0Tjw)
[u(Ti—1(07,w))| < [S(Ti—1(0r;w))uol + /0 S(Tia(0r,w) — T)G(“(T))deﬂw‘

i—1 Tm(eTjw)
e RS / S(Tia(0r,w) - r>G<u<r>>d0Tﬂ‘
m=1 Tm,l(OTjw)
1—1
< ee MO g| 1Y T S(Tina (0,0) — Ton(07,0)
m=1
Tl(eTm+j_1)
<[ ST (Br,-1) = P)G(ulr + Ty 01,0, 0
0
i—1
S CefxlTifl(GTjw)|uO| + C,LL Z ef)\l(Ti,l(HTjw)me(GTjw))
m=1

X (L4 ull g, 71 (01,0, Ton (0,0 )-

Collecting all the previous estimates we obtain the conclusion, renaming all appearing
constants again as c. O
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