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Abstract

Along this work we will consider several models of partial differential
equations that describe cellular movement. We will introduce some
mathematical techniques in order to describe the behaviour of the
solutions of these models.
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1 Introduction

One of the most important characteristics of living systems is their interaction
with the environment in which they reside. Frequently, the way of interaction
involves movement towards or away from an external stimulus or signal and such
a response to the stimulus is called taxis. The process which leads to taxis is
very complex but, basically, it is divided in three steps. In the first step, the cell
detects the extracellular signal by specific receptors on its surface. Then the cell
processes the signal and, finally, the cell alters its motile behaviour. Depending
on the nature of the signal we have different kinds of taxis (see for instance
[36]), for example aerotaxis, chemotaxis, galvanotaxis, haptotaxis, phototaxis,
etc.

The following question arises: how this phenomenon can be described with
mathematical terminology? The answer to this question is not simple but surely
involves different scales, subcellular, cellular or mesoscopic and macroscopic and
each of them can be described in a continuous or discrete setting. Another
subsequent question are which is the relationship between different scales or
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how the individual behaviour influences the collective one. These questions,
although important are not addressed here. We will just focus on a particular
kind of continuous models concerning the motion of cells at the macroscopic
scale.

Along this work, we will assume that the organisms respond to the spatial
gradient of the stimulus. Moreover, we will suppose that the organisms also
move without any preferable direction, see [35] for a justification. In some
cases we will add a term which describes the process of birth and death of
the organisms. To be more precise, throughout this work, the equation that
describes the motion of the organisms is given by

ut = ∆u︸︷︷︸
Diffusion

±∇ · (φ(u, v)∇v)︸ ︷︷ ︸
Taxis

+ f(u, v)︸ ︷︷ ︸
Reaction

(1)

where f : [0,+∞)2 → IR, φ : [0,+∞)2 → IR and u, v denote the concentration
of organisms and the stimulus or signal density respectively.

While, in general, the taxis term leads to aggregation, the diffusive term
always has a dispersive effect. Therefore, there is a competition between the
taxis term and the diffusive one and three different regimes are possible:

• The diffusive dominant regime. This means that the diffusive term is
dominant and the effect of the taxis can be ignored for large times.
Consequently, as time goes to infinity, the solution to (1), if exists and is
unique, behaves like the solution to the heat equation with the reaction
term f(u, v).

• The taxis dominant regime. Here, the taxis term is strong enough to
generates singularities either in finite time or infinite time.

• The equilibrium or transition regime.

In the next Sections we will deal with various models related to (1) that serve
to illustrate diffusive dominant, taxis dominant and the equilibrium regimes.

In the sequel, C denotes a generic positive constant.

2 Chemorepulsion

Probably one of the most famous models in mathematical biology is the Keller-
Segel system. Such a model was proposed in [27] in order to describe a
very particular stage in the life of many species of cellular slime molds, the
aggregative stage. At this stage, the amoebas begin to aggregate in a number
of “collecting points” or centers. At each center a slug forms, migrates and
eventually forms a multicellular fruiting body ([27] p. 399). The aggregation
is induced by the presence of a chemical substance produced by some of the
amoebae. This particular case of taxis, induced by a chemical, is called
chemotaxis. We will make some comments about the Keller-Segel system in
the last Section. In this Section we assume that the cells produce a chemical
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and the chemical acts as a repellent. So, the cells escape from the chemical
moving away from its gradient. Here, we study the following model that was
proposed in [40]:





ut = ∆u︸︷︷︸
Diffusion

+ ∇ · (u∇v)︸ ︷︷ ︸
Chemotaxis

in Ω × (0, T ),

vt = D ∆v︸ ︷︷ ︸
Diffusion

− βv︸︷︷︸
Decay

+ u︸︷︷︸
Production

in Ω × (0, T ),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0, T ),

(u, v)(x, 0) = (u0, v0)(x) in Ω,

(2)

where Ω is an open bounded subset of IRN with smooth boundary ∂Ω, n denotes
the outward unit normal vector to ∂Ω and D and β are positive real numbers.

Our first step is to show that (2) admits a unique positive local in time
solution. This is proved with help of the abstract theory for quasilinear parabolic
problems presented in [2].

Théorème 1 Let p > N be given and consider the initial condition (u0, v0) ∈
W 1,p(Ω; IR2) with u0, v0 ≥ 0. Then (2) has a unique local in time classical
solution

(u, v) ∈ C(Ω × [0, Tmax); IR2) ∩ C∞(Ω × (0, Tmax); IR2),

with u(x, t), v(x, t) ≥ 0 for each (x, t) ∈ Ω×[0, Tmax); Tmax denotes the maximal
existence time. Moreover, if there exists a function w : (0,+∞) 7→ (0,+∞) such
that, for each T > 0,

‖(u(t), v(t))‖∞ ≤ w(T ), 0 < t < min{T, Tmax}, (3)

then Tmax = +∞.

At this point we must wonder if the solution provided by the previous
theorem is global in time or not, that is, whether Tmax = +∞ or Tmax < +∞.
Notice that the physical interpretation of (2) suggests that Tmax = +∞.
Therefore we should try to prove (3) and, to this aim, we use a recursive
argument.

A first attempt, not the best one, can be the following: We integrate in the
space variable the u-equation of (2) and we get

d

dt

∫

Ω

u = 0, (4)

which implies

‖u(t)‖1 = ‖u0‖1, 0 < t < Tmax. (5)
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A direct consequence of (5) is that, for every measurable set E ⊂ Ω with positive
Lebesgue measure we have

lim inf
t→T−

max

(
sup
x∈E

u(x, t)

)
< +∞.

So, the set of blow-up points for u has zero Lebesgue measure. Now, from
the uniformly L1-bound (5) coming from the u-equation we can use parabolic
regularity theory in the v-equation to get uniform bounds for v:

Lemme 2 Assume that 0 < t0 < Tmax and 1 ≤ γ < N . Let us set
γ∗ = Nγ/(N−γ). If ‖u(t)‖γ ≤ C1 for all t ∈ [t0, Tmax) then for each p ∈ [1, γ∗)
there exists C2 depending on N , C1 and p such that

‖v(t)‖W 1,p ≤ C2, t ∈ [t0, Tmax).

The proof of this Lemma can be obtained from the representation by linear
semigroups of the v-equation; see for instance [25, Lemma 4.1].

As we see, in this procedure we are regarding the system (2) as a set of
separated equations. For example, if N ≥ 2 we cannot obtain uniform bounds
of ‖v(t)‖W 1,2 . Moreover, the bounds for v depend strongly on the dimension N .
We should use, if it is possible, the intrinsic properties of the system and deal
with the full system simultaneously. The idea is to capture properly the taxis
term of the u-equation from the v-equation. In a formal way, we proceed as
follows.

First, if we multiply the u-equation by log u and we integrate respect to the
space variable, we get:

∫

Ω

ut log u = −
∫

Ω

|∇u|2
u

−
∫

Ω

∇u · ∇v

and, by (4), we deduce that

d

dt

∫

Ω

u log u = −
∫

Ω

|∇u|2
u

−
∫

Ω

∇u · ∇v. (6)

On the other hand, multiplying the v-equation by −∆v and integrating with
respect to space, we obtain:

d

dt

∫

Ω

|∇v|2 = −D
∫

Ω

|∆v|2 − β

∫

Ω

|∇v|2 +

∫

Ω

∇u · ∇v. (7)

Finally, by adding (6) and (7), we have that

d

dt
F (u(t), v(t)) = −D(u(t), v(t)) ≤ 0, (8)

where

F (u, v) :=

∫

Ω

u logu+
1

2

∫

Ω

|∇v|2,
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D(u, v) :=

∫

Ω

|∇u|2
u

+D

∫

Ω

|∆v|2 + β

∫

Ω

|∇v|2.

Observe that it is possible to control the negative part of s log s, thanks to the
boundedness of the domain Ω. Therefore, there exists a constant C > 0 such
that

−C ≤ F (u(t), v(t)), t ∈ [0, Tmax). (9)

This, together with (8), has various important consequences for the
associated system (2). Frequently, when the systems under consideration stem
from phenomena in physics, the functional F is called the entropy and the
functional D is called the entropy production. In mathematical terminology, F
a Lyapunov functional.

The first consequence that we get uniform bounds for u and v independently
of the dimension. By a simple integration of (8) in the time variable, taking
into account the regularity of the initial data we get that

−C ≤ F (u(t), v(t)) ≤ F (u0, v0) < +∞, t ∈ [0, Tmax). (10)

We also have
∫ t

0

D(u(s), v(s))ds ≤ F (u0, v0) + C, t ∈ [0, Tmax). (11)

The second consequence is that the information provided by the Lyapunov
functional F can be used to determine the long time behaviour of (2).

Let us summarize. Our goal is to show that the solution of (2) is global
in time and we are trying to find bounds uniform in time in the L∞-norm for
u and v. To this aim, we have introduced the Lyapunov functional associated
to (2).

At this point, since the results depend on the dimension, we distinguish
between N ≤ 2 and the higher dimensional case.

2.1 The Case N ≤ 2

Here, it is possible to derive uniform Lp-bounds for every p. This is done by
multiplying the u-equation by (p + 1)up, integrating in the space variable and
using the uniform bound

∫ t

0

∫

Ω

|∆v|2 < +∞, t ∈ [0, Tmax),

as well as the Gagliardo-Nirenberg inequality. After that, we can adapt the
Moser iteration method (see for instance [1]) or the De Giorgi method (see for
instance [6, 8]) to get uniform L∞ estimates for u.

We skip the details of the estimates, since we consider more interesting to
show how to use the functional F in order to infer the long time behaviour of
(2). In particular, we will show that u tends to the mean value

u :=
1

|Ω|

∫

Ω

u =
1

|Ω|

∫

Ω

u0,
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where |Ω| stands for the N -dimensional Legesgue measure of Ω. Moreover, we
will also derive the rate of convergence to the mean value of u.

To be more precise, we have the following:

Théorème 3 Assume that N ≤ 2. If (u0, v0) satisfies the hypotheses of
Theorem 1, then

‖u(·, t) − u‖2
1 ≤ Ce−αt,

where the constants C, α > 0 can be computed explicitly.

Dèmonstration. It is convenient to use a slight modification of the Lyapunov
functional F . The functional

G(u, v) :=

∫

Ω

u log(u/u) +
1

2

∫

Ω

|∇v|2

also satisfies

d

dt
G(u(t), v(t)) = −D(u(t), v(t)). (12)

From the Jensen inequality with the probability measure dµ = dx/|Ω| we readily
see that G(u, v) ≥ 0. Assume for the moment that there exists a constant α > 0
such that

αG(u, v) ≤ D(u, v). (13)

Then, from (12) we deduce that

0 ≤ G(u(t), v(t)) ≤ G(u0, v0)e−αt.

Therefore, we get that the Lyapunov functional G decays exponentially to zero.
In particular, we have

∫

Ω

u log(u/u) ≤ G(u0, v0)e−αt.

Finally, using the Cziszar-Kullback inequality (see [4])

1

2u
‖u− u‖2

1 ≤
∫

Ω

u log(u/u),

we conclude the proof.

It only remains to prove (13). We know that, for any r ≥ 0,

r log r + r − 1 ≤ (r − 1)2.
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Let us set r = u/u. By the Poincare-Wirtinger inequality and (5), we have:
∫

Ω

u log(u/u) = u

∫

Ω

r log r + u

∫

Ω

(r − 1)

≤ u

∫

Ω

(r − 1)2

=
1

u

∫

Ω

(u− u)2

≤ C

u

(∫

Ω

|∇u|
)2

=
4C

u

(∫

Ω

|u1/2∇u1/2|
)2

≤ 4C

u

(∫

Ω

u

)(∫

Ω

|∇u1/2|2
)

= |Ω|C
∫

Ω

u−1|∇u|2.

Therefore, αG(u, v) ≤ D(u, v) with

α = min

{
2β,

1

|Ω|Cpw

}
.

�

Before ending this case, let us give an additional explanation of the fact that
u converges asymptotically in time towards its mean value. Observe that, for
any k, the couple (k, k/β) is a solution to





−∆u+ ∇ · (u∇v) = 0 in Ω,
−D∆v + βv = u in Ω,

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.

(14)

The conservation of the L1-norm of the solution along time can be used to select
the constant k:

k|Ω| = ‖u(t)‖1 = ‖u0‖1

for all t. Therefore, u is a solution to the setady state problem associated to (2).

2.2 The higher dimensional case

Unfortunately, for N ≥ 3 it is not known whether the estimates provided by
the Lyapunov F are enough to show the existence of global regular solutions,
independently of the size of (u0, v0). However, the bounds given by the
functional F suggest the existence of global L1-solutions.

In this case we use the compactness method. The idea is to introduce
a regularization (2)ǫ of (2) and to pass to the limit as ǫ → 0+ to get a
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solution of (2). For this purpose, we need proper bounds of the solution of
(2)ǫ independently of ǫ > 0. The perturbation we will introduce is based on the
volume filling effect, a property that was identified in [19, 20] and can be used
to prevent the overcrowding of cells.

For each ǫ > 0 we consider the following perturbation of (2):






uǫ
t = ∆uǫ + ∇ · (uǫ(1 − ǫuǫ)∇vǫ) in Ω × (0, T ),
vǫ

t = D∆vǫ − βvǫ + uǫ in Ω × (0, T ),
∂uǫ

∂n
=
∂vǫ

∂n
= 0 on ∂Ω × (0, T ),

(uǫ, vǫ)(x, 0) = (u0, v0)(x) in Ω.

(15)

Observe that (2) is obtained by taking ǫ = 0 in (15). Moreover, since the
function f(s) = s(1 − ǫs) vanishes at 0 and at 1/ǫ then, if 0 ≤ uǫ

0, v
ǫ
0 ≤ 1/ǫ we

have
0 ≤ uǫ, vǫ ≤ 1/ǫ.

The last assertion is a consequence of [2, Theorem 15.1] when we rewrite the
uǫ-equation in terms of the new variable zǫ = 1/ǫ− uǫ. Using the results of [2],
we can also deduce, if (uǫ

0, v
ǫ
0) ∈ W 1,p(Ω; IR2) and p > N , the existence and

uniqueness of a unique regular solution to (15) for sufficiently small ǫ > 0.
Next we turn to present an estimate of the solutions (uǫ, vǫ) that is uniform

with respect to ǫ:

Lemme 4 For any sufficiently small ǫ > 0 and any t ≥ 0, the solution (uǫ, vǫ)
to (15) satisfies

∫

Ω

(
uǫ| log uǫ| +

|∇vǫ|2
2

)
(t)+

+

∫ t

0

∫

Ω

( |∇uǫ|2
uǫ

+D|∆vǫ|2 + β|∇vǫ|2
)

≤ C0,

where C0 depends only on Ω and F (u0, v0).

We skip the proof of this lemma and we present without proof the results
for N = 3 and N = 4 that can be inferred:

Théorème 5 Let N = 3. If u0 and v0 are non-negative functions in W 1,p0(Ω)
for some p0 > 3, then there exists a global weak solution (u, v) to (2) which also
satisfies

(u, v) ∈ L5/4(0, T ;W 1,5/4(Ω; IR2))

for any T > 0. Moreover, we have

lim
t→+∞

∫

Ω

(u(x, t) − u) φ(x) dx = 0 ∀φ ∈ L∞(Ω) (16)

and
lim

t→+∞
‖v(·, t) − v‖2 = 0, (17)

where v denotes the mean value of v.
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Théorème 6 Let N = 4. If u0 and v0 are non-negative functions in W 1,p0(Ω)
for some p0 > 4, then there exists a global weak solution (u, v) to (2). Moreover
we also have (16) and (17).

Let us point out that the previous existence results do not seem to extend
to space dimensions N ≥ 5 since, for these N , we cannot ensure that
u∇v ∈ L1(Ω × (0, T ); IRN ) for all T > 0. In fact, if N = 4 we have
u∇v ∈ L1(Ω × (0, T ); IRN ) and no more than this and we have to apply the
Dunford-Pettis Theorem (see [3]) as well as the Vitali convergence Theorem
(see [14]) in the compactness method.

The proofs that have been omitted here can be found in [7].

3 Invasion

In the previous Section, the signal or stimulus diffuses in the environment.
However there are cases in which the stimulus is strictly localized; for example,
this explains the behavior of the ants, which follow trails left by predecessors,
myxobacteria (see [36]); this is also the situation in cell invasion phenomena.
The cell invasion into the surrounded extracellular matrix is a process that is
present in various biological phenomena like wound healing, tumor invasion or
morphogenesis.

Along this Section, we will deal with a model related to tumor invasion that
covers the models proposed in [5, 37]. It is assumed that the tumoral cells
produce proteolytic enzymes which degrade the extracellular matrix. Then, the
tumoral cells move towards the gradient of the matrix. Such a movement is
called haptotaxis. The model has three main variables, u (the concentration of
cancer cells), v (the extracellular matrix distribution) and m (the concentration
of proteolytic enzymes) and is the following:





ut = ρ∆u︸︷︷︸
Diffusion

− ∇ · (uχ(v)∇v)︸ ︷︷ ︸
Haptotaxis

+ µu(1 − u− v)︸ ︷︷ ︸
Proliferation

in Ω × (0, T ),

vt = − γmv︸︷︷︸
Degradation

in Ω × (0, T ),

mt = ∆m︸︷︷︸
Diffusion

− βm︸︷︷︸
Decay

+ αug(v)︸ ︷︷ ︸
Production

in Ω × (0, T ),

ρ
∂u

∂n
− uχ(v)

∂v

∂n
=
∂m

∂n
= 0 on ∂Ω × (0, T ),

(u, v,m)(x, 0) = (u0, v0,m0)(x) in Ω.
(18)

Here, Ω ⊂ IRN is again a bounded regular domain, g, χ ∈ C2([0,+∞)) with
g(s), χ(s) ≥ 0 for all s ≥ 0, µ ≥ 0 and α, β, γ, ρ are positive constants.

In order to elucidate the behaviour of (18), let us simplify the equations.
Later on, we will deal with the full system. Dividing the m-equation by β we
get:

β−1mt = β−1∆m−m+
α

β
ug(v).
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Next, we observe that if the production and decay rates of the proteolytic
enzymes, denoted by α and β respectively, are much greater than the motility,
that is α≫ 1, β ≫ 1, then, heuristically, we can claim that

m ≃ α

β
ug(v).

Now, let us replace m by this function in the v-equation. Assuming that the
proliferation term in (18) is of the form µu(1 − u), we get:





ut = ∇ · (ρ∇u − uχ(v)∇v) + µu(1 − u) in Ω × (0, T ),

vt = −γα
β
vug(v) in Ω × (0, T ),

∂u

∂n
− uχ(v)

∂v

∂n
= 0 on ∂Ω × (0, T ),

(u, v)(x, 0) = (u0, v0)(x) in Ω.

(19)

Let us now suppose that ρ = γα
β = 1 (because the values of the constants

play no role in the proofs). Moreover, for simplicity, let us also assume that
χ(v) = 1 and g(v) = vβ−1 for some β ≥ 1. Then we have from (19):






ut = ∇ · (∇u− u∇v) + µu(1 − u) in Ω × (0, T ),

vt = −uvβ in Ω × (0, T ),
∂u

∂n
− u

∂v

∂n
= 0 on ∂Ω × (0, T ),

(u, v)(x, 0) = (u0, v0)(x) in Ω.

(20)

The lack of an operator acting in the space variables has two important
consequences in the v-equation. The first one is that there is not space
regularization for v and this makes appear in some sense a hyperbolic structure.
This can be seen by solving the v-equation. For instance, if β = 1,

v(x, t) = v0(x)e−
R

t

0
u(x,s)ds

and, if v0(·) ∈ L1(Ω), we have v(·, t) ∈ L1(Ω) and not more than this for all
t > 0. The second consequence is that the speed of propagation in the v-equation
is zero. This means that, if v0(x0) = 0 for some x0 ∈ Ω, then v(x0, t) = 0 for
all t > 0.

Next, we follow the same steps in the previous Section in order to
analyze (20). The next result provides global existence and uniqueness for
(20) in 2-dimensional domains:

Théorème 7 Assume that 0 < l < 1 and Ω ⊂ IR2 is a bounded domain with
C2+l boundary ∂Ω. If (u0, w0) ∈ C2+l(Ω; IR2), u0 ≥ 0, v0 > 0, u0 6≡ 0 and the
compatibility condition

∂u0

∂n
= u0

∂v0
∂n

on ∂Ω

is satisfied, then (20) has a unique global positive solution defined on [0,+∞)
and (u, v) ∈ C2+l,1+l/2(Ω × [0, T ]; IR2), for all T > 0.
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The proof can be carried out as follows. First, we establish local existence
of a solution; this is done in a similar way as in [38, 39]. The main difficulty
to overcome with respect to these papers is that we use different boundary
conditions. Then, in order to obtain global existence, suitable estimates of the
solutions are obtained. However, in contrast with the previous Section, the
lack of spatial regularization effect for v demands tedious estimates. As in the
previous Section, a Lyapunov function

F (u,w) =

∫

Ω

u(log u− 1) +
1

2

∫

Ω

v−β |∇v|2

associated to (20) plays an important role. For µ = 0, that is, without
proliferation, such a Lyapunov function was first introduced in [9], although
some ideas had already been given in [39].

Now, we will focus on the long time behavior of the solutions to (20). As
we have seen in the previous Section, the solutions to the stationary problem
associated to (20) are candidate to be the limit of the solutions as time goes to
infinity.

Théorème 8 The positive solutions (u, v) to the stationary problem
associated to (20) with v ∈W 1,∞(Ω) are given by

(u∗, v∗) = (0, ṽ) , ṽ ∈ P2,

(u∗, v∗) = (1, 0) , if µ > 0,

(u∗, v∗) = (k, 0) , if µ = 0,

where k > 0 and P2 = {z ∈W 1,∞(Ω) : z ≥ 0, z 6≡ 0}.
Let us stress that uv = 0 does not imply that either u ≡ 0 or v ≡ 0. Notice

that functions with disjoints supports satisfy uv = 0.
The basic idea in the proof of this result is to rewrite the system for the

new variable z = ue−v and then to apply the strong maximum principle and
the Hopf Lemma (see for instance [17, Lemma 3.4,Theorem 3.5]) to deduce that
either z ≡ 0 or z(x) > 0 for all x ∈ Ω.

By the results of the previous Section we can expect that the solutions (1, 0)
or (k, 0) are globally asymptotically stable and the solutions (0, ṽ) are unstable.
In fact, it is just this what happens. However, the rate of convergence is known
to be exponential only when β = 1. Thus, we distinguish the cases β = 1 and
β > 1.

The case β = 1 - We prove the following:

Théorème 9 Under the hypotheses of Theorem 7 we have:

‖u(·, t) − uµ‖2 ≤ Ce−θt , ‖v(·, t)‖∞ ≤ Ce−θ′t, (21)

where θ, θ′ are positive constants and

uµ :=






1

|Ω|

∫

Ω

u0 if µ = 0,

1 if µ > 0.
(22)
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Dèmonstration . Again, the proof relies on the properties of a Lyapunov
function F . In this case, we have

d

dt
F (u, v) = −D(u, v),

where

F (u, v) =

∫

Ω

u(log u− 1) + 1 +
1

2

∫

Ω

v−1|∇v|2 ,

D(u, v) =

∫

Ω

|∇u|2
u

+
1

2

∫

Ω

(
uv−1|∇v|2 + µu(u− 1) log u

)
.

The first step is to prove the exponential decay of F . For this purpose, it
is enough to prove that D(u, v) ≥ αF (u, v) for some α > 0 and, to get this
inequality, it is convenient to establish that u is separated from zero:

Lemme 10 Under the hypotheses of Theorem 7, if minx∈Ω u0(x) ≥ ρ0 > 0 for
some ρ0 > 0 then minx∈Ω u(x, t) ≥ ρ for some ρ > 0.

We skip the proof. Let us point out that, if minx∈Ω u0(x) = 0 but u0 6≡ 0
then, by the strong maximum principle, for τ > 0 we have minx∈Ω u(x, τ) > 0.
Consequently, in this case we can repeat our arguments taking as new initial
time τ > 0.

By the previous lemma and the inequality log s ≤ s− 1, we obtain

D(u, v) ≥ ρ

2

∫

Ω

v−1|∇v|2 + µρ(u− 1) log u

≥ ρ

2

∫

Ω

v−1|∇v|2 + µρ(u(log u− 1) + 1) ≥ γF (u(t), v(t)),

where γ = min{ρ, µρ}. Therefore, F (u(t), v(t)) ≤ F (u0, v0)e−γt and, in
particular, we have

∫

Ω

C−1
v |∇v|2 ≤

∫

Ω

|∇v|2
v

≤ F (u0, v0)e−γt (23)

where Cv > 0 is any positive constant such that v ≤ v0 ≤ Cv. Next, we
multiply the u-equation by u−uµ and we integrate in the space variable. From
the uniform bounds in time of u(·, t) in the L∞-norm, (23) and the Poincare-
Wirtinger inequality, we get:

d

dt

∫

Ω

(u− uµ)2 = −2

∫

Ω

|∇u|2 + 2

∫

Ω

u∇u · ∇v − 2µ

∫

Ω

u(u− uµ)2

≤ (ǫC − 2)

∫

Ω

|∇u|2 + C(ǫ)

∫

Ω

|∇v|2 − 2µρ

∫

Ω

(u− uµ)2

≤ C(ǫ)CvF (u0, v0)e−γt − C(µ)

∫

Ω

(u− uµ)2,

(24)
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where

C(µ) =

{
2µρ if µ > 0,
2−Cǫ
Cpw

if µ = 0.

From (24), we easily get the result. �

The case β > 1 - We now have:

Théorème 11 Under the hypotheses of Theorem 7, if t is sufficiently large,
then

‖u(·, t) − uµ‖2 ≤ C(‖v0‖1−β
∞ ρ(β − 1)t)

1
2(1−β) (25)

‖v(·, t)‖∞ ≤ (‖v0‖1−β
∞ + ρ(β − 1)t)

1
1−β . (26)

Dèmonstration . On one hand, we know that

∫ t

0

∫

Ω

uv−1|∇v|2 ≤ C. (27)

On the other hand, solving the v-equation we have that

v(x, t) =

(
v0(x)1−β + (β − 1)

∫ t

0

u(x, s)ds

) 1
1−β

.

This equality, together with Lemma 10, implies (26). As a consequence

u(x, t)v(x, t)−1 ≥ ρ(‖v0‖1−β
∞ + ρ(β − 1)t)

1
β−1 .

Now, putting the above estimate in (27), we obtain

∫ t

0

ρ(‖v0‖1−β
∞ + ρ(β − 1)s)

1
β−1

∫

Ω

|∇v|2 ≤ C. (28)

Taking into account this decay property of the gradient, we can use an argument
similar to the one used in the case β = 1 to conclude the proof. �

Now, we study the full system (18). This has an advantage with respect
to (20) because the m-equation induces regularity in the component v.
Accordingly, in this case we can also deal with 3-dimensional domains. We
will assume in fact that N = 3 in the rest of the Section.

Let us introduce some spaces. Let p ∈ (1,∞) and let us define the operator

Apu := −∆u+ βu

with domain

D(Ap) :=

{
u ∈W 2,p(Ω) :

∂u

∂n
= 0 on ∂Ω

}
.
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Since Re σ(Ap) ≥ β > 0, where σ(Ap) stands for the spectrum of Ap, we can
also introduce the fractional powers Aν

p for all ν > 0 (see [18, Chapter 1, Section
4]) . Let us set

Xν
p := D(Aν

p).

In the next result, the local existence and the continuous dependence of the
solution respect to the initial data are analyzed:

Théorème 12 Let ν ∈
(

1

2
+

3

2p
, 1

)
and p ∈ (3, 6). Suppose that the initial

data satisfies

x0 := (u0, v0,m0) ∈ H1(Ω) ×W 1,∞(Ω) ×Xν
p := Y.

Then there exists τ(‖x0‖Y) such that the problem (18) has a unique solution

u ∈ C
(
[0, τ ];H1(Ω)

)
∩ C1

(
(0, τ);W 1,∞(Ω)

)
,

v ∈ C
(
[0, τ ];W 1,∞(Ω)

)
∩ C1

(
(0, τ);W 1,∞(Ω)

)
,

m ∈ C
(
[0, τ ];Xν

p

)
∩ C1

(
(0, τ);Xν

p

)
∩ C

(
(0, τ);W 2,p(Ω)

)
.

(29)

Moreover, the solution depends continuously on the initial data. Finally, if
u0(x), v0(x),m0(x) ≥ 0 then u(x, t), v(x, t),m(x, t) ≥ 0 for all (x, t) ∈ Ω×(0, τ ].

In order to show that Tmax = +∞, where Tmax denotes the maximal interval
of existence, we have just to check that, for all T > 0 such that the solution
exists in [0, T ), one has (u, v,m) ∈ XT × YT × ZT and

‖(u, v,m)‖XT ×YT ×ZT
≤ C(T ) < +∞, (30)

where
XT := L∞

(
0, T ;H1(Ω)

)
,

YT := L∞
(
0, T ;W 1,∞(Ω)

)
,

ZT := L∞
(
0, T ;Xν

p

)
.

At this time, let us explain why the estimate (30) is enough to obtain global
existence and also uniqueness. The argument is as follows.

First, we apply Theorem 12. This gives us a solution up to a time t1 > 0;
then, we can apply again the Theorem 12 with initial data

(u0, v0,m0) = (u(·, t1), v(·, t1),m(·, t1)).

Therefore, recursively we have an increasing sequence of times tk, k ∈ N and,
thanks to (30) it can be assumed that tk → +∞. This argument leads to the
existence of solution in [0, T ] for all T > 0.

It should be stressed that, a priori, we do not have uniqueness of solution
on [0, T ] for any given T > 0 because Theorem 12 assures uniqueness just for T
small. However, this difficulty can be solved as follows.

Let u1,u2 two solutions of (18). We define the set A by

A := {t ∈ [0, T ] : u1(·, t) 6= u2(·, t) in Y}.
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Assume that A 6= ∅; then there exists t∗ = inf A and t∗ > 0, by Theorem 12.
Hence, t∗ − ǫ 6∈ A, for all ǫ > 0. Now, applying Theorem 12 at time t∗ − ǫ and
taking into account that the maximal existence and uniqueness time is bounded
from below, we obtain that u1(·, t) = u2(·, t) for all t ∈ [0, t∗+k] for some k > 0,
contradicting the Definition of t∗. Therefore, A = ∅ and the uniqueness result
follows.

We skip the proof of (30), that it is based on the Gagliardo-Nirenberg
inequality (see for instance [18, Chapter 1, Section 6]) and a parabolic regularity
result (Lemma 2).

Our next step is to study the long time behavior of the solutions. In this part
of the Section, we will focus on the cases g(s) = 1 and g(s) = s, that correspond
to the models proposed in [5] and [37] respectively. Clearly, the simplified system
suggests the result. Unfortunately, we cannot argue as previously for the long
time behaviour due to the lack of a Lyapunov function for (18). However, if
we examine carefully the proof of Theorem 9 we notice that two estimates were
crucial in the proof. The first one is the separation from zero of u and the
second one is the exponential decay of the gradient of v to zero.

Lemme 13 Under the hypotheses of Theorem 12, if minx∈Ω u0(x) ≥ ρ0 > 0 for
some ρ0 > 0, ‖v0‖∞ < 1 and µ > 0, then minx∈Ω u(x, t) ≥ ρ for some ρ > 0.

Lemme 14 Let τ > 0, v0 > 0. Assume that

m(x, t) ≥ δ > 0, ∀t ≥ τ. (31)

Then, for all t ≥ τ , we have

∫

Ω

|∇v(t)|2 ≤ Ce−kt, (32)

for all 0 < k < δ.

Observe that, when g(v) = 1, Lemma 13 implies (31). Therefore, for
g(v) = 1 we can repeat the arguments in the proof of Theorem 9 and obtain
the following:

Théorème 15 Assume that g(v) = 1. Under the hypotheses of Theorem 12,
if ‖v0‖∞ < 1 and µ > 0, we have:

‖u(·, t)−uµ‖2
2 ≤ Ce−θt, ‖v(·, t)‖∞ ≤ Ce−δt,

∥∥∥∥m(·, t) − αuµ

β

∥∥∥∥
2

2

≤ Ce−̺t (33)

where θ, δ, ̺ > 0 and uµ is as in Theorem 9.

In the case g(v) = v we cannot ensure (32). In fact, we will see that it does
not hold in general. It is also unclear how to get a decay of the gradient of v
in the spirit of (28). In this case, we use a different argument that is similar to
the one used in [15].
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Thus, let us introduce

y(t) = ‖u(·, t) − uµ‖2 .

We try to prove that limt→+∞ y(t) = 0. Notice that the inequality

∫ ∞

0

y(s) ds < C (34)

is not sufficient to claim that y(t) goes to zero as time goes to infinity. We need
an additional condition to control the oscillatory behavior of y(t). For example,
the condition

lim
t→+∞

∫ t+1

t

|yt(s)| ds = 0. (35)

The last theorem of this Section is the following:

Théorème 16 Let g(v) = v. Under the hypotheses of Theorem 12, we have:

lim
t→+∞

‖u(·, t) − uµ‖2 = 0, lim
t→+∞

‖v(·, t)‖∞ = 0, lim
t→+∞

‖m(·, t)‖2 = 0. (36)

For the proof, we first check that (34) and (35) holds. We omit the details,
that can be found in [29].

Before the end of the Section, let us point out that the results of this Section
can be found in the papers [28, 29]. See also [43, 44], where the authors prove
the existence of a global in time solution for other models of invasion.

4 Angiogenesis

Angiogenesis is a physiological process involving the new vessels sprout from
a pre-existing vasculature in response to chemical stimuli. Angiogenesis is
a normal process in growth, development and wound healing. However,
angiogenesis is also induced by tumoral cells. As a response to oxygen
deprivation, tumoral cells secrete tumor angiogenic factors (TAF). These factors
diffuse until they reach the endothelial cells that form the blood vessel wall.
Then the factors attach to the endothelial cells and provoke, after a signalling
cascade, the chemotactic migration of the endothelial cells towards the tumor.
After that, the cells join together to form new capillaries. The interested
reader can found more details about tumor-induced angiogenesis in [32] and
the references therein.

The model that we will consider in this Section has two variables, namely u
(the concentration of endothelial cells) and v (the concentration of TAF). Both
populations live in a bounded domain Ω ⊂ IRN , N ≥ 1, with regular boundary.
Moreover,

∂Ω = Γ0 ∪ Γ1,

where Γ0 and Γ1 are open and closed sets in the relative topology of ∂Ω. We
assume that Γ0 is the tumor boundary and Γ1 the blood vessel boundary, see
Figure 1 for an example.
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Figure 1 – Example of domain Ω.

We impose a homogeneous Neumann boundary condition for u on ∂Ω as
well as for v on Γ1. We also assume that there is a flux of TAF entering in the
domain Ω through Γ0 in a nonlinear way. This is the main difference here with
respect to [12], where this term is linear. To fix ideas, we will assume that

∂v

∂n
= µ

v

1 + v
on Γ0 × (0, T ) ,

where µ ≥ 0 is a constant that measures the amount of TAF produced on the
boundary of the tumor. Therefore, we consider the following parabolic problem





ut − ∆u = −div(V (u)∇v) + λu− u2 in Ω × (0, T ),
vt − ∆v = −v − cuv in Ω × (0, T ),
∂u

∂n
=
∂v

∂n
= 0 on Γ1 × (0, T ),

∂u

∂n
= 0,

∂v

∂n
= µ

v

1 + v
on Γ0 × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(37)

where 0 < T ≤ +∞, λ, µ ≥ 0, c > 0 and the function

V ∈ C1(IR), V > 0 in (0,∞) with V (0) = 0; (38)

and u0 and v0 are non-negative and non-trivial given functions.

Let us give a short explanation of the model. Endothelial cells diffuses, moves
towards the gradient of TAF and reproduces following a logistic law. Here, V
is the chemotactic response of the endothelial cells to the chemoatractant v. In
this case the response depends on a nonlinear way on the density u. The TAF
diffuses and either attach to the endothelial cells −cuv or it is consumed −v.

As in the previous Sections, we will first present a local existence theorem
whose proof relies on the abstract theory of semilinear parabolic problems.
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Théorème 17 Let us assume that p > N , (38) is satisfied and (u0, v0) ∈
(W 1,p(Ω))2, with u0 ≥ 0, v0 ≥ 0 a.e. in Ω. Then, (37) has a unique non-
negative local in time classical solution

(u, v) ∈ (C([0, Tmax);W 1,p(Ω)) ∩ C2,1(Ω × (0, Tmax)))2,

where Tmax denotes the maximal existence time. Moreover, if there exists a
function w : (0,+∞) 7→ (0,+∞) such that, for each T > 0,

‖(u(t), v(t))‖∞ ≤ w(T ), 0 < t < min{T, Tmax}, (39)

then Tmax = +∞.

For the global existence of a solution, we have to impose an additional
assumption on V , for instance that V is bounded. In that case, we can prove
the estimate (39) by a recursive procedure. The most technical part needs a
regularity lemma like the one in the first Section (Lemma 2) for the v-equation:

Lemme 18 Assume that 0 < t0 < Tmax and γ ∈ (1,∞). Let us set
γ∗ = Nγ/(N−1). If ‖u(t)‖γ ≤ C1 for all t ∈ [t0, Tmax) then for each p ∈ [1, γ∗)
there exists a constant C2, depending on N , C1 and p, such that

‖v(t)‖W 1,p ≤ C2, t ∈ [t0, Tmax).

Next, we deal with the steady-state problem associated to (37). In previous
Sections all the steady-states with positive components we have found were
homogeneous in the space variable. Here, the nonlinearity on the boundary
induces the presence of steady-states where none of the components satisfies
this property.

The steady states of (37) can be classified as follows:

• The trivial solution.

• Semi-trivial solutions i.e. couples (u, v) such that u ≡ 0 or v ≡ 0 but
(u, v) 6≡ (0, 0).

• Solutions (u, v) such that u 6≡ 0 and v 6≡ 0, which are called coexistence
states.

It is clear that the trivial solution exists for all λ, µ ≥ 0.
If the v-component of the steady-state is zero, then a semi-trivial positive

solution exists if, and only if, λ > 0. In that case, it must be of the form (λ, 0).
If the u-component is zero, then we must solve the nonlinear problem





−∆v + v = 0 in Ω,
∂v

∂n
= 0 on Γ1,

∂v

∂n
= µ

v

1 + v
on Γ0.

(40)

This equation was analyzed in [42] when Γ1 = ∅.
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Lemme 19 There exists a positive solution of (40) if, and only if,

µ > µ1 > 0,

where µ1 is the principal eigenvalue of the linearization at zero of (40) i.e. the
principal eigenvalue of





−∆ψ + ψ = 0 in Ω,
∂ψ

∂n
= 0 on Γ1,

∂ψ

∂n
= µψ on Γ0.

Moreover, in such case, the positive solution is unique and will be denoted by
θµ.

Hence, the couples (0, θµ) for µ > µ1 are the unique semi-trivial solutions
for which the u-component is zero.

In the analysis of the existence of coexistence states of (37), we find two
curves µ = F (λ) and λ = Λ(µ) that are crucial. Here, F (λ) is the principal
eigenvalue of the linearization of the stationary v-equation at (λ, 0) i.e. the
principal eigenvalue of






−∆ψ + (1 + cλ)ψ = 0 in Ω,
∂ψ

∂n
= 0 on Γ1,

∂ψ

∂n
= µψ on Γ0.

For each µ > µ1, Λ(µ) is the principal eigenvalue of the linearization of the
stationary u-equation at (0, θµ) i.e. the principal eigenvalue of

{ −∆ϕ+ div(V ′(0)θµϕ) = λϕ in Ω,
∂ϕ

∂n
= 0 on Γ0 ∪ Γ1,

and Λ(µ) = 0 for µ ∈ [0, µ1).
The next theorem entails the existence of coexistence states for some range

of the parameters λ, µ.

Théorème 20

1. Assume that V ′(0) = 0. Then, if

λ > 0 and µ > F (λ), (41)

there exists at least one coexistence state.

2. Assume that V ′(0) > 0. Then, if

(λ− Λ(µ))(µ− F (λ)) > 0. (42)

the same holds.
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Figure 2 – Coexistence regions. Case a) V ′(0) = 0 and Case b) V ′(0) > 0.

In Figure 2 we have drawn the coexistence regions, denoted by A in both
cases, V ′(0) = 0 and V ′(0) > 0.

The proof the previous theorem is based on well-known techniques in
bifurcation theory. The main idea is to apply the Crandall-Rabinowitz Theorem
[10] with λ as varying parameter to deduce that (λ, u, v) = (Λ(µ), 0, θµ) is a
bifurcation point for the semi-trivial solution (0, θµ). Then, we apply Theorem
4.1 of [31] and we get a continuum C+ of positive solutions emanating from the
point (λ, u, v) = (Λ(µ), 0, θµ), such that (λ∞, 0, 0) ∈ cl(C+), where λ∞ satisfies
µ = F (λ∞).

See Figure 3, where we have drawn the bifurcation diagrams in the cases
V ′(0) = 0 and V ′(0) > 0.

Figure 3 – Bifurcation diagrams. Case a) V ′(0) = 0 and Case b) V ′(0) > 0.

To end this Section, we will recall some results concerning the long time
behavior of (37). We will assume that V is bounded and, therefore, the solutions
are global in time. The first of these results asserts the exponential convergence
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of the v-component to zero whenever µ is sufficiently small:

Théorème 21 There exists a decreasing function α : [0, µ1) 7→ (0, 1] with
the following property: if γ ∈ (1,+∞), β ∈ (1, 1 + 1/γ), µ ∈ [0, µ1) and
0 < δ < ρ < α(µ), there exists C > 0 such that the v-solution to (37) satisfies

‖v(·, t)‖γ ≤ Ce−ρt‖v0‖γ ∀t > 0

and
‖v(·, t)‖W β,γ ≤ C(1 + t−θ)e−δt‖v0‖γ ∀t > 0,

where θ = θ(β) ∈ (0, 1).

Our next result shows the convergence of the u-component to zero for small µ
and λ = 0.

Théorème 22 Assume that µ ∈ [0, µ1) and λ = 0. Then

lim
t→+∞

‖u(·, t)‖W m,p = 0,

for any m < 1 and any p ≥ 2.

Finally, the last theorem of this Section shows that, if we impose appropriate
conditions on V at zero, µ is sufficiently small and λ > 0, the u-component
converges to the constant function u ≡ λ:

Théorème 23 Let µ ∈ [0, µ1) and assume that there exist C, δ0 > 0 and
k > 1 +N/2 such that

0 < V (s) < Csk , |V ′(s)| ≤ Csk−1

for all s ∈ (0, δ0). Then, there exists θ > 0 such that

‖u(·, t) − λ‖W m,p ≤ Ce−θt ,

for all t ≥ t0 > 0 and any m < 1, p ≥ 2.

The results of this Section have been extracted from [11].

5 The Keller-Segel model

In this last Section we will say something about the Keller-Segel system, trying
to cover situations that have not been considered yet. This system has been
studied extensively in the literature, specially in the last years, see the review
papers [21, 23, 24]. As we said in Section 2, the Keller-Segel system has
been proposed to describe the aggregative stage of cellular slime molds. The
model considers two variables u (concentration of cellular slime molds) and v
(concentration of chemoattractant).
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Under some assumptions, the following semi-stationary system is a good
approximation:





ut = ∇ · (∇u− χu∇v) in Ω × (0, T ),
0 = ∆v − γv + αu in Ω × (0, T ),
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

(43)

where χ, α, γ are positive parameters. We will be concerned with blow-up
phenomena for (43). The main ideas and arguments that we recall here have
been taken from [33].

In [34] it is conjectured that blow-up may occur in finite time for u in a
form of a Dirac delta function; such as phenomenon is known as chemotactic
collapse. In [26] the authors showed in a 2-dimensional ball that it is certainly
possible to choose radially symmetric initial data such that the blow-up of u
occurs in finite time. In what follows, we assume that

• Ω = BL ∈ IRN , N ≥ 2, where BL is an open ball of radius L with center
at the origin.

• u0 is radially symmetric.

Let us introduce

θ =
1

ωN

∫

Ω

u0 ,

where ωN is the area of the unit sphere SN−1 in IRN . We define the following
quantity

MN (t) :=
1

ωN

∫

Ω

u(x, t)|x|N ,

which is a measure of the concentration of the solution around the origin. If
MN(t) is small, then the solution is concentrated at the origin and the smaller
the quantity MN(t) is more concentrated is the solution around the origin. For
s ≥ 0, let us set

Eθ(s) := 2N(N − 1)θ2/Ns(N−2)/N − N

2
αχθ2 + αχNL−Nθs+ αχγRθ(s)

where

Rθ(s) =

{ 1
eθ

3/2s1/2 if N = 2,

N
2(N−2)θ

(2N−2)/Ns2/N if N ≥ 3.

The idea for the blow-up analysis is to show that MN (t) → 0 as t → T−
0 for

some T0 < +∞. For this purpose, it is enough to prove a differential inequality
of the form

d

dt
MN (t) ≤ Eθ(MN (t))

and pick the initial data MN(0) such that Eθ(MN (0)) < 0.
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Théorème 24 Let N ≥ 2 and assume that αχθ > 4 when N = 2. Then there
exists a positive constant c(θ) such that, if 0 < MN (0) < c(θ), then Tmax < +∞
and

lim
t→T−

max

‖u(·, t)‖∞ = +∞ .

Moreover,
lim

t→T−

max

‖u(·, t) log u(·, t)‖1 = +∞ .

Of course, the last condition implies that u blows up in the Lp-norm for
every p > 1.

Remarque 1 If Tmax = T0 then the solution u forms a Dirac delta function
at the origin as t→ T−

max.

Finally, to conclude this Section we will say something about the convergence
to non-homogeneous setady states. This will be done for the fully parabolic
Keller-Segel system.

Let Ω ⊂ IR2 be a regular domain. We consider the system





Ut = ∆U − χ∇ · (U∇V ) in Ω × (0, T ),
Vt = α∆V − βV + δU in Ω × (0, T ),
∂U

∂n
=
∂V

∂n
= 0 on ∂Ω × (0, T ),

(U, V )(x, 0) = (U0, V0)(x) in Ω,

where the initial data are non-negative. The change of variables

u =
U

U0

, v = χ(V − V )

leads to 



ut = ∆u−∇ · (u∇v) in Ω × (0, T ),
vt = α∆v − βv + γ(u− 1) in Ω × (0, T ),
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0, T ),

(u, v)(x, 0) = (u0, v0)(x) in Ω,

(44)

where γ = χδU0, u0 = U0

U0
and v0 = χ(V0 − V 0). It is clear that u0 is positive;

however, v0 may be a sign changing function. The main tool for the analysis of
(44) is the functional

F (u, v) =

∫

Ω

(
u logu+

1

2γ
(α|∇v|2 + βv2) − (u− 1)v

)
,

that satisfies
d

dt
F (u, v) = −D(u, v) ,

where

D(u, v) =
1

γ

∫

Ω

(∂tv)2 +

∫

Ω

u|∇(log u− v)|2 .
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Observe that F can be unbounded from below, due to the term −
∫
Ω

(u−1)v.
In fact, it is possible to choose initial data u0, v0 and parameters α, β and γ
such that F (u(t), v(t)) → −∞ as t→ T−

max, see [22].

In [16] it is proved by the compactness method that, when the solution
does not blow up (in finite or infinite time), there are sequences {tn} such that
(u(tn), v(tn)) converge to a solution of the steady-state problem. If there exists
exactly one solution to the stationary problem, then this must happen for all
sequences {tn}.

However, the structure of the steady-state problem can be very complex
and it is not excluded even the existence of a continuum of stationary solutions.
Under the previous scenario, the convergence of the whole sequence to a solution
of the stationary problem is a delicate question. Nowadays, it seems that
the only tool available to handle this problem is the  Lojasiewicz inequality.
See [30] for a description in the finite dimensional framework and [41] for the
infinite dimensional version. The  Lojasiewicz inequality is used in [13] to prove
convergence to a steady state. Unfortunately, the steady state can be the trivial
one (1, 0). To exclude this possibility it is enough to choose u0 and v0 such that
the solution does not blow up and F (u0, v0) < F (1, 0) = 0; in view of the
arguments in [16, Section 5], this is possible.
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