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PATHWISE SOLUTIONS OF SPDES DRIVEN BY HÖLDER-CONTINUOUS

INTEGRATORS WITH EXPONENT LARGER THAN 1/2 AND RANDOM

DYNAMICAL SYSTEMS

Y. CHEN, H. GAO, M. J. GARRIDO-ATIENZA, AND B. SCHMALFUSS

Abstract. This article is devoted to the existence and uniqueness of pathwise solutions to stochastic evolution
equations, driven by a Hölder continuous function with Hölder exponent in (1/2, 1), and with nontrivial
multiplicative noise. As a particular situation, we shall consider the case where the equation is driven by a
fractional Brownian motion BH with Hurst parameter H > 1/2. In contrast to the article by Maslowski and
Nualart [17], we present here an existence and uniqueness result in the space of Hölder continuous functions
with values in a Hilbert space V . If the initial condition is in the latter space this forces us to consider solutions
in a different space, which is a generalization of the Hölder continuous functions. That space of functions is
appropriate to introduce a non-autonomous dynamical system generated by the corresponding solution to the
equation. In fact, when choosing BH as the driving process, we shall prove that the dynamical system will
turn out to be a random dynamical system, defined over the ergodic metric dynamical system generated by
the infinite dimensional fractional Brownian motion.

1. Introduction

During the last years, there has been an increasing interest in solving stochastic partial differential equations
(SPDEs) beyond the Brownian motion case. One of these attempts is given by the Rough Path Theory, and
we refer to the monographs by Lyons and Qian [16] and Friz and Victoir [5] for a comprehensive presentation
of this theory. When the driving process is a Hölder continuous function with Hölder exponent greater than
1/2, a different technique to solve these equations consists of using fractional calculus tools, see for example
the papers [6, 13, 14, 17, 19, 21], to name only a few of them.
We generalize the fractional calculus methods in order to give a pathwise meaning to the solutions of some
general nonlinear infinite-dimensional evolution equations, associated to an analytic semigroup and driven by
a Hölder continuous process with Hölder exponent greater than 1/2. The existence of solutions of this type
has been already studied for instance in Maslowski and Nualart [17] and in Garrido-Atienza et al. [6]. In both
papers the driving process BH is a regular fractional Brownian motion (fBm), in the sense that the Hurst
index H ∈ (1/2, 1), and in both of them, the stochastic integral with integrator BH is defined following the
theory developed by Zähle [23], which is based on the so-called fractional derivatives (see Section 2). For
these integrals the usual adaptedness assumptions are not necessary. The phase spaces taken in those articles
are somehow not as natural as the space of Hölder continuous functions with adequate Hölder exponents, the
space that we shall consider in this article as natural phase space. However, at that point we need to afford
the problem that the semigroup generated by the linear part of the equation is not Hölder continuous on any
interval [0, T ]. Nevertheless, in spite of this lack of regularity, we are able to obtain the existence of solutions
in a modification of the space of Hölder continuous functions, and to the best of our knowledge this is the
first time that such a modification of the Hölder continuous space is considered to overcome such a difficulty.
However, this modification forces us to focus very precisely on checking that the fractional derivatives for the
corresponding kind of functions are well-defined. After taking into account all these facts, we are able to prove
the existence of a unique solution, by using the Banach fixed point theorem applied pathwise with respect to
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an adequate equivalent norm of the function spaces mentioned above.
This paper can be seen in fact as the base for other projects whose main aim is to study asymptotical proper-
ties of SPDEs driven by any fBm, by exploiting the pathwise sense of their corresponding solutions. On the
one hand, the results presented in this article cover the cases H > 1/2 but do not the white noise case, i.e.,
when H = 1/2. For the existence of pathwise solutions for this case (and more general for the cases in which
H ∈ (1/3, 1/2]) we refer to Garrido-Atienza et al. [8], [9] and the forthcoming paper [7]. We want to emphasize
here that the techniques to obtain such a pathwise solution are much more involved and qualitatively different
from the methods that we shall present in this article. On the other hand, we wish to analyze the asymptotic
behavior of these pathwise solutions by means of the random dynamical systems theory, and therefore one may
wonder whether these solutions could generate what is known as a cocycle. This question is course difficult
to answer at a first glance, because it is well-known that a large class of partial differential equations with
stationary random coefficients and Itô stochastic ordinary differential equations generate random dynamical
systems (see Arnold [2]), but for the stochastic partial differential equations driven by the standard Brownian
motion the problem is rather unsolved. The main obstacle is that the stochastic Itô integral is only defined
almost surely where the exceptional sets may depend on the initial state. But as far as the cocycle property
is concerned this fact contradicts the definition of a random dynamical system, since initial state dependent
exceptional sets are not permitted. As pointed out in [6], the main advantage of the pathwise integration
with respect to the classical Itô integration theory in this context is that we can avoid this dependence on
exceptional sets, and this means that we will be able to study the random dynamical system associated to the
corresponding evolution equation. This article is therefore the starting point to some other projects in which
we aim at analyzing asymptotical properties of solutions to stochastic evolutions equations, as for instance,
investigating the existence and structure of the random attractor associated to those equations. Actually,
we have already given some previous considerations in that direction when considering stochastic ordinary
equations driven by a fBm with H > 1/2, see [10].
This article is organized as follows. In Section 2 we introduce the definition and important properties of
the integral having a Hölder continuous function as integrator. Section 3 is devoted to show that evolution
equations driven by such a functions have a pathwise mild solution, with the property of generating a non-
autonomous dynamical system. In the last section of the article we consider the fractional Brownian motion
case. Having already obtained a non-autonomous dynamical system in the previous section, we shall focus on
the measurability properties needed to claim that this dynamical system is also a random dynamical system,
provided that the ergodic metric dynamical system defined by the fBm is considered.

2. Preliminaries

2.1. Dynamical systems. Let (V, |·|) be a Banach space and let T+ = R
+ or Z+. A mapping ϕ : T+×V → V

having the semigroup property

ϕ(t, ·) ◦ ϕ(τ, u0) = ϕ(t + τ, u0), ϕ(0, u0) = u0 for t, τ ∈ T
+ and u0 ∈ V

is called an autonomous dynamical system.

We want to consider a generalization of the concept of an autonomous dynamical system to non-autonomous
and random dynamical systems. As a first ingredient, for the time set T = R or Z, we introduce the flow
(θt)t∈T on the set Ω of non-autonomous perturbations by

θ : T× Ω → Ω

θt ◦ θτ = θt+τ , θ0ω = ω for t, τ ∈ T, ω ∈ Ω.

As a generalization of the semigroup property we consider a cocycle, which is given by a mapping

ϕ : T+ × Ω× V → V

such that

ϕ(0, ω, u0) = u0,

ϕ(t+ τ, ω, u0) = ϕ(t, θτω, ·) ◦ ϕ(τ, ω, u0), for all t, τ ∈ T
+, u0 ∈ V, ω ∈ Ω.

(1)
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ϕ is also called a non-autonomous dynamical system.

Let us now equip (Ω, θ) with a measurable structure. In order to do that, we consider the probability space
(Ω,F ,P), where F is a σ-algebra on Ω and P is a measure, assumed to be invariant and ergodic with respect
to θ. Then (Ω,F ,P, θ) is called a metric dynamical system.
A B(T+)⊗F⊗B(V ),B(V ) measurable mapping ϕ having the cocycle property (1) is called a random dynamical
system (RDS) with respect to the metric dynamical (Ω,F ,P, θ).

2.2. Integrals in Hilbert spaces for Hölder continuous integrators with Hölder exponent > 1/2.
Assume (V , | · |) is a separable Hilbert space. In addition, let −A be a strictly positive and symmetric
operator with a compact inverse which is the generator of an analytic exponential decreasing semigroup S on
V . We also introduce the spaces Vδ := D((−A)δ) with norm | · |Vδ

for δ ≥ 0 such that V = V0. The spaces
Vδ, δ > 0 are continuously embedded in V . Let (ei)i∈N be the complete orthonormal base in V generated by
the eigenelements of −A with associated eigenvalues (λi)i∈N.
Let L(Vδ, Vγ) denote the space of continuous linear operators from Vδ into Vγ . Then there exists a constant
c > 0 such that we have the estimates

|S(t)|L(V,Vγ) = |(−A)γS(t)|L(V ) ≤
cS,γ
tγ

e−λt for γ > 0,(2)

|S(t)− id|L(Vσ+µ,Vθ+µ) ≤ ctσ−θ, for θ ≥ 0, σ ∈ [θ, 1 + θ], µ ∈ R.(3)

In (2) notice that λ is a positive constant. We also note that from these inequalities, for 0 ≤ q ≤ r ≤ s ≤ t,
we can derive that

|S(t− r) − S(t− q)|L(Vδ,Vγ) ≤ c(r − q)α(t− r)−α−γ+δ,

|S(t− r) − S(s− r) − S(t− q) + S(s− q)|L(V )

≤c(t− s)β(r − q)γ(s− r)−(β+γ).

(4)

Next we introduce some proper spaces where later on we shall investigate the existence of pathwise solutions
to stochastic evolution systems. Let Cβ([T1, T2];V ) be the Banach space of Hölder continuous functions with
exponent β > 0 having values in V . A norm on this space is given by

‖u‖β = ‖u‖β,T1,T2
= sup

s∈[T1,T2]

|u(s)|+ |||u|||β,T1,T2
,

with

|||u|||β,T1,T2
= sup

T1≤s<t≤T2

|u(t)− u(s)|
|t− s|β .

C([T1, T2];V ) denotes the space of continuous functions on [T1, T2] with values in V with finite supremum
norm, and let Cβ,∼([T1, T2];V ) ⊂ C([T1, T2];V ) equipped with the norm

‖u‖β,∼ = ‖u‖β,∼,T1,T2
= sup

s∈[T1,T2]

|u(s)|+ sup
T1<s<t≤T2

(s− T1)
β |u(t)− u(s)|

|t− s|β .

For every ρ > 0 we can consider the equivalent norm

‖u‖β,ρ,∼ = ‖u‖β,ρ,∼,T1,T2
= sup

s∈[T1,T2]

e−ρ(s−T1)|u(s)|

+ sup
T1<s<t≤T2

(s− T1)
βe−ρ(t−T1)

|u(t)− u(s)|
|t− s|β .

Lemma 1. Cβ,∼([T1, T2];V ) is a Banach space.

Proof. Let (un)n∈N be a Cauchy sequence in Cβ,∼([T1, T2];V ). Then it is straightforward that (un)n∈N tends
to u0 in C([T1, T2];V ). Let us prove that (un)n∈N tends also to u0 ∈ Cβ,∼([T1, T2];V ) which follows easily
from the convergence of (un)n∈N in C([T1, T2];V ) and by the boundedness of this sequence in Cβ,∼([T1, T2];V ).
Indeed, for every s < t ∈ (T1, T2]
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(s− T1)
β |(un − u0)(t) − (un − u0)(s)|

|t− s|β = lim
m→∞

(s− T1)
β |(um − un)(t) − (um − un)(s)|

|t− s|β .

The elements of the sequence on the right hand side are uniformly bounded by ‖um − un‖β,∼ and hence

‖un − u0‖β,∼ ≤ lim inf
m→∞

‖um − un‖β,∼ =: Yn

where (Yn)n∈N tends to zero for n→ ∞. �

In the following we wish to define the integral

∫ T2

T1

Zdω

where ω is a Hölder continuous path.
Let us assume that Ṽ , V̂ are separable Hilbert spaces, then for 0 < α < 1 and general measurable functions
Z : [T1, T2] 7→ V̂ and ω : [T1, T2] 7→ Ṽ , we define their Weyl fractional derivatives by

Dα
T1+Z[r] =

1

Γ(1 − α)

(

Z(r)

(r − T1)α
+ α

∫ r

T1

Z(r)− Z(q)

(r − q)1+α
dq

)

∈ V̂ ,

D1−α
T2−

ωT2−[r] =
(−1)1−α

Γ(α)

(

ω(r) − ω(T2−)

(T2 − r)1−α
+ (1− α)

∫ T2

r

ω(r) − ω(q)

(q − r)2−α
dq

)

∈ Ṽ ,

where ωT2−(r) = ω(r) − ω(T2−), being ω(T2−) the left side limit of ω at T2.

Suppose that z(T1+), ζ(T1+), ζ(T2−) exist, being respectively the right side limit of z at T1 and the right
and left side limits of ζ at T1, T2, and that zT1+ ∈ IαT1+

(Lp((T1, T2);R)), ζT2− ∈ IαT2−
(Lp′((T1, T2);R)) with

1/p+ 1/p′ ≤ 1 (see the definition of these spaces in Samko et al. [20]). Then following Zähle [23] we define

∫ T2

T1

zdζ = (−1)α
∫ T2

T1

Dα
T1+zT1+[r]D

1−α
T2−

ζT2−[r]dr + z(T1+)(ζ(T2−)− ζ(T1+)),

where zT1+(r) = z(r)− z(T1+) and ζT2−(r) = ζ(r) − ζ(T2−), for r ∈ (T1, T2).

Under the previous conditions, if in addition αp < 1, then the above integral can be rewritten in a shorter
way by

(5)

∫ T2

T1

zdζ = (−1)α
∫ T2

T1

Dα
T1+z[r]D

1−α
T2−

ζT2−[r]dr.

In fact, under the above assumptions, the appearing fractional derivatives in the integrals are well defined
taking Ṽ = V̂ = R.

Consider now the separable Hilbert space L2(V ) of Hilbert-Schmidt operators from V into V with the usual
norm ‖ · ‖L2(V ) and inner product (·, ·)L2(V ). A base in this space is given by

(6) Eijek =

{

0 : j 6= k
ei : j = k.

Let us consider now mappings Z : [0, T ] → L2(V ) and ω : [0, T ] → V . Suppose that zji = (Z,Eji)L2(V ) ∈
IαT1+

(Lp((T1, T2);R)) and zji(T1+) exists and αp < 1. Moreover, ζiT2− = (ωT2−(t), ei) ∈ I1−α
T2−

(Lp′((T1, T2);R))
such that 1/p+ 1/p′ ≤ 1. In addition,

[T1, T2] ∋ r 7→ ‖Dα
T1+Z[r]‖L2(V )|D1−α

T2−
ωT2−[r]| ∈ L1((0, T );R).

We then introduce
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(7)

∫ T2

T1

Zdω := (−1)α
∫ T2

T1

Dα
T1+Z[r]D

1−α
T2−

ωT2−[r]dr.

Due to Pettis’ theorem and the separability of V the integrand is weakly measurable and hence measurable.
In addition, we can present this integral by

(8)

∫ T2

T1

Zdω =
∑

j

(

∑

i

∫ T2

T1

Dα
T1+zji[r]D

1−α
T2−

ζiT2−[r]dr

)

ej,

with norm given by

∣

∣

∣

∣

∫ T2

T1

Zdω

∣

∣

∣

∣

=

(

∑

j

∣

∣

∣

∣

∑

i

∫ T2

T1

Dα
T1+zji[r]D

1−α
T2−

ζiT2−[r]dr

∣

∣

∣

∣

2) 1
2

≤
∫ T2

T1

‖Dα
T1+Z[r]‖L2(V )|D1−α

T2−
ωT2−[r]|dr.

Since these one dimensional integrals under the sums are generalizations of the classical integral, i.e. if ζi were
in C1, we can interpret (7) to be an extension to classical separable Hilbert space valued integrals.

Remark 2. Later on ω will be given by a fractional Brownian motion BH with Hurst index H > 1/2, in the
way

BH(t) =
∞
∑

i=1

√
qieiβ

H
i (t), t ∈ R,

where (βH
i (t))i∈N is a sequence of stochastically independent one-dimensional fBm and

∑∞

i=1 qi < ∞, see
Section 4 for a detailed introduction of this process. In that situation, under the extra condition that

∞
∑

i=1

√
qi <∞,

the definition of the corresponding integral, i.e.

∫ T2

T1

ZdBH

was given in [17]. In the current article we do not need to require such a strong regularity condition for the
noise, but the price we have to pay is that we need to consider a bit more regular integrand functions Z, which
belong to the Hilbert-Schmidt space L2(V ).

In what follows, for H > 1/2 1 such that in fact 1/2 < β < β′ < H , let Ω be the (θt)t∈R-invariant set of paths
ω : R → V which are β′-Hölder continuous on any compact subinterval of R, being zero at zero. For the flow
(θt)t∈R on Ω of non-autonomous perturbations we consider the so-called Wiener shifts given by

θ : R× Ω → Ω, θtω(·) = ω(t+ ·)− ω(t).(9)

Lemma 3. Suppose that Z ∈ Cβ([T1, T2];L2(V )) and ω ∈ Ω such that 1− β′ < α < β. Then

∫ T2

T1

Zdω ∈ V

1This value H will be in Section 4 the Hurst parameter of a fractional Brownian motion.
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is well-defined in the sense of (7). In addition, there exists a constant c depending only on T2, β, β
′ such that

∣

∣

∣

∣

∫ T2

T1

Zdω

∣

∣

∣

∣

≤ c‖Z‖β|||θT2
ω|||β′,T1−T2,0(T2 − T1)

β′

= c‖Z‖β|||θT1
ω|||β′,0,T2−T1

(T2 − T1)
β′

= c‖Z‖β|||ω|||β′,T1,T2
(T2 − T1)

β′

.

Proof. Remembering that zji = (Z,Eji)L2(V ) where Eij denotes the element of the basis in L2(V ) given by
(6), we have

(

∑

ij

|Dα
T1+z(·)ji[r]|2

)
1
2

=

(

∑

ij

(

1

Γ(1− α)

(

zji(r)

(r − T1)α
+ α

∫ r

T1

zji(r) − zji(q)

(r − q)1+α
dq

))2) 1
2

≤
√
2c

(

(
∑

ji zji(r)
2)

1
2

(r − T1)α
+

(

∑

ij

(
∫ r

T1

zji(r) − zji(q)

(r − q)1+α
dq

)2) 1
2
)

≤
√
2c

(‖Z(r)‖L2(V )

(r − T1)α
+

∫ r

T1

‖Z(r)− Z(q)‖L2(V )

(r − q)1+α
dq

)

,

where we use that
∥

∥

∥

∥

∫ r

T1

Z(r)− Z(q)

(r − q)1+α
dq

∥

∥

∥

∥

L2(V )

≤
∫ r

T1

‖Z(r)− Z(q)‖L2(V )

(r − q)1+α
dq

and therefore, since Z ∈ Cβ([T1, T2];L2(V )),

(10) ‖Dα
T1+Z[r]‖L2(V ) ≤ c‖Z‖β((r − T1)

−α + (r − T1)
β−α).

Similarly, for ω ∈ Ω, it is straightforward to obtain that

(11) |D1−α
T2−

ωT2−[r]| ≤ c|||ω|||β′,T1,T2
(T2 − r)α+β′−1.

In fact, thanks to the definition of (θt)t∈R given by (9), the following property follows:

D1−α
T2−

ωT2−[r] =
(−1)1−α

Γ(α)

(

ω(r)− ω(T2)

(T2 − r)1−α
+ (1 − α)

∫ T2

r

ω(r)− ω(q)

(q − r)2−α
dq

)

=
(−1)1−α

Γ(α)

(

ω(τ + T2)− ω(T2)

(−τ)1−α
+ (1− α)

∫ T2

τ+T2

ω(τ + T2)− ω(q)

(q − τ − T2)2−α
dq

)

=
(−1)1−α

Γ(α)

(

θT2
ω(τ)

(−τ)1−α
+ (1− α)

∫ 0

τ

θT2
ω(τ)− θT2

ω(q)

(q − τ)2−α
dq

)

= D1−α
0− (θT2

ω)0−[τ ],

where τ = r−T2 ∈ [T1−T2, 0]. From (11), since θT2
ω ∈ Cβ′

([T1−T2, 0];V ) we also know that |D1−α
0− (θT2

ω)0−[τ ]| ≤
c|||θT2

ω|||β′,T1−T2,0(T2 − r)α+β′−1 and therefore, for any ω ∈ Ω we obtain

(12) |D1−α
T2−

ωT2−[r]| ≤ c|||θT2
ω|||β′,T1−T2,0(T2 − r)α+β′−1.
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Thus, combining (10) and (12), this leads to

∣

∣

∣

∣

∫ T2

T1

Zdω

∣

∣

∣

∣

≤c‖Z‖β|||θT2
ω|||β′,T1−T2,0

∫ T2

T1

((r − T1)
−α + (r − T1)

−α+β)(T2 − r)α+β′−1dr

≤c‖Z‖β|||θT2
ω|||β′,T1−T2,0((T2 − T1)

β′

+ (T2 − T1)
β+β′

)

≤c‖Z‖β|||θT2
ω|||β′,T1−T2,0(T2 − T1)

β′

.

The constant c appearing above depends on β and β′.
Note that the left hand side is independent of the choice of α contained in an appropriate interval.

�

Remark 4. As a generalization of Zähle [23] Theorem 2.5 we have the additivity of the integrals:

∫ T2

T1

Zdω +

∫ T3

T2

Zdω =

∫ T3

T1

Zdω for T1 < T2 < T3.

Furthermore, for the set Ω introduced above and the flow θ defined by (9), we can also establish the behavior
of the stochastic integral when performing a change of variable, which is a generalization of Lemma 5 in [6].
Nevertheless, for the sake of completeness, we include here a short proof of it.

Remark 5. For any τ ∈ R yields

∫ T2

T1

Z(r)dω(r) =

∫ T2−τ

T1−τ

Z(r + τ)dθτω(r).

Proof. We know that

∫ T2

T1

Z(r)dω(r) =
∑

j

(

∑

i

∫ T2

T1

Dα
T1+zji[r]D

1−α
T2−

ζiT2−[r]dr

)

ej ,

where zji = (Z,Eji)L2(V ) and ζiT2− = (ωT2−(t), ei) have been introduced previously in the construction of
the integral. Taking into account the definition of the fractional derivatives and the expression of the Wiener
shift, making the change of variables s = r − τ and afterwards renaming s as r, we have

∫ T2

T1

Dα
T1+zji[r]D

1−α
T2−

ζiT2−[r]dr =

∫ T2−τ

T1−τ

Dα
(T1−τ)+zji(τ + ·)[r]D1−α

(T2−τ)−θτ ζi(T2−τ)−[r]dr.

Therefore
∫ T2

T1

Z(r)dω(r) =
∑

j

(

∑

i

∫ T2−τ

T1−τ

Dα
(T1−τ)+zji(τ + ·)[r]D1−α

(T2−τ)−θτζi(T2−τ)−[r]dr

)

ej

=

∫ T2−τ

T1−τ

Z(r + τ)dθτω(r).

�

In the following we consider non-linear operators G : V → L2(V ) with appropriate regularity assumptions,
which allows to establish the next collection of estimates:

Lemma 6. Let G : V → L2(V ) be a twice continuously Fréchet–differentiable operator with bounded first
and second derivatives. Let us denote, respectively, by cDG, cD2G the bounds for these derivatives and set
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cG = ‖G(0)‖L2(V ). Then, for u1, u2, v1, v2 ∈ V , we have

‖G(u1)‖L2(V ) ≤ cG + cDG|u1|,
‖G(u1)−G(v1)‖L2(V ) ≤ cDG|u1 − v1|,
‖G(u1)−G(v1)− (G(u2)−G(v2))‖L2(V )

≤ cDG|u1 − v1 − (u2 − v2)|+ cD2G|u1 − u2|(|u1 − v1|+ |u2 − v2|).

The proof of this Lemma is straightforward, see for instance Maslowski and Nualart [17].
In the next lemma we estimate the fractional derivative of a very specific term which will appear later.

Lemma 7. Let S be the semigroup generated by −A introduced at the beginning of this subsection and assume
that G satisfies the assumptions of Lemma 6. Assume that u ∈ Cβ,∼([T1, T2];V ) for T1 ≥ 0. Then for the
orthonormal base (ei)i∈N of V introduced at the beginning of this section, for any i, j ∈ N,

(ei, S(t− ·)G(u(·))ej) ∈ IαT1+(Lp((T1, t);R)).

In addition, the mapping r 7→ Dα
T1+

S(t − ·)G(u(·))[r] is measurable on [T1, t] for t ≤ T2 and satisfies the
estimate

||Dα
T1+S(t− ·)G(u(·))[r]||L2(V ) ≤ c(1 + ‖u‖β,∼)(r − T1)

−α

(

1 +
(r − T1)

β

(t− r)β

)

.

Proof. We restrict ourselves to the case T1 = 0. We want to prove that

e−λi(t−·)(ei, G(u(·))ej) ∈ Iα0+(Lp((0, t);R)),

p > 1. Since e−λi(t−·) is Lipschitz on [0, t] it is enough to consider a Lipschitz function g : V → R, where the
Lipschitz constant is denoted by Lg, and ask whether g(u(·)) ∈ Iα0+(Lp((0, t);R)). To see this property we
apply Samko et al. [20] Theorem 13.2. Trivially g(u(·)) ∈ Lp((0, t);R) and g(u(0)) exists since u is continuous
on [0, t). Stated as before β > α (see Lemma 3), choosing p > 1 such that pβ < 1 (and hence pα < 1) and
p(1 + α− β) < 1, and considering

ψǫ(r) =







∫ r−ǫ

0
g(u(r))−g(u(q))

(r−q)1+α dq : r > ǫ

g(u(r))
α

(

1
ǫα − 1

rα

)

: 0 ≤ r ≤ ǫ

we want to show that the function ψǫ converges to ψ0 given by the first part of the definition of ψǫ for ǫ = 0
in Lp((0, t);R) for ǫ→ 0. Take at first ǫ < r, then

∫ t

ǫ

|ψǫ(r) − ψ0(r)|pdr ≤ Lg‖u‖β,∼
∫ t

ǫ

(
∫ r

r−ǫ

(r − q)β

(r − q)1+αqβ
dq

)p

dr

≤ Lg‖u‖β,∼
∫ t

ǫ

∫ r

r−ǫ

(r − q)pβ

(r − q)p(1+α)qpβ
dqǫp/p

′

dr

where p′ is the conjugate exponent of p. Since the interior integral can be enlarged to an integral from 0 to r
which is finite if p is close to 1, we have that

∫ t

ǫ

|ψǫ(r) − ψ0(r)|pdr ≤ cǫp/p
′

∫ t

0

r1−(1+α)pdr

that converges to zero for ǫ→ 0. Furthermore, for r ∈ [0, ǫ], the convergence of ψǫ to 0 in Lp((0, t);R) follows
thanks to the boundedness of g(u(·)) over that interval for p close to 1.
To see the a priori estimate for Dα

T1+
S(t− ·)G(u(·))[r] we refer to (18) where a similar estimate is derived.

�

We also can state that ζiT2− = (ωT2−(t), ei) is in I
1−α
T2−

(Lp′((T1, T2);R)) for any p
′ > 1 because this function is

β′–Hölder continuous. Note that ζiT2− ∈ Lp′((T1, T2);R)) and in addition

r 7→ ζiT2−(r)

(T2 − r)1−α
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is β′ + α − 1–Hölder-continuous when we augment this definition by 0 at r = T2, which is based on the
fact that ζiT2−(T2) = 0, which follows from ωT2−(T2) = 0. Hence this function is in Lp′((T1, T2);R)) for
any p′ > 1. We can also check the other conditions in Samko [20] Theorem 13.2 such that we get that
ζiT2− ∈ I1−α

T2−
(Lp′((T1, T2);R)). Hence the integral

(13)

∫ T2

T1

Dα
T1+S(t− ·)G(u(·))[r]D1−α

T2−
ωT2

[r]dr

is well defined in the sense of (8). In particular by Lemma 7, by the fact that (ei, S(t)G(u(0))ej) is bounded
and the previous discussion, it make sense to define the integral (13) by means of its components.

3. Non–autonomous dynamical systems of evolution equations driven by an integral with

Hölder continuous integrator

We now consider the following evolution equation on [0, T ]:

(14) du = Audt+ F (u) dt+G(u) dω, u(0) = u0 ∈ V

driven by a Hölder continuous path ω with Hölder exponent greater than 1/2.
This equation is interpreted in the mild sense such that for t ∈ [0, T ] we have to solve

(15) u(t) = S(t)u0 +

∫ t

0

S(t− r)F (u(r))dr +

∫ t

0

S(t− r)G(u(r))dω.

The non-linear term G satisfies the assumptions of Lemma 6. The mapping F : V → V is supposed to be
Lipschitz continuous, but in fact we assume that F ≡ 0; this is a simplification that we make for brevity, and
of course that we would achieve the same existence results as we obtain below assuming that F were Lipschitz.

The integral with respect to dω is interpreted in the sense of the previous section. Let u in Cβ,∼([0, T ];V )
and denote by T (·, ω, u0) the operator defined on Cβ,∼([0, T ];V ) given by the right hand side of (15).
Note that T also depends on the time interval [0, T ], but to make simpler the notation we do not indicate this
dependence in the notation of T .
We also note that we can consider the system (14) on other general time intervals [T1, T2].

Existence of this kind of equation has been investigated by Maslowski and Nualart [17] when considering as
integrators of the stochastic integrals a fractional Brownian motion with Hurst parameter in (1/2, 1). However,
as we pointed out in the Introduction and in Remark 2, in this article we want to present the existence theory
in other function spaces, namely the space of Hölder continuous functions for appropriate exponents.

We need the following technical lemma.

Lemma 8. Let a > −1, b > −1 and a+ b ≥ −1, d > 0 and t ∈ [0, T ]. If for ρ > 0 we define

K(ρ) := sup
t∈[0,T ]

td
∫ 1

0

e−ρt(1−v)va(1 − v)bdv,

then we have that limρ→∞K(ρ) = 0.

Proof. The result follows easily since

td
∫ 1

0

e−ρt(1−v)va(1 − v)bdv ≤
{

ρ−
d
2

∫ 1

0 v
a(1 − v)bdv : for t ≤ ρ−

1
2

td
∫ 1

0 e
−ρ

1
2 (1−v)va(1− v)bdv : for t > ρ−

1
2

which means that



10 Y. CHEN, H. GAO, M. J. GARRIDO-ATIENZA, AND B. SCHMALFUSS

K(ρ) ≤ sup
t∈[0,T ]















ρ−
d
2B(a+ 1, b+ 1) : for t ≤ ρ−

1
2

tde−ρ
1
2
Γ(a+ 1)Γ(b+ 1)

Γ(b+ a+ 2)
1F1(a+ 1, b+ a+ 2, ρ

1
2 ) : for t > ρ−

1
2















where B(·, ·) denotes the Beta function, Γ(·) the Gamma function and

1F1(x, y, z) :=
Γ(y)

Γ(y − x)Γ(x)

∫ 1

0

ezvvx−1(1− v)y−x−1 dv,

is the Kummer function or hypergeometric function. The property on the convergence of K(ρ) follows from
the asymptotic properties of the Kummer function, see for instance Chapter 13 in [1]. In particular, according
to property 13.1.4. in [1] we have

1F1(x, y, z) =
Γ(y)

Γ(x)
ezzx−y(1 +O(|z|−1))

which implies

K(ρ) ≤max(ρ−
d
2B(a+ 1, b+ 1), T dΓ(b+ 1)ρ−

1
2
(b+1)(1 +O(ρ−

1
2 ))),

and therefore the convergence holds true since b > −1. �

Of course the function K introduced in the last lemma also depends on the parameters d, a and b, however in
what follows we do not indicate this dependence except the one on ρ.

The next result will be crucial when proving the existence of solutions to (14) by using the Banach fixed point
theorem. Remember that we have chosen 1/2 < β < β′ < H with 1− β′ < α < β.

Lemma 9. For any T > 0 there exists a cT > 0 such that for ω ∈ Ω and u ∈ Cβ,∼([0, T ];V )

(16) ‖T (u, ω, u0)‖β,ρ,∼ ≤ cT |||ω|||β′,0,TK(ρ)(1 + ‖u‖β,ρ,∼) + c|u0|.

Proof. By the definition of the norm and of T ,

‖T (u, ω, u0)‖β,ρ,∼ ≤ sup
t∈[0,T ]

e−ρt

∣

∣

∣

∣

∫ t

0

S(t− r)G(u(r))dω

∣

∣

∣

∣

+ sup
0<s<t≤T

sβe−ρt

|t− s|β
∣

∣

∣

∣

∫ t

s

S(t− r)G(u(r))dω

∣

∣

∣

∣

+ sup
0<s<t≤T

sβe−ρt

|t− s|β
∣

∣

∣

∣

∫ s

0

(S(t− r)− S(s− r))G(u(r))dω

∣

∣

∣

∣

+ sup
t∈[0,T ]

e−ρt|S(t)u0|+ sup
0<s<t≤T

sβe−ρt |S(t)u0 − S(s)u0|
|t− s|β .

(17)

Since

|D1−α
t− ω[r]| ≤ c|||ω|||β′,0,T (t− r)α+β′−1,
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by using the inequalities of Lemma 6 and (4) we get

sβe−ρt

∣

∣

∣

∣

∫ t

s

S(t− r)G(u(r))dω

∣

∣

∣

∣

≤ csβe−ρt

∫ t

s

(‖S(t− r)‖L(V )‖G(u(r))‖L2(V )

(r − s)α

+

∫ r

s

‖S(t− r)− S(t− q)‖L(V )‖G(u(r))‖L2(V )

(r − q)1+α
dq

+

∫ r

s

‖S(t− q)‖L(V )‖G(u(r)) −G(u(q))‖L2(V )

(r − q)1+α
dq

)

|||ω|||β′,0,T (t− r)α+β′−1dr

≤ cT β|||ω|||β′,0,T

(
∫ t

s

e−ρ(t−r) (cG + cDG|u(r)|)e−ρr

(r − s)α
(t− r)α+β′

−1dr

+

∫ t

s

∫ r

s

e−ρ(t−r) e
−ρr(cG + cDG|u(r)|)(r − q)β

(t− r)β(r − q)1+α
dq(t− r)α+β′−1dr

+

∫ t

s

∫ r

s

e−ρ(t−r) e
−ρrcDG|u(r)− u(q)|qβ

(r − q)1+αqβ
dq(t− r)α+β′−1dr

)

≤ cT β|||ω|||β′,0,T (t− s)β
′

(1 + ‖u‖β,ρ,∼)
∫ t

s

e−ρ(t−r)(r − s)−α(t− r)α−1dr

+ cT β|||ω|||β′,0,T (1 + ‖u‖β,ρ,∼)
∫ t

s

e−ρ(t−r)(r − s)β−α(t− r)α+β′−1−βdr

+ cT β|||ω|||β′,0,T (t− s)β
′‖u‖β,ρ,∼

∫ t

s

e−ρ(t−r)(r − s)−α(t− r)α−1dr.

(18)

Performing a change of variable, it is easy to see that

(t− s)β
′

∫ t

s

e−ρ(t−r)(r − s)−α(t− r)α−1dr

=(t− s)β
′−β(t− s)β

∫ 1

0

e−ρ(t−s)(1−v)v−α(1− v)α−1dv = (t− s)βK(ρ)

taking in Lemma 8 a = −α, b = α− 1, d = β′ − β and t− s as the corresponding t there. The second integral
on the right hand side may be rewritten in the same way, since

∫ t

s

e−ρ(t−r)(r − s)β−α(t− r)α+β′−1−βdr ≤ (t− s)β
′

∫ t

s

e−ρ(t−r)(r − s)−α(t− r)α−1dr.

Therefore, coming back to (18) we obtain

sβe−ρt

∣

∣

∣

∣

∫ t

s

S(t− r)G(u(r))dω

∣

∣

∣

∣

≤ cT |||ω|||β′,0,T (t− s)βK(ρ)(1 + ‖u‖β,ρ,∼).

In a similar manner than before for the first expression on the right hand side of (17) we obtain

e−ρt

∣

∣

∣

∣

∫ t

0

S(t− r)G(u(r))dω

∣

∣

∣

∣

≤ cT |||ω|||β′,0,TK(ρ)(1 + ‖u‖β,ρ,∼).

For the third term on the right hand side of (17) we should follow similar steps than before when obtaining
(18). Now we need to replace the estimates for ‖S(t− r)‖L(V ) and ‖S(t− r)− S(t− q)‖L(V ) by estimates for
‖S(t− r)− S(s− r)‖L(V ) and ‖S(t− r)− S(t− q)− (S(s− r)− S(s− q))‖L(V ) respectively, for which we use
(3) and (4) for appropriate parameters. Then it is not hard to see that for α′ + β < α+ β′, 0 < α < α′ < 1:



12 Y. CHEN, H. GAO, M. J. GARRIDO-ATIENZA, AND B. SCHMALFUSS

sβe−ρt

∣

∣

∣

∣

∫ s

0

(S(t− r) − S(s− r))G(u(r))dω

∣

∣

∣

∣

≤ c(t− s)β |||ω|||β′,0,TT
β

(
∫ s

0

e−ρ(t−r) (cG + cDG|u(r)|)e−ρr

(s− r)α+β
(s− r)α+β′−1dr

+

∫ s

0

∫ r

0

e−ρ(t−r) e
−ρr(cG + cDG|u(r)|)(r − q)α

′

(s− r)α′+β(r − q)1+α
dq(s− r)α+β′−1dr

+

∫ s

0

∫ r

0

e−ρ(t−r) e
−ρrcDG|u(r)− u(q)|qβ
(s− r)β(r − q)1+αqβ

dq(s− r)α+β′−1dr

)

≤ c(t− s)βT β|||ω|||β′,0,T (1 + ‖u‖β,ρ,∼)
∫ s

0

e−ρ(t−r)(s− r)β
′−1−βdr

+ c(t− s)βT β|||ω|||β′,0,T (1 + ‖u‖β,ρ,∼)
∫ s

0

e−ρ(t−r)rα
′−α(s− r)α+β′−1−α′−βdr

+ c(t− s)βT β|||ω|||β′,0,T‖u‖β,ρ,∼
∫ s

0

e−ρ(t−r)r−α(s− r)α−β+β′−1dr.

The third integral on the right hand side of the last inequality can be estimated by

sβ
′
−β

∫ 1

0

e−ρs(1−v)v−α(1− v)α−1dv

and in a similar manner the other integrals. All the previous estimates imply that

∥

∥

∥

∥

∫ t

s

S(t− r)G(u(r))dω

∥

∥

∥

∥

β,ρ,∼

≤ cT |||ω|||β′,0,TK(ρ)(1 + ‖u‖β,ρ,∼).

Now we estimate the terms concerning the initial data. Notice that because of the properties of the semigroup
(2) and (3) we have

|S(t)u0 − S(s)u0| ≤ |(S(t− s)− id)S(s)u0| ≤ s−β(t− s)β |u0|,
and therefore

sup
t∈[0,T ]

e−ρt|S(t)u0|+ sup
0<s<t≤T

sβe−ρt |S(t)u0 − S(s)u0|
|t− s|β ≤ c|u0|.

Finally we note that S(·)u0 ∈ V is continuous. �

Remark 10. (i) The reason to study the problem of existence and uniqueness in the space Cβ,∼([0, T ];V ) is
coming from the fact that S is not β-Hölder-continuous at zero in V . However, assuming that u0 ∈ Vβ then
we could study the problem of existence and uniqueness in the Banach space Cβ([0, T ];V ), since then

|S(t)u0 − S(s)u0| ≤ |(S(t− s)− id)S(s)u0| ≤ (t− s)β |u0|Vβ
.

Indeed, all appearing integrals of (15) can be estimated in this space. We omit the proof but, in fact, the factor
sβ is never used for the estimate of the Hölder-norm of the integrals.

(ii) Following the same steps than in the proof of the above lemma, for every T > 0 and t ≤ T , there exists a
cT > 0 such that for u ∈ Cβ,∼([0, T ];V ) we obtain

∣

∣

∣

∣

∫ t

0

S(t− r)G(u(r))dω

∣

∣

∣

∣

Vβ

≤ cT |||ω|||β′,0,T (1 + ‖u‖β,∼).

Moreover, by using (2) and (4), when replacing u ∈ Cβ,∼([0, T ];V ) by u ∈ Cβ([0, T ];V ), we obtain that
∣

∣

∣

∣

∫ t

0

S(t− r)G(u(r))dω

∣

∣

∣

∣

Vβ

≤ cT |||ω|||β′,0,T (1 + ‖u‖β),
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where the constant cT is independent of u and ω. Hence we obtain the following estimate when considering
the V -norm:

∣

∣

∣

∣

∫ t

0

S(t− r)G(u(r))dω

∣

∣

∣

∣

≤ cT |||ω|||β′,0,T (1 + ‖u‖β),

where this constant cT is also independent of u and ω.
(iii) Assuming that u0 ∈ V the corresponding solution u of (15) satisfies u(t) ∈ Vβ for every t > 0. The proof
of this assertion follows immediately, since for t > 0,

|u(t)|Vβ
≤ |S(t)u0|Vβ

+

∣

∣

∣

∣

∫ t

0

S(t− r)G(u(r))

∣

∣

∣

∣

Vβ

≤ ct−β |u0|+ cT |||ω|||β′,0,T (1 + ‖u‖β,∼) <∞.

Now we study the norm of T (u1, ω, u01)− T (u2, ω, u02) in C
β,∼([0, T ];V ). In order to do that, we apply the

same techniques than above with the difference that now it is necessary to use the last inequality for G given
in Lemma 6.

Lemma 11. For every T > 0 there exists a cT > 0 such that for every ρ > 0, ω ∈ Ω and u1, u2 ∈
Cβ,∼([0, T ];V ) with u1(0) = u01, u2(0) = u02, with u01, u02 ∈ V ,

‖T (u1, ω, u01)− T (u2, ω, u02)‖β,ρ,∼
≤cT |||ω|||β′,0,T (1 + ‖u1‖β,∼ + ‖u2‖β,∼)K(ρ)‖u1 − u2‖β,ρ,∼ + c|u01 − u02|.

(19)

Proof. As we have already mentioned, the proof follows by using the same techniques as in the proof of Lemma
9 and taking into account Lemma 6. We only show how to manage the following term:

sβe−ρt

∣

∣

∣

∣

∫ t

s

S(t− r)(G(u1(r)) −G(u2(r)))dω

∣

∣

∣

∣

≤ cT |||ω|||β′,0,T

(
∫ t

s

e−ρ(t−r)(t− r)α+β′−1

(

cDGe
−ρr|u1(r)− u2(r)|

(r − s)α

+

∫ r

s

cDGe
−ρr|u1(r) − u2(r)|(r − q)β

(r − q)1+α
dq

+

∫ r

s

cDGe
−ρr|u1(r) − u1(q) − (u2(r)− u2(q))|qβ

(r − q)1+αqβ
dq

+

∫ r

s

cD2Ge
−ρr|u1(r) − u2(r)|(|u1(r) − u1(q)|+ |u2(r) − u2(q)|)qβ

(r − q)1+αqβ
dq

)

dr

≤ cT |||ω|||β′,0,T (t− s)β
′

(1 + ‖u1‖β,∼ + ‖u2‖β,∼)‖u1 − u2‖β,ρ,∼

×
∫ t

s

e−ρ(t−r)(r − s)−α(t− r)α−1dr

≤ cT |||ω|||β′,0,T (t− s)β(1 + ‖u1‖β,∼ + ‖u2‖β,∼)‖u1 − u2‖β,ρ,∼K(ρ),

where K(ρ) has been defined in the proof of lemma 9. �

We are now in the position to prove the main theorem of this section.

Theorem 12. Let u0 ∈ V and assume that G satisfies the assumptions of Lemma 6. Then for every T > 0
the equation (15) has a unique solution u in Cβ,∼([0, T ];V ).

Proof. From Lemma 9, taking ρ large enough such that cT |||ω|||β′,0,TK(ρ) < 1
2 , we obtain that T maps the

ball

B := {u ∈ Cβ,∼([0, T ];V ) : ‖u‖β,ρ,∼ ≤ R}, with R := 1 + 2c|u0|
into itself. Furthermore, by the equivalence of the norms ‖ · ‖β,ρ,∼ and ‖ · ‖β,∼, there exists a constant R1 such
that
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sup
u∈B

‖u‖β,∼ ≤ eρT sup
u∈B

‖u‖β,ρ,∼ ≤ ReρT =: R1.

Therefore, for u01 = u02 = u0, it is possible to find a ρ1 > ρ such that, if u1, u2 ∈ B then

‖T (u1, ω, u0)− T (u2, ω, u0)‖β,ρ1,∼ ≤ cT |||ω|||β′,0,T (1 + 2R1)K(ρ1)‖u1 − u2‖β,ρ1,∼

≤ 1

2
‖u1 − u2‖β,ρ1,∼

which follows by (19). This means that T (·, ω, u0) is a contraction on B and its fixed point then solves (15).
To see that a solution is unique in general take two solutions u1, u2 such that ‖u1‖β,∼, ‖u2‖β,∼ ≤ R. Then

‖u1 − u2‖β,ρ,∼ = ‖T (u1, ω, u0)− T (u2, ω, u0)‖β,ρ,∼

≤ cT |||ω|||β′,0,T (1 + 2R)K(ρ)‖u1 − u2‖β,ρ,∼ <
1

2
‖u1 − u2‖β,ρ,∼

for sufficiently large ρ. But the above inequality is only possible provided that u1 = u2. �

We conclude this section proving that u defines a non–autonomous dynamical system.

Theorem 13. The solution of (15) generates a non–autonomous dynamical system ϕ : R+ × Ω × V → V
given by

ϕ(t, ω, u0) = S(t)u0 +

∫ t

0

S(t− s)G(u(s))dω.

Moreover, u0 7→ ϕ(t, ω, u0) is continuous on V for t ≥ 0 and ω ∈ Ω, and for t > 0, ω ∈ Ω the mapping
u0 7→ ϕ(t, ω, u0) is compact.

Proof. In order to prove that ϕ is a cocycle we will make use of Remark 5, which establishes how the integral
with Hölder continuous integrator behaves when making a change of variable: for t, τ ∈ R

+, ω ∈ Ω and
u0 ∈ V ,

∫ t+τ

τ

S(t+ τ − s)G(u(s))dω(s) =

∫ t

0

S(t− r)G(u(r + τ))dθτω(r).

Then, for t, τ ∈ R
+ and ω ∈ Ω,

ϕ(t+ τ, ω, u0) = S(t+ τ)u0 +

∫ t+τ

0

S(t+ τ − s)G(u(s))dω(s)

= S(t)

(

S(τ)u0 +

∫ τ

0

S(τ − s)G(u(s))dω(s)

)

+

∫ t

0

S(t− r)G(u(r + τ))dθτω(r).

Therefore, setting y(·) = u(·+ τ) on [0, t],

ϕ(t+ τ, ω, u0) = S(t)y(0) +

∫ t

0

S(t− r)G(y(r))dθτω(r)

= ϕ(t, θτω, ·) ◦ ϕ(τ, ω, u0).

It is trivial that ϕ(0, ω, u0) = u0 and, by the parameter version of the fixed point theorem, for fixed (t, ω), the
fixed point depends continuously on u0 ∈ V .
To see the compactness of ϕ for t > 0 we consider for some η > 0 the set B(0, η) ⊂ V . With respect to the
proof of Theorem 12 we consider a ρ such that cT |||ω|||β′,0,TK(ρ) < 1/2. Then we know that for any solution u
of (14) and initial condition in the ball B(0, η) we have that ‖u‖β,ρ,∼ ≤ 1+ 2cη, hence ‖u‖β,∼ ≤ eρT (1+ 2cη).
Then the compactness follows therefore by Remark 10 (iii). �
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4. Random dynamical system for SPDEs driven by an fBm with H > 1/2.

In this section we study the non-autonomous dynamical system under measurability assumptions, in order
to get a random dynamical system (see Subsection 2.1 for the general definition). In particular, we need to
introduce a metric dynamical system, and for that, as driving process for our equation, we choose a V -valued
fractional Brownian motion, which definition is given below. Notice that, as pointed out in the Introduction
section, in order to get the cocycle property in this random setting it is crucial that the stochastic integrals
(i.e., the integrals with fractional Brownian motion as integrators), are defined in a pathwise way. This is
a qualitative difference to the definition of the classical stochastic integral where the integrand is a white noise.

Given H ∈ (0, 1), a continuous centered Gaußian process βH(t), t ∈ R, with the covariance function

EβH(t)βH(s) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

on an appropriate probability space (Ω,F ,P) is called a two–sided one-dimensional fractional Brownian mo-
tion, and H is the Hurst parameter.

Assume that Q is a bounded and symmetric linear operator on V which is of trace class, i.e., for the complete
orthonormal basis (ei)i∈N in V there exists a sequence of nonnegative numbers (qi)i∈N such that trQ :=
∑∞

i=1 qi < ∞. Then a continuous V -valued fractional Brownian motion BH with covariance operator Q and
Hurst parameter H is defined by

BH(t) =

∞
∑

i=1

√
qieiβ

H
i (t), t ∈ R,

where (βH
i (t))i∈N is a sequence of stochastically independent one-dimensional fBm. Notice that the above

series is convergent in L2(Ω,F ,P) since ∑∞

i=1 qi <∞ and E(βH
i (t))2 = |t|2H for t ∈ R.

When H = 1/2, BH(t) is the standard Brownian motion.

Using the definition of BH(t), Kolmogorov’s theorem ensures that BH has a continuous version. Thus we can
consider the canonical interpretation of an fBm: let C0(R, V ), the space of continuous functions on R with
values in V such that are zero at zero, equipped with the compact open topology. Let F = B(C0(R, V )) be
the associated Borel-σ-algebra and P the distribution of the fBm BH , and (θt)t∈R be the flow of Wiener shifts
given by (9).
With this choice the first part of the random dynamical system definition is achieved:

Lemma 14. (C0(R, V ),B(C0(R, V )),P, θ) is an ergodic metric dynamical system.

The proof of this lemma can be found in [18] and in [11]. Indeed the previous result holds true no matter the
value of the Hurst parameter in (0, 1).

This (canonical) process has a version, denoted by ω, which is β′-Hölder continuous on any interval [−k, k]
for β′ < H , see Kunita [15], Theorem 1.4.1.
As we already did in Section 2.2, for 1/2 < β < β′ < H such that 1−β′ < β < α, we denote by Ω ⊂ C0(R, V )
the set of functions which are β′-Hölder continuous on any interval [−k, k], k ∈ N, and are zero at zero.

Lemma 15. We have Ω ∈ B(C0(R, V )) and P(Ω) = 1. In addition, Ω is (θt)t∈R-invariant.

Proof. First we note that

C0(R, V ) ∋ ω 7→ |||ω|||β′,−k,k ∈ R̄
+ = R

+ ∪ {+∞}
is measurable. Indeed we have

|||ω|||β′,−k,k = sup
−k≤s<t≤k,s,t∈Q

|ω(t)− ω(s)|
|t− s|β′

.

Then
Ω =

⋂

k∈N

{ω ∈ C0(R, V ) : |||ω|||β′,−k,k <∞} ∈ B(C0(R, V )).
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The (θt)t∈R-invariance of Ω is straightforward. �

In what follows we consider the ergodic metric dynamical system introduced above restricted to the set Ω: let
F̃ be the trace-σ-algebra of F with respect to Ω, let P̃ the restriction of P to this σ-algebra, and θ represents
the restriction of the Wiener shifts to Ω×R. Then (Ω, F̃ , P̃, θ) forms a metric dynamical system such that for

every Ã ∈ F̃ and every A ∈ F with Ã = A
⋂

Ω we have that P̃(Ã) = P(A) independent of the representation

by A. In addition, the ergodicity of (C0(R, V ),B(C0(R, V )),P, θ) is transferred to (Ω, F̃ , P̃, θ), see [3] for details.

Once we have the adequate ergodic metric dynamical system given by (Ω, F̃ , P̃, θ), we can prove the main
result of this section:

Theorem 16. Assume that the driving process ω of (15) is a fractional Brownian motion with Hurst index
greater than 1/2. Under the conditions of Theorem 12, for every u0 ∈ V there exists a unique mild solution
u ∈ Cβ,∼([0, T ];V ), which generates a random dynamical system ϕ : R+ × Ω× V → V defined by

ϕ(t, ω, u0) = S(t)u0 +

∫ t

0

S(t− s)G(u(s))dω.

Proof. Having identified ω as an fBm with Hurst index greater than H > 1/2, the existence of a unique
pathwise mild solution to (15) follows by the β′-Hölder regularity of ω and Theorem 12.
Furthermore, the pathwise definition of the integral just gave us the non–autonomous dynamical system ϕ
studied in Section 3. Therefore, all we have to do is to establish the proper measurability conditions for the
mapping ϕ, in that case the B(R+) ⊗ F̃ ⊗ B(V ),B(V ) measurability, according to the definition introduced
in Subsection 2.1. It suffices to observe that, when starting the iteration procedure of the Banach fixed point
theorem with a measurable initial function u0, then ϕ(t, ω, u0) is a pointwise limit of measurable mappings.
Moreover, the parameter version of the fixed point theorem for fixed (t, ω) ensures that the fixed point depends
continuously on u0 ∈ V . These last two considerations together with Lemma III.14 in [4] allows to claim that
ϕ(t, ω, u0) is measurable with respect to its three variables. �

Remark 17. Let us briefly comment what we could do in case of having a more regular initial condition,
assuming u0 ∈ Vβ . In that case we could use as phase space Cβ([0, T ];V ), since in this situation we would not
need to consider the modification of this space given by Cβ,∼([0, T ];V ). In addition, due to the regularizing
effect of the equation, the unique pathwise mild solution u ∈ Cβ([0, T ];V ) to (15) would satisfy that u(t) ∈ Vβ
for t ∈ (0, T ], see Remark 10. Thus, when having such a more regular initial datum, we could prove the
existence of a random dynamical system ϕ : R+ × Ω × Vβ → Vβ defined by the corresponding solution to the
stochastic evolution equation.

In a forthcoming paper, see [12], we will deal with the study of the asymptotic behavior of the pathwise mild
solution to (15) by analyzing the existence and uniqueness of the pullback attractor (or random attractor
when ω is a fBm with Hurst index greater than 1/2) associated to the non-autonomous dynamical system ϕ
(random dynamical system, respectively).
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[22] L.C. Young, An integration of Höder type, connected with Stieltjes integration, Acta Math., 67: 251–282, 1936.
[23] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields, 111(3):

333–374, 1998.

(Yong Chen) Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing

210046, China,

E-mail address, Yong Chen: youngchen329@126.com

(Hongjun Gao) Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing

210046, China,

E-mail address, Hongjun Gao: gaohj@njnu.edu.cn
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