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Abstract

In this paper it is shown that the sub-supersolution method works for age-dependent

diffusive nonlinear systems with non-local initial conditions. As application, we prove

the existence and uniqueness of positive solution for a kind of Lotka-Volterra systems,

as well as the blow-up in finite time in a particular case.
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1 Introduction

The introduction of the age-structure in the population dynamic models supposes a con-

siderable advance insofar as it permits the dependence of the age of parameters so sensitive

to it as the birth and mortality rates are. From the mathematical point of view, the com-

bination of the equation and, mainly, the nonlocal initial condition for the age presents

many interesting and nontrivial questions.

After, this structure has been exploited to describe the evolution of a population

divided in two sub-populations in, for instance, the frame of the epidemics theory; in this

case, the age structure is rather a contagion-time structure.
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A former step is the introduction the age structure in the interaction of species with

or without diffusion. The first attempts were the interaction of two species in which one

of them has an age-structure and the other one has a structure independent of the age,

see [8], [13], or only numeric approaches when the age-structure is considered for the two

species, [15]. But as long as we know the theoretical age-dependent problem for the two

species has not been tackled.

Because the interactions between the species are nonlinear, it is necessary to solve some

problems for one age-dependent equation with a nonlinear reaction term. For this kind of

problems, unsolved also in our knowledge, we proved the validity of the sub-supersolutions

method (see [9]). So, it is the moment to profit it to approach the problem of the interaction

of two species with age-structure, extending the sub-supersolutions method to systems and

checking the results when the interaction of the species are the classical competition, prey-

predator and symbiotic.

Our main goal in this paper is the study of the application of the sub-supersolutions

method to systems age depending. The model we present perhaps it is not the most

realistic possible, but it allows us to check the difficulties and advantages of the application

on the cited method.

We analyze the existence and uniqueness of positive solution of the following age-

dependent diffusive Lotka-Volterra systems





ut + ua −∆u + µ1(x, a, t)u = u(λ− u + bv) in Ω×O,

vt + va −∆v + µ2(x, a, t)v = v(ν − v + cu) in Ω×O,

u(x, a, t) = v(x, a, t) = 0 on ∂Ω×O,

u(x, a, 0) = u0(x, a), v(x, a, 0) = v0(x, a) in Ω× (0, A†),

u(x, 0, t) =
∫ A†

0
β1(x, a, t)u(x, a, t)da in Ω× (0, T ),

v(x, 0, t) =
∫ A†

0
β2(x, a, t)v(x, a, t)da in Ω× (0, T ),

(1.1)

where Ω ⊂ IRN is a bounded domain with smooth boundary ∂Ω, A†, T > 0, O :=

(0, A†)× (0, T ), λ, ν, b, c ∈ IR and
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(H1) µi ∈ C0(Ω× [0, A†)× [0, T ]), µi(x, a, t) ≥ 0

0 < t < A†, x ∈ Ω, lima→A†

∫ t

0
µi(x, a− t + τ, τ)dτ = +∞,

A† < t < T, x ∈ Ω, lima→A†

∫ a

0
µi(x, τ, t− a + τ)dτ = +∞.

(H2) βi ∈ L∞(Ω×O), βi(x, a, t) ≥ 0. We will denote βi := ess sup(x,a,t)∈Ω×Oβi(x, a, t).

(H3) u0, v0 ∈ L2(Ω× (0, A†)).

System (1.1) models the behavior of two species with densities u(x, a, t) and v(x, a, t) of

age a > 0 at time t > 0 and at position x ∈ Ω, which cohabit in Ω. Here µi and βi

denote the natural death and fertility rates of each species, respectively. The species are

interacting in three different ways: if b, c < 0 they are competing, if b, c > 0 cooperating

and finally, if for instance b > 0 and c < 0, u represents the predator and v the prey. In

this context, b and c represent the interaction rates between the species and, finally, λ and

ν are the growth rates of the species, and they are considered as parameters.

We note that hypothesis (H1) assures that the solutions u and v vanish at a = A†

(see [11]), and so A† is the highest age attained by the individuals in the populations. In

another way, the positivity of the mortality rates of species is a natural but mathematically

unimportant condition as can be seen with the change of variables w = e−ktu, z = e−ktv

for k > 0 big enough.

In our knowledge, diffusive with age dependence nonlinear systems have not been

analyzed deeply previously. In [1], the local existence for a system is studied when the

nonlinearities satisfy some conditions out of our setting. In [16] and [17] two prey-predator

systems, including the total populations in the model, are analyzed by means a fixed point

theorem.

In this paper, we prove mainly the following result:

a) In the competition (b, c < 0), prey-predator (bc < 0) and weak cooperating (b, c > 0

and bc < 1) cases, there exists a unique positive solution for all λ, ν ∈ IR for all time

T > 0.

b) In the strong cooperating case (b, c > 0 and bc > 1) there exists a value λ0 such that

for λ, ν > λ0 the solution blows up in finite time.
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Observe that the results are in concordance with the ones obtained in the case of not

age dependence, see for instance [14]. In order to prove these results, first we show that

the sub-supersolution method works for this kind of systems, generalizing to systems the

result obtained in the scalar case in [9]. Then, we find appropriate sub-supersolutions in

each case. However, the proof of the blow-up result is more involved.

In fact, to solve the eigenvalue problem associated to (1.1), we define a compact oper-

ator whose principal eigenfunction is transformed to obtain the principal eigenfunction of

our problem. We study the adjoint of the former operator, see [6], [2], [4], [3], that leads

us to a backward problem whose solution has a similar transformation to build a function,

ϕ∗0, solution of a new backward problem also, which is used to prove the blow-up expected.

In Section 2 we build a sub-supersolution method. Section 3 is devoted to study the

existence and uniqueness of positive solutions of (1.1). Finally, in Section 4 we show that

in the strong cooperating case the solution blows up in finite time.

2 The sub-supersolution method

We consider the system





ut + ua −∆u + µ1(x, a, t)u = f(x, a, t, u, v) in Ω×O,

vt + va −∆v + µ2(x, a, t)v = g(x, a, t, u, v) in Ω×O,

u(x, a, t) = v(x, a, t) = 0 on ∂Ω×O,

u(x, a, 0) = u0(x, a), v(x, a, 0) = v0(x, a) in Ω× (0, A†),

u(x, 0, t) =
∫ A†

0
β1(x, a, t)u(x, a, t)da, in Ω× (0, T ),

v(x, 0, t) =
∫ A†

0
β2(x, a, t)v(x, a, t)da, in Ω× (0, T ).

(2.1)

Definition 2.1 A couple (u, v) is a solution of (2.1) if u, v : Ω×O −→ IR are measurable

functions such that u, v ∈ L2(O;H1
0 (Ω)) and verify

ut + ua + µ1u ∈ L2(O;H−1(Ω)), vt + va + µ2v ∈ L2(O;H−1(Ω))

f(·, ·, ·, u, v) ∈ L2(O;H−1(Ω)), g(·, ·, ·, u, v) ∈ L2(O; H−1(Ω))
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and for every w ∈ L2(O;H1
0 (Ω)) the following equalities hold

∫∫

O
〈ut + ua + µ1u,w〉dadt +

∫∫∫

Ω×O
∇u · ∇wdxdadt =

∫∫

O
〈f(·, a, t, u, v), w〉dadt

∫∫

O
〈vt + va + µ2v, w〉dadt +

∫∫∫

Ω×O
∇v · ∇wdxdadt =

∫∫

O
〈g(·, a, t, u, v), w〉dadt

where 〈·, ·〉 stands for the duality between H−1(Ω) and H1
0 (Ω). Moreover, the initial con-

ditions for the time and for the age must be verified in L2(Ω× (0, A†)) and L2(Ω× (0, T ))

respectively.

Definition 2.2 Let u, v ∈ L2(O; L2(O×Ω)), with u ≤ v. We define the interval [u, v] as

[u, v] := {z ∈ L2(O; L2(O × Ω)) : u ≤ z ≤ v}

We define now the suitable concept of sub-supersolutions.

Definition 2.3 Two couples (u, u), (v, v) ∈ (L2(O, H1(Ω))2 are a pair of sub-supersolutions

of (2.1) if

u ≤ u, v ≤ v in Ω×O

f(·, ·, ·, u, v), f(·, ·, ·, u, v) ∈ L2(O, (H1(Ω))′), ∀v ∈ [v, v]

g(·, ·, ·, u, v), g(·, ·, ·, u, v) ∈ L2(O, (H1(Ω))′), ∀u ∈ [u, u]

Moreover, u must verified (and analogous conditions for the other functions)

a) ut + ua + µ1u ∈ L2(O; (H1(Ω))′).

b)
∫∫

O
〈ut + ua + µ1u,w〉dadt +

∫∫∫

Ω×O
∇u · ∇wdxdadt ≤

∫∫

O
〈f(·, a, t, u, v), w〉dadt

for each w ∈ L2(O,H1
0 (Ω)), w ≥ 0 and for each v ∈ [v, v].

c) u(x, a, t) ≤ 0 on ∂Ω×O.

d) u(x, 0, t) ≤
∫ A†

0
β1(x, a, t)u(x, a, t)da, for (x, t) ∈ Ω× (0, T ).

e) u(x, a, 0) ≤ u0(x, a), for (x, a) ∈ Ω× (0, A†).

We will try to establish a sub-supersolution theorem, which will give us furthermore a

priori bounds of the solutions in many cases. The result is
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Theorem 2.4 Suppose (H1), (H2), (H3) and that there exists L > 0 such that

|f(x, a, t, r1, s1)− f(x, a, t, r2, s2)| ≤ L(|r1 − r2|+ |s1 − s2|)

|g(x, a, t, r1, s1)− g(x, a, t, r2, s2)| ≤ L(|r1 − r2|+ |s1 − s2|)
a.e. (x, a, t) ∈ Ω×O

(2.2)

∀r1, r2 ∈ [u∗, u∗], ∀s1, s2 ∈ [v∗, v∗], being

u∗ := ess infΩ×Ou(x, a, t), u∗ := ess supΩ×Ou(x, a, t),

v∗ := ess infΩ×Ov(x, a, t), v∗ := ess supΩ×Ov(x, a, t).

Then, (2.1) possesses a unique solution (u, v) such that (u, v) ∈ [u, u]× [v, v].

Proof. We define

f̃(x, a, t, u, v) = f(x, a, t, r̃, s̃), g̃(x, a, t, u, v) = g(x, a, t, r̃, s̃)

being

r̃ =





u if u ≤ u

u if u ≤ u ≤ u

u if u ≤ u

s̃ =





v if v ≤ v

v if v ≤ v ≤ v

v if v ≤ v

We are going to prove that problem (2.1) with f̃ and g̃ instead of f and g has a unique

solution and that this solution belongs to the rectangle [u, u]× [v, v].

If we perform the change of variables u = eαtw, v = eαtz, the problem to solve is




wt + wa −∆w + (µ1(x, a, t) + α)w = e−αtf̃(x, a, t, eαtw, eαtz) in Ω×O,

zt + za −∆z + (µ2(x, a, t) + α)z = e−αtg̃(x, a, t, eαtw, eαtz) in Ω×O,

w(x, a, t) = z(x, a, t) = 0 on ∂Ω×O,

w(x, a, 0) = u0(x, a), z(x, a, 0) = v0(x, a) in Ω× (0, A†),

w(x, 0, t) =
∫ A†

0
β1(x, a, t)w(x, a, t)da, in Ω× (0, T ),

z(x, 0, t) =
∫ A†

0
β2(x, a, t)z(x, a, t)da in Ω× (0, T ).

(2.3)
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We consider the space E := L2(O,H1(Ω))× L2(O,H1(Ω)) with the norm

‖(u, v)‖E = (‖u‖2
L2(O,H1(Ω)) + ‖v‖2

L2(O,H1(Ω)))
1/2;

it is well known that ‖w‖2
L2(O,H1(Ω)) :=

∫∫

O
‖w(x, a, t)‖2

H1(Ω)dadt and we will use (following

[11]) the norm in H1(Ω)

‖w‖2
α := ‖w‖2

L2(Ω) +
1
α
‖∇w‖2

L2(Ω)N

for some α > 0. We define the map

Λ : E −→ E; (w, z) 7−→ (w̃, z̃)

being





w̃t + w̃a −∆w̃ + (L + µ1(x, a, t) + α)w̃ = e−αtf̃(x, a, t, eαtw, eαtz) + Lw in Ω×O,

z̃t + z̃a −∆z̃ + (L + µ2(x, a, t) + α)z̃ = e−αtg̃(x, a, t, eαtw, eαtz) + Lz in Ω×O,

w̃(x, a, t) = z̃(x, a, t) = 0 on ∂Ω×O,

w̃(x, a, 0) = u0(x, a), z̃(x, a, 0) = v0(x, a) in Ω× (0, A†),

w̃(x, 0, t) =
∫ A†

0
β1(x, a, t)w(x, a, t)da in Ω× (0, T ),

z̃(x, 0, t) =
∫ A†

0
β2(x, a, t)z(x, a, t)da in Ω× (0, T ).

(2.4)

These are two uncoupled linear problems and it is easy to see that the second members of

the equations are in L2(O × Ω). Hence, the operator is well defined.

We denote

Q := [e−αtu, e−αtu]× [e−αtv, e−αtv], a.e. (x, a, t) ∈ O × Ω

and check that the restriction Λ|Q (which we will denote the same) verifies that Λ : Q −→
Q. In fact, let (w, z) ∈ Q and (w̃, z̃) := Λ(w, z); if we pose w∗ = e−αtu − w̃, it is easy to
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see that




w∗t + w∗a −∆w∗ + (L + α + µ1)w∗ ≥ e−αt(f(x, a, t, u, v)− f(x, a, t, eαtw, eαtz)) + L(e−αtu− w),

w∗(x, a, t) ≥ 0, on ∂Ω×O,

w∗(x, a, 0) ≥ 0 in Ω× (0, A†),

w∗(x, 0, t) ≥ 0 on Ω× (0, T ),

for any v ∈ [v, v]. We choose v = eαtz and by the property (2.2),

w∗t + w∗a −∆w∗ + (L + α + µ1)w∗ ≥ 0.

From the maximum principle for these linear problems (see Lemma 2.4 in [9]) we deduce

that w∗ ≥ 0, i.e, w̃ ≤ e−αtu. In a analogous way the other inequalities can be proved.

We claim that with a suitable choice of α, the map is contractive. Let (w1, z1), (w2, z2) ∈
E and

(w∗∗, z∗∗) := Λ(w1, z1)− Λ(w2, z2) = (w̃1 − w̃2, z̃1 − z̃2)

We have to prove that

∃K, 0 < K < 1 : ‖(w∗∗, z∗∗)‖E ≤ K‖(w1 − w2, z1 − z2)‖E

But we know




w∗∗t + w∗∗a −∆w∗∗ + (L + µ1(x, a, t) + α)w∗∗ =

e−αt(f̃(x, a, t, eαtw1, e
αtz1)− f̃(x, a, t, eαtw2, e

αtz2)) + L(w1 − w2),

z∗∗t + z∗∗a −∆z∗∗ + (L + µ2(x, a, t) + α)z∗∗ =

e−αt(g̃(x, a, t, eαtw1, e
αtz1)− g̃(x, a, t, eαtw2, e

αtz2)) + L(z1 − z2),

w∗∗(x, a, t) = z∗∗(x, a, t) = 0 on ∂Ω×O,

w∗∗(x, a, 0) = 0, z∗∗(x, a, 0) = 0 in Ω× (0, A†),

w∗∗(x, 0, t) =
∫ A†

0
β1(x, a, t)(w1 − w2)(x, a, t)da in Ω× (0, T ),

z∗∗(x, 0, t) =
∫ A†

0
β2(x, a, t)(z1 − z2)(x, a, t)da in Ω× (0, T ).

(2.5)
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Then, we take 0 < A0 < A† and the test function φ := w∗∗χ(0,A0); we multiply the first

equation by φ, integrate on Ω×O0; O0 := (0, A0)× (0, T ), apply the integration by parts

formula and it results

−1
2
β

2
1A†

∫∫∫

Ω×O
(w1 − w2)2(x, a, t)dxdadt +

∫∫∫

Ω×O0

|∇w∗∗|2dxdadt+

∫∫∫

Ω×O0

(L + µ1(x, a, t) + α)|w∗∗|2dxdadt ≤ L

∫∫∫

O0

|w1 − w2|w∗∗dxdadt+

∫∫

O0

e−αt〈f̃(x, a, t, eαtw1, e
αtz1)− f̃(x, a, t, eαtw2, e

αtz2), w∗∗〉.

But, applying (2.2) and the trivial inequality

(2m + n)p ≤ 3m2 + 2n2 +
1
2
p2, ∀m, n, p ∈ IR

it yields

L

∫∫∫

O0

(w1−w2)w∗∗dxdadt+
∫∫

O0

e−αt〈f̃(x, a, t, eαtw1, e
αtz1)−f̃(x, a, t, eαtw2, e

αtz2), w∗∗〉

≤
∫∫

O0

e−αt‖f̃(x, a, t, eαtw1, e
αtz1)− f̃(x, a, t, eαtw2, e

αtz2)‖L2(Ω)‖w∗∗‖L2(Ω)dadt+

∫∫

O0

e−αtL‖w1 − w2‖L2(Ω)‖w∗∗‖L2(Ω)dadt ≤
∫∫

O0

(2L‖w1 − w2‖L2(Ω) + L‖z1 − z2‖L2(Ω))‖w∗∗‖L2(Ω)dadt ≤

≤ 3L2
∫∫∫

Ω×O0

|w1 − w2|2dxdadt + 2L2
∫∫∫

Ω×O0

|z1 − z2|2dxdadt +
α

2

∫∫

O0

‖w∗∗‖2
αdadt

if we choose α > 1. So,

−1
2
β

2
1A†

∫∫∫

Ω×O
|w1 − w2|2dxdadt +

∫∫∫

Ω×O0

|∇w∗∗|2dxdadt+

∫∫∫

Ω×O0

(L + µ1(x, a, t) + α)|w∗∗|2dxdadt ≤

3L2
∫∫∫

Ω×O0

|w1 − w2|2dxdadt + 2L2
∫∫∫

Ω×O0

|z1 − z2|2dxdadt +
α

2

∫∫

O0

‖w∗∗‖2
αdadt

and, since µ1 ≥ 0,

∫∫

O0

‖∇w∗∗‖2
L2(Ω)dadt +

∫∫

O0

(L + α)‖w∗∗‖2
L2(Ω)dadt− α

2

∫∫

O0

‖w∗∗‖2
αdadt ≤

(3L2 +
1
2
β

2
1A†)

∫∫

O0

‖w1 − w2‖2
L2(Ω)dadt + 2L2

∫∫

O0

‖z1 − z2‖2
L2(Ω)dadt.
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It is easy to see that

α

2

∫∫

O0

‖w∗∗‖2
αdadt ≤ (3L2 +

1
2
β

2
1A†)‖(w1 − w2, z1 − z2)‖2

E

and taking A0 → A†,

α

2
‖w∗∗‖2

L2(O,H1(Ω)) ≤ (3L2 +
1
2
β

2
1A†)‖(w1 − w2, z1 − z2)‖2

E

Analogously, we can obtain

α

2
‖z∗∗‖2

L2(O,H1(Ω)) ≤ (3L2 +
1
2
β

2
2A†)‖(w1 − w2, z1 − z2)‖2

E

Therefore

α

2
‖(w∗∗, z∗∗)‖2

E ≤ (3L2 +
1
2

max(β2
1, β

2
2)A†)‖(w1 − w2, z1 − z2)‖2

E

and we can choose α > 1 such that the map Λ be contractive. 2

Remark 2.5 The result can be extended for any number of equations.

3 Applications: The Lotka-Volterra models

In this section we apply the sub-supersolution method to the systems





ut + ua −∆u + µ1(x, a, t)u = u(λ− u + bv) in Ω×O,

vt + va −∆v + µ2(x, a, t)v = v(ν − v + cu) in Ω×O,

u(x, a, t) = v(x, a, t) = 0 on ∂Ω×O,

u(x, a, 0) = u0(x, a), v(x, a, 0) = v0(x, a) in Ω× (0, A†),

u(x, 0, t) =
∫ A†

0
β1(x, a, t)u(x, a, t)da in Ω× (0, T ),

v(x, 0, t) =
∫ A†

0
β2(x, a, t)v(x, a, t)da in Ω× (0, T ),

(3.1)

where µi, βi satisfy (H1), (H2), λ, ν, b, c ∈ IR and, instead of (H3), we assume

(H4) u0, v0 ∈ L∞(Ω× (0, A†)) and u0, v0 ≥ 0.
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Before studying (3.1), we need to analyze the logistic equation




ut + ua −∆u + µ(x, a, t)u = u(λ(x, a, t)− u) in Ω×O,

u(x, a, t) = 0 on ∂Ω×O,

u(x, a, 0) = u0(x, a) in Ω× (0, A†),

u(x, 0, t) =
∫ A†

0
β(x, a, t)u(x, a, t)da in Ω× (0, T ),

(3.2)

where µ, β and u0 satisfy (H1), (H2) and (H4), respectively and λ ∈ L∞(Ω×O).

Equation (3.2) was studied in [9] under more restrictive conditions on the data. We

present the main result for reader’s convenience.

Proposition 3.1 There exists a unique positive solution of (3.2), denoted by Θ[λ,µ,β].

Moreover, Θ[λ,µ,β] is bounded in L∞(Ω×O).

Proof: We are going to find a sub-supersolution of (3.2). Take B > 0 such that β(x, a, t) ≤
B, and consider consider the problem





ut + ua −∆u = λu in Ω×O,

u(x, a, t) = 0 on ∂Ω×O,

u(x, a, 0) = u0(x, a) in Ω× (0, A†),

u(x, 0, t) = B

∫ A†

0
u(x, a, t)da in Ω× (0, T ),

(3.3)

where λ = ess sup(x,a,t)∈Ω×Oλ(x, a, t). If we denote by ωλ the unique positive solution of

(3.3) which is bounded, see [9], then, (0, ωλ) is a sub-supersolution of (3.2), so that there

exists a unique positive solution in [0, ωλ], because the lipschitzianity of u(λ − u) in this

bounded interval. But any possible solution of (3.2), u, is a subsolution of (3.3) and so

u ≤ ωλ. Thus, u = v and the uniqueness follows. 2

Now, we are ready to state and prove the main result:

Theorem 3.2 a) Competition case: Assume that b, c < 0. Then, there exists a unique

positive solution of (3.1).

b) Prey-predator case: Assume that bc < 0. Then, there exists a unique positive solution

of (3.1).
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c) Weak cooperating case: Assume that b, c > 0 and bc < 1. Then, there exists a unique

positive solution of (3.1).

Proof: We have to build a sub-supersolution couple in each case.

Assume that b, c < 0. Then, it is clear that

(u, v) = (0, 0), (u, v) = (Θ[λ,µ1,β1],Θ[ν,µ2,β2])

is a sub-supersolution of (3.1). On the other hand, if (u, v) is solution of (3.1), then u is

sub-solution of (3.2) with µ = µ1, β = β1 and λ ∈ IR. Then,

u ≤ Θ[λ,µ1,β1],

and analogously, v ≤ Θ[ν,µ2,β2]. So, any solution belongs to a bounded interval where the

second members of (3.1) are Lipschitz. This concludes the uniqueness.

Assume now that bc < 0, for instance b > 0 and c < 0. Then, again it is not hard to

show that the following couple is sub-supersolution of (3.1):

(u, v) = (0, 0), (u, v) = (Θ[λ+bΘ[ν,µ2,β2],µ1,β1],Θ[ν,µ2,β2])

Observe that u is well defined because Θ[ν,µ2,β2] is bounded. The uniqueness follows in the

same way than in the competition case.

Finally, assume that b, c > 0 and bc < 1. Take one function m ∈ C[0, A†], B > 0 such

that

0 ≤ m(a) ≤ µi(x, a, t), βi ≤ B, i = 1, 2.

For this choice, let rm the root of the equation

1 = B

∫ A†

0
exp (ra−

∫ a

0
m(s)ds)da.

Denote

g(a) := exp (−rma−
∫ a

0
m(s)ds).

and λ̂1 the principal eigenvalue of −∆ in Ω̂, a domain such that Ω ⊂ Ω̂. Now, consider

the pair

(u, v) = (0, 0), (u, v) = (K1g(a)ϕ̂1,K2g(a)ϕ̂1),

where K1,K2 > 0 and ϕ̂1 is a positive eigenfunction associated to λ̂1. We are going to

prove that for K1 and K2 large enough, the above couple is sub-supersolution of (3.1).
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Indeed, it is clear that u, v > 0 on ∂Ω, and u(a, x, 0) > u0 and v(a, x, 0) > v0 for large K1

and K2. On the other hand,

u(0, x, t) = K1ϕ̂1 = K1ϕ̂1

∫ A†

0
Bg(a)da ≥

∫ A†

0
β1(x, a, t)K1g(a)ϕ̂1da =

∫ A†

0
β1(x, a, t)u(x, a, t)da.

Finally, it is not hard to prove that in the equations we need verify the following conditions

g(a)ϕ̂1(K1 − bK2) ≥ λ− λ̂1 + rm + m(a)− µ1,

g(a)ϕ̂1(K2 − cK1) ≥ ν − λ̂1 + rm + m(a)− µ2.

Since bc < 1, we can choose K1 and K2 sufficiently large so that the above inequalities

hold.

Take now a bounded solution (u, v). Then, there exist K1 and K2 sufficiently large

such that u ≤ K1g(a)ϕ̂1 and v ≤ K2g(a)ϕ̂1 and (K1g(a)ϕ̂1,K2g(a)ϕ̂1) supersolution of

(3.1). This concludes the proof in a similar way as before. 2

4 Blow-up in finite time: strong cooperating case

In the rest of the paper, our aim is to prove that in the cooperating case, when bc > 1 then

the solution blows up in finite time. In order to prove the result, we need some previous

ones and some notations.

In [10], it was proved the existence of a principal eigenvalue, denoted by λ0, of the

problem 



ua −∆u + µ(x, a)u = λu in Q := Ω× (0, A†),

u(x, a) = 0 on Σ := ∂Ω× (0, A†),

u(x, 0) =
∫ A†

0
β(x, a)u(x, a)da in Ω,

(4.1)

where

(Hµ) µ is a function such that µ ∈ L∞(Ω× (0, r)) for r < A† and
∫ r

0
µM (a)da < ∞,

∫ A†

0
µL(a)da = +∞, (4.2)

being µL(a) := ess infx∈Ωµ(x, a) and µM (a) := ess supx∈Ωµ(x, a).
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(Hβ) β ∈ L∞(Q), β ≥ 0, nontrivial and

meas{a ∈ [0, A†] : βL(a) := ess infx∈Ωβ(x, a) > 0} > 0.

We need recall the some points of the proof of this result. For each φ ∈ L2(Ω) we define

zφ the unique solution of




za −∆z + µ(x, a)z = 0 in Q,

z = 0 on Σ,

z(x, 0) = φ(x) in Ω,

(4.3)

and define the operator Bλ : L2(Ω) 7→ L2(Ω) by

Bλ(φ) =
∫ A†

0
β(x, a)eλazφ(x, a)da.

The operator Bλ is positive and compact. Denoting by r(Bλ) its spectral radius, we prove

in [10] that there exists a unique value of λ, λ0 such that r(Bλ0) = 1. So, by the Krein-

Rutman’s Theorem, there exists a positive function φ0 > 0 such that Bλ0φ0 = φ0. It is

not difficult to prove that

ϕ0 := eλ0azφ0

is the eigenfunction associated to λ0.

Again, by the Krein-Rutman’s Theorem, if we denote as B∗λ0
the adjoint operator of

Bλ0 , r(B∗λ0
) = 1, and so there exists ψ∗0 > 0 such that

B∗λ0
ψ∗0 = ψ∗0.

We calculate heuristically B∗λ0
. For each ψ ∈ L2(Ω), denote by vψ the unique solution (see

Lemma 4.1 below) of the backward problem




−va −∆v + µ(x, a)v = β(x, a)eλ0aψ(x) in Q,

v = 0 on Σ,

v(x, A†) = 0 in Ω.

(4.4)

Let φ, ψ ∈ L2(Ω). Then,

〈Bλ0(φ), ψ〉 =
∫

Ω
[
∫ A†

0
β(x, a)eλ0azφ(x, a)da]ψ(x)dx =

∫∫

Q
β(x, a)eλ0azφ(x, a)ψ(x)dadx =
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∫∫

Q
(−(vψ)a −∆vψ + µvψ)zφ(x, a)dadx =

∫

Ω
[−vψ(x,A†)zφ(x,A†) + vψ(x, 0)zφ(x, 0)]dx+

∫∫

Q
((zφ)a −∆zφ + µzφ)vψdadx =

∫

Ω
φ(x)vψ(x, 0)dx = 〈φ,B∗λ0

(ψ)〉,

whence

B∗λ0
(ψ) = vψ(x, 0).

Taking now

ϕ∗0 := e−λ0avψ∗0

it is easy to prove that ϕ∗0 verifies




−wa −∆w + µ(x, a)w = λ0w + β(x, a)w(x, 0) in Q,

w(x, a) = 0 on Σ,

w(x,A†) = 0 in Ω.

(4.5)

We formalize this calculation.

Lemma 4.1 Let ψ ∈ L2(Ω) and assume

(H5) There exists A0 < A† such that supp(β) ⊂ Ω× (0, A0).

There exists a unique solution v ∈ L2(Q) of the backward problem (4.4). Moreover, v ∈
L2(0, A†; H1

0 (Ω)) and there exists the value v(x, 0) ∈ L2(Ω).

Remark 4.2 Hypothesis (H5) has been considered previously by many authors, [4], [5]. It

has an obvious biological sense: the temporary component of the fertility rate is contained

in (0, A0), i.e., in a neighborhood of A† the species has not got reproductive capacity.

Proof: Denoting by µ̃(x, s) := µ(x,A† − s) and β̃(x, s) := β(x,A† − s), system (4.4) is

equivalent to




ws −∆w + µ̃(x, s)w = β̃(x, s)eλ0(A†−s)ψ(x) in Q,

w = 0 on Σ,

w(x, 0) = 0 in Ω,

(4.6)

and now we are interested in the value w(x,A†), with the change of variable w(x, s) =

v(x,A† − s).
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Under the change of variable

z = e−ksw, k > 0,

z satisfies




zs −∆z + (µ̃ + k)z = g(x, s) := β̃(x, s)eλ0(A†−s)−ksψ(x) in Q,

z = 0 on Σ,

z(x, 0) = 0 in Ω,

(4.7)

and so by (Hµ), we can take k large such that µ̃ + k/3 ≥ 0. We study now (4.7) instead

of (4.6). Define

µ̃n := min{µ̃, n}, n ∈ IN,

and consider the problem




zs −∆z + (µ̃n(x, s) + k)z = g(x, s) in Q,

z = 0 on Σ,

z(x, 0) = 0 in Ω.

(4.8)

Now, for each n ∈ IN, since µ̃n + k is bounded, there exists a unique zn solution of (4.8)

with

zn ∈ C([0, A†]; H1
0 (Ω)) ∩ L2(0, A†;H2(Ω) ∩H1

0 (Ω)), (zn)s ∈ L2(0, A†;L2(Ω)).

Multiplying (4.8) by zn and integrating we obtain

1
2

d

ds

∫∫

Q
|zn|2 +

∫∫

Q
|∇zn|2 +

∫∫

Q
(µ̃n + k)z2

n =
∫∫

Q
gzn,

and so, applying that 2ab ≤ (ε2a2 + (1/ε2)b2) we get

1
2

d

ds

∫∫

Q
|zn|2 +

∫∫

Q
|∇zn|2 +

∫∫

Q
(µ̃n + k/3)z2

n + (k/3)z2
n ≤ C.

Now, we can extract a sequence (zn) such that

zn ⇀ z in L2(0, A†;H1
0 (Ω)),

√
µ̃n + (k/3)zn ⇀ h in L2(Q),

(zn)s + (µ̃n + k/3)zn ⇀ j in L2(0, A†;H−1(Ω)).
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On the other hand, for ϕ ∈ C∞
c (0, A†;H1

0 (Ω)), and for n large enough, we get

∫ A†

0
〈(zn)s + (µ̃n + k/3)zn, ϕ〉 =

∫ A†

0
(−znϕs + (µ̃ + k/3)znϕ) →

→
∫ A†

0
(−zϕs + (µ̃ + k/3)zϕ) →

∫ A†

0
(zs + (µ̃ + k/3)z)ϕ,

and so

j = zs + (µ̃ + k/3)z.

Similarly, it can be proved that h =
√

µ̃ + k/3z. This shows that z is solution of (4.7).

For the uniqueness, take two different solutions w1 and w2 of (4.6). Then, w = w1−w2

satisfies that

ws −∆w + µ̃(x, s)w = 0, in Q, w = 0 on Σ, w(x, 0) = 0 in Ω.

It suffices to multiply this problem by w and obtain that w ≡ 0.

Now, define

µ̃L(s) := µL(A† − s), µ̃M (s) := µM (A† − s)

according to (4.2). By the maximum principle, if w is solution of (4.6), then

wM ≤ w ≤ wL, (4.9)

where wM and wL are the respective solutions of (4.6) with µ̃ = µ̃M and µ̃L.

We study now (4.6) with µ̃ = µ̃M ; a similar study could be made with µ̃L. If we

perform the change of variable

z = exp (
∫ s

0
µ̃M (s)ds)w,

(4.6) transforms into




zs −∆z = h(x, s) := β̃(x, s)exp (
∫ s
0 µ̃M (σ)dσ)eλ0(A†−s)ψ(x) in Q,

z = 0 on Σ,

z(x, 0) = 0 in Ω.

(4.10)

But, thanks to (H5)

h(x, s) ∈ L2(Q),
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and so wM is well-defined and wM ∈ C([0, A†]; L2(Ω)). This shows (4.9) and an application

of convergence dominated Theorem proves that w(x,A†) := lima↑A† w(x, a) is well-defined.

2

In order to prove the blow-up result, we need more regularity of the solution on the

variable t. For that, we will use semigroup theory. Specifically, define X := L2(Q) and

the operator A : X 7→ X as

Aψ := −∂ψ(x, a)
∂a

− µ(x, a)ψ(x, a) + ∆ψ(x, a), ∀ψ ∈ D(A), with

D(A) :=

{
ψ ∈ X : Aψ ∈ X,ψc∂Ω = 0, ψ(x, 0) =

∫ A†

0
β(x, a)ψ(x, a)da

}
.

In [12] it was proved, Theorem 1, that A is the infinitesimal generator of a C0-semigroup

on the state space X.

Consider the equation




ut + ua −∆u + µ(x, a)u = u(γ + u) in Ω×O,

u(x, a, t) = 0 on ∂Ω×O,

u(x, a, 0) = u0(x, a) in Ω× (0, A†),

u(x, 0, t) =
∫ A†

0
β(x, a)u(x, a, t)da in Ω× (0, T ).

(4.11)

Proposition 4.3 Assume (Hµ), (Hβ), (H5), γ > λ0 and u0 ∈ D(A). Then, there exists

a unique solution of (4.11) in (0, T ) for some T > 0. Moreover, the positive solution of

(4.11) blows up in finite time.

Proof: Observe that (4.11) can be written as an evolutionary equation on X





ut = Au + F (u),

u(x, a, 0) = u0(x, a),

(4.12)

where F (u) = u(γ + u). Since, F is locally Lipschitz, it follows the existence of a local

solution in C1([0, T ]; X), see for instance [7].

Now, let u a positive solution of (4.11), and consider

q(t) :=
∫∫

Q
u(x, a, t)ϕ∗0(x, a)dadx.
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Then, recalling that ϕ∗0 verifies (4.5), we get

q′(t) =
∫∫

Q
utϕ

∗
0dadx =

∫∫

Q
(−ua + ∆u− µu + γu + u2)ϕ∗0dadx =

∫

Ω
[−u(x,A†)ϕ∗0(x,A†) + u(x, 0)ϕ∗0(x, 0)]dx + γq +

∫∫

Q
((ϕ∗0)a + ∆ϕ∗0 − µϕ∗0)u + u2ϕ∗0 =

∫∫

Q
[β(x, a)ϕ∗0(x, 0)− µϕ∗0 + (ϕ∗0)a + ∆ϕ∗0]u + γq +

∫∫

Q
u2ϕ∗0 = (γ − λ0)q +

∫∫

Q
u2ϕ∗0.

On the other hand, by the Holder inequality
∫∫

Q
ϕ∗0u =

∫∫

Q
u(ϕ∗0)

1/2(ϕ∗0)
1/2 ≤ [

∫∫

Q
u2ϕ∗0]

1/2[
∫∫

Q
ϕ∗0]

1/2,

and so, 



q′(t) ≥ (γ − λ0)q + C1q
2(t),

q(0) =
∫∫

Q
u0(x, a)ϕ∗0(x, a)dadx := q0 > 0,

whence the blow-up follows. 2

We can prove now blow-up result for the strong cooperative case.

Theorem 4.4 Assume b, c > 0 and bc > 1. Let µi, βi i = 1, 2 satisfying (Hµ), (Hβ) and

(H5). Take u0, v0 ∈ D(A) positive and λ, ν > λ0. Then, the solutions of (3.1) blow-up in

finite time.

Proof: Take λ, ν > λ0. Consider

K1 :=
1 + b

bc− 1
, K2 :=

1 + c

bc− 1
, γ := min{λ, ν} > λ0, µ(x, a) := max{µ1, µ2},

β(x, a) := min{β1, β2} and w0 := min{ 1
K1

u0,
1

K2
v0}.

Denote by wγ the solution of (4.11) with the above data. Then, it is not difficult to prove

that

(u, v) = (K1wγ ,K2wγ)

is a sub-solution of (3.1) provided of

bK2 −K1 − 1 ≥ 0 and cK1 −K2 − 1 ≥ 0,

which is true by the definitions of K1 and K2. This concludes the result. 2

Acknowledgements: A.S. thanks to M. Molina-Becerra for helpful comments which

have improved the paper.



20 M. Delgado and A. Suárez
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spatial diffusion, J. Math. Anal. Appl. 313 (2006), 366–380.

[11] M. G. Garroni and M. Langlais, Age-dependent population diffusion with external

constraint, J. Math. Biol. 14 (1982), 77–94.

[12] B. Z. Guo, W. L. Chan, On the semigroup for age dependent dynamics with spatial

diffusion, J. Math. Anal. Appl., 184, (1994), 190-199.



Age-dependent Lotka-Volterra diffusive systems 21

[13] M. Gurtin, D. S. Levine, On predator-prey interactions with predation dependent on

age of prey, Math. Biosci. 47 (1979), 207-219.

[14] C. V. Pao, “Nonlinear Parabolic and Elliptic Equations”, Plenum Press, New York,

1992.

[15] E. Venturino, The effects of diseases on competing species, Math. Biosci., 174 (2001),

111-131.

[16] C. Zhao, M. Wang, P. Zhao, Optimal harvesting problems for age-dependent inter-

acting species with diffusion, Appl. Math. Comput., 163, (2005), 117-129.

[17] C. Zhao, M. Wang, P. Zhao, Optimal control of harvesting for age-dependent

predator-prey system, Math. Comput. Modelling, 42, (2005), 573-584.


