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DYNAMICAL ZETA FUNCTIONS AND KUMMER

CONGRUENCES

J. ARIAS DE REYNA

Abstract. We establish a connection between the coefficients of Artin-Mazur
zeta-functions and Kummer congruences.

This allows to settle positively the question of the existence of a map
T : X → X such that the number of fixed points of T n are |E2n|, where
E2n are the Euler numbers. Also we solve a problem of Gabcke related to the
coefficients of Riemann-Siegel formula.

Introduction

In this paper we establish a connection between two important topics the Artin-
Mazur zeta function and Kummer’s congruences. Some connection between Kum-
mer’s congruences and periodic points are pointed in the paper by Everest, van der
Poorten, Puri and Ward [4].

Inspired by the Hasse-Weil zeta function of an algebraic variety over a finite field,
Artin and Mazur [2] defined the Artin-Mazur zeta function for an arbitrary map
T : X → X of a topological space X :

Z(T ; x) := exp

(
∞∑

n=1

Fix T n

n
xn

)

.

Where Fix T n is the number of isolated fixed points of T n.
Manning [11] proved the rationality of the Artin-Mazur zeta function for diffeo-

morphisms of a smooth compact manifold satisfying Smale axiom A.
Following [12], call a sequence a = (an)n≥1 of non-negative integers realizable if

there is a set X and a map T : X → X such that an is the number of fixed points
of T n.

We must notice that in [12] it is proved that if (an) is realizable, then there exists
a compact space X and a homeomorphism T : X → X , such that an = Fix T n.

Puri and Ward [13] proved that a sequence of non-negative integers (an)n≥1 is
realizable if and only if

∑

d|n µ(n/d)ad is non negative and divisible by n for all

n ≥ 1. Here µ(n) denotes the well known Möbius function (see [1]), defined by
µ(n) = (−1)k if n is a product of k different prime numbers, and µ(n) = 0 if n is
not squarefree.
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We shall delete the positivity condition, so we shall say that the sequence of
integers (an)∞n=1 is pre-realizable if

∑

d|n µ(n/d)ad is divisible by n for every natural

number.
In 1851 Kummer [9] discovered what we call Kummer’s congruences for Bernoulli

numbers, (see the book by Nielsen [10]). Carlitz [3] extended these congruences to
the generalized Bernoulli numbers of Leopoldt. Some restrictions of Carlitz’s results
has been removed by the work of Fresnel [5]. These congruences are important for
the definition of the p-adic L-functions.

We establish a connection between these concepts that we can formulate as in
the following theorem.

Theorem 0.1. Let (an) be a sequence that satisfies Kummer congruences for every
rational prime, then for every natural number b the sequence (ab+n)∞n=1 is pre-
realizable.

This theorem allow us to solve a problem posed by Gabcke [6]. This is connected
with the Riemann-Siegel formula. In the investigation of the zeta function of Rie-
mann it is important to compute the values of this function ζ(1/2 + it) at points
on the critical line with t very high. Riemann found a very convenient formula for
these computations, yet he does not publish anything about this formula. In 1932
C. L. Siegel was able to recover it from Riemann’s nachlass. Now this formula is
known as the Riemann-Siegel formula.

To obtain the terms of this formula play a role certain numbers λn that can be
defined by a recurrence relation

λ0 = 1,

(n + 1)λn+1 =
n∑

k=0

24k+1|E2k+2|λn−k.

Here E2n denotes Euler numbers defined by

1

coshx
=

∞∑

n=0

En

n!
xn.

Hence E2n+1 = 0 for n ≥ 0 and

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1 385, . . .

Gabcke [6] observed that the first six numbers λn are integers and conjectured
that this is so for all of them. Gabcke also considers analogous sequences (̺n) and
(µn). Although he does not mention it, the same motivations for his conjecture
also supports that these too are integers sequences. We prove all these conjectures.
The proof of these assertions was the first motivation of this paper.

In [13] Puri and Ward ask if the sequence (|E2n|)n≥1 is realizable. As we will see
the solution of Gabcke’s problem is connected with this one. We shall prove that
in fact it is realizable.

Notations: When p is a prime number and m an integer we shall put pα ‖ m to
indicate that pα is the greatest power of p that divides m. We indicate this relation
also by νp(m) = α. We shall put n ⊥ m to say that n and m are relatively prime.
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1. Dynamical Zeta Function

Theorem 1.1. Let (an)∞n=1 be a sequence of complex numbers and define the se-
quence (bn)∞n=1 by

(1.1) nbn =
∑

d|n

µ(n/d)ad.

Then we have the equality between formal power series

∞∏

n=1

(1 − xn)−bn = exp
( ∞∑

n=1

an

n

)

.

Proof. By the well known Möbius inversion formula the relation (1.1) is equivalent
to

(1.2) an =
∑

d|n

dbd,

therefore we have the following equalities between formal power series

log

∞∏

n=1

(1 − xn)−bn = −

∞∑

n=1

bn log(1 − xn) =

∞∑

n=1

∞∑

k=1

bn
xnk

k

=

∞∑

m=1

xm

m

(∑

n|m

nbn

)

=

∞∑

m=1

xm

m
am.

And this is equivalent to the equality we want to prove. �

Theorem 1.2. Let (an)∞n=1 be a sequence of complex numbers and define the se-
quence (An)∞n=0 by the recurrence relation

A0 = 1,

(n + 1)An+1 =

n∑

k=0

An−kak+1, n ≥ 0.

Then we have the equality between formal power series

∞∑

n=0

Anxn = exp
( ∞∑

n=1

an

n
xn
)

.

Proof. First we have the equality between formal power series
∞∑

n=1

nAnxn−1 =
( ∞∑

n=0

Anxn
)( ∞∑

n=1

anxn−1
)

because by the hypothesis the coefficient of xn is equal in both members.
Since A0 = 1 integrating formally give us

log
( ∞∑

n=0

Anxn
)

=

∞∑

n=1

an

n
xn.

That is equivalent to the relation we wanted to prove. �

The following theorem gives various equivalent conditions for a sequence of in-
tegers (an)∞n=1 to be pre-realizable.
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Theorem 1.3. Given a sequence (an)n≥1 of integers, the following conditions are
equivalent:

(a) The numbers (bn)n≥1 defined by

nbn =
∑

d|n

µ(n/d)ad

are integers for every n ∈ N.
(b) The numbers (An)n≥0 defined by

A0 = 1,

(n + 1)An+1 =

n∑

k=0

An−kak+1, n ≥ 0
(1.3)

are integers for every n ≥ 0.
(c) For every prime number p and natural numbers n, α with p ⊥ n we have

anpα ≡ anpα−1 (mod pα).

Proof. First we prove the equivalence of (a) and (b).
(a)=⇒(b). Assume (a). By the definition of the (bn) and Theorem 1.1 we have

∞∏

n=1

(1 − xn)−bn = exp
( ∞∑

n=1

an

n
xn
)

.

and by the condition (a) of the theorem the bn are integers. Let (An)∞n=0 the
numbers defined by 1.3, we have to show that they are integers. By Theorem 1.2
these numbers satisfies the relation

∞∑

n=0

Anxn = exp
( ∞∑

n=1

an

n
xn
)

.

Thus we have
∞∑

n=0

Anxn =

∞∏

n=1

(1 − xn)−bn .

Expanding this product, since the bn are integers, we get that the An are also
integers. Hence we have that (a) implies (b).

(b)=⇒(a). Now, by hypothesis the numbers (An)n≥0 are integers. We can
determine inductively a unique sequence of integers cn such that

∞∑

n=0

Anxn =

∞∏

n=1

(1 − xn)−cn .

In the first step observe that the coefficients of x in both members must be the
same, hence

A1 = c1.

Then observe that

(1 − x)c1

( ∞∑

n=0

Anxn

)

= 1 +

∞∑

n=2

A(2)
n xn,

where the numbers A
(2)
n are integers.
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Assume by induction that we have determined integers cj, for j = 1, 2, . . . n− 1
such that

n−1∏

j=1

(1 − xj)cj

( ∞∑

n=0

Anxn
)

= 1 +

∞∑

k=n

A
(n)
k xk.

Then the A
(n)
k are integers and we can define cn = A

(n)
n , that satisfies the induction

hypothesis. Now we have
∞∏

j=1

(1 − xj)cj

( ∞∑

n=0

Anxn
)

= 1.

By the hypothesis and Theorem 1.2

∞∑

n=0

Anxn = exp

(
∞∑

n=1

an

n
xn

)

.

Therefore
∞∏

n=1

(1 − xn)−cn =
∞∑

n=0

Anxn = exp

(
∞∑

n=1

an

n
xn

)

.

Now take logarithms in both members to obtain
∞∑

n=1

cn

∞∑

k=1

xkn

k
=

∞∑

n=1

an

n
xn.

Reasoning as in the proof of Theorem 1.1 we get

am =
∑

n|m

ncn.

Therefore by the Möbius inversion formula cn = bn the numbers defined on condi-
tion (a), and by construction these numbers cn are integers. Thus we have proved
(a).

(a)=⇒(c). We know that condition (a) is equivalent to the existence of integers
bn that satisfy the equation (1.2).

Assume that p is a prime number and n and α natural numbers such that p ⊥ n.
Then

anpα =
∑

d|npα

dbd =

α∑

k=0

∑

d|n

dpkbdpk .

Analogously

anpα−1 =

α−1∑

k=0

∑

d|n

dpkbdpk .

Therefore

anpα − anpα−1 =
∑

d|n

dpαbdpα ≡ 0 (mod pα).

(c)=⇒(a). Let n be an integer. We have to show that
∑

d|n

µ(n/d)ad

is divisible by n. Let pα ‖ n, with α ≥ 1, then n = pαm with p ⊥ m.
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Since µ(k) 6= 0 only when k is squarefree, we get
∑

d|n

µ(n/d)ad =
∑

d|m

µ(m/d)adpα −
∑

d|m

µ(m/d)adpα−1

=
∑

d|m

µ(m/d)
(
adpα − adpα−1

)
≡ 0 (mod pα).

The sum is divisible for every primary divisor of n, and therefore divisible by n. �

2. Kummer congruences

In 1851 Kummer [9] proved the following theorem:

Theorem 2.1 (Kummer). Let p be a prime number. Assume that
∞∑

n=0

an
xn

n!
=

∞∑

k=0

ck(ebx − eax)k,

where a, b and the ck are integral (mod p). Then the an are integers (mod p)
and for e ≥ 1, n ≥ 1, m ≥ 0, and pe−1(p − 1) | w we have

(2.1)

n∑

s=0

(−1)s

(
n

s

)

am+sw ≡ 0 (mod (pm, pne)).

The congruences (2.1) are usually called Kummer congruences. We shall say
that the sequence (an) satisfies Kummer congruences if we have (2.1) for every
prime number p. By Kummer theorem these sequences exist, but we are interested
in some particular sequences.

Theorem 2.2. The sequence (E2n)∞n=1 satisfies Kummer congruences.

Proof. Since
1

coshx
=

2

ex + e−x
=

2

2 + (ex/2 − e−x/2)2
,

Kummer theorem proves that (En)∞n=1 satisfies Kummer congruence (2.1) for every
odd prime number p. Therefore the sequence (E2n)∞n=1 satisfies these congruences
for every odd prime number p. This reasoning can be found in Kummer [9].

The above procedure does not give the case p = 2, but Fresnel [5] has extended
Kummer congruences for Euler number, as we see in the following lines.

Let χ the function from Z to {−1, 0, 1}, such that χ(n) = 0 if n is even, χ(n) = 1
if n ≡ 1 (mod 4) and χ(n) = −1 if n ≡ 3 (mod 4), then the generalized Bernoulli
numbers associated to this character, —see [5] for details— are related to Euler
numbers as

Bn(χ)

n
= −

En−1

2
.

In [5] p. 319 we found that, when 2e ‖ w, with e ≥ 1
n∑

s=0

(−1)s

(
n

s

)
Bm+sw(χ)

m + sw
≡ 0 (mod (2n(e+2), 2m−1)).

With a change of notation this is equivalent to
n∑

s=0

(−1)s

(
n

s

)
E2m+sw

2
≡ 0 (mod (2n(e+2), 22m)).
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Obviously this implies that for 2e−1 | w we have

n∑

s=0

(−1)s

(
n

s

)

E2(m+sw) ≡ 0 (mod (2ne, 2m)).

�

The above theorem is a model of many more interesting examples. In Carlitz [3],
it is proved that if χ is a primitive character modf , and f is divisible by at least
two distinct rational primes, then Bn(χ)/n is an algebraic integer and

n∑

s=0

(−1)s

(
n

s

)
Bn+1+sw(χ)

n + 1 + sw
≡ 0 (mod (pn, pen)),

if pe−1(p − 1) | w.
Thus the sequence (an)∞n=1, with an = Bn+1(χ)/(n + 1) satisfies Kummer con-

gruences, if the character χ is real. When χ is complex the sequence defined by
an = Tr(Bn+1(χ)/(n + 1)) satisfies Kummer congruences.

The sequences that satisfies Kummer congruences are pre-realizable, as we will
see in the following theorem.

Theorem 2.3. Let (an)∞n=1 a sequence that satisfies Kummer congruences. Then

ab+npα ≡ ab+npα−1 (mod pα),

for every natural numbers b, n, α and prime number p such that p ⊥ n.
That is to say that if (an) satisfies Kummer congruences then for every natural

number b, the sequence (ab+n)∞n=1 is pre-realizable.

Proof. By (2.1), with n = 1 we have

am+pe−1(p−1) ≡ am (mod (pm, pe)).

Therefore, for every natural number k, and assuming m ≥ e

am+kpe−1(p−1) ≡ am (mod pe).

Now take m = b + npα−1, k = n and e = α. If b + npα−1 ≥ α, we get

ab+npα−1+npα−1(p−1) ≡ ab+npα−1 (mod pα).

Since pα−1 ≥ α for p prime and α ≥ 1, the condition is satisfied and we get

ab+npα ≡ ab+npα−1 (mod pα).

�

3. Euler numbers as numbers of fixed points

We are now in position to solve the problem posed by Puri and Ward in [13],
they ask if the sequence (|E2n|)

∞
n=1 is realizable. We shall show that this is true.

Theorem 3.1. There exists a map T : X → X, such that

|E2n| = Fix T n.
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Proof. First we show that |E2n| is a pre-realizable sequence. By Theorem 2.2 the
sequence (E2n)∞n=1 satisfies Kummer congruences. Thus by Theorem 2.3, for p ⊥ m,

E2mpα ≡ E2mpα−1 (mod pα).

Therefore,
|E2mpα | ≡ |E2mpα−1 | (mod pα).

By Theorem 1.3 it follows that the numbers bn, defined by

nbn =
∑

d|n

µ(n/d)|E2d|,

are integers.
Now we must show that the numbers bn are non negative. To this end we observe

that

nbn ≥ |E2n| −

n/2
∑

d=1

|E2d|.

Now we apply the well known formula

1 ≤
(π

2

)2d+1 |E2d|

(2d)!
= 2

∞∑

k=0

(−1)k

(2k + 1)2d+1
≤ 2.

Thus

nbn ≥ (2n)!
( 2

π

)2n+1

− 2

n/2
∑

d=1

(2d)!
( 2

π

)2d+1

≥ (2n)!
{( 2

π

)2n+1

− 2
(n)!

(2n)!

∞∑

d=1

( 2

π

)2d+1}

.

We can compute the last sum and we get 0.433 . . . , therefore

nbn ≥ (2n)!
{( 2

π

)2n+1

−
(n)!

(2n)!

}

.

This is positive for n ≥ 2, and we have b1 = 1 ≥ 0. �

The first values of these three sequences in this case are the following:

an 1 5 61 1385 50521 2702765 199360981 . . .
bn 1 2 20 345 10104 450450 28480140 . . .
An 1 3 23 371 10515 461869 28969177 2454072147 . . .

4. Solution of Gabcke problem

By Theorem 1.3 the assertion of Gabcke, —that the numbers λn are integers—,
is equivalent to say that the sequence ak = 24k−3|E2k| is pre-realizable. We shall
show that in fact it is realizable.

If (an) and (a′
n) are realizable, then the sequence (ana′

n) is also realizable. In
fact given T : X → X and T ′ : Y → Y such that an = Fix T n and a′

n = Fix T ′n,
then it is easy to see that T × T ′ : X × Y → X × Y satisfies ana′

n = Fix(T × T ′).
Therefore by Theorem 3.1 what we need is to prove that the sequence 24n−3 is

realizable. This follows from the following theorem.

Theorem 4.1. Let a and b ∈ N such that b | a and for every prime number p | a
p | (a/b). Then the sequence an/b is realizable.
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Proof. By the result of Puri and Ward we must show that the sequence an/b is
pre-realizable and that the corresponding bn are non-negative integers.

First let p ⊥ a be a prime number, and let n ⊥ p and α be natural numbers. We
must show that

anpα

/b ≡ anpα−1

/b (mod pα).

Since b ⊥ p, this is equivalent to

anpα

≡ anpα−1

(mod pα).

Now for α = 1 this is Fermat’s little theorem, and for a general α it follows, by
induction, from the fact that for α ≥ 1 if a ≡ b mod pα, then ap ≡ bp mod pα+1.

Now if p | a, assume that pr ‖ a and ps ‖ b. By hypothesis we have r ≥ s + 1.
We have to show that

anpα

/b ≡ anpα−1

/b (mod pα),

where p ⊥ n and α ≥ 1. But the two numbers are divisible by prnpα−1−s. All we
have to show is that rnpα−1 ≥ s + α. We can assume that n = 1. For α = 1 this is
r ≥ s + 1 that is true by hypothesis. For other values of α, α ≥ 2 and we have

rpα−1 = r(pα−1 − 1) + r ≥ (α − 1) + (s + 1).

Now we define the numbers bn by

nbn =
∑

d|n

µ(n/d)ad/b.

By the previous reasoning we know the bn are integers. If a = 1, it is easy to see
that b1 = 1 and bn = 0 for n > 1. In other case a ≥ 2 and we have

nbn ≥
1

b

(

an −

n/2
∑

d=1

ad
)

.

This is easyly seen to be non-negative. �

Corollary 4.2. The sequence (an)∞n=1, where an = 24n−3 is realizable.

The three sequences associated to this realizable sequence are

an 2 32 512 8192 131072 2097152 33554432 536870912 . . .
bn 2 15 170 2040 26214 349435 4793490 67107840 . . .
An 1 2 18 204 2550 33660 460020 6440280 91773990 . . .

Now we are in position to prove Gabcke’s conjecture.

Theorem 4.3. Let λn the numbers defined by

λ0 = 1,

(n + 1)λn =

n∑

k=0

24k+1|E2k+2|λn−k, (n ≥ 0),
(4.1)

̺n those defined by

̺0 = −1,

(n + 1)̺n = −

n∑

k=0

24k+1|E2k+2|̺n−k, (n ≥ 0),
(4.2)

and finally let µn = (λn + ̺n)/2. All those numbers are integers.
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Proof. By Theorem 3.1, and Corollary 4.2 the sequences (|E2n|)
∞
n=1 and (24n−3)∞n=1

are realizable. Since the product of two realizable sequences is realizable, the se-
quence (24n−3|E2n|)

∞
n=1 is realizable. Therefore it satisfies condition (a) of Theorem

1.3. So it satisfies condition (b), but this is precisely that the numbers λn are in-
tegers.

Now condition (c) of the same Theorem gives us that with an = 24n−3|E2n| we
have for every prime number p and natural numbers n ⊥ p and α that

anpα ≡ anpα−1 (mod pα).

Thus the same congruences are satisfied by the numbers a′
n = −an. Once again

Theorem 3.1 says that the numbers a′
n satisfies condition (b). This is the same as

saying that the numbers A′
n defined by

(4.3)

A′
0 = 1

(n + 1)A′
n = −

n∑

k=0

24k+1|E2k+2|A
′
n−k (n ≥ 0)

are integers. But it is easyly seen that ̺n = −A′
n.

The affirmation about the numbers µn follows from the fact that λn ≡ ̺n

(mod 2). That we prove in Theorem 4.5. �

The following theorem is well known. I give a proof for completeness.

Theorem 4.4. Let s(n) be the sum of the digits of the binary representation of n,
then

s(n) = n −

∞∑

j=1

⌊ n

2j

⌋

.

Proof. Let the binary representation of n be of type · · · 0

k times
︷ ︸︸ ︷

11 · · ·1, with k ≥ 0, then

n + 1 = · · · 1

k times
︷ ︸︸ ︷

00 · · ·0. Therefore

s(n) − k = s(n + 1) − 1.

Also k = ν2(n + 1) the exponent of 2 in the prime factorization of n + 1.
Thus we have proved that for every integer n ≥ 0

(4.4) s(n + 1) + ν2(n + 1) = s(n) + 1.

We add this equalities for n = 0, 1, . . . , n − 1 to get

s(n) +

n∑

k=1

ν2(k) = n.

It is easily checked that
n∑

k=1

ν2(k) =

∞∑

j=1

⌊ n

2j

⌋

.

�

Theorem 4.5. The numbers λn and ̺n defined by Equations (4.1) and (4.2) satisfy

ν2(λn) = ν2(̺n) = s(n).
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Proof. First consider the sequence λn. Clearly the theorem is true for the first λn

which are

λ0 = 1, λ1 = 2, λ3 = 82, λ4 = 10572.

Since Euler numbers E2k are odd, from the definition of λn it follows that

(4.5) ν2(n + 1) + ν2(λn+1) = ν2

( n∑

k=0

24k+1|E2k+2|λn−k

)

.

By induction the terms of this sum are exactly divided by the powers of 2 of
exponents

1 + s(n), 5 + s(n − 1), 9 + s(n − 2), . . . (4n + 1) + s(0)

This is a strictly increasing sequence, since

s(n) − s(n − 1) = 1 − ν2(n) < 4.

Hence from (4.5) we get

ν2(n + 1) + ν2(λn+1) = 1 + s(n).

By (4.4)

ν2(λn+1) = s(n) − ν2(n + 1) + 1 = s(n + 1).

The same proof applies to the sequence (̺n). �

5. Examples

We give here some examples of numbers satisfying our Theorem 1.3. First con-
sider the case of the numbers of Gabcke An = λn. The first terms of the associated
sequences are given by the following table.

an 2 160 31232 11345920 947622146676 957663025230936 . . .
bn 2 79 10410 2836440 1324377702 944684832315 . . .
λn 1 2 82 10572 2860662 1330910844 947622146676 . . .

We can give arbitrarily a sequence of integers (bn) and obtain sequences (an)
and (An) that automatically satisfy our theorems. We give two simple examples.

With bn = 1 for every n, we get an = σ(n).

an 1 3 4 7 6 12 8 15 13 18 12 28 . . .
bn 1 1 1 1 1 1 1 1 1 1 1 1 . . .
An 1 1 2 3 5 7 11 15 22 30 42 56 77 . . .

With bn = −24, the numbers An are given by Ramanujan’s τ function An =
τ(n + 1).

an -24 -72 -96 -168 -144 -288 -192 -360 . . .
bn -24 -24 -24 -24 -24 -24 -24 -24 . . .
An 1 -24 252 -1472 4830 -6048 -16744 84480 -113643 . . .

Finally let (Tn) be the tangent numbers with the notation of [8]. We have T2n = 0

T2n+1 = (−1)n 4n+1(4n+1 − 1)B2n+2

2n + 2
.

It can be proved that an = (−1)nT2n+1 satisfies Kummer congruences. It follows
that the sequence (T2n+1) is realizable, in this case the three sequences are
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an 2 16 272 7936 353792 22368256 1903757312 . . .
bn 2 7 90 1980 70758 3727995 271965330 . . .
An 1 2 10 108 2214 75708 3895236 280356120 . . .
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10. N. Nielsen, Traité élémentaire des nombres de Bernoulli. Paris, (1923)
11. A. Manning, Axiom A diffeomorphisms have rational zeta function. Bull. London Math. Soc.,

3 (1971), 215–220
12. Y. Puri, Arithmetic of Numbers of Periodic Points. PhD Thesis, University of East Anglia,

(2001). www.mth.uea.ac.uk/admissions/graduate/phds.html.
13. Y. Puri, T. Ward Arithmetic and growth of periodic orbits. J. Integer Seqs., 4 (2001), #01.2.1.

Department of Mathematical Analysis, University of Seville, Seville, Spain
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