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ABSTRACT. We establish a connection between the coefficients of Artin-Mazur
zeta-functions and Kummer congruences.

This allows to settle positively the question of the existence of a map
T: X — X such that the number of fixed points of T" are |Ea2y|, where
Es,, are the Euler numbers. Also we solve a problem of Gabcke related to the
coefficients of Riemann-Siegel formula.

INTRODUCTION

In this paper we establish a connection between two important topics the Artin-
Mazur zeta function and Kummer’s congruences. Some connection between Kum-
mer’s congruences and periodic points are pointed in the paper by Everest, van der
Poorten, Puri and Ward [].

Inspired by the Hasse-Weil zeta function of an algebraic variety over a finite field,
Artin and Mazur [2] defined the Artin-Mazur zeta function for an arbitrary map
T: X — X of a topological space X:

— FixT"
Z(T;x) :=exp E S
n
n=1

Where Fix T™ is the number of isolated fixed points of T™.

Manning [IT] proved the rationality of the Artin-Mazur zeta function for diffeo-
morphisms of a smooth compact manifold satisfying Smale axiom A.

Following [12], call a sequence a = (ay)n>1 of non-negative integers realizable if
there is a set X and a map T: X — X such that a, is the number of fixed points
of T™.

We must notice that in [I2] it is proved that if (a,,) is realizable, then there exists
a compact space X and a homeomorphism 7: X — X, such that a,, = FixT™".

Puri and Ward [I3] proved that a sequence of non-negative integers (an)n>1 is
realizable if and only if 3=, 1(n/d)ag is non negative and divisible by n for all
n > 1. Here p(n) denotes the well known Mobius function (see [1]), defined by
u(n) = (=1)* if n is a product of k different prime numbers, and p(n) = 0 if n is
not squarefree.
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We shall delete the positivity condition, so we shall say that the sequence of
integers (an )32 is pre-realizable if ajn #(n/d)aq is divisible by n for every natural
number.

In 1851 Kummer [9] discovered what we call Kummer’s congruences for Bernoulli
numbers, (see the book by Nielsen [I0]). Carlitz [3] extended these congruences to
the generalized Bernoulli numbers of Leopoldt. Some restrictions of Carlitz’s results
has been removed by the work of Fresnel [B]. These congruences are important for
the definition of the p-adic L-functions.

We establish a connection between these concepts that we can formulate as in
the following theorem.

Theorem 0.1. Let (a,) be a sequence that satisfies Kummer congruences for every
rational prime, then for every natural number b the sequence (ap4n)S>, 1S pre-
realizable.

This theorem allow us to solve a problem posed by Gabcke [6]. This is connected
with the Riemann-Siegel formula. In the investigation of the zeta function of Rie-
mann it is important to compute the values of this function (1/2 + it) at points
on the critical line with ¢ very high. Riemann found a very convenient formula for
these computations, yet he does not publish anything about this formula. In 1932
C. L. Siegel was able to recover it from Riemann’s nachlass. Now this formula is
known as the Riemann-Siegel formula.

To obtain the terms of this formula play a role certain numbers A,, that can be
defined by a recurrence relation

Ao =1,

(n+ D1 = Z 24k+1|E2k+2|)\n—k-
k=0

Here E5,, denotes Euler numbers defined by

1 ~E, .
coshgc_zma7 '

Hence Fg,+1 =0 for n > 0 and
Ey=1, FEy=-1, E;=5, Eg=-61, FEg=1385,

Gabcke [6] observed that the first six numbers A, are integers and conjectured
that this is so for all of them. Gabcke also considers analogous sequences (g,,) and
(tn). Although he does not mention it, the same motivations for his conjecture
also supports that these too are integers sequences. We prove all these conjectures.
The proof of these assertions was the first motivation of this paper.

In [I3] Puri and Ward ask if the sequence (| Ea,|)n>1 is realizable. As we will see
the solution of Gabcke’s problem is connected with this one. We shall prove that
in fact it is realizable.

Notations: When p is a prime number and m an integer we shall put p® || m to
indicate that p® is the greatest power of p that divides m. We indicate this relation
also by v,(m) = a. We shall put n L m to say that n and m are relatively prime.
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1. DYNAMICAL ZETA FUNCTION

Theorem 1.1. Let (a,)5, be a sequence of complex numbers and define the se-
quence (b))%, by

(1.1) nby, = Zu(n/d)ad.
d|n

Then we have the equality between formal power series

ﬁ(l — ") = exp(;§®1 %)

Proof. By the well known Mdbius inversion formula the relation () is equivalent
to

(1.2) an = db,
d|n

therefore we have the following equalities between formal power series

00 00 oo 0o nk
log H (1 — J:n)_b" = — Z b, log(l — ;[;") = bn%
n=1 n=1 n=1 k=1

I
N
3%
N
3.
S
|
NE
3|5
Q
3

And this is equivalent to the equality we want to prove. (I
Theorem 1.2. Let (a,)52 be a sequence of complex numbers and define the se-

quence (An)22, by the recurrence relation

Ao =1,

(n+1)Ap 1 = ZAn—kak-i-la n > 0.
k=0

Then we have the equality between formal power series

o0 oo a
Z Ay = exp(z —nx”)
n
n=0 n=1

Proof. First we have the equality between formal power series
o0 o0 o0
Z nA,z" = (Z An:v") (Z an:v"_l)
n=1 n=0 n=1

because by the hypothesis the coefficient of ™ is equal in both members.
Since Ag = 1 integrating formally give us

[e ] o0 a
lo ( ") = ™,
(3 A) = 3 2
n=0 n=1
That is equivalent to the relation we wanted to prove. ([

The following theorem gives various equivalent conditions for a sequence of in-
tegers (an)22, to be pre-realizable.
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Theorem 1.3. Given a sequence (an)n>1 of integers, the following conditions are
equivalent:

(a) The numbers (by)n>1 defined by
nb,, = Z win/d)ag
d|n
are integers for every n € N.
(b) The numbers (An)n>0 defined by
Ay =1,

1.3
(13) (n+1A 1 = ZAn RQk41, n>0

are integers for every n > 0.
(¢) For every prime number p and natural numbers n, o with p L n we have

Unpe = Qppa-1 (mod p®).

Proof. First we prove the equivalence of (a) and (b).
(a)==(b). Assume (a). By the definition of the (b,,) and Theorem [l we have

10__0[ (1—2") "—exp(i%x").

and by the condition (a) of the theorem the b, are integers. Let (A4,)2%, the
numbers defined by [[3] we have to show that they are integers. By Theorem
these numbers satisfies the relation

i Apz” = exp(i 7” ")
n=0 n=1

Thus we have

Z Apa™ H (1—am) ",

n=1
Expanding this product, since the b, are integers, we get that the A, are also
integers. Hence we have that (a) implies (b).
(b)=(a). Now, by hypothesis the numbers (A,),>¢ are integers. We can
determine inductively a unique sequence of integers ¢, such that

Z Apx™ ﬁ 1—a™) .
n=1

In the first step observe that the coefficients of = in both members must be the
same, hence
A1 =C1.

Then observe that
(1-2)° (ZA xn) —1—1—214(2

where the numbers Agf are integers.
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Assume by induction that we have determined integers ¢;, for j =1, 2, ...n—1
such that
n—1
Hl—x] (ZAx)—l—I—ZA,(C"x
j=1

Then the A;ﬂn) are integers and we can define ¢,, = An" , that satisfies the induction
hypothesis. Now we have

i ':]8
)_A
|
&Q
9
b
3
B,
v
H

By the hypothesis and Theorem

Therefore

Now take logarithms in both members to obtain
> Z = >t
k n
n=1 n=1
Reasoning as in the proof of Theorem [Tl we get
=3 e
n|m

Therefore by the Mobius inversion formula ¢,, = b,, the numbers defined on condi-
tion (a), and by construction these numbers ¢, are integers. Thus we have proved
(a).

(a)=(c). We know that condition (a) is equivalent to the existence of integers
by, that satisfy the equation (2.

Assume that p is a prime number and n and « natural numbers such that p | n.

Then
npe = Y dbg =Y > dpFb,.
d|npe k=0 d|n

Analogously

a—1

Appa—-1 = Z Z dpkbdpk.

k=0 d|n

Therefore

Appe — Qppa—1 = Z dp®bgpe =0 (mod p%).
d|n

(¢c)=>(a). Let n be an integer. We have to show that
S p(n/d)aq
d|n

is divisible by n. Let p* || n, with o > 1, then n = p®m with p L m.
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Since (k) # 0 only when k is squarefree, we get

S pln/dag = 3 plmd)agpe — 3 plm/d)agpe
dlm

d|n dlm

= Z,u(m/d) (agpe — agpo—1) =0 (mod p®).
dlm

The sum is divisible for every primary divisor of n, and therefore divisible by n. [

2. KUMMER CONGRUENCES
In 1851 Kummer [9] proved the following theorem:

Theorem 2.1 (Kummer). Let p be a prime number. Assume that

ianﬁ _ ick(ebz _ eam)k

o S ,
where a, b and the ci are integral (mod p). Then the a,, are integers (mod p)
and fore>1,n>1, m >0, and p°~*(p—1) | w we have

n
(21) S (2o =0 (1m0 (57, 5))
s
s=0

The congruences (1)) are usually called Kummer congruences. We shall say
that the sequence (a,) satisfies Kummer congruences if we have 1) for every
prime number p. By Kummer theorem these sequences exist, but we are interested
in some particular sequences.

Theorem 2.2. The sequence (Ea,)52, satisfies Kummer congruences.

Proof. Since
1 2 2

coshr  e®+e @ 24 (e¥/2 - ¢=/2)2’
Kummer theorem proves that (F, )22, satisfies Kummer congruence ([21I) for every
odd prime number p. Therefore the sequence (Fs, )22 ; satisfies these congruences
for every odd prime number p. This reasoning can be found in Kummer [9].

The above procedure does not give the case p = 2, but Fresnel [5] has extended
Kummer congruences for Euler number, as we see in the following lines.

Let x the function from Z to {—1,0, 1}, such that x(n) = 0if n is even, x(n) =1
ifn=1 (mod 4) and x(n) = —1if n =3 (mod 4), then the generalized Bernoulli
numbers associated to this character, —see [B] for details— are related to Euler
numbers as

B _ Eux
n 2
In [B] p. 319 we found that, when 2° || w, with e > 1

i(_l)s (n) Bm-i-sw(X) 0 (mod (2n(e+2), 2777,—1))'

S m + sw
s=0

With a change of notation this is equivalent to

Z(—Us(n) B =) (uod (242, 22M))
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Obviously this implies that for 2¢71 | w we have

n

510 (7) Batrey =0 (mod (27%,27))

s=0
(I

The above theorem is a model of many more interesting examples. In Carlitz [3],
it is proved that if y is a primitive character modf, and f is divisible by at least
two distinct rational primes, then B™(x)/n is an algebraic integer and

Z(—l)S(”) BT00 _ g (mod (o7, p),

= s) n+1+sw

it p~tp—1) | w.

Thus the sequence (a,,)5,, with a, = B""(x)/(n + 1) satisfies Kummer con-
gruences, if the character y is real. When y is complex the sequence defined by
an = Tr(B" " (x)/(n + 1)) satisfies Kummer congruences.

The sequences that satisfies Kummer congruences are pre-realizable, as we will
see in the following theorem.

Theorem 2.3. Let (a,)72, a sequence that satisfies Kummer congruences. Then
Ab+npe = Apyppa—1 (mOd pa)v

for every natural numbers b, n, a and prime number p such that p L n.
That is to say that if (a,) satisfies Kummer congruences then for every natural
number b, the sequence (ap4n)52 s pre-realizable.

Proof. By @1)), with n = 1 we have
Umgpe—1(p—1) = G (mod (p™,p°)).
Therefore, for every natural number &, and assuming m > e
Upnhpe—1 (p—1) = Gm  (mod p°).
Now take m =b+np®* !, k=nande=a. If b+np® ! > o, we get
A npo—1fnpe=1i(p—1) = Qbtnpe—1  (mod p%).
Since p®~! > « for p prime and a > 1, the condition is satisfied and we get

Ahgnpe = Qpyppe-1  (mod p*).

3. EULER NUMBERS AS NUMBERS OF FIXED POINTS

We are now in position to solve the problem posed by Puri and Ward in [T3],
they ask if the sequence (|Eay|)32 is realizable. We shall show that this is true.

Theorem 3.1. There exists a map T: X — X, such that
|Espn| = FixT™.
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Proof. First we show that |Esy,| is a pre-realizable sequence. By Theorem the
sequence (Fa,)5 satisfies Kummer congruences. Thus by Theorem 23 for p L m,

Esmpe = Egpppo—1 (mod p®).
Therefore,
|Bampe| = | Bapes|  (mod ).
By Theorem it follows that the numbers b,,, defined by
by =Y p(n/d)| Bal,
dln
are integers.

Now we must show that the numbers b,, are non negative. To this end we observe

that
n/2

nbn > |E2n| - Z |E2d|-
d=1
Now we apply the well known formula

2d+1| By e 1)k
1< (—) oS <
—\2 (2d)! kZ:O 2k+1)2d+1 -

Thus
n/2
2n+1 2d+1
i e oS ()
9 2n+1 2d+1
= en{(5)" 25 ()"
We can compute the last sum and we get 0.433 ..., therefore
9+ 2n+1 !
nba > 2] (2) _ﬂ}.
™ (2n)!
This is positive for n > 2, and we have by =1 > 0. O

The first values of these three sequences in this case are the following:
G 1] 5 | 61 | 1385 | 50521 | 2702765 | 199360981
bn 1] 2|20 | 345 | 10104 | 450450 28480140

An | 1]31]23|371 10515 | 461869 | 28969177 | 2454072147

4. SOLUTION OF (GABCKE PROBLEM

By Theorem the assertion of Gabcke, —that the numbers A, are integers—,

is equivalent to say that the sequence ay = 2%73|FEyy| is pre-realizable. We shall
show that in fact it is realizable.
If (a,) and (al,) are realizable, then the sequence (apal,) is also realizable. In
fact given T: X — X and T": Y — Y such that a, = FixT" and a, = FixT'™,
then it is easy to see that T x T": X XY — X x Y satisfies ana, = le(T X T')

Therefore by Theorem Bl what we need is to prove that the sequence 24n=3 §

realizable. This follows from the following theorem.

Theorem 4.1. Let a and b € N such that b | a and for every prime number p | a
p | (a/b). Then the sequence a™ /b is realizable.
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Proof. By the result of Puri and Ward we must show that the sequence a”/b is
pre-realizable and that the corresponding b,, are non-negative integers.
First let p 1L a be a prime number, and let n 1 p and a be natural numbers. We
must show that
a™” b= a"pafl/b (mod p“).
Since b L p, this is equivalent to

a?” =gt (mod p%).

Now for « = 1 this is Fermat’s little theorem, and for a general « it follows, by
induction, from the fact that for o > 1 if @ = b mod p®, then a? = b? mod p>t'.

Now if p | a, assume that p” || @ and p® || b. By hypothesis we have r > s + 1.
We have to show that

a"”a/b = a"pafl/b (mod p©),
where p 1 n and o > 1. But the two numbers are divisible by pmpafl_s. All we
have to show is that rnp®*~! > s 4 a. We can assume that n = 1. For a = 1 this is
r > s+ 1 that is true by hypothesis. For other values of a, a > 2 and we have
rp*t=r(p* =1 +r>(a—1)+ (s +1).
Now we define the numbers b,, by
nb, = Z,u(n/d)ad/b.
d|n

By the previous reasoning we know the b, are integers. If a = 1, it is easy to see
that by = 1 and b,, = 0 for n > 1. In other case a > 2 and we have

1 n/2
nby, > g(a" — Zad).
d=1
This is easyly seen to be non-negative. (Il
Corollary 4.2. The sequence (a,)S%,, where an, = 2473 is realizable.

The three sequences associated to this realizable sequence are

G 2132|512 8192 | 131072 | 2097152 | 33554432 | 536870912
bn 2115|170 | 2040 | 26214 | 349435 | 4793490 | 67107840
A, | 112181204 | 2550 | 33660 | 460020 | 6440280 | 91773990

Now we are in position to prove Gabcke’s conjecture.

Theorem 4.3. Let )\, the numbers defined by

Ao = 1,
4.1 -
(4.1 (n+ DA =3 2% B s (0> 0),
k=0
on those defined by
0o = _15
4.2 -
(4.2) (n+ Do = - S 2% By plon . (n20),
k=0

and finally let pn, = (An + 0n)/2. All those numbers are integers.
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Proof. By Theorem Bl and Corollary B2 the sequences (| Ea,, )% and (24773)%
are realizable. Since the product of two realizable sequences is realizable, the se-
quence (24"73| Ey, 1), is realizable. Therefore it satisfies condition (a) of Theorem
So it satisfies condition (b), but this is precisely that the numbers )\, are in-
tegers.

Now condition (c) of the same Theorem gives us that with a,, = 24" 73| Es,,| we
have for every prime number p and natural numbers n L p and « that

Anpe = Qppe—1 (mod p®).

Thus the same congruences are satisfied by the numbers a,, = —a,. Once again
Theorem Bl says that the numbers a), satisfies condition (b). This is the same as
saying that the numbers A/ defined by

A = 1
) (A, = =3Bl (n20)
k=0
are integers. But it is easyly seen that o, = —A/,.
The affirmation about the numbers u, follows from the fact that A\, = o,
(mod 2). That we prove in Theorem B3 O

The following theorem is well known. I give a proof for completeness.

Theorem 4.4. Let s(n) be the sum of the digits of the binary representation of n,
then

n

s(n) = n—Zb—JJ

Jj=1

k times
Proof. Let the binary representation of n be of type ---011---1, with k£ > 0, then
k times
—
n+1=---100---0. Therefore

s(n)—k=s(n+1)—1.

Also k = va(n + 1) the exponent of 2 in the prime factorization of n + 1.
Thus we have proved that for every integer n > 0

(4.4) s(n+1)+we(n+1)=s(n)+1.
We add this equalities for n =0, 1, ..., n— 1 to get
s(n) + Z va(k) = n.
k=1

It is easily checked that

ZVz(k) = Z{%J

k

—1 j=1
O
Theorem 4.5. The numbers A\, and g, defined by Equations {{1) and {£.3) satisfy
va(An) = va(en) = s(n).
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Proof. First consider the sequence \,. Clearly the theorem is true for the first A\,
which are

=1, =2 A=82 M\ =10572

Since Euler numbers Fsj, are odd, from the definition of A, it follows that

(4.5) va(n+1) + v2(Ons1) = va (D7 25 Barega [ An- )
k=0

By induction the terms of this sum are exactly divided by the powers of 2 of
exponents

1+s(n), 5+s(n—1), 9+s(n—2), ... (“Un+1)+s(0)
This is a strictly increasing sequence, since
s(n)—s(n—1)=1—wy(n) < 4.
Hence from [{H) we get
va(n+ 1)+ va(Apt1) =14 s(n).
By @)
Va(Ant1) = 8(n) —a(n+1)+1=s(n+1).
The same proof applies to the sequence (gy,). O

5. EXAMPLES

We give here some examples of numbers satisfying our Theorem First con-
sider the case of the numbers of Gabcke A,, = \,,. The first terms of the associated
sequences are given by the following table.

an, 21160 | 31232 | 11345920 | 947622146676 | 957663025230936
b 21 79 | 10410 | 2836440 1324377702 944684832315
An | 1]2] 82 | 10572 | 2860662 1330910844 947622146676

We can give arbitrarily a sequence of integers (b,) and obtain sequences (a,)
and (4,) that automatically satisfy our theorems. We give two simple examples.
With b, = 1 for every n, we get a,, = o(n).

an 1(3|4]7|6]12| 8 |15 13|18 | 12|28
bn 111111 1 1 1 1 1 1
Ap |11 1|23 57|11 |15|22|30|42|56]|77
With b, = —24, the numbers A, are given by Ramanujan’s 7 function A, =
7(n+1).

Qn 24| -72 | -96 | -168 | -144 | -288 | -192 -360

bn 2424 24 | -24 | -24 -24 -24 -24

A, | 1]-24|252|-1472 | 4830 | -6048 | -16744 | 84480 | -113643

Finally let (T},) be the tangent numbers with the notation of [§]. We have T5,, = 0
n4n+1 (4n+1 _ 1)B2n+2
2n + 2 '

It can be proved that a, = (—1)"Ts,+1 satisfies Kummer congruences. It follows
that the sequence (T,41) is realizable, in this case the three sequences are

Tont1 = (—1)
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an, 2116|272 | 7936 | 353792 | 22368256 | 1903757312
bn 21 7190 | 1980 | 70758 | 3727995 | 271965330
A, |1]2|10]108 | 2214 | 75708 | 3895236 | 280356120
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