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Abstract. We consider a wave problem posed in a bounded open interval of R, where the coefficients,
the initial conditions and the right-hand side are highly oscillating, periodic in the space variable and
almost periodic in the time one. Our purpose is to find not only the corresponding limit equation but a
corrector, i.e. a strong approximation in the H' topology, which for the wave equation is known to be
non-local. In a previous paper we have studied this problem in the whole RY | here we consider the case
of a bounded domain in dimension one. Thus the novelty in this paper is the analysis of the boundary
conditions.
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1. INTRODUCTION
The homogenization of a wave problem with oscillating coefficients in a bounded open set 2 C R such as
O (pe(x)Opue) — divy, (Ac(2)Vaue) = fo in (0,T) x 2
ue =0 on (0,T) x 912 (1.1)
Uejp—o = u?, Otlep—g = Ve in £,
has been studied in several papers ([5,9,11]). Assuming the coefficients p., A. uniformly elliptic and bounded, the
right-hand side converging strongly in L(0,T’; L?(£2)) to some function f and the initial data u?, 9. converging

weakly in H}(£2) and L%(§2) respectively to some functions u°, 9, it is known that the solution u. of (1.1)
converges in L°°(0,T; H}(§2)) weak-* to the solution u of

O (p(x)0pu) — divy(A(z)Veu) = f in (0,T) x 2
u=0 on (0,T) x 01?2
’U,‘t:() = UO, 6{&‘,5:0 = in £2.
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Here the coefficient p is the weak-* limit of p. in L*°({2) and the coefficient matrix A is the limit of A. in the
sense of the elliptic homogenization ([13,17,18]). This homogenization result provides a weak approximation of
the derivatives of u.. It is also interesting to get an approximation of these derivatives in the strong topology
of L?((0,T) x §2). This is called a corrector result in homogenization. Since A is the limit of A, in the sense of
the elliptic homogenization one could expect that the elliptic corrector also provides a corrector for the wave
problem. However it has been proved in [5] that this only holds true if the initial data are “well posed”.

A corrector result for problem (1.1) in the case of periodic coefficients and 2 = RY has been obtained in [6]
and [10]. For the elliptic or parabolic problems the corrector in every point is just obtained from the value of
the derivative of the limit function in such point. In particular initial and boundary conditions do not affect to
the corrector. However for the wave equation the corrector is non-local. In general, its value in a point depends
on the value of the limit function and the right-hand side in the whole domain (or more exactly in a certain
cone of dependence) and of the initial conditions. This is due to the dispersion of the waves in an heterogeneous
domain. Namely, it has been considered in [10] the wave problem

{8,5 (pe(t, z)Opus) — divy (Ac(t,2)Vaue) + Be(t,x) - Vigue = fo in (0,T) x RN 12)

0 N
Uelp—p = Ug, OpUep—g = Ve in RT,

where the functions p., A., Be, f-, u? and 9. have the following structure
(tw)—o(f)—k&?ltxzf Adltya) = 4° () 4eat Lae L BY, Bty =B(ta Lt
,05 ) - ,0 € p [l 63 c 9 e\“y - € P 8’ € ) e\“ - » 4y )

xT

f(t,x)=7f (t,x, E, g) ;o ud(z) = ul(z) +eut (x, g) , Oe(z) =70 (:c, g> ,

and they are periodic in y = 2/ of period the unitary cube Y in RY and almost-periodic in s = ¢/. Then it
has been proved the corrector result

t
ue(t, ) — ug(t, ) — euy (t,x, o g) — 0 in HY((0,T) x RY), (1.3)

where wup, u1 (and some ugy) solve

p?0%uy — div, (A (Veug + Vyur)) =0

poaftuo — div, (AOuno) + 2p083tu1 — div, (AOVyul) — divy(AOqul)

+0s (p" (Dpuo + Osur)) — divy (A (Vouo + Vyur))

+B - (Vizuo + Vs yur) + pP02us — divy (A°Vyus) = f

uy(t, z,s,y), uz(t,x,s,y) periodic of period Y in y and almost periodic in s

a1
v, 8yu1|t=s=0 =0yu'.

uo|t:0 = uO’ (8tu0 + 83ul)|t=szo =
Here the second equation is just formal. The corresponding variational formulation consider test functions
¥ =)(t, x, s,y) satisfying the wave equation

p? 0% 4p — div, (A°V ) = 0,

and then the terms containing uy disappear. Therefore, in this formulation we get a system of two equations
for the two functions ug, u; which appear in (1.3).

We observe that the second equation in (1.4) contains derivatives of u1 not only in the microscopic variables
(s,y) but also in the macroscopic ones (t,x). This is completely different to the elliptic and parabolic cases and
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as we mentioned above shows that the corrector is non-local for the wave equation. The behavior of w1 in a
point (¢,,s,y) does not only depend on the value of ug in (¢, ). As a consequence of this non-local behavior,
it is proved in [10] that the presence of the first order term B. (¢, x) - Vu in (1.2) provides a non-local problem
for the limit ug of u.. On the other hand, we observe that due to the presence of derivatives in ¢ for u; in the
second equation of (1.4) we have needed to introduce initial conditions for w; in ¢ = 0.

An interesting question is if a result like (1.3) holds also true for a bounded domain 2. In such case a formal
calculus shows that ug, u; must also satisfy (1.4) where now it would be necessary to introduce some boundary
conditions for u; on df2. These boundary conditions must depend on the boundary conditions imposed for wu.
in (1.2) and probably on the geometry of (2. For this reason the problem in a bounded domain seems to be
much more difficult than the problem in RY. In the present paper we analyze this question in the simplest case
where {2 is a bounded one-dimensional interval («, 3). Our formulation considers Dirichlet, Neumann and mixed
boundary conditions. We show that (1.3) holds still true, but just for a subsequence because the behavior of
the derivatives of u. depends on the relative position of the extremes of the interval («, 3) with respect to the
periodicity cell. The main difficulty is to find the good boundary conditions for u;. They describe the shocks of
the wave with the walls. Namely, we show that w; can be decomposed as

ul(tvxv Svy) =l (t,l‘, y) + Z Gj (t’x)dsj (y)ev\js + Z (ajl(tax)dsjl (y) + GjQ(tvx)¢j2(y))ei>\'jsv
JEJ1 jeJ2

where 4 is the classical elliptic corrector, the numbers \; are the (negative and positive) square roots of the
positive eigenvalues p; of the following problem, with a” the above function A° which is now denoted by a
lowercase letter to emphasize that it is a scalar function.

_ 4 <a0@> :ujpodi in R
dy dy (15)

do
D, aod— periodic of period Y.
Y

The sets J; and Jy correspond to the index j such that p; has multiplicity one or two respectively and the
functions @;, 1, @2 are a basis of the corresponding eigenfunctions spaces. The boundary conditions for u; are
in fact given for the functions ii;1, G2 associated to the eigenvalues of multiplicity two while boundary conditions
for the functions U; are not needed. This different behavior corresponds to the fact that the perturbations
associated to simple eigenvalues do not propagate in space while the corresponding to eigenvalues of multiplicity
two travel in space.

We observe that (1.5) corresponds to the eigenvalue problem (2) in [6] for | = 0, where a corrector for
problem (1.1) with 2 = RY and coefficients periodic of period ¢ is obtained by using the Bloch theory. This is
not surprising because we are studying very related problems but in our case this is the only eigenvalue problem
we need, while in [6] it is necessary to introduce the second parameter [ € Z.

2. NOTATION

The functions will be assumed valued in the complex field C, with ¢ the imaginary unit. The conjugate of a
vector u € CF is denoted by . The real part of a complex number z is denoted by Re(z).

In order to write shorter expressions, we will only write the arguments of the functions when it is essential.

For o, 8 € R, a < 3, we denote by I the interval I = (o, 3) C R.

For T > 0, we denote by Q7 the open set (0,7) x I.

We denote by O, an arbitrary sequence which converges to zero when ¢ tends to zero and which can change
from line to line.

We denote by Y the unitary interval (0, 1).
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For functions defined in Y, we use the index # to note periodicity with respect to Y (thus the functions are in
fact defined in the whole of R). For example Lj(Y") denotes the space of functions in Lj,.(R) which are periodic

loc
of period Y. The integral in Y of a function u in L; (Y) will be denoted by M,(u) (mean value).

For functions defined in R, the index f denotes almost-periodicity. Namely, we will use the following spaces
of almost-periodic functions.

1. We denote by Cy(R) the space of almost-periodic functions in the Bohr sense, i.e. the closure of the trigono-
metric polynomials u of the form

u(s) = Zcpjeipjs, VseR, withmeN, p;eR, ¢, €C, 1<j5<m, (2.1)
j=1

with respect to the uniform convergence topology.
2. We denote by Lg (R), 1 < p < 400 the space of Besicovitch defined as the closure of the trigonometric
polynomials as above with respect to the norm

P = 1 J— p
lull Ly = | Jim o= /_R\u(é‘)\ ds| .

Indeed, || - || LE(R) is not a norm but a seminorm. In order to have a structure of normed space in L§’ (R) it is

necessary to work with a quotient space, i.e. to identify functions u,v € Lzﬁ’(R) such that |lu — v||L§(R) = 0.

It is well known that every function u in the space Lé (R) has a mean value Ms(u) € C, which is defined by
e—0

lim [ « (S) ds = Ms(u)|E|, VE CR, bounded and measurable.
B

3. We denote by Hﬁk(R), k € R (in the paper we just use k = —1,0,1) by

Hé“(R) = Zcpeips ¢ eC, VpeR, Z e p|*F < o0
peR peR\{0}

It is a Hilbert space endowed with the norm

Zcpeips _ |CO‘2+ Z |Cp|2|p‘2k

pER Héc (R) pER\{O}

(NI

We remark that H?(R) = Lg (R). Moreover, we have Hﬁk(R)’ = Hu*k(R).

In Hﬁk(R) we define the derivative operator < : Hﬁk (R) — Hé“_l(]R) just by

S

% Zcpeips :Zipcpeips.

pER peER

We will also use the index £ for functions defined in R x Y to denote periodicity with respect to Y and almost
periodicity with respect to R. Namely, we will work with the spaces C3(R x Y'), LY(R x Y, Hﬁk (R x Y'), which
are constructed as above but starting from functions of the form

m
u(s,y) = Zcp_jn_jei(p-73+2”"-7y), V(s,y) eR XY,
j=1

meN, p; €R, n; €Z, ¢y, €C, 1< j5<m.
The mean value of a function u in Lé (R x Y) will be denoted by M, (u) = Ms(M,(u)) = My(Ms(u)).
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Along the paper we will consider two fixed periodic real functions p° € Le(Y) and a’ € Lge(Y'), such that

infess p°(y) > 0,  infessa®(y) > 0. 2.2
infess p (y) infess a (y) (2:2)

Then, we introduce the spaces W*, k € R by
whk = Zcp(y)eips € Hf(R xY): =0, p°02w—0,(a’dw)=0,. (2.3)
peR

A spectral decomposition for the elements of W¥ can be obtained in the following way: we introduce pg = 0 <
p1 < pg < --- as the numbers (eigenvalues) u; € [0, 400) satisfying that the space

d do
W; = {45 €H/(Y): “dy <a°d—y> = p;p"® in R} (2.4)

does not reduce to the null space. For an eigenvalue j;, we denote

W, =Wy A= ig. A= — Vi (2:5)

Then,
o0 (oo}
k iXjs . 2 2k
WE= 0D e e e Wy V€L 3 el < oo . (26)
30 370

We remark that with our definitions, the space Hﬁl (R x Y) is not contained in Lf(R x Y') since
Z ||Cp||2L§(Y)|P\2 < oo # Z H%Hig(y) < o0,
pER\{0} pER\{0}
but W! is contained in W° because

oo 1 oo
2 2 2
Z ||CjHL§(Y) < 2 Z: ||CJ'HL§(Y)|/\J" :

j=—o0 1

370 J#0

We also recall the following well known result: If &', &2 are two solutions of the differential equation

d do .
I (aO@) = u;p’® in R (2.7)
then ) )
do do
a (@1@ - 452d_y> is constant in R, (2.8)

where the constant is zero if and only if @', ®? are linearly dependent.
Taking into account that the spaces W; can be of dimension one or two, we denote

Ji={j € Z\ {0} : dim(W;) =1}, Jo={jeZ\{0}: dim(W;) =2},

and
Jr=nnzt, Jf=JnZ".
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For a function
o0

U= Z cj(y)ep‘js e W',
im0

70
we define Pyu, Pyu by

Pru= Y cj(y)e™*,  Pu=Y c;(y)e*.

JEJ1 jeJ2
Besides of the functions p°, a®, we will also consider functions p! € L>(Q7; Cy(RxY)), a' € L>=(Qr; Cy(R x
Y)), p', a' real, such that
opt, 0sp", 0at, 050" € L= (Qr; Cy(R x Y)), (2.9)
and a function B € L>=(Qr; Cy(R x Y))2.
With these functions, and € > 0, we will define p.,a. € W1>(0,T; L>°(I)), B: € L>=(Qr)? by

t
a-(t,z) = a° (g) +eat (t,x, o g) (2.10)
x t x
pE(t’x) = po (g) +€p1 <t,$, gv g) (211)

t
B.(t,z) = B (t,x, L f) | (2.12)

a.e. (t,x) € Qr.
We denote by cq,da, cg, dg complex constants such that

|ca| + |dal >0, |cg|+ |dg| > 0.
With these constants, we define the space V' by
V={veHI):v(a)=0if co =0 and v(B) =0 if cg = 0}.
The space V is endowed with the H*(I) norm.

3. MAIN RESULTS

For u?, 9. and f. bounded in V', L2(I) and L?(Q7) respectively, we consider the wave problem

8t(peatus) - 835(@5835“5) + B - Vt,xue = fs in QT

(= Caaz0zue + dauc) e =0, (cpacOpue + dguc) =0 in (0,7)

o= (3.1)

Ue|t=0 = U& 81&“5\1&:0 =ve inl
u. € L(0,T;V), Owu. € L>=(0,T; L*(1)).
Our purpose in the present paper is to study the asymptotic behavior of u. when £ tends to zero. First we

remark that since for € > 0 small enough, p., a., are uniformly elliptic and bounded in W1°°(0,T; L*(I)), B-
is bounded in L*>(Qr)?, and u?, 9., f. bounded in V, L?(I) and L?(Qr) respectively, we immediately have

Theorem 3.1. Fore > 0 small enough, problem (3.1) has a unique solution. Moreover, there exists C' > 0 such
that

[uell oo 0, 1,v) + 10kue || Lo 0,122 (1)) < C. (3.2)
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Theorem 3.1 implies that, at least for a subsequence, there exists the limit ug of u. in the weak-x topology
of L*°(0,T;V). In order to characterize this limit and to obtain a corrector result for problem (3.1), let us use
the two-scale convergence theory.

Definition 3.2. We say that a sequence v. € L?(I) two-scale converges to a function v € L?(I; L? (Y)) and we
write v 2% v, if for every ¥ € C.(I; C4(Y)) we have

lim [ vt (1‘, g) dx = /IMy(m/)) dz. (3.3)

e—0 T

Analogously, we say that a sequence v. € L?(Q7) two-scale converges to a function v € L?(Qr; Lg(R xY))

and we write v, =% v, if for every ¢ € Co(Qr; C4(R x Y')) we have

t
lim | v <t,x, L f) dtdz = / M, (vih) dtdz. (3.4)
Qr € ¢ T

e—0

The interest of the two-scale convergence follows from the classical compactness results which establishes the
existence of a two-scale limit for bounded sequences in L? (see [1,7,8,14-16]). As a consequence of these results
and u?, ¥, f. bounded in V, L*(I) and L*(Qr), there exist u® € V, u' € L*(I; H{(Y)), ¥ € L*(I; L{(Y')) and
f e L*Qr; L§ (R x Y")) such that, up to a subsequence, we have

W —u® iV, 0,u 0,0 +0out, 9.X9, fE7 (3.5)

The main result of the paper is given by Theorem 3.4 below which provides the limit function ug of the solution
ue of (3.1) and the two-scale limit of the sequence Vi zu.. Related results have been obtained in [2-6,9,11,12].
Here the novelty is the analysis of the boundary conditions which (because the waves travel and shock with the
walls) influence the behavior of u. at the interior of 2.

Although the problem is periodic, we will prove that the two-scale limit for the whole sequence V u. does
not exist, instead we will need to consider a subsequence of ¢ such that there exist o*, 5* € R/Z satisfying

% -, g — B inR/Z. (3.6)

Associated to this subsequence, we define the following spaces which will appear in Theorem 3.4.

Definition 3.3. For a subsequence of € such that (3.6) holds, we define the spaces V; and Vs by

Vi = H} (0,T; L2 (I; P (W) (3.7)

(aoaw)m;; =0 if cq #0,
V9peay—ar =0 ifca =0
(aoayzp)lf;ﬁi =0 ifeg #0

'(/J\x:ﬁ,y:ﬁ* =0 lf Cﬁ =0.

Vo = € H(Qr; PLOWVY)) : Yj—g = Y= = 0, (3.8)

Theorem 3.4. We consider a subsequence of €, still denoted by € such that (3.5) and (3.6) hold. Then, the
sequence u. satisfies
ue = ug in L°°(0,T;V) (3.9)

2e
vt,xue - vt,xuo + vs,yUh (310)
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where ug, uy are the unique solutions of the variational system

ug € L>®(0,T;V), dpug € L°(0,T; L*(I)) (3.11)

uy € L>(0,T; L*(I; H{ (R x Y))), M y(u1) =0 a.e. in Qr (3.12)

oo = 4, (Druo + dsun) 0, Oyun_ g = Oyu’ (3.13)

|[t=s=0 =

/ My (= p°(Oruodsvo + Osu10sv1) + a® (Opug + Oyur ) (Dpvo + dyvy) ) dtda

T

d d
+-2 upvo dt + el / ugvo dt
{z=p}

Ca Jiz=a} cs (3.14)

+/ M, , (B - (Viguo + Vs,ym)vo)dtdx = / Ms’y(fvo)dtdx
Yo € Wy (0,75 LA(1)) N L'(0,T3V), Vi € LA(Qr; H} (R x Y))

/ My (= 2p°05u104 — p' (Bpug + Osur) 05t + a' (Dpuo + Oyur)dytp)dtda

(3.15)

+ / My (B - (Vizuo + Vs yur)t)dide = / M, (fo)dtdz, Vi € Wy

/ MG,y( - 2p083u18tw + aoayu1aww — aoag,y’(/J Ul) dtdl‘

T

+ / Ms,y (_p1 (815“0 + 83“1)8.9'(/1 + al(axuo + 8yu1)8yw) dtdz (316)

+ / M,y (B (Viguo + Vs yui)p)dide = / M, ,(fo)dtdz, Vi € Vs.
T QT

Remark 3.5. In the case where ¢, = 0, the term

da
— UpVo dt
Ca J{z=a}

which appears in (3.14) must be understood as zero. Observe that in this case, the functions ug and vy vanish
at ¢ = a. Analogously, if cg = 0, the term

dp
€8 J{z=p}

UoVo dt

is defined as zero.

Remark 3.6. In order to have uniqueness for u; we have taken it satisfying M; ,(u1) = 0. Clearly, (3.10) still
holds adding to u; any function independent of the variables (s, y).

Remark 3.7. Observe that the two-scale limit of the solution u. of (3.1) depends on the position of the extremes
of I with respect to the periodic cell, which correspond to the points o* and 8* given by (3.6).
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Remark 3.8. In equations (3.15) and (3.16) the function v applies Q7 into the spaces P;(W?!) and Po(W?)
respectively. This shows that the behavior of elementary waves associated to simple or multiple eigenvalues
of (2.4) is different.

Remark 3.9. From (3.14), with vy = 0, we deduce the equation
PP 02 uy — 0, (a®(Dpug + Oyu1)) =0 in R x R, a.e. in Qr. (3.17)

A solution of this problem independent of s is given by the elliptic corrector @y (see e.g. [1,4,14]) solution of

iy € L0, T; LI HAY))),  My(ian) =0 ae. (t,x) € Qr -
3.18
—0y(a®(Ozug + 0ytn)) =0 in R, a.e. in Qr,
or equivalently
N 0 1 1 N
Oyt (t,z,y) = ap | 57—~ — =5 | Ozuo(t, ), ae. (t,z,y) € Qr, xR, My(i1) =0, (3.19)
a’(y)  a
with a9 the homogenized coefficient corresponding to a°, i.e.
1
0
ap = : (3.20)
"My (5)
From (3.17) and (3.18), we deduce that u; can be decomposed as
up = Uy + U1, (3.21)
with
iy € L0, T; LA(I; WY)). (3.22)

Remark 3.10. Taking v; = 0 in (3.14) and using (3.21), (3.19) and Ms(@1) = 0, which is a consequence
of (3.22), we deduce that ug satisfies

My(p°)07uo — afd? uo + By - Vi gug + My (B - Vs yiin) = My, (f) in Qr
(—caa?ﬁxuo + dato)|g=a = 0, (cmz%@muo +dgug)|z=g =0 in (0,T) (3.23)

0
Uo|t=0 = U,

where, denoting by by, b, the two components of B, the function By, is given by

. M, (%)
Bh = (bh,t7 bh,z) Wlth bh,t = Ms,y(bt), bh,z = 1 (324)
My (a_O)
If we assume that B satisfies
M, (B-Vs,0)=0, YoeW' ae inQr, (3.25)

then the fourth term in the PDE in (3.23) vanishes providing an equation for ug (the limit equation). This
holds, for example, if B does not depend on s. In general (3.25) is not satisfied and then, since @; does not
depend locally on ug, we get a non-local equation for ug. An example of this situation is given in [10], where
QT B (O,T) x RN,
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Remark 3.11. Equation (3.23) for up must be completed with initial conditions for ug and Odyug. The first
one is contained in (3.13). The second one can be obtained as follows: Using (3.21), we can write the second
equation in (3.13) as

(81;110 + 85121) 9, (326)

[t=s=0 =

where 0511 is a combination of eigenfunctions of problem (2.7) corresponding to non-vanishing eigenvalues.
Thus M, (p°0st1) = 0 and therefore, multiplying (3.26) by p° and taking the mean value in y we get

M, (p9
Ouojt=0 = %' (3.27)

Equation (3.16) implicitly provides boundary conditions for the function @, given by (3.21). This is given by
the following Proposition which shows that Pyu; satisfies the boundary conditions imposed to % in (3.16).
Proposition 3.12. In the conditions of Theorem 3.4, and defining @1 by (3.21), we have

(a0 Pyli1) |p=aymar =0 if ca #0,  Pailyjy—gyea- =0 if ca =0, (3.28)
(a8, Poit1 ) jpep ymp =0 if c5 #0, Poittjpepyp- =0 if c5 = 0. '

From Theorem 3.4 it is also possible to obtain a corrector result for problem (3.1). For this purpose, it is
necessary to assume that in (3.5) the two-scale convergence holds in the following strong sense:

lim 0pultp. do = / My ((0,u° + dyu' ) da

e=vJr I

lim [ 9eypedo = / M, (09)dz (3.29)
E—> I T

V. bounded in L2(I)N, ¢ € LA L2(Y)), W %4,

which is possible to prove (see e.g. [1]) that it is equivalent to assume that the second and third assertions
n (3.5) hold and

lim |8xu2\2dx:/My(|8mu0|2+|8yu1|2) dz, lim |196|2dx:/My(\19\2) da.
0Jr I e=0Jr I

£—

The corrector result is given by Theorem 3.13 below. Its proof is very similar to the one of Theorem 3.7
in [10] and then it will not be given here. The main idea consists in using Theorem 3.4 to pass to the limit in
the energy identity for problem (3.1).

Theorem 3.13. We assume that in Theorem 3.4, the sequences ul and ¥. satisfy (3.29), then, for every

€
sequence I € Lz(QT)2 which two-scale converges strongly to Vs u1, we have

lim [ [Vea(ue —uo) — I?dzdt = 0. (3.30)
E— QT

Remark 3.14. If the function V yu; is in L?(Qr; C?(R x Y)?), then we can take in (3.30)

t
FE - vs,yul (taxa ) _) :
g €

In this case Theorem 3.13 asserts

t
Vt,xus - Vt,xuo - vs,yul (t,l‘, gv g) —0 in L2(QT)2a
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which assuming further regularity in u; reads as

t x
Ue — Uy — EUY (t,x,g,g> — 0 in HI(QT).

We finish this section with a simplified model of (3.1) where we can explicitly obtain the function u; which
appears in Theorem 3.4 from wg, the initial data and the right-hand side. For this purpose, let us consider an
orthonormal basis of the spaces W composed by real functions. Namely:

If j € J1, we consider a real eigenfunction ¢; € W; such that
My (p°19;]%) = 1. (3.31)
If j € Jo, we consider two real eigenfunctions @;;,®;2 € W; such that

M, (p°®j®j1) = 6., k.l € {1,2}. (3.32)

Since W; = W_; for every j € Z\ {0}, we can also assume
@j = Q_j, Vj € Jl, Qsjl = Qs_jl, @jg = Qs_jg, Vj € Js. (333)

Moreover, we remark that these functions @;, @;1, ®jo with j € Z* are a basis of L§ (Y)/R and Hﬁ1 (Y)/R.

Taking into account that f belongs to L?(Qr; C4(R x Y)), and then to the space L*(Qr; L§ (R xY)), that
u! belongs to L?(I; Hﬁl (Y)), and can be chosen with zero mean value in y, and that 9 belongs to L?(I; Lg (Y)),
we can decompose these functions as

flt,z,5,9)

— . T . ei)\js
pO(y) - ZjeJl [ (t, )453 (ZU)

. (3.34)
> (it 2)Bi (Y fiat, 2)Dja(y) )€™+ 7 (¢, 2, 5,y)
jEJ2

ul(w,y) = Y uj(@)®(y) + Y (ufi(@)P1(y) + ujp(x)Pj2(y)) (3.35)

jeJs jeJs
Ia,y) = D> 0 (@)85(y) + Y (9,1(2)851(y) + V52 (2)Pja(y)) + My (), (3.36)
jesi JeTS
with
M, (p°f*v) =0 ae.in Qr, YveW° (3.37)
Z 1£ilZ20r) + Z (I FinlZ2@m + 1 Fi2llZ2(0qp)) < +00 (3.38)
JjEJ1 JEJ2
Z A?”“;H%?(z) + Z A?(H”}'l”%?([) + ||U;1'2H%2(1)) < +00 (3.39)
jei jeJs
D 19il1Zacy + Y (WallZe + 1052l72()) < +oo (3.40)
illL2(n) iz (r) i2llz2(1) : :

jedy JETS
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We also denote (recall that by (2.8) the definition of x; below does not depend on y)

m; = My(ao(?y@j), j € Ji, mj = My(aoayéﬂ), j € Jo, le {1,2}

5 =00 (200) 2 0) - 22() 2 0)) . ac.y e

1y =), M?; =0u(8°), j€J2 l€{1,2}

a*

d . 5 do . .
o = (aod—y]) (™), vy = (aod—yj) (6%), je€Jo, le{l,2}.

v

(3.41)

(3.42)

(3.43)

(3.44)

Theorem 3.15. We assume that the functions p*, a', B in Theorem 3.4 vanish. Then the function u; is given

by (3.21), where the functions Gy and 4y can be written as

a1 (t,z,y) = Z 0;(t, z)P;(y) + Z (j1(t, 2)@j1 (y) + Gja(t, 2)Pja (y))

jegs jegs

At 5,y) = D (6P )eN 4 D (351(H2)P5(y) + B (1 2)Pja(y)) e,
JEJ1 JEJ2

with
supess | 7 X2 6,( ) [Fa) + D A2 (6 @)llEery + 2t 0)l[Fer ) | < o0

te(0,7) \ . ,
©.1) jeJ; jeJS

supess [ > A5t )72 + Y AT (G506 @) 72 r) + 852t 2)[172() | < oo
te(0,1) VISOA JEJ2

The coefficients G; and G;; are given by

m;jOyug + AJ0; =0, a.e inl, Vte[0,T], Vje JF

mjdto + Ny =0, ae inl, Vt€[0,T], Vje J, Vie{l,2}

For j € J1+, the coefficients U;, U_; are given by

_ 1 m; 9;(x) . i [ ‘
0;(t,2) = = [ ul(2) + ~L0puo(0,2) — —L24 | — —/ fi(r,x)dr, a.e.in Qr
/ 2 ( J A3 Aj 2\ Jo 7
_ 1 m; 9;(x) . i f* ‘
i j(t,x) = = | ul(z) + ~L0puo(0,2) + L0 | — —/ fi(r,x)dr, a.e. in Qr.
/ 2 ( J A3 Aj 2\ Jo 7

The coefficients Uj; are the solutions of the system

2i/\j8tl]j1 - Kjaxﬁﬂ = fjl
20l o + K0 U51 = [,

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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with the boundary conditions

( jl U]1 + v 2 Ujg)‘ Y =0 cha 7é 07 (//6;11*&]1 + M?;G]2)|z:a =0 ZfCa =0
. . ’ . . (3.54)
(v 1+ s aﬂ)lxzﬁ =0 ifea 0, (g + iy aj2>|x=ﬁ = 0ifeg =0,
and the initial conditions
1 191 . . .
Uy [¢= 0—§<Jl—|— Az@uouo—xz), ae. inl, ¥jeJf, 1=1,2 (3.55)
~ 1 ¥ ) .
u_ﬂt=0:§<ﬂ+ /\28u0‘t 0+)\—lz>, ae inl, VjeJy, 1=1,2. (3.56)
j

Remark 3.16. The existence and uniqueness of solution for system (3.53) with the boundary conditions given
by (3.54) and the initial conditions given by (3.55) and (3.56), follows from Theorem 3.4. It can also be proved
directly. For this purpose we remark that it is easy to obtain an a priori estimate for this problem. Namely,
assume to simplify ¢, = ¢z = 0 (Dirichlet conditions), the other cases are similar. Then, multiplying the first
equation in (3.53) by 0;1, the second equation by iz, integrating in («, ), dividing by 2i\; and adding the
two equations, we get

1 B = 1

(aruj‘g Lljl — 8Iuj1 Ujg) dax = —m

B — _
2)\ /a (fj1u51 + fioljo) de. (3.57)

B
/ (O¢lijy uﬂ + Oilijo uﬂ)dx —|—
«

In the second term an integration by parts shows
B
/ (Ozlj2 Uj1 — Oplj1 Uj2) da = 2/ Re(9yUj2 1) dz — U1 (¢, B)uj2(t, B) + Uj1 (¢, a)uja(t, a). (3.58)

Now, we observe that if /ig‘l — 0 then G;5(t, @) = 0 by (3.54) and therefore
Uj1(t,a)uje(t,a) =0 € R.
If ,u]“l # 0, then, multiplying the first equation in (3.54) by G;2(t, a) we have
o

~ =~ Il'l/
Uj1(t, Oz)l.ljg(t, Ol) = _]7,2*
M1

ng(t,a)|2 eR.

So, we always have that the third term on the right-hand side of (3.58) is real. Analogously, we can also show
that the second term is real and therefore (3.58) shows that the second term in (3.57) is purely imaginary. Thus,
taking the real part in (3.57) we get

B 1 B 1 1
50 [ (@] +d2)?) dz < —/ (15l + 1f52*) (10 + [3j2]*) * da
tJo 20 Jo
This estimate allows us to use Gronwall’s inequality to deduce the a priori estimate

2

2
- C C C
D Nl oz < 323 Mswlz@n + Ol iz + 3105 iz + 3gl9st0-ol (o)
k=1 k=1 J

Then, thanks to this a priori estimate and using for example a Galerkin approximation, is now easy to prove
existence and uniqueness of solution for (3.53)—(3.56).
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Remark 3.17. From (3.53), we can deduce that the functions U;1, {2 are the solutions of the wave equations

4/\?8256]'1 — K?@gzﬁjl = —2i/\j8tfj1 — Kjawfjg (359)

4)\?82[%2 - H?@imﬁjg = K)jawfjl - Qi)\jatfjg, (360)

combined with some boundary and initial conditions which can also be deduced from (3.54) and (3.55), (3.56).
The right-hand side of (3.59) and (3.60) has a lack of smoothness (something similar happens for the initial and
the boundary conditions), the corresponding solution can be defined by transposition.

Remark 3.18. In Theorem 3.15 we can observe how the physical behavior of the elementary waves correspond-
ing to frequencies A; is completely different in the case of simple or multiple eigenvalues. Namely, if A; belongs
to Ji the corresponding coefficient @; of u satisfies the equation (see 3.51)

2N;idyit; = f;.

It corresponds to a perturbation which does not moves in space, such as it can be observed in (3.51) which
provides a value for @; in a point (¢,x) depending only on the values of the data for the same spatial point .
Thus, the behavior of these wave does not depend on the boundary conditions.

When A; is an eigenvalue of multiplicity two, the equations corresponding to the coefficients ;1, ;o are
given by (3.59) and (3.60). They correspond to waves moving in the space at a velocity x;/(2);) through the
characteristic .

r =+t
2

Thus, perturbations originated in a certain point of («, 8) arrive to the boundary in a finite time and there,

they are reflected depending on the chosen boundary conditions.

4. PROOF OF THE RESULTS

This section is devoted to show the different results stated in the previous one.
In order to prove Theorem 3.4, we need the following lemma which is a particular case of Lemma 4.1 in [10]
and then it is given without proof.

Lemma 4.1. We consider a bounded sequence (. in H'Y(0,T;L*(I)) such that there exist (o €
HY0,T; L*(I; L (Y)) and ¢ € L*(0, T5 L*(I; H} (R; L3(Y'))) satisfying

¢ X ¢, BeCe 25 0,Go + 0. (4.1)
Then,
() X ¢t,.,.),  Vtelo,T) (4.2)

Besides, for every ¢ € C1(Qr), Pli=0 = =7 =0, h € LE(Y) and g € WH(R), periodic with period S, for
some S > 0, and zero mean value, we have

Jlim H C(t,)p(t,x)g (g) h (g) dtdr = / M, (Gi(t,z,8,9)0(t, x)g(s)h(y)) dtdz. (4.3)

=0 Jor

Proof of Theorem 3.4. We split the proof in several steps.

Step 1. From (3.2), we know that, at least for a subsequence, there exists ug € L*°(0,T;V), with dyuy €
L°°(0,T; L?(I)) such that

ue = ug in L°0,T;V), e — dyug in L=(0,T; L*(I)). (4.4)
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Moreover, the compactness property of the two-scale convergence (see [1,7,8,14-16]) implies the existence of
Uy € LOO(O,T;Lz(I;Hﬁl(R xY))), up = u1(t, z, s,y), such that
vt,xue 2_6\ vt,:}cuO + vs,yuL (45)

The problem is to characterize these functions. For this purpose, as it is usual in the two-scale convergence
method we take as test function in (3.1) the sequence

t x
ve(t, ) = vo(t,x) + ey <t,x, o —> ,

e

with vg € C2°(0,T5V), v1 € C°(Qr; C°(R x Y')). Passing to the limit when € tends to zero we easily deduce
that ug, uy satisfy (3.14). However this is not enough to characterize the function u; and then we need to use
another type of test functions. For this purpose, we reason as in [10]. Namely, for j € Z\ {0}, & € W; and
0 € C([0,T]; CE(I)), je=r = 0 we take as test function in (3.1) the sequence

Us(tvx) = (p(t7x)ei>‘.7'£¢ (g) , a.C. (t,.T) € QT'

Then, the same calculus which appears in Step 3 of the proof of Theorem 3.5 in [10] shows
— / My (9 ¢(0,2)®) do — 2/ M,y (po Dsu1 Oy pei® @) dtdz
T

do .
—/My <a08 u— <p(0 x)) dz —iA; Msvy(pl(ﬁtuo + Osuy)p elAJ'S@)dtdx
Qr

+/ M (aoayulazgoei’\jsd5) dtdx —/ My, (ao ids@ YU et ) dtdx (4.6)
Y

T T

b 0d® / de
% /IMy (a dy) 0z p(0,2) ug (0, z) dz +| M, (a (Opuo+0y ul)dy et ) dtda

T

+/ Mw(B (Vizuo + Vg yur)e ehis 45) dtdx = / Mq,y(ftpei)‘js @)dtdx,
T

Qr

which combined to (3.14) allows us to prove (see [10] for more details) that ug, uy satisfy the variational equation

/ Ms,y( - 2,0085U1at¢ + aoaquamw — aoaiy'l/) Ul) dtd{L‘

+/ Ms’y(—pl(atuo + Osu1)0s0 + al(axuo + ayul)ayw)dtdx (4.7)

+/ Mgy (B - (Vizug + Vs yur)¢)dtde :/ My, (f)dtdz, Vi € Hy(Qr; W)

and the initial conditions (3.13).

Contrarily to [10] where the wave equation was considered in the whole space RY, problem (3.1) is stated
in a bounded interval with boundary conditions. Thus, besides of equations (3.14), (4.7) and the initial condi-
tions (3.13) we need to obtain some boundary conditions for u; in order to determine the functions wug, u;. This
is the main novelty with respect to Theorem 3.5 in [10] and it is carried out in the next step.

Step 2. Let us extend (4.7) to more general functions ¥ which do not necessarily vanish in = «, = (. Since
we consider functions 1 from Qr into W*, they are a linear combination of functions of the type g; (¢, z, y)etris,
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with g;(¢,2,.) € W;. By linearity it is enough to assume that v is just of the form ¢ = g;(t,z,y)e!** for a
particular j. We distinguish the cases j € J; or j € Jo and we take special functions g; in every case.

e j € Ji: By (3.14) (see Rem. 3.9), we can decompose u; as @y + 1, where iy does not depend on s and
@y € L*(0,T; L?(I; W')) can be written as

1(t,x,s,y) = Z hy(t, z, y)e™s, (4.8)
1€Z\{0}

for some functions h; € L°°(0,T; L*(I; W;)) satisfying

supess Z /\12/ |hi|2dzdy < +oo0.
te(0.1) oy XY

Then, taking in (4.7) ¥ = ¥(t, 2, 8,9) = @(t, 2)®(y)e %, with ¢ € H} (Qr), ® € W;, ® # 0 and using (4.8),
and M (e'P®) = 0 if p # 0, M(eP*) = 1 if p = 0, we have

/ My (a°0yu1 051 — 05 (a°0ytp) uy ) dtda = / Dutp My (a®0yiy & — a°0,® i1 ) My (9°)dtda

T

+ > / Do My (a® 0yhy & — a® 0y ® hy) M (!N —29)%)dtdw
1eZ\{0}

/ Ozp My, (a (8 h;j® — h; di)) dtdz,

but since dim(W;) = 1 the function h; satisfies h;(t,z,y) = ¢;(t,x)@(y), with ¢; € L>°(0,T; L*(I)) and thus

P
/ dup M, (ao (ayhjds — hjj—y)) dtdz = 0.

So, for such 1, equation (4.7) reduces to
/ Ms,y( — 2p083u18tw - pl (8{&0 + 83“1) 83w + al (83;’&0 + 8yu1) 8y’(/J) dtdzx
T
—|—/ Ms,y(B (Viguo + Vs’yul)d))dtdw = / M, o (fy)dtda.
T T
By the density of H(I) into L?(I), this equation holds true for ¥(t,z, s,y) = ¢(t, 2)P(y)e %, with ¢ €
HL(0,T; L*(I)) and not only in Hg(Qr). Reasoning then by linearity and density, we deduce (3.15).
e j € Jy: Since dim(W;)=2, we can consider a basis {®, ¥} of W;, such that

ae Wy 20 ifen£0

) a) =0, () (o (1.9)
P(a*)=0, ¥(a™)#£0 if ¢, = 0.

For ¢ € H'(Qr) such that Plt=0 = Plt=T = Pla=p = 0 we define

velto) = olt,2) (¢ (2) — v (2)) V2,
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with 1o "
« « )
d—y(z> @(z) it cas0
@(g)/gp(%) i ey = 0.

Observe that thanks to @, ¥, (ZO%, ao% continuous and (3.6), we have that p. is well defined for € small
enough and satisfies

He =

f1e — 0. (4.10)

Taking v as test function in (3.1), we get

—/ Pe Orue Op goei)‘j%@ (g) dtdx — % /QT Pe Optie c,oei)‘jg (d5 (g) — uw (g)) dtdx

T

da oyt oyt

+ — ugc,oel)‘ﬂE (@ (2) — eV (g» dt + / Qe 0y O0zp eNEP (£> dtdz
Ca {z=a} € € Qr €
1 do dv ot ot

+ —/ aeO0p e (— (f) — e — (£>> e e dtdx + B. - Vi ue peNEg (£> dtdzx
€ Jor dy \e dy \e Qr £

_ [ foenie (f) dtdz + O, (4.11)
Qr €

where O; is due to (4.10) and where the third term is defined as zero in the case where ¢, = 0 because by
definition of ., we have &(2) — pu¥ (<) =0 if ¢, = 0.

€
Let us pass to the limit in each term of this equality. The calculus is similar to the one in the proof of

Theorem 3.5 in [10] but simplified thanks to the absence of terms at ¢ = 0. We prefer to explicit the calculus
because in [10] the corresponding sequence v. has compact support and then there is not problem in the
integrations by parts, while here we must use the special structure of the test functions v, defined above.

First term. Using the expression (2.11) of p., (4.5) and M(e*i®) = 0, we get

—/ Pe Orue Oy goei)‘j%@ (g) dtdx = —/ M., (p085u18t<pei>‘j5@) dtdz + O.. (4.12)

T T

Second term. Using the expression (2.11) of p., integrating by parts with respect to ¢ the term containg p°, and
taking into account yj;—o = 0, (4.10) and (4.5), we have

B et (8(2) or (2)) e

Qr
— 1A M., (pl (Orup + Osur)p elhis @) dtdz + O..
Qr
In the first term on the right-hand side of this equality we use (4.3) with (. = u., which gives

/QT p° (g) Ue Opp et (QS (g) — puw (g)) dtdz = i), /QT My, (po uy Opp ehis @) dtdx + O,

’L)\j
IS

= / M, (PO uy Oyp D™ @) dtdz + 0. = — / M,y (po Dsur Dyip ° ®) dtdz + O..

T T
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Thus, we have proved

I st X X i\;s
—?j o Pe Ortie <pe‘>‘1 e (@ (g> — puw (g)) dtde = — /T M, (po Osuy Orpe X 45) dtdx
A2 T oot T T
_ 2 o2 iXj o i e
g2 QTp (€>u5<pe (45(5) MEW(5)>dtdx
— i\ M, (pl((?tuo + Osur)p ehis &15) dtdx + O..
Q
’ (4.13)

Third term. Taking into account that thanks to the compact imbedding of the trace operator from H!(Qr) into
L?({z = a}), u. converges strongly to ug in L2((0,T) x {a}) and that M,(e"%) = 0, we get

dy N o o dy ™"
— e (P — ) —p T (=) )dt = — M, s (%) @ (a™)dt + O, = O.. 4.14
e ( (6) p (8)) oo Ji Jo# M (€%) @ (a”)dt + (4.14)
Fourth term. From (4.5) and M,(eN®) = 0, we get
/ g0z U0z eNtp ( ) dtdz = / Ms,y(aoayulach ehis @) dtdz + O.. (4.15)
T T

Fifh term. We reason similarly to the second term, i.e. we use expression (2.10) of a., then (4.10), then an
integration by parts with respect to x in the term containing a® and then (4.5). We get

St (57 (2) e (2)) e
RO CAOREAO) B
[ Qe (F Q) -ngy (2)) gt e o

1 d [ g/x\ (dP /x d¥ sz i L
-= — == (=)—pe—1(= s did
2 /QTuEdy (a (5) (dy (5) Medy (5))>@e .
do
at 8u0—|—8u1)d e )dtdx—l—OE,

where the first term on the rlght—hand side vanishes due to
do s« d¥  «
Z(2) - =B =0 ifea £0
dy( ) Medy(&?) if co # 0,
and the second term can be estimated using (4.3) with (. = u. and (4.10), which gives

_é/QTao (E) (jf( ) ugij( )>8x<pe“f§dtdx=—/QT Ms,y <aoi§8x<pule >dtdaz+0

Thus, we have proved

%/ 4.0, (i_‘j (g) _Msi_j (g)) gOei/\jédtdac = —/Q M, (a j—j@xwule )dtdx
—;—2 QTug% (ao( ) (jg;( ) He ij( )))@ei’\jidtdx (4.17)

] )
+/ Ms,y (al(axuo + 8yU1)i—y gOelAjs> dtdx + O..

Ug|g—q = 0 if co =0,
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Sizth and seventh terms. Using the expression of B. given in (2.12), the two-scale convergence of f. to f and
M (e*i%) = 0, we have

B - Vi zuc peNEp (E) dtde = [ M,y (B (Vizuo+ Vsyur) et @) dtdz + O.. (4.18)
Qr € Qr
frpeite (g) dtdz = / M., (foe™* @) dtdz + O.. (4.19)
QT T

Taking into account the estimates obtained for the different terms of (4.11) and

8 () 0E)nr () () () -3 2))) 0 memer

(which follows from @ and ¥ in W;) we have then proved that (4.7) holds for ¥ (¢, z, s,y) = ¢(t, 2)e*i*®(y) with
pE Hl(QT)a Plt=0 = Pit=T = Plz=p — 0, and & € ij satiSfying

do
a® (a*) T (@*)=0 ifcg #0, @(a*)=0 if ¢, =0.
Y
A similar argument proves that (4.7) also holds for ¥ (¢, z, s,y) = (¢, 2)e*i*®(y) with & € W}, such that
do
a®(B*) — (B*) =0 ifcg #£0, @(5*)=0 ifcg=0.

dy

and ¢ € H'(Qr) such that Plt=0 = P=T = Pla=a = 0.
Reasoning by linearity and density, we have then proved (3.16).

Step 3. We have shown that ug, uy satisfy (3.13), (3.14), (3.15) and (3.16). To finish the proof of Theorem 3.4,
it remains to show that this system has a unique solution. Using the decomposition (3.21) of u; and taking into
account that, thanks to @, € L>(0,T; L*(I; W), to know Osu1, dyu; at t = 0 and s = 0 is equivalent to know
uy at ¢ = 0, we get that the uniqueness is an immediate consequence of Theorem 4.2 below. The proof is not
given here because it is similar to the one of Theorem Appendix B.1 in [10]. O
Theorem 4.2. For I = («,8) C R, four real functions p° € Le(Y), a’ e Le(Y), pt € L=(Qr; C4(R x Y)),
al € L>=(Qr; Cy(R x Y)), satisfying (2.2) and (2.9), and a function B € L>°(Qr; C3(R x Y))2. Then, for every
g € LY(0,T; L*(I; L%(Rx Y))) and every w® € L?(I; W?), there exists a unique solution w € L*(0,T; L*>(I; W*))
of the variational problem
U’|t=0 = ’U}O

/ My (= 2p°0w0pp — p'Oswdstp + a' dywdyp + B -V yw ) dtda

T

= [ M, ,(gv)dtdx, Ve W
Qr

/ Mw( — 2p°05wdy1p + a0y wdy ) — a°8§y¢w — ptowd + alﬁywayw) dtdx

T
+ / M,y (B Veywi)dids = / M, (g)dtdz, Vi € Vs
T T
Moreover, this solution w is in L>(0,T; L>(I; W")) and satisfies
lwl| Lo (0,721 w1)) < C (||w0||L2(I;W1) + H9||Ll(o,T;Lz(z;Lg(YxR)))) ; (4.20)

where the constant C only depends on the ellipticity constant of a® and p°, | Bl Lo (Qurscy (R Y)2) 5
HasleLoo(QT;LgC(RxY)); ||8sa1||L°C(QT;L§>°(RxY)) and T
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Proof of Proposition 3.12. We take j € Jp and two independent eigenfunctions @1,®, € W; such that

do,

ao(a*)@(a*) =0 ifcq #0, D1(a*) =0 if ey =0, a® (@1— —Py——

Then, we define h € L>(0,T; L?(I; W;)) as the component of @; corresponding to %%, when we write it as
a Fourier sum with respect to the basis e™* [ € Z\ {0}, i.e. h is defined by
h = M,(i;e %), a.e. in Qr x Y. (4.21)
Since @1, P, are a basis of W;, the function A can be decomposed as
h(t,z,y) = hi(t,2)P1(y) + h2(t,2)P2(y), a.e. (t,z,y) € Qr X Y. (4.22)
Now, for g € HY(Q7), Gjt=0 = gjt=1 = 0, gjo—p = 0, we define ) by
U(t,z,5,y) = g(t,x)e N Py (y),

and we observe that the decomposition (3.21) of uq, with 4, independent of s, and definitions (4.21), (4.22) of
h, hy and hs, imply

/ Ms’y (aoayulaz'lp - ao@iyw u1) dtdz

T

do 4o e
= /T M, (ao (hld—yl + hzd—;)axgqﬁl —a®(hy (@1 + h2¢2)awgd—;) dtdr = o h28, gdtda.

Therefore, using this function ¢ as test function in (3.16), we deduce

/ pOg dtdx + ha0yg dtdz = —/ qgdzdt,¥Yg € H'(Q1), gjt=0 = gjt=7 =0, gjuep =0, (4.23)

Qr T

with .
p=M,, (—2p085ule*1)‘j5@1) ,

qg= M, (e—i/\.fs (i)\jpl (Orug + Osup)®y + at(dpug + %uﬂ%))
Moy (B (Vieatio + Vo) = f)e™ 5%y ).
Since in (4.23), we have not imposed any boundary condition to g at = «, this is equivalent to
Op + Ozha = q,  h2jp—q = 0.
By (4.22), and the properties of @1, we then deduce
(@®0yh)|smay—ar =0 if cq #0, Moo y—ar =0 if cq = 0.
Since this holds for every Fourier component of @; relative to a Fourier node \;, with j € J, we get
(a0 Paii1)|y—ay—ar = 0 if cq # 0, Pyl g ymar = 0 if cq = 0.
A similar reasoning shows

(a%0y Paytiy) pepyp- =0 if cg #0,  Potitjppy—p- =0 if cg =0. O
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Proof of Theorem 3.15. Taking into account the decomposition u; = 4y + @1 given in Remark 3.9, where 1
does not depend on s and using that the functions in W' have mean value zero, equations (3.15) and (3.16),
with p', a' and B vanishing, are reduced to

/ M, (- 2p0831118t1/})dtdx = / M, ,(fy)dtdz, Yy € Vg (4.24)

/ M,y (= 20°050101) + a0y 1 0ptp — a2 i iy ) didw = /Q M, (fy)dtdz, Vb € Vs. (4.25)

T
On the other hand, using that @; belongs to L°(0,T;L?(I; Hﬁ1 (Y)), and that @; belongs to
L>(0,T; L?(I,W")) we deduce that 41 and @; can be decomposed as in (3.45), (3.46). The problem is now to
determine the coefficients in the series defining 4, and 4.
Using as test function in (3.18) @; if j € J;7, or @, 1 € {1,2}, if j € J; we deduce that the coefficient
are given by (3.49) and (3.50).
The determination of the coefficients 4; is more involved. We distinguish the cases j € Jy, j € Ja.

e Case j € J;. We take in (4.24), ¥(t,z,5,y) = @(t, 2)®;(y)e %%, with ¢ € C=°(Qr). This gives

—20\; 00 dtde = fiedtde, Ve e CX(2),
Qr Qr

and then
2i/\j8tl]j = fj in QT. (426)
To determine G; from this equation we also need an initial condition. This can be obtained from (3.13).
Namely, multiplying the second equation in (3.13) by p°®;, taking the mean value in y, and using (3.36), (3.46)
and M, (p°®;) = 0, we have
Z/\J(ﬁj - a—j)\t:O = 19]‘, a.e. in [. (427)
Analogously, multiplying the third equation in (3.13) by aoay@j, taking the mean value in y and using
uy = Uy + @1 combined to (3.35), (3.45) and (3.46), we get

(ﬂj +u; + ij)\tzo = U;, a.e. in [.
or taking into account (3.49)

My

(l]j + G—j)|t:0 = u; + 2 896“0\1::07 a.e. in 1. (428)
J
From (4.27) and (4.28) we then get
~ 1 m; ;. . .
0jj=0 = 3 (ujl + /\—?jazuo‘tzo — i z) , ae. inl, VjeJf. (4.29)
1 ; 9,
0 im0 = = | ul 4+ 2 0,uopg+ ~Li |, ae inl, VjeJy, (4.30)
2\ 7N A

which combined to (4.26) proves (3.51) and (3.52).

e Case j € Jo. As above, taking (¢, z,s,y) = ¢(t,2)Pu(y)e N, 1 = 1,2, p € C(Qr) as test function
in (4.25) we deduce (3.53).

Reasoning as in the case j € J; we also deduce that (3.13) implies (3.55) and (3.56). On the other hand, we
recall that by Proposition 3.12, (4.25) implies (3.54). O
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