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RELAXATION OF A CONTROL PROBLEM IN THE COEFFICIENTS
WITH A FUNCTIONAL OF QUADRATIC GROWTH IN THE

GRADIENT∗
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Abstract. We study an optimal design problem consisting in mixing two anisotropic (electric
or thermal) materials in order to minimize a functional depending on the gradient of the state. It is
known that this type of problem has no solution in general, and then it is necessary to introduce a
relaxed formulation. Here we prove that this relaxation is obtained by using composite materials, is
constructed by homogenization, and takes a particular extension of the cost functional to these new
materials. We obtain an integral representation of this relaxed cost functional. Besides, we show
that our results contain some previous results obtained by other authors for isotropic materials.
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1. Introduction. We consider a control problem for a linear elliptic partial
differential equation where the control variable is the diffusion matrix (control problem
in the coefficients). This type of problem appears in optimal design. Recall that the
thermic or electric properties of a material are given by the corresponding diffusion
matrix, and so choosing an optimal matrix diffusion is equivalent to choosing an
optimal material. To simplify the exposition we consider a two-phase optimization
problem; i.e., we assume that the materials are constructed by mixing two fixed
materials (nonisotropic in general) represented by their diffusion matrices A and B,
which we take to be symmetric and elliptic.

As a model problem we consider the following one: For a bounded open set
Ω ⊂ RN , we look for a measurable set ω ⊂ Ω such that for a given source term
f ∈ L2(Ω) (or more generally in H−1(Ω)) the solution u of

{
−div (Aχω + BχΩ\ω)∇u = f in Ω,

u = 0 on ∂Ω

minimizes a given functional J on the Sobolev space H1
0 (Ω). We also assume that the

measure of ω is less than or equal to κ|Ω|, with 0 < κ < 1; i.e., we dispose only of a
limited quantity of material A.

It is well known (see, e.g., [20], [21]) that, in general, this problem has no solution
(some existence results can be obtained in particular situations [12]), and so it is
necessary to relax the problem. By denoting, for p ∈ [0, 1], K(A,B, p) as the set of
matrices constructed via homogenization, mixing A and B with respective proportions
p and 1−p, and assuming J sequentially continuous for the weak topology of H1

0 (Ω), it
is well known (see, e.g., [1], [11], [16], [17], [22], [24], [26], [27], [29]) that the relaxation
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RELAXATION OF A CONTROL PROBLEM 1429

of the model control problem is obtained by replacing the set of controls

(1.1) {Aχω + BχΩ\ω : ω ⊂ Ω measurable, |ω| ≤ κ|Ω|}

by the larger set

(1.2)

{
(M, θ) measurable : θ ∈ [0, 1], M∈K(A,B, θ) a.e. in Ω,

∫
Ω

θdx ≤ κ|Ω|
}
.

In the present paper we are interested in functionals depending on the gradient
of the state function, and so they are not sequentially continuous in general on the
weak topology of H1

0 (Ω). For simplicity, we restrict ourselves to the functional

(1.3) J(u) =

∫
Ω

F (∇u) dx + G(u), u ∈ H1
0 (Ω),

where F is a Hölder-continuous function in RN with a quadratic growth and G is
sequentially continuous for the weak topology of H1

0 (Ω). Thus, the control problem
considered in this paper is given by

(1.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf

{∫
Ω

F (∇u) dx + G(u)

}
,

−div (Aχω + BχΩ\ω)∇u = f in Ω,

u ∈ H1
0 (Ω), ω ⊂ Ω measurable, |ω| ≤ κ|Ω|.

Some control problems related to (1.4) have also been considered by other authors.
In this way, for the case

(1.5) A = αI, B = βI, J(u) =

∫
Ω

|∇(u− v)|2 dx,

it is proved in [30] that there exists a dense subset of v ∈ H1(Ω) such that, by taking as
control variable the functions of L∞(Ω) valuated in [0, 1], instead of the characteristic
functions of measurable subsets of Ω, problem (1.4) has a unique solution (the fact
that A = αI, B = βI is not relevant in the reasoning used in [30]).

Related to this result, we mention that, for N = 2, A = αI, B = βI, and
F (ξ) = G(|ξ|), convex in ξ, and growth not necessarily quadratic, it is proved in [25]
that a relaxation of (1.4) can be obtained by just replacing the characteristic functions
by functions valuated in [0, 1].

On the other hand, a relaxation of problem (1.4) when A,B, and J are given by
(1.5) is obtained in [3], [10], [18]. We also refer to [15], [31], where, from a partial
relaxation, it is realized a numerical study of the problem.

Some relaxation and numerical results for (1.4) have also been obtained in [2]
when A and B are not necessarily scalar matrices but B −A is small.

Other relaxation problems for anisotropic materials (in diffusion and elasticity)
have been considered in [12], [13], [14], where the functional is sequentially continuous
with respect to the weak topology of H1

0 (Ω), but constraints appear on the gradients
of the state functions.

In the present paper, for general A, B, and F , we show that the relaxation of (1.4)
is given by replacing (as when J was sequentially continuous in the weak topology of
H1

0 (Ω)) the set of controls (1.1) by (1.2) and the functional J by∫
Ω

H(∇u,M∇u, θ) dx + G(u),
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1430 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

where H : {(ξ, η, p) ∈ RN × RN × [0, 1] : η ∈ K(A,B, p)ξ} → R is defined by (4.6).
We prove that the function H is continuous, satisfies the growth condition

|H(ξ, η, p)| ≤ C(1 + |ξ|2),

and has some convexity properties given in Proposition 4.6.
We also obtain a characterization of the set K(A,B, p)ξ for every ξ ∈ RN , and

we explicitly calculate H on{
(ξ, η, p) ∈ RN × RN × [0, 1] : η ∈ ∂K(A,B, p)ξ

}
(here ∂ denotes the boundary with respect to the affine hull). This can be useful to
the study of optimality conditions for the relaxed problem. We refer to [1], [5], [6],
[16], [24] for the study of optimality conditions for control problems in the coefficients.

Finally, we obtain an explicit expression of H in its whole domain for the case
where

F (ξ) = sAξ · ξ,

where s ∈ R and s(A − B) is nonnegative. This example contains in particular (see
Corollary 6.2) the case where A, B, and J are given by (1.5).

Although, to simplify the exposition, we have assumed that J is given by (1.3),
our techniques apply for a more general functional given by∫

ω

F1(x, u,∇u) dx +

∫
Ω\ω

F2(x, u,∇u) dx + G(u),

with G as above and F1, F2 satisfying similar conditions to F . It is also possible to
consider more than two materials (but then, we do not have an explicit characteri-
zation of the domain of H) and the more realistic case where the set of materials is
invariable by rotations.

2. Notation. The space of linear applications from RN into RN , which we
assume to be identified with the space of matrices of dimension N ×N , is denoted by
MN . The subspace of MN corresponding to the symmetric matrices is denoted by
Ms

N .
The kernel and the range of M ∈ MN are, respectively, denoted by Ker(M) and

Ran(M).
For M ∈ Ms

N , not necessarily invertible, we define M† : Ran(M) → Ran(M) the
pseudoinverse of M , i.e., the inverse of the restriction of M to its range.

The unitary cube in RN , (0, 1)N is denoted by Y .
For two sets Z and Z ′, we denote by Z�Z ′ its symmetric difference; i.e., Z�Z ′ =

(Z \ Z ′) ∪ (Z ′ \ Z).
We use the subindex � to mean Y -periodicity. For example, the space of functions

in the Sobolev space H1
loc(R

N ) which are Y -periodic is denoted by H1
� (Y ). Indeed,

in the present paper all of the functions defined on Y are assumed to be extended to
RN by Y -periodicity.

Throughout the paper we denote by A and B two fixed positive symmetric ma-
trices.

We define Ξ : Ran(A−B) → A−1Ran(A−B) (= B−1Ran(A−B)) by

(2.1) Ξζ = ν ⇔
{

(B −A)ν = ζ

Aν ∈ Ran(A−B)
⇔

{
(B −A)ν = ζ

Bν ∈ Ran(A−B)
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RELAXATION OF A CONTROL PROBLEM 1431

for every ζ ∈ Ran(A−B) or, equivalently,

(2.2) Ξ = (rA + sB)−1(B −A)
(
(B −A)(rA + sB)−1(B −A)

)†

for every r, s ≥ 0, r + s > 0. Note that if B −A is invertible, then Ξ = (B −A)−1.
For p ∈ [0, 1], we define Λp as the arithmetic mean of A and B with respective

proportions p and 1 − p; i.e.,

Λp = pA + (1 − p)B.

We denote by Ω ⊂ RN a fixed bounded open set, smooth enough for Meyer’s
theorem [19] to be satisfied and such that there exist Ω̂ open bounded with Ω ⊂ Ω̂
and a linear continuous prolongation operator from H1(Ω) into H1

0 (Ω̂).
For a sequence Mn ∈ L∞(Ω;MN ), uniformly elliptic and bounded, and M ∈

L∞(Ω;MN ), we write Mn
H→ M to mean that Mn converges to M in the sense of

the H-convergence [22], [27]. Indeed, as we usually deal with symmetric matrices,
H-convergence is equivalent to the G-convergence of Spagnolo [26].

For p ∈ [0, 1] we denote by K(A,B, p) the set of materials constructed via homog-
enization mixing the materials corresponding to the diffusion matrices A and B, with
respective proportions p and 1 − p; i.e.,

(2.3)
K(A,B, p) =

{
M ∈ Ms

N : ∃ωn ⊂ RN measurable,

χωn

∗
⇀ p in L∞(RN ), Aχωn + B(1 − χωn)

H→ M
}
.

Clearly, K(A,B, 1) = {A}, K(A,B, 0) = {B}.
For ξ ∈ RN , p ∈ [0, 1] we write

K(A,B, p)ξ =
{
η ∈ RN : ∃M ∈ K(A,B, p), with η = Mξ

}
.

3. Preliminary results. To our knowledge, an explicit characterization of the
set K(A,B, p) is known only for isotropic materials (see, e.g., [17], [29]). Fortunately,
for the purpose of the present paper, we need only to know the set K(A,B, p)ξ for
every ξ ∈ RN . A characterization of this set is obtained in the present section.

We recall the following result due to Dal Maso and Kohn [9] (see also [1], [11]),
which shows that the set K(A,B, p) can be obtained via periodic homogenization.

Theorem 3.1. For p ∈ [0, 1], the set of matrices M for which there exists Z ⊂ Y ,
with |Z| = p, such that for every ξ ∈ RN ,

(3.1) Mξ =

∫
Y

(AχZ + BχY \Z)(ξ + ∇w) dy,

with w the solution of

(3.2)

⎧⎪⎨
⎪⎩
w ∈ H1

� (Y ),

∫
Y

w dy = 0,

−div
(
(AχZ + BχY \Z)(ξ + ∇w)

)
= 0 in RN ,

is dense in K(A,B, p).
The following result gives some properties of the solution w of (3.2).
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1432 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

Lemma 3.2. For p ∈ (0, 1), we consider ξ, η ∈ RN and Z ⊂ Y measurable, with
|Z| = p, such that the solution w of (3.2) satisfies

(3.3)

∫
Y

(AχZ + BχY \Z)(ξ + ∇w) dy = η.

Then the following equalities hold:

(3.4)

∫
Z

A∇w · ∇w dy +

∫
Y \Z

B∇w · ∇w dy = (Λpξ − η) · ξ,

(3.5) (B −A)

∫
Z

∇w dy = −(B −A)

∫
Y \Z

∇w dy = Λpξ − η,

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Z

A

(
∇w − 1

p

∫
Z

∇w dz

)
·
(
∇w − 1

p

∫
Z

∇w dz

)
dy

+

∫
Y \Z

B

(
∇w − 1

1 − p

∫
Y \Z

∇w dz

)
·
(
∇w − 1

1 − p

∫
Y \Z

∇w dz

)
dy

= (Λpξ − η) · ξ −
(
A

p
+

B

1 − p

)(∫
Z

∇w dy

)
·
(∫

Z

∇w dy

)
.

Proof. By using w as a test function in (3.2), and taking into account (3.3), we
easily get (3.4).

Since w is periodic, we have∫
Z

∇w dy +

∫
Y \Z

∇w dy = 0.

On the other hand, by (3.3) we obtain

A

∫
Z

∇w dy + B

∫
Y \Z

∇w dy = η − Λpξ.

From these equalities we conclude (3.5).
To prove (3.6), it is enough to develop the left-hand side and then use (3.4).
As a consequence of Lemma 3.2, we have the following.
Proposition 3.3. If N = 1, p ∈ [0, 1], we have

(3.7) K(A,B, p) =

{(
p

A
+

1 − p

B

)−1
}
.

If N ≥ 2, p ∈ (0, 1), ξ ∈ RN , then, by denoting by E(ξ, p) the ellipsoid

E(ξ, p) =

{
ν ∈ RN :

(
A

p
+

B

1 − p

)
ν · ν ≤ (B −A)ν · ξ

}
,

we have

(3.8) K(A,B, p)ξ = Λpξ + (A−B)E(ξ, p).
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RELAXATION OF A CONTROL PROBLEM 1433

Proof. The case N = 1 is well known. Indeed, it can be easily obtained by using
the fact that for every Z ⊂ Y , with |Z| = p, the solution w of (3.2) satisfies

(3.9) ξ +
dw

dx
=

⎧⎪⎨
⎪⎩

η

A
a.e. in Z,

η

B
a.e. in Y \ Z,

with

(3.10) η =

(
p

A
+

1 − p

B

)−1

ξ.

Assume now that N ≥ 2, p ∈ (0, 1). For Z ⊂ Y , with |Z| = p, and the w ∈ H1
� (Y )

solution of (3.2), the left-hand side of (3.6) is nonnegative, and so equality (3.5) proves
that the vector

ν =

∫
Z

∇w dy

is in E(ξ, p) and satisfies η = Λpξ + (A − B)ν. Since by Theorem 3.1 the set of η
constructed in this way is dense in K(A,B, p)ξ, we then deduce the inclusion

K(A,B, p)ξ ⊂ Λpξ + (A−B)E(ξ, p).

Reciprocally, let us now prove that every ν ∈ E(ξ, p) satisfies that Λpξ+(A−B)ν
belongs to K(A,B, p)ξ.

If ν belongs to ∂E(ξ, p) \ {0}, this can be easily shown by using a lamination of
A and B with respective proportions p and 1 − p in the direction of ν. If ν = 0, we
consider a lamination as above but now in an orthogonal direction to (B −A)ξ.

If ν belongs to the interior of E(ξ, p), then, for λ > 1 such that λν belongs to
∂E(ξ, p), we take two matrices M1,M2 ∈ K(A,B, p) such that M1ξ = Λpξ, M2ξ =
Λpξ + λ(A − B)ν. A lamination of M1 and M2 with respective proportions 1 − 1/λ
and 1/λ in an orthogonal direction to (M2 −M1)ξ provides a matrix M ∈ K(A,B, p)
such that Λpξ + (A−B)ν = Mξ.

Corollary 3.4. For N ≥ 2, p ∈ (0, 1), and ξ ∈ RN , we have

(3.11)

K(A,B, p)ξ =

{
η ∈ RN : Λpξ − η ∈ Ran(A−B),

(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η) · (Λpξ − η) ≤ ξ · (Λpξ − η)

}
.

Proof. By Proposition 3.3, we have that η belongs to K(A,B, p)ξ if and only if
there exists ν ∈ RN , such that Λpξ − η = (B −A)ν and(

A

p
+

B

1 − p

)
ν · ν ≤ (Λpξ − η) · ξ

or, equivalently, if and only if Λpξ − η ∈ Ran(A−B) and

(3.12) min

{(
A

p
+

B

1 − p

)
ν · ν : Λpξ − η = (B −A)ν

}
≤ (Λpξ − η) · ξ.
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The minimum of this problem is attained in ν = Ξ(Λpξ− η), with Ξ defined by (2.1).
By using the fact that by (2.2)

Ξ =

(
A

p
+

B

1 − p

)−1

(B −A)

(
(B −A)

(
A

p
+

B

1 − p

)−1

(B −A)

)†

,

we obtain (3.11).
As a consequence of this result, we have the following.
Corollary 3.5. For N ≥ 2, p ∈ (0, 1), ξ ∈ RN , the set K(A,B, p)ξ reduces to

{Λpξ} if and only if ξ ∈ Ker(A−B).
Proof. By Corollary 3.4, we have K(A,B, p)ξ = {Λpξ}, if and only if for every

ζ ∈ Ran(A−B), ζ �= 0, one has

(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

ζ · ζ > ξ · ζ,

but this is equivalent to ξ ∈ Ran(A−B)⊥ = Ker(A−B).

4. Formulation of the problem and main results. Let us consider a function
F : RN → R such that there exist L > 0, � ∈ (0, 1] which satisfy

(4.1) |F (ξ) − F (ξ′)| ≤ L(1 + |ξ| + |ξ′|)2−�|ξ − ξ′|� ∀ ξ, ξ′ ∈ RN .

Without loss of generality, we can also assume that

(4.2) F (0) = 0.

These properties imply that F satisfies

(4.3) |F (ξ)| ≤ L(1 + |ξ|)2 ∀ ξ ∈ RN .

For the open set Ω and the matrices A, B given in section 2, our aim here is to
obtain a relaxation of the problem

(4.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf

{∫
Ω

F (∇u) dx + G(u)

}
,

−div (Aχω + BχΩ\ω)∇u = f in Ω,

u ∈ H1
0 (Ω), ω ⊂ Ω measurable, |ω| ≤ κ|Ω|,

where G is a sequentially continuous functional in the weak topology of H1
0 (Ω), f ∈

H−1(Ω), and κ ∈ (0, 1). For this purpose, given δ > 0, we define Hδ : RN × RN ×
[0, 1] → R ∪ {+∞} by

(4.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hδ(ξ, η, p) = inf

∫
Y

F (ξ + ∇w) dy,

−div(AχZ + BχY \Z)(ξ + ∇w) = 0 in RN , w ∈ H1
� (Y ),∣∣∣∣

∫
Y

(AχZ + BχY \Z)(ξ + ∇w) dy − η

∣∣∣∣ < δ,

Z ⊂ Y measurable, |Z| = p,
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RELAXATION OF A CONTROL PROBLEM 1435

for every (ξ, η, p) ∈ RN ×RN × [0, 1]. In the above expression, the infimum over the
empty set is defined as +∞.

By using the fact that Hδ is decreasing with respect to δ, we define H : RN ×
RN × [0, 1] → R ∪ {+∞} by

(4.6) H(ξ, η, p) = lim
δ→0

Hδ(ξ, η, p) ∀ (ξ, η, p) ∈ RN × RN × [0, 1].

Remark 4.1. Definition (4.6) of H implies that for every (ξ, η, p) ∈ D(H) there
exists a sequence of measurable sets Zn ⊂ Y , with |Zn| = p, such that by defining
Sn ∈ L∞(Ω;Ms

n) by Sn = AχZn
+ BχY \Zn

, and taking the wn ∈ H1
� (Y ) solution of

−divSn(ξ + ∇wn) = 0 in RN

and

ηn =

∫
Y

Sn(ξ + ∇wn) dy,

we have

(4.7) η = lim
n→∞

ηn,

(4.8) H(ξ, η, p) = lim
n→∞

∫
Y

F (ξ + ∇wn) dy.

For N = 1, the following proposition gives an explicit expression of H.
Proposition 4.1. If N = 1, the function H is given by

(4.9) H(ξ, η, p) =

⎧⎪⎨
⎪⎩

pF
( η

A

)
+ (1 − p)F

( η

B

)
if η =

(
p

A
+

1 − p

B

)−1

ξ,

+∞ in another case.

For N ≥ 2 we do not have an explicit expression for H, but we can show the
following result.

Theorem 4.2. If N ≥ 2, the function H satisfies the following properties.
The domain of H is given by

(4.10)
Dom(H)

def
=

{
(ξ, η, p) ∈ RN × RN × [0, 1] : H(ξ, η, p) < +∞

}
=

{
(ξ, η, p) ∈ RN × RN × [0, 1] : η ∈ K(A,B, p)ξ

}
.

The function H is lower semicontinuous in Dom(H), and, for

α = min
{
eigenvalues of A and B

}
, β = max

{
eigenvalues of A and B

}
,

it satisfies

(4.11) |H(ξ, η, p)| ≤ L

(
β

α
|ξ|

)� (
1 +

β

α
|ξ|

)2−�

∀(ξ, η, p) ∈ Dom(H).

Moreover, we have

(4.12) H(ξ, Aξ, 1) = H(ξ,Bξ, 0) = F (ξ) ∀ ξ ∈ RN ,
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(4.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H(ξ, η, p) = pF

(
ξ + Ξ

(
Λpξ − η

p

))
+ (1 − p)F

(
ξ − Ξ

(
Λpξ − η

1 − p

))

∀(ξ, η, p) ∈ RN × RN × (0, 1) with Λpξ − η ∈ Ran(A−B) and(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η)·(Λpξ − η) = ξ·(Λpξ − η).

If F is convex, then

F (ξ) ≤ min

{
pF

(
ξ+

ν

p

)
+(1 − p)F

(
ξ− ν

1 − p

)
: (B −A)ν=Λpξ−η, ν ∈ E(ξ, p)

}

≤ H(ξ, η, p) ∀ (ξ, η, p) ∈ Dom(H), p ∈ (0, 1).

(4.14)

Remark 4.2. A consequence of Theorem 4.2 is that if N ≥ 2, then H(ξ,Λpξ, p) =
F (ξ) for every ξ ∈ RN and every p ∈ [0, 1].

Remark 4.3. If (ξ, η, p) ∈ RN × RN × (0, 1) is such that Λpξ − η ∈ Ran(A−B)
and

(4.15)

(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η) · (Λpξ − η) = ξ · (Λpξ − η),

then the set of ν ∈ E(ξ, p) such that (B −A)ν = Λpξ − η reduces to ν = Ξ(Λpξ − η).
Therefore, (4.13) shows that the second inequality in (4.14) is an equality for such
(ξ, η, p).

By using the function H, we obtain the following theorem.
Theorem 4.3. For every G : H1

0 (Ω) → R sequentially continuous in the weak
topology of H1

0 (Ω), every κ ∈ (0, 1), and every f ∈ H−1(Ω), a relaxation of problem
(4.4) is given by

(4.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{∫
Ω

H(∇u,M∇u, θ) dx + G(u)

}
,

−divM∇u = f in Ω,

u ∈ H1
0 (Ω),

θ ∈ L∞(Ω), 0 ≤ θ ≤ 1 a.e. in Ω,

∫
Ω

θ dx ≤ κ|Ω|,

M measurable, M(x) ∈ K(A,B, θ(x)) for a.e. x ∈ Ω,

with H given by (4.6).
Remark 4.4. Problem (4.16) can also be written as

(4.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{∫
Ω

H(∇u, σ, θ) dx + G(u)

}
,

−div σ = f in Ω,

u ∈ H1
0 (Ω),

θ ∈ L∞(Ω), 0 ≤ θ ≤ 1 a.e. in Ω,

∫
Ω

θ dx ≤ κ|Ω|,

σ ∈ K(A,B, θ)∇u a.e. in Ω measurable.
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Theorem 4.3 is a consequence of Theorem 4.5 below, which is interesting by itself.
We need the following definition.

Definition 4.4. We say that (un, σn, θn) ∈ H1(Ω) × L2(Ω)N × L∞(Ω) T -
converges to (u, σ, θ) ∈ H1(Ω) × L2(Ω)N × L∞(Ω) if and only if

un ⇀ u in H1(Ω), |∇un|2 equi-integrable,

σn ⇀ σ in L2(Ω)N , div σn → div σ in H−1(Ω)N ,

θn
∗
⇀ θ in L∞(Ω).

Remark 4.5. In the applications, we are interested in sequences (un, σn, θn) such
that there exists a sequence of uniformly elliptic and bounded matrix functions Mn,
which satisfies Mn∇un = σn. Then we recall that, thanks to Meyer’s regularity
theorem [19], the weak convergence of un in H1(Ω) and the strong convergence of
σn in L2(Ω)N imply the equi-integrability of |∇un|2 at least for Ω smooth and un

satisfying “good” boundary conditions (if not, we always hold the equi-integrability
on compact subsets of Ω).

Theorem 4.5. The lower semicontinuous envelope with respect to the T -
convergence of the functional F : H1(Ω)×L2(Ω)N ×L∞(Ω) → R∪ {+∞} defined by

(4.18) F(u, σ, θ)=

⎧⎪⎨
⎪⎩
∫

Ω

F (∇u) dx if θ = χω, ω ⊂ Ω measurable, σ = Λθ∇u,

+∞ in another case

is given by

(4.19) F(u, σ, θ)=

⎧⎪⎨
⎪⎩
∫

Ω

H(∇u, σ, θ) dx if 0 ≤ θ ≤ 1, σ ∈ K(A,B, θ)∇u, a.e. in Ω,

+∞ in another case.

Remark 4.6. Analogously to the proof of Theorem 4.3, we can use Theorem
4.5 to obtain the relaxation of some other related control problems. For example
(assuming smoothness enough to have the equi-integrability of |∇un|2, with un the
state functions corresponding to a minimizing sequence), we can consider different
boundary conditions for the state equation and some other restrictions. In this way,
we can apply Theorem 4.5 to obtain a relaxation of the control problem defining Hδ

(see (4.5)). This permits us to prove that the function H given by (4.6) satisfies

(4.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(ξ, η, p) = inf

∫
Y

H(ξ + ∇w,M(ξ + ∇w), θ) dy

θ ∈ L∞
� (Y ), 0 ≤ θ ≤ 1 a.e. in RN ,

∫
Y

θ dy = p,

M ∈ K(A,B, θ) a.e. in RN , w ∈ H1
� (Y ),

−divM(ξ + ∇w) = 0 in RN ,∫
Y

M(ξ + ∇w)dy = η.
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1438 J. CASADO-DÍAZ, J. COUCE-CALVO, AND J. D. MARTÍN-GÓMEZ

Remark 4.7. In Step 3 in the proof of Theorem 4.5, for (u, σ, θ) ∈ Dom(F)
given, we show how to construct ωn ⊂ Ω and un ∈ H1(Ωn) such that the sequence
(un, (Aχωn + Bχωn)∇un, χωn) ∈ Dom(F) satisfies

F̄(u, σ, θ) = lim
n→∞

F(un, (Aχωn + Bχωn)∇un, χωn).

By applying this procedure to a solution (u, σ, θ) of problem (4.17), this gives a way
to construct a minimizing sequence for problem (4.4). Unfortunately, to apply this
procedure it is necessary, for (ξ, η, p) ∈ Dom(H), to know how to construct Zn ⊂ Y
in the conditions of Remark 4.1. We do not know how to make this, in general.
In particular, we do not know if this can be carried out by using laminations, as it
happens in some particular cases where the function H can be explicitly calculated
(see, e.g., [3], [10], and Remark 6.2 in the present paper). When η ∈ ∂K(A,B, p)ξ
(here ∂ denotes the boundary with respect to the affine hull), the set Zn is obtained
by using a simple lamination in the direction of ν = Ξ(Λpξ − η), if η �= Λpξ, or in
an orthogonal direction to (B − A)ξ, if η = Λpξ. In this sense, we remark that if H
is derivable (which we do not know if it is true) and θ, M , u is a solution of (4.16),
then, by introducing the adjoint state q as the solution of{

−divM∇q = −div
(
∇ξH(∇u,M∇u, θ) + M∇ηH(∇u,M∇u, θ)

)
in Ω,

q ∈ H1
0 (Ω),

the optimality conditions for problem (4.16) show (see, e.g., [1], [5], [16], [24] for related
results) that a.e. on the set {x ∈ Ω : ∇q(x) �= ∇ηH(∇u(x),M(x)∇u(x), θ(x))}, one
has that M∇u ∈ ∂K(A,B, θ)∇u.

Remark 4.8. In order to solve numerically problem (4.16) the main difficulty is,
as in the previous remark, that we have only an explicit expression of H on the points
(ξ, η, p) such that η ∈ ∂K(A,B, p)ξ (see (4.13)). But, as we observed above, if θ, M ,
u is a solution of (4.16), H is sufficiently smooth, and ∇q �= ∇ηH(∇u,M∇u, θ) a.e.
in Ω, then M∇u ∈ ∂K(A,B, θ)∇u a.e. in Ω. Moreover, in this case M is obtained
by just one lamination. By taking into account these remarks, one can consider a
numerical method consisting, for example, of taking a triangulation of Ω and then
searching the state function u piecewise affine, the proportion θ, and the matrix M
piecewise constants, with M corresponding to a lamination in each triangle (so the
choice of M in each triangle is reduced to the choice of the corresponding lamination
vector). This provides a numerical method similar to the one used in [15] and [31] for
the case where F (ξ) = |ξ|2, A = αI, B = βI, α, β > 0.

By using the fact that by Theorem 4.5 the functional F is lower semicontinuous
for the T -convergence, we can deduce some convexity properties for H. The result is
essentially a consequence of the compensated compactness theory of Murat [23] and
Tartar [28].

Proposition 4.6. The function H defined by (4.6) satisfies the following con-
vexity properties:

(i) If N = 1, then

(4.21) H(λξ1+(1 − λ)ξ2, η, λp1+(1 − λ)p2) ≤ λH(ξ1, η, p1) + (1 − λ)H(ξ2, η, p2)

for every ξ1, ξ2, η ∈ R and every p1, p2, λ ∈ [0, 1].
(ii) If N ≥ 2, then

(4.22)
H(λξ1 + (1 − λ)ξ2, λη1 + (1 − λ)η2, λp1 + (1 − λ)p2)

≤ λH(ξ1, η1, p1) + (1 − λ)H(ξ2, η2, p2)
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for every ξ1, ξ2, η1, η2 ∈ RN , with (ξ2−ξ1)·(η2−η1) = 0, and every p1, p2, λ ∈ [0, 1].
As a consequence of this result we will prove the following proposition which

improves Theorem 4.2.
Proposition 4.7. The function H is continuous on its domain.
Remark 4.9. In Theorem 4.2, we gave a lower bound for H by assuming F convex.

An analogous proof shows that for F concave we have

H(ξ, η, p)

≤ max

{
pF

(
ξ+

ν

p

)
+(1 − p)F

(
ξ− ν

1 − p

)
: (B −A)ν=Λpξ−η, ν ∈ E(ξ, p)

}

for every (ξ, η, p) ∈ Dom(H). Indeed, since H is defined by a minimum, it is not
difficult to obtain upper bounds for H. In this way, by using (4.13), (4.22), and H
lower semicontinuous for the T -convergence, we can use the reasoning at the end of
the proof of Proposition 3.3 to show that for every F satisfying (4.1) and (4.2) (not
necessarily concave), every (ξ, η, p) ∈ Dom(H), p ∈ (0, 1), and every ν ∈ E(ξ, p), with
(B −A)ν = Λpξ − η, we have

H(ξ, η, p) ≤
(

1 − 1

λ

)
F (ξ) +

1

λ

(
pF

(
ξ +

λν

p

)
+ (1 − p)F

(
ξ − λν

1 − p

))
,

where

λ =
(Λpξ − η) · ξ(

A

p
+

B

1 − p

)
ν · ν

∈ [0, 1].

In particular, for F concave, this proves that

H(ξ, η, p)

≤ min

{
pF

(
ξ+

ν

p

)
+(1 − p)F

(
ξ− ν

1 − p

)
: (B −A)ν=Λpξ−η, ν ∈ E(ξ, p)

}
.

5. Proofs of the results of section 4. Throughout this section, for a mea-
surable set Z ⊂ Y and ξ ∈ RN , we usually associate a matrix function S, defined
by

(5.1) S = AχZ + BχY \Z ,

and a function w solution of (3.2).
Proof of Proposition 4.1. The result is a simple consequence of Remark 4.1 and

the fact that the solution w of (3.2) with |Z| = p ∈ [0, 1] satisfies (3.9), with η given
by (3.10).

In order to prove Theorem 4.2, we first obtain some bounds for ∇w, with the w
solution of (3.2). This will be done in Lemmas 5.1 and 5.2 below.

Lemma 5.1. For every Z ⊂ Y measurable and ξ ∈ RN , the function w satisfies

(5.2) ‖ξ + ∇w‖L2(Y )N ≤ β

α
|ξ|.

Moreover, there exist r > 2 and C > 0, which depend only on β/α and N , such that
w ∈ W 1,r

� (Y ) and

(5.3) ‖ξ + ∇w‖Lr(Y )N ≤ C|ξ|.
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Proof. The proof of (5.2) easily follows by using w as a test function in (3.2).
Estimate (5.3) is a consequence of Meyer’s regularity theorem [19] and (5.2).

Lemma 5.2. There exist C > 0 and ρ ∈ (0, 1) (which depend only on β/α and N)
such that, for every ξ, ξ′ ∈ RN and every Z,Z ′ ⊂ Y measurable, the corresponding
functions S, S′, w,w′ satisfy

(5.4) ‖ξ + ∇w − ξ′ −∇w′‖L2(Y )N ≤ C (|ξ − ξ′| + |ξ′||Z � Z ′|ρ) ,

(5.5)

∣∣∣∣
∫
Y

S(ξ + ∇w) dy −
∫
Y

S′(ξ′ + ∇w′) dy

∣∣∣∣ ≤ C (|ξ − ξ′| + |ξ′||Z � Z ′|ρ) .

Proof. By taking w − w′ as a test function in the difference of the equations
satisfied by w and w′ and adding and subtracting convenient terms, we get∫

Y

S(ξ + ∇w − ξ′ −∇w′) · (ξ + ∇w − ξ′ −∇w′) dx

=

∫
Y

(S′ − S)(ξ′ + ∇w′) · (ξ + ∇w − ξ′ −∇w′) dy

+

∫
Y

S(ξ + ∇w − ξ′ −∇w′) · (ξ − ξ′) dy −
∫
Y

(S′ − S)(ξ′ + ∇w′) · (ξ − ξ′) dy.

By using the ellipticity of S, Young’s inequality, and S = S′ in Y \ (Z�Z ′), we obtain

(5.6)

∫
Y

|ξ + ∇w − ξ′ −∇w′|2 dy ≤ C

(∫
Z�Z′

|ξ′ + ∇w′|2 dy + |ξ − ξ′|2
)
,

where C depends only on β/α. The first term on the right-hand side of this inequality
can be estimated by (5.3), which gives

(5.7)

∫
Z�Z′

|ξ′ + ∇w′|2 dy≤
(∫

Y

|ξ′ + ∇w′|r dy
) 2

r

|Z�Z ′|1−
2
r ≤ C|ξ′|2 |Z�Z ′|1−

2
r .

By substituting (5.7) into (5.6) we get (5.4).
In order to prove (5.5) we now use∣∣∣∣

∫
Y

S(ξ + ∇w) dy −
∫
Y

S′(ξ′ + ∇w′) dy

∣∣∣∣
≤

∣∣∣∣
∫
Y

S(ξ + ∇w − ξ′ −∇w′) dy

∣∣∣∣ +

∣∣∣∣
∫
Y

(S − S′)(ξ′ + ∇w′) dy

∣∣∣∣
≤ C

(∫
Y

|ξ + ∇w − ξ′ −∇w′| dy +

∫
Z�Z′

|ξ′ + ∇w′| dy
)
.

By using the Cauchy–Schwarz inequality, (5.4), and (5.7), we obtain (5.5).
Let us now use Lemma 5.2 to study some semicontinuity properties for Hδ.
Lemma 5.3. There exist C > 0 (depending on L, β/α, �, and N) and ρ ∈ (0, 1)

(depending on β/α and N) such that, for every (ξ, η, p) ∈ RN ×RN × [0, 1] and every
δ, ε > 0, there exists τ ∈ [0, δ), with

(5.8)
Hτ+λ′+|η−η′|(ξ

′, η′, p′) ≤ Hδ(ξ, η, p) + (1 + |ξ| + |ξ′|)2−�(λ′)� + ε

∀ (ξ′, η′, p′) ∈ RN × RN × [0, 1],
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where we have denoted

λ′ = C
(
|ξ − ξ′| + |ξ′||p− p′|ρ).

Proof. To prove (5.8), we consider (ξ, η, p) ∈ RN × RN × [0, 1] and δ, ε > 0. If
(ξ, η, p) does not belong to the domain of Hδ, then (5.8) is trivial. In another case,
by definition (4.5) of Hδ there exists Z ⊂ Y , with |Z| = p, such that, by taking S and
w as the corresponding functions associated to Z and ξ and defining τ by

τ =

∣∣∣∣
∫
Y

S(ξ + ∇w) dy − η

∣∣∣∣ ,
we have τ < δ and

Hδ(ξ, η, p) >

∫
Y

F (ξ + ∇w) dy − ε.

Now we consider (ξ′, η′, p′) ∈ RN ×RN × [0, 1]. Then (by adding or subtracting a
measurable set of Y to Z) we construct a set Z ′, with |Z ′| = p′ and |Z�Z ′| = |p−p′|.
We take w′ and S′ as the corresponding functions associated to Z ′ and ξ′. From
Lemma 5.2, there exist C > 0 and ρ ∈ (0, 1), which depend only on β/α and N , such
that (5.4) and (5.5) hold. By using then (4.1), (5.2), and (5.4), we have (for another
constant C)∣∣∣∣

∫
Y

(F (ξ + ∇w) − F (ξ′ + ∇w′)) dy

∣∣∣∣
≤ L

∫
Y

(1 + |ξ + ∇w| + |ξ′ + ∇w′|)2−�|ξ + ∇w − ξ′ −∇w′|� dy

≤ L
(
1 + ‖ξ + ∇w‖L2(Y ) + ‖ξ′ + ∇w′‖L2(Y )

)2−� ‖ξ + ∇w − ξ′ −∇w′‖�L2(Y )

≤ C(1 + |ξ| + |ξ′|)2−�(|ξ − ξ′| + |ξ′||p− p′|ρ)� ≤ (1 + |ξ| + |ξ′|)2−�(λ′)�.

On the other hand, by (5.5) and the definition of τ , we have∣∣∣∣
∫
Y

S′(ξ′ + ∇w′) dy − η′
∣∣∣∣ ≤

∣∣∣∣
∫
Y

S′(ξ′ + ∇w′) dy −
∫
Y

S(ξ + ∇w) dy

∣∣∣∣
+

∣∣∣∣
∫
Y

S(ξ + ∇w) dy − η

∣∣∣∣ + |η − η′| ≤ λ′ + τ + |η − η′|.

Then, by definition (4.5) of Hδ, we get

Hτ+λ′+|η−η′|(ξ
′, η′, p′) ≤

∫
Y

F (ξ′ + ∇w′) dy

≤
∫
Y

F (ξ + ∇w) dy +

∣∣∣∣
∫
Y

(F (ξ + ∇w) − F (ξ′ + ∇w′)) dy

∣∣∣∣
≤ Hδ(ξ, η, p) + ε + (1 + |ξ| + |ξ′|)2−�(λ′)�.

Remark 5.1. Since Hδ(ξ, η, p) is decreasing in δ inequality (5.8) implies that

Hδ+λ′+|η−η′|(ξ
′, η′, p′) ≤ Hδ(ξ, η, p) + (1 + |ξ| + |ξ′|)2−�(λ′)� + ε

∀ (ξ′, η′, p′) ∈ RN × RN × [0, 1]
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for every ε > 0. So by taking ε converging to zero we get

(5.9)
Hδ+λ′+|η−η′|(ξ

′, η′, p′) ≤ Hδ(ξ, η, p) + (1 + |ξ| + |ξ′|)2−�(λ′)�

∀ (ξ′, η′, p′) ∈ RN × RN × [0, 1].

We are now in position to prove that Hδ satisfies the following properties.
Proposition 5.4. For every δ > 0, Hδ is upper semicontinuous in RN ×RN ×

[0, 1] and satisfies

(5.10) |Hδ(ξ, η, p)| ≤ L

(
β

α
|ξ|

)� (
1 +

β

α
|ξ|

)2−�

∀(ξ, η, p) ∈ Dom(Hδ).

Moreover, the following lower semicontinuity result holds:

(5.11) Hδ+s(ξ, η, p) ≤ lim inf
n→∞

Hδ(ξn, ηn, pn) ∀ δ, s > 0

for every (ξ, η, p) ∈ RN × RN × [0, 1] and for every sequence (ξn, ηn, pn) ∈ RN ×
RN × [0, 1] which converges to (ξ, η, p).

Proof. The proof of (5.10) immediately follows from definition (4.5) of Hδ, by
taking into account that (5.2), (4.2), and (4.1) imply that for every ξ ∈ RN and every
Z ⊂ Y measurable the solution w of (3.2) satisfies

(5.12)

∣∣∣∣
∫
Y

F (ξ + ∇w) dy

∣∣∣∣ ≤ L

(
β

α
|ξ|

)� (
1 +

β

α
|ξ|

)2−�

.

To prove the upper semicontinuity of H we consider (ξ, η, p) and (ξn, ηn, pn) as
above. By (5.8), for every δ, ε > 0, there exists τ ∈ [0, δ) (which does not depend on
n) such that

Hτ+λn+|η−ηn|(ξn, ηn, pn) ≤ Hδ(ξ, η, p) + (1 + |ξ| + |ξn|)2−�λ�
n + ε ∀n ∈ N,

with λn = C
(
|ξ−ξn|+ |ξn||p−pn|ρ). So, since for n large enough τ +λn + |η−ηn| < δ

and Hμ is decreasing in μ, we have

Hδ(ξn, ηn, pn) ≤ Hδ(ξ, η, p) + (1 + |ξ| + |ξn|)2−�λ�
n + ε.

By taking the limsup in n and then letting ε decrease to zero, we deduce the upper
semicontinuity of Hδ.

In order to prove (5.11), we take (ξ, η, p), (ξn, ηn, pn) as above. By (5.9) we have

Hδ+λn+|η−ηn|(ξ, η, p) ≤ Hδ(ξn, ηn, pn) + (1 + |ξ| + |ξ′n|)2−�λ�
n,

with λn = C
(
|ξ − ξn| + |ξ||p − pn|ρ). So, by using as above the fact that Hμ is

decreasing in μ, we have for every s > 0 and n large enough

Hδ+s(ξ, η, p) ≤ Hδ(ξn, ηn, pn) + (1 + |ξ| + |ξ′n|)2−�λ�
n.

By taking the liminf in n we deduce (5.11).
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Thanks to the previous results, we can now prove Theorem 4.2.
Proof of Theorem 4.2. By definition (4.6) of H and (5.12), we have that (ξ, η, p) ∈

Dom(H) if and only if for every δ > 0 there exists Z ⊂ Y measurable, with |Z| = p,
such that the solution w of (3.2) satisfies∣∣∣∣

∫
Y

S(∇w + ξ) dy − η

∣∣∣∣ < δ.

By Theorem 3.1 this holds if and only if η belongs to K(A,B, p)ξ. This proves (4.10).
In order to prove the lower semicontinuity of H, we consider (ξ, η, p) ∈ RN ×

RN × [0, 1] and (ξn, ηn, pn) ∈ RN ×RN × [0, 1], which converges to (ξ, η, p). By (5.11)
with s = δ and Hδ(ξn, ηn, pn) ≤ H(ξn, ηn, pn), we have

H2δ(ξ, η, p) ≤ lim inf
n→∞

H(ξn, ηn, pn) ∀ δ > 0.

By taking the limit when δ tends to zero we conclude that

H(ξ, η, p) ≤ lim inf
n→∞

H(ξn, ηn, pn)

and then the lower semicontinuity of H.
Inequality (4.11) immediately follows from (5.10).
To show (4.12) it is enough to use Remark 4.1 and the fact that, if Z ⊂ Y has

measure 0 or 1, the solution w of (3.2) is zero.
To prove (4.13), we consider (ξ, η, p) ∈ RN × RN × (0, 1) such that Λpξ − η ∈

Ran(A−B) and

(5.13)

(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η) · (Λpξ − η) = ξ · (Λpξ − η).

Then we consider Zn, Sn, wn, ηn as in Remark 4.1, and we define

νn =

∫
Zn

∇wn dy = −
∫
Y \Zn

∇wn dy.

By (3.5) and (3.6), νn satisfies that (B −A)νn = Λpξ − ηn and

(5.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Zn

A

(
∇wn − νn

p

)
·
(
∇wn − νn

p

)
dy

+

∫
Y \Zn

B

(
∇wn +

νn
1 − p

)
·
(
∇wn +

νn
1 − p

)
dy

= (Λpξ − ηn) · ξ −
(
A

p
+

B

1 − p

)
νn · νn.

This implies in particular (use the fact that the left-hand side of (5.14) is nonnegative)
that νn is bounded, and so, up to a subsequence, we have that νn converges to some
ν̂ ∈ RN such that (B −A)ν̂ = Λpξ − η and

(5.15)

(
A

p
+

B

1 − p

)
ν̂ · ν̂ ≤ (Λpξ − η) · ξ.
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By using the fact that (5.13) can also be written as

(Λpξ − η) · ξ = min

{(
A

p
+

B

1 − p

)
ν · ν : Λpξ − η = (B −A)ν

}
,

we then deduce that ν̂ gives the minimum above, and so ν̂ = Ξ(Λpξ−η). In particular,
this implies that (5.15) is an equality, and then by passing to the limit in (5.14) we
have

lim
n→0

(∫
Zn

∣∣∣∣∇wn − νn
p

∣∣∣∣
2

dz +

∫
Y \Zn

∣∣∣∣∇wn +
νn

1 − p

∣∣∣∣
2

dz

)
= 0,

which, joining to (4.1), allows us to calculate the limit which appears in the right-hand
side of (4.8) and then to conclude (4.13).

To finish the proof of Theorem 4.2, let us now prove (4.14). For (ξ, η, p) ∈
Dom(H), p ∈ (0, 1), we take Zn and wn as in Remark 4.1. By Lemma 3.2, we can
assume that ∫

Zn

∇wn dy → ν̂ ∈ E(ξ, p), (B −A)ν̂ = Λpξ − η.

Jensen’s inequality, wn-periodic, and |Zn| = p give∫
Y

F (ξ + ∇wn) dy =

∫
Zn

F (ξ + ∇wn) dy +

∫
Y \Zn

F (ξ + ∇wn) dy

≥ pF

(
ξ +

1

p

∫
Zn

∇wn dy

)
+ (1 − p)F

(
ξ − 1

1 − p

∫
Zn

∇wn dy

)
.

By taking the limit in this inequality we deduce that

H(ξ, η, p) = lim
n→∞

∫
Y

F (ξ + ∇wn) dy ≥ pF

(
ξ +

ν̂

p

)
+ (1 − p)F

(
ξ − ν̂

1 − p

)
,

and then (4.14).
To prove Theorem 4.5 we need the following corrector result. We use some ideas

which appear in the proof of Theorem 3.1 given in [1] and [11].
Lemma 5.5. We consider a bounded open set Ω ⊂ RN , a sequence of matrices

Mn ∈ L∞(Ω;MN ), uniformly bounded and elliptic, and a sequence un ∈ H1(Ω). We
assume that un converges weakly in H1(Ω) to a function u and that −divMn∇un is
compact in H−1(Ω). For ε > 0 small enough, we take

(5.16) Ωε = {x ∈ Ω : dis(x, ∂Ω) > ε},

and, for h ∈ (0, ε√
N

), we define wh
n ∈ L2(Ωε;H

1
� (Y )) as the unique solution of

(5.17)

⎧⎪⎨
⎪⎩

wh
n(x, .) ∈ H1

� (Y ),

∫
Y

wh
n(x, y) dy = 0,

−divy Mn(x + hy)(∇u(x) + ∇yw
h
n(x, y)) = 0 in RN , a.e. x ∈ Ωε.

Then we have

(5.18) lim
h→0

lim sup
n→∞

‖∇un(x + hy) −∇u−∇yw
h
n‖L2(Ωε×Y )N = 0.
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Proof. By extracting a subsequence if necessary, we can assume that Mn H-
converges to a matrix-valued function M . Then, by (5.17), we get

(5.19) ∇u(x) · y + wh
n(x, y) ⇀ ∇u(x) · y + wh(x, y) in H1(Y ), a.e. x ∈ Ωε,

when n tends to infinity, with wh ∈ L2(Ωε;H
1
� (Y )) the unique solution of the problem

(5.20)

⎧⎪⎨
⎪⎩

wh(x, .) ∈ H1
� (Y ),

∫
Y

wh(x, y) dy = 0,

−divy (M(x + hy)(∇u(x) + ∇yw
h(x, y))) = 0 in RN , a.e. x ∈ Ωε.

By using in (5.20) the fact that M(x+hy) converges to M strongly in Lq(Ωε×Y ;MN ),
1 ≤ q < +∞, and ∗-weakly in L∞(Ωε × Y ;MN ), when h tends to zero, it is easy to
prove that

(5.21) wh → 0 in L2(Ωε;H
1
� (Y )).

On the other hand, the strong convergence in H−1(Ω) of −divMn∇un implies
that

−divy [Mn(x + hy)∇un(x + hy)] → −divy [M(x + hy)∇u(x + hy)] in H−1(Y )

for every x ∈ Ωε, when n tends to infinity. Thanks to (5.17), we can then apply the
div-curl lemma (see, e.g., [23], [28]) to deduce that

Mn(x + hy)
(
∇un(x + hy) −∇u−∇yw

h
n

)
·
(
∇un(x + hy) −∇u−∇yw

h
n

)
⇀ M(x + hy)

(
∇u(x + hy) −∇u−∇yw

h
)
·
(
∇u(x + hy) −∇u−∇yw

h
)

in the sense of the distributions in Y , for a.e. x ∈ Ωε, when n tends to infinity. By
Meyer’s theorem this convergence holds in L1(Y ) weakly, for a.e. x ∈ Ωε, and thus
we have

(5.22)

∫
Y

Mn(x+hy)
(
∇un(x+hy)−∇u−∇yw

h
n

)
·
(
∇un(x+hy)−∇u−∇yw

h
n

)
dy

→
∫
Y

M(x+hy)
(
∇u(x + hy)−∇u−∇yw

h
)
·
(
∇u(x+hy)−∇u−∇yw

h
)
dy

for a.e. x ∈ Ωε. Moreover, by (5.17) there exists C > 0 such that ‖∇u+∇yw
h
n‖L2(Y )N ≤

C|∇u| a.e. in Ωε, and so, for another constant C, we have∫
Y

Mn(x+hy)
(
∇un(x+hy)−∇u−∇yw

h
n

)
·
(
∇un(x+hy)−∇u−∇yw

h
n

)
dy

≤ C

hN

∫
Ω

|∇un|2 dx + C|∇u|2, a.e. in Ωε,

which together with (5.22) allows us to apply the Lebesgue dominated convergence
theorem to deduce that∫

Ωε

∫
Y

Mn(x+hy)
(
∇un(x+hy)−∇u−∇yw

h
n

)
·
(
∇un(x+hy)−∇u−∇yw

h
n

)
dydx

→
∫

Ωε

∫
Y

M(x+hy)
(
∇u(x + hy)−∇u−∇yw

h
)
·
(
∇u(x+hy)−∇u−∇yw

h
)
dydx,
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when n tends to infinity, for every h ∈ (0, ε/
√
N). By (5.21), the right-hand side of

this equality tends to zero when h tends to zero, and then, thanks to the ellipticity of
M , we get (5.18).

Proof of Theorem 4.5. In the proof we will separate the cases N = 1 and N ≥ 2.
We make this distinction because for N ≥ 2 we will use a convexity property of the
set K(A,B, p)ξ which does not hold for N = 1 (see Step 3 in the proof). On the
other hand, we think it is interesting to show that the one-dimensional case follows
by using elementary arguments.

The proof of the theorem will be divided in three steps.
In Step 1 we will consider the case N = 1, while steps 2 and 3 are devoted to

N ≥ 2.
In Step 2 we will prove the inequality

(5.23)

⎧⎨
⎩

lim inf
n→∞

F(un, σn, θn) ≥ F(u, σ, θ) ∀ (u, σ, θ) ∈ H1(Ω)×L2(Ω)N×L∞(Ω)

∀ (un, σn, θn) ∈ H1(Ω)×L2(Ω)N × L∞(Ω), (un, σn, θn)
T→(u, σ, θ).

The proof of (5.23) will follow from Lemma 5.5, which provides an approximation of
∇un in the strong topology of H1(ω) (ω ⊂⊂ Ω) by using periodic homogenization.

In Step 3 we prove that for every (u, σ, θ) ∈ H1(Ω)×L2(Ω)N ×L∞(Ω) there exists
(un, σn, θn) ∈ H1(Ω) × L2(Ω)N × L∞(Ω) such that

(5.24) (un, σn, θn)
T→(u, σ, θ), lim sup

n→∞
F(un, σn, θn) ≤ F(u, σ, θ)

which joined to (5.23) will give the proof of Theorem 4.5 in the case N ≥ 2. The
main idea to prove the existence of (un, σn, θn) satisfying (5.24) will be to use an
approximation by finite elements of (u, σ, θ) which reduces the problem to the case
where there exists a triangulation τ such that ∇u, σ, and θ are constant in each
element of τ .

Step 1. Let us first prove the result for N = 1.
Consider (u, σ, θ) ∈ H1(Ω) × L2(Ω) × L∞(Ω) and a sequence (un, σn, θn) ∈

H1(Ω) × L2(Ω) × L∞(Ω) which T -converges to (u, σ, θ). Let us prove that

(5.25) F(u, σ, θ) ≤ lim inf
n→∞

F(un, σn, θn).

By definition (4.18) of F , it is enough to consider the case where there exists a sequence
of measurable sets ωn ⊂ Ω such that

θn = χωn
, σn =

(
Aχωn

+ BχΩ\ωn

) dun

dx
a.e. in Ω,

and thus

(5.26)
dun

dx
=

σn

A
χωn +

σn

B
χΩ\ωn

a.e. in Ω.

Since σn converges weakly to σ in L2(Ω) and dσn

dx converges strongly to dσ
dx in H−1(Ω),

we have that σn converges strongly to σ in L2(Ω). So by (5.26) we get

du

dx
=

(
θ

A
+

1 − θ

B

)
σ a.e. in Ω
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and

lim
n→∞

F(un, σn, θn) = lim
n→∞

∫
Ω

F

(
dun

dx

)
dx

= lim
n→∞

∫
Ω

(
F
(σn

A

)
χωn

+ F
(σn

B

)
χΩ\ωn

)
dx=

∫
Ω

(
F
( σ

A

)
θ + F

( σ

B

)
(1 − θ)

)
dx.

By (4.9), we have then proved that (u, σ, θ) belongs to Dom(H) a.e. in Ω and

F(u, σ, θ) =

∫
Ω

H

(
du

dx
, σ, θ

)
dx = lim

n→∞
F(un, σn, θn).

To finish the proof of Step 1, we need to prove that for every (u, σ, θ) ∈ H1(Ω)×
L2(Ω)×L∞(Ω) there exists (un, σn, θn) ∈ H1(Ω)×L2(Ω)×L∞(Ω), which T -converges
to (u, σ, θ) and satisfies

(5.27) lim sup
n→∞

F(un, σn, θn) ≤ F(u, σ, θ).

Clearly, it is enough to consider the case where (u,σ, θ) ∈ Dom(H) a.e. in Ω, but
then θ ∈ [0, 1] a.e. in Ω, and so there exists ωn ⊂ Ω such that χωn converges weakly-∗
in L∞(Ω) to θ. By taking

θn = χωn , σn = σ,
dun

dx
=

σ

A
χωn +

σ

B
χΩ\ωn

and reasoning as above, we deduce (5.27).
In the remainder of the proof we always assume that N ≥ 2.
Step 2. Let us prove (5.23).
We can assume that

lim inf
n→∞

F(un, σn, θn) < +∞,

and thus, by extracting a subsequence if necessary, there exists a sequence of measur-
able sets ωn ⊂ Ω such that θn = χωn

and σn = Mn∇un, with Mn = Aχωn
+BχΩ\ωn.

By using the compactness theorem for the H-convergence (see, e.g., [1], [11], [22], [26],
[27]), we can also assume that there exists an elliptic matrix M ∈ L∞(Ω;Ms

N ) such
that Mn H-converges to M . Since div σn converges strongly to div σ in H−1(Ω), and
Mn∇un = σn, we have

(5.28) σ = M∇u a.e. in Ω.

In order to prove (5.23), we consider ε > 0. By defining Ωε by (5.16) and taking
h ∈ (0, ε/

√
N) in such a way that Ωε ⊂ Ω − hy for every y ∈ Y , we have

(5.29)

∫
Ω

F (∇un) dx =

∫
Ω−hy

F (∇un(x + hy)) dx

=

∫
Ωε

F (∇un(x + hy)) dx +

∫
(Ω−hy)\Ωε

F (∇un(x + hy)) dx

=

∫
Ωε

F (∇un(x + hy)) dx +

∫
Ω\(Ωε+hy)

F (∇un) dx,
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and so, by integrating in y ∈ Y , we have

(5.30)

∫
Ω

F (∇un) dx=

∫
Y

∫
Ωε

F (∇un(x+hy)) dxdy+

∫
Y

∫
Ω\(Ωε+hy)

F (∇un) dxdy.

By using the fact that Ω \ (Ωε + hy) ⊂ Ω \ Ω2ε for every y ∈ Y , (4.3), and the fact
that |∇un|2 is equi-integrable (which follows from the definition of T -convergence),
we have

(5.31)

lim
ε→0

lim sup
n→∞

∣∣∣∣∣
∫
Y

∫
Ω\(Ωε+hy)

F (∇un) dxdy

∣∣∣∣∣
≤ L lim

ε→0
lim sup
n→∞

∫
Ω\Ω2ε

(1 + |∇un|)2 dx = 0.

To estimate the first term of (5.30), we use the decomposition

(5.32)

∫
Y

∫
Ωε

F (∇un(x + hy)) dxdy =

∫
Y

∫
Ωε

(F (∇un(x+hy))−F (∇u + ∇yw
h
n))dxdy

+

∫
Ωε

∫
Y

F (∇u + ∇yw
h
n) dydx,

with wh
n given by (5.17). Thanks to (4.1) and (5.18), we have

(5.33) lim
h→0

lim sup
n→∞

∫
Y

∫
Ωε

|F (∇un(x + hy)) − F (∇u + ∇yw
h
n)|dxdy = 0 ∀ ε > 0.

To estimate the second term on the right-hand side of (5.32), we denote for a.e.
x ∈ Ωε and a.e. y ∈ Y

Zh
n(x) = Y ∩ ωn − x

h
, θhn(x) = |Zh

n(x)| =

∫
Y

θn(x + hy) dy,

Mn(x + hy) = Aχωn
(x + hy) + BχΩ\ωn

(x + hy) = AχZh
n(x)(y) + BχY \Zh

n(x)(y),

σh
n(x) =

∫
Y

Mn(x + hy)(∇u + ∇yw
h
n) dy.

Then, by definition (5.17) of wh
n and definition (4.6) of H, we obtain

(5.34)

∫
Y

F (∇u + ∇yw
h
n) dy ≥ H(∇u, σh

n, θ
h
n), a.e. in Ωε.

By the H-convergence of Mn to M and the convergence in L∞(Ω) weak-∗ of θn to
θ, we have that σh

n and θhn, respectively, converge a.e. in Ωε to σh ∈ L2(Ωε)
N and

θh ∈ L∞(Ωε), defined by

σh(x) =

∫
Y

M(x + hy)(∇u + ∇yw
h) dy, θh(x) =

∫
Y

θ(x + hy) dy, a.e. x ∈ Ωε.

From (4.11) and ‖∇u + ∇yw
h
n‖L2(Y ) ≤ C|∇u| a.e. in Ω, we also have

|H(∇u, σh
n, θ

h
n)| ≤ C (1 + |∇u|)2 a.e. in Ωε.
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Then, by (5.34), the lower semicontinuity of H, and Fatou’s lemma we deduce that

lim inf
n→∞

∫
Ωε

∫
Y

F (∇u + ∇yw
h
n)dydx ≥ lim inf

n→∞

∫
Ωε

H(∇u, σh
n, θ

h
n) dx

≥
∫

Ωε

H(∇u, σh, θh) dx

for every h ∈ (0, ε/
√
N). By now using the fact that, for h tending to zero, σh

converges strongly to σ in L2(Ωε)
N and θh converges to θ strongly in Lr(Ωε), 1 ≤ r <

+∞, weak-∗ in L∞(Ωε), we can use again the lower semicontinuity of H and Fatou’s
lemma to obtain

(5.35) lim inf
h→0

lim inf
n→∞

∫
Ωε

∫
Y

F (∇u + ∇yw
h
n)dydx ≥

∫
Ωε

H(∇u, σ, θ) dx.

By (5.30), (5.31), (5.32), (5.33), and (5.35), by passing to the limit in (5.29), first in
n, then in h, and then in ε, we have

lim inf
n→∞

∫
Ω

F (∇un) dx ≥
∫

Ω

H(∇u, σ, θ) dx.

This proves (5.23).
Step 3. Let us prove that for every (u, σ, θ) ∈ H1(Ω) × L2(Ω)N × L∞(Ω) there

exists (un, σn, θn) ∈ H1(Ω) × L2(Ω)N × L∞(Ω), which satisfies (5.24).
It is enough to consider the case where 0 ≤ θ ≤ 1 and σ ∈ K(A,B, θ)∇u a.e.

in Ω.
We consider an open cube Q, with Ω ⊂ Q, and a prolongation of u, still denoted

by u, in H1
0 (Q). This prolongation exists thanks to Ω being smooth. We also extend

θ and σ to the whole Q by θ = 1, σ = A∇u a.e. in Q \ Ω. The multiapplication
x ∈ Ω �→ {M̃ ∈ K(A,B, θ(x)) : M̃∇u(x) = σ(x)} is closed and measurable. The
measurability follows by using the fact that for every closed set C ⊂ Ms

N we have{
x ∈ Ω : ∃ M̃ ∈ C ∩ K(A,B, θ(x)), with M̃∇u(x) = σ(x)

}
=

⋂
m∈N

(∇u, σ, θ)−1(Km),

where

Km =

{
(ξ, η, p) ∈ RN × RN × [0, 1] : ∃ M̃ ∈ K(A,B, p) ∩ C with |M̃ξ − η| ≤ 1

m

}

is closed for every m ∈ N. Thus (see, e.g., [7]) there exists M ∈ L∞(Ω;Ms
N ) such

that M ∈ K(A,B, θ) and M∇u = σ a.e. in Q.
For a regular sequence of triangulations τn = {T k

n}1≤k≤kn of Q by N -simplex,
whose diameter tends to zero when n tends to infinity (see, e.g., [8]), we consider the
space of finite elements

Vn =
{
vn ∈ C0

0 (Q) : vn is affine in T k
n ∀ k ∈ {1, . . . , kn}

}
.

Then we define ûn as the solution of⎧⎪⎨
⎪⎩

ûn ∈ Vn,∫
Q

M∇ûn∇v =

∫
Q

σ∇v dx ∀ v ∈ Vn,
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and we take

θ̂n =

kn∑
k=1

(
1

|T k
n |

∫
Tk
n

θ dx

)
χTk

n
, σ̂n =

kn∑
k=1

(
1

|T k
n |

∫
Tk
n

M∇ûn dx

)
χTk

n
.

The sequence θ̂n converges to θ in Lr(Q), 1 ≤ r < +∞, and in L∞(Q) weak-∗.
Since τn is regular, and σ = M∇u a.e. in Q, we also have that ûn converges strongly
in H1

0 (Q) to u (see, e.g., [8]). Thus, M∇ûn and then σ̂n converge strongly to σ in
L2(Q)N . By Egorov’s theorem, there exist a subsequence of n, still denoted by n, and
a sequence Qn of closed subsets of Q such that

(5.36) |Q−Qn| <
1

n
, C(|∇ûn −∇u| + |∇u||θ̂n − θ|ρ) + |σ̂n − σ| < 1

n
in Qn,

with C > 0 and ρ ∈ (0, 1) given by Lemma 5.3.
Since ∇ûn is constant in every N -simplex T k

n of τn and, for every ξ ∈ RN , the
set K(A,B, p)ξ is closed in RN and satisfies the following convexity property (this
property does not hold for N = 1, and so it is the reason to prove the cases N = 1,
N ≥ 2 separately):

λK(A,B, p1)ξ + (1−λ)K(A,B, p2)ξ ⊂ K
(
A,B, λp1 + (1−λ)p2

)
ξ ∀λ, p1, p2 ∈ [0, 1],

we have

σ̂n =

(
1

|T k
n |

∫
Tk
n

M dx

)
∇ûn ∈ K

(
A,B,

1

|T k
n |

∫
Tk
n

θ dx

)
∇ûn

in T k
n , for every k ∈ {1, . . . , kn}, i.e., σ̂n ∈ K(A,B, θ̂n)∇ûn a.e. in Q, or equivalently

(∇ûn, σ̂n, θ̂n) ∈ Dom(H) a.e. in Q.

We consider an N -simplex T k
n , with k ∈ {1, . . . , kn}, and we denote by ξkn = ∇ûn,

ηkn = σ̂n, and pkn = θ̂n the constant values of ∇ûn, σ̂n, and θ̂n, respectively, in T k
n .

From definition (4.5) of H 2
n
(ξkn, η

k
n, p

k
n), there exists Zk

n ⊂ Y , with |Zk
n| = pkn, such

that, by defining Sk
n ∈ L∞

� (Y ;Ms
N ) by Sk

n = AχZk
n

+ BχY \Zk
n

a.e. in Y , and taking

wk
n the solution of ⎧⎪⎨

⎪⎩
wk

n ∈ H1
� (Y ),

∫
Y

wk
n dy = 0,

−divSk
n(ξkn + ∇wk

n) = 0 in RN ,

we have

(5.37)

∣∣∣∣
∫
Y

Sk
n(ξkn + ∇wk

n) dy − ηkn

∣∣∣∣ < 2

n

and

(5.38)

∫
Y

F (ξkn + ∇wk
n) dy < H 2

n
(ξkn, η

k
n, p

k
n) +

1

n
.

We take

(5.39) σ̌n =

kn∑
k=1

(∫
Y

Sk
n(ξkn + ∇wk

n) dy

)
χTk

n
,
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and by (5.37), we observe that

(5.40)

∫
Q

|σ̌n − σ̂n|2 dx <
4

n2
|Q|.

For n ∈ N, and ε > 0, we define

ωn,ε =

kn⋃
k=1

[
T k
n

⋂( ⋃
l∈ZN

(εl + εZk
n)

)]
,

Mn,ε = Aχωn,ε + B(1 − χωn,ε),

and un,ε ∈ H1
0 (Q) as the solution of

(5.41) −divMn,ε∇un,ε = −div σ̌n in Q.

Since |Zk
n| = pkn, the sequence ωn,ε satisfies

(5.42) χωn,ε

∗
⇀ θ̂n in L∞(Ω), when ε → 0.

By using the fact that ∇ûn = ξkn in each T k
n and the definition (5.39) of σ̌n, we deduce

by periodic homogenization (see, e.g., [1], [4], [11]) that

(5.43) un,ε ⇀ ûn in H1
0 (Q), when ε → 0,

(5.44) Mn,ε∇un,ε ⇀ σ̌n in L2(Q)N , when ε → 0,

(5.45) ∇un,ε −
kn∑
k=1

(
ξkn + ∇wk

n

(x
ε

))
χTk

n
→ 0 in L2(Q)N , when ε → 0.

By (5.45), (4.1), ∇wk
n-periodic, and (5.38), we then have

(5.46)

lim
ε→0

∫
Ω

F (∇un,ε) dx =

kn∑
k=1

lim
ε→0

∫
Tk
n∩Ω

F
(
ξkn + ∇wk

n

(x
ε

))
dx

=

kn∑
k=1

∫
Tk
n∩Ω

∫
Y

F (ξkn + ∇wk
n) dy dx <

∫
Ω

H 2
n
(∇ûn, σ̂n, θ̂n) dx +

|Ω|
n

.

We consider a dense countable subset {hj} of L1(Ω) and a dense countable subset
{gj} of L2(Ω)N . By using (5.42), (5.43), (5.46), for every n ∈ N, we choose εn > 0
such that

(5.47)

∣∣∣∣
∫

Ω

(χωn,εn
− θ̂n)hj dx

∣∣∣∣ < 1

n
∀ j ∈ {1, . . . , n},

(5.48)

∣∣∣∣
∫

Ω

(Mn,εn∇un,εn − σ̌n)gj dx

∣∣∣∣ < 1

n
∀ j ∈ {1, . . . , n},

(5.49)

∫
Ω

|un,εn − ûn|2 dx <
1

n
,
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(5.50)

∫
Ω

F (∇un,εn) dx <

∫
Ω

H 2
n
(∇ûn, σ̂n, θ̂n) dx +

|Ω|
n

.

Then we define

un = un,εn , σn = Mn,εn∇un,εn , θn = χωn,εn
.

Thanks to (5.40) and σ̂n converging strongly to σ in L2(Ω)N , we have that σ̌n con-
verges strongly to σ in L2(Ω)N . So, by (5.41), un is bounded in H1(Ω), which joined to
(5.49) and ûn converging strongly to u in H1(Ω) implies that un converges weakly to
u in H1(Ω). Equation (5.41) and the strong convergence of σ̌n (see Remark 4.5) also
give that |∇un|2 is equi-integrable and that −div σn = −div σ̌n converges strongly
to −div σ in H−1(Ω). By (5.48), we also have that σn converges weakly to σ in

L2(Ω)N . Finally (5.47) and the convergence of θ̂n to θ in L∞(Q) weak-∗ proves that
θn converges to θ in L∞(Ω) weak-∗. Hence, (un, σn, θn) T -converges to (u, σ, θ).

By (5.50) and the definition (4.18) of F , we obtain

(5.51) F(un, σn, θn) =

∫
Ω

F (∇un) dx <

∫
Ω

H 2
n
(∇ûn, σ̂n, θ̂n) dx +

|Ω|
n

.

On the other hand, by (5.36), Hδ(ξ, η, p) decreasing in δ, and (5.9), we have

H 2
n
(∇ûn, σ̂n, θ̂n) ≤ H 1

n+λn(x)+|σ̂n−σ|(∇ûn, σ̂n, θ̂n)

≤ H 1
n
(∇u, σ, θ) + (1 + |∇u| + |∇ûn|)2−�(λn)�

≤ H 1
n
(∇u, σ, θ) + (1 + |∇u| + |∇ûn|)2−� 1

n�
,

a.e. in Qn, with

λn = C(|∇(ûn − u)| + |∇u| |θ̂n − θ|ρ).

By then using (5.10), we get

(5.52)

∫
Ω

H 2
n
(∇ûn, σ̂n, θ̂n) dx

≤
∫
Qn∩Ω

H 1
n
(∇u, σ, θ) dx +

1

n�

∫
Qn∩Ω

(1 + |∇u| + |∇ûn|)2−� dx

+L

∫
Ω\Qn

(
β

α
|∇ûn|

)� (
1 +

β

α
|∇ûn|

)2−�

dx.

By the definition of H and (5.10) we can apply the Lebesgue dominated convergence
theorem to deduce that

H 1
n
(∇u, σ, θ) → H(∇u, σ, θ) in L1(Ω).

By using also the fact that ∇ûn converges strongly in L2(Ω)N and that |Ω\Qn| tends
to zero, we then deduce by (5.51) and (5.52) that

lim sup
n→∞

F(un, σn, θn) ≤
∫

Ω

H(∇u, σ, θ) dx = F(u, σ, θ).

This proves (5.24).
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Proof of Theorem 4.3. We denote by I the infimum of problem (4.4) and by J
the infimum of problem (4.16).

Step 1. Let us first prove that I is bigger than or equal to J . For this purpose it
is enough to observe that thanks to (4.12)∫

Ω

F (∇u) dx =

∫
Ω

H(∇u,M∇u, θ) dx,

when θ = χω with ω ⊂ Ω measurable and M = Aχω + BχΩ\ω. So in (4.4) we are
minimizing the same functional as that in (4.16) but in a smaller set. This proves
I ≥ J .

Step 2. Let us now use the direct method of the calculus of variations to prove
that problem (4.16) has a minimum. We consider θn ∈ L∞(Ω), with 0 ≤ θn ≤ 1 a.e.
in Ω, ∫

Ω

θn dx ≤ κ|Ω|,

and Mn ∈ K(A,B, θ) a.e. in Ω such that the solution un of{
−divMn∇un = f in Ω,

un ∈ H1
0 (Ω)

satisfies

∃ lim
n→∞

(∫
Ω

H(∇un,Mn∇un, θn) dx + G(un)

)
= J.

Thanks to θn being bounded in L∞(Ω) and the compactness of the H-convergence, by
extracting a subsequence if necessary, we can assume that there exist θ ∈ L∞(Ω) and
M ∈ L∞(Ω;Ms

N ) such that θn converges weak-∗ in L∞(Ω) to θ and Mn H-converges
to M . Therefore, (un,Mn∇un, θn) T -converges to (u,M∇u, θ) (the equi-integrability
of |∇un|2 is an easy consequence of Meyer’s theorem [19]), where

0 ≤ θ ≤ 1 a.e. in Ω,

∫
Ω

θ dx ≤ κ|Ω|, M ∈ K(A,B, θ) a.e. in Ω,

{
−divM∇u = f in Ω,

u ∈ H1
0 (Ω).

Since F is lower semicontinuous for the T -convergence and G is sequentially contin-
uous for the weak convergence in H1

0 (Ω), we have

J = lim
n→∞

(∫
Ω

H(∇un,Mn∇un, θn) dx + G(un)

)
≥

∫
Ω

H(∇u,M∇u, θ) dx + G(u).

Thus u, M , θ is a solution of (4.16), and hence J is a minimum.
Step 3. To finish the proof of Theorem 4.3, let us now prove that, for every

solution u,M, θ of (4.16), there exists a sequence ωn of measurable subsets of Ω, with
|ωn| ≤ κ|Ω| such that the solution un of

(5.53)

{
−div

(
Aχωn + BχΩ\ωn

)
∇un = f in Ω,

un ∈ H1
0 (Ω)

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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satisfies

(5.54) lim
n→∞

(∫
Ω

F (∇un) dx + G(un)

)
= J,

and it is such that (un, (Aχωn
+ BχΩ\ωn

)∇un, χωn
) T -converges to (u,M∇u, θ).

By Theorem 4.5, we know that there exist ω̃n ⊂ Ω measurable and ũn ∈ H1
0 (Ω)

such that, for M̃n = (Aχω̃n + BχΩ\ω̃n
), the sequence (ũn, M̃n∇ũn, χω̃n) T -converges

to (u,M∇u, θ) and

(5.55) lim
n→∞

∫
Ω

F (∇ũn) dx =

∫
Ω

H(∇u,M∇u, θ) dx.

From the compactness of the H-convergence, we can also assume that there exists M̂
such that M̃n H-converges to M̂ . Then M̂ ∈ K(A,B, θ) a.e. in Ω and, thanks to the
definition of T -convergence, M̂∇u = M∇u a.e. in Ω. The weak-∗ convergence of χω̃n

to θ also implies that

lim
n→∞

|ω̃n| =

∫
Ω

θ dx ≤ κ|Ω|.

Now, for every n ∈ N, we consider ωn ⊂ ω̃n measurable such that

|ω̃n \ ωn| = max {|ω̃n| − κ|Ω|, 0} → 0,

and we define un as the solution of (5.53).
By taking into account

−div M̃n∇un = f − div (M̃n −Mn)∇un in Ω,

with Mn = Aχωn + BχΩ\ωn
, the equi-integrability of |∇un|2, and the fact that

(5.56) lim
n→∞

∣∣∣{x ∈ Ω : M̃n(x) −Mn(x) �= 0}
∣∣∣ = lim

n→∞
|ω̃n \ ωn| = 0,

we have that (M̃n−Mn)∇un tends to zero in L2(Ω)N strongly. Therefore −div M̃n∇un

tends to f strongly in H−1(Ω). By the definition of T -convergence and −divM∇u = f
in Ω, we also have that −div M̃n∇ũn converges strongly to f in H−1(Ω). The div-
curl lemma then gives that M̃n∇(un− ũn) ·∇(un− ũn) converges to zero in the sense
of the distributions. The equi-integrability of |∇un|2 and |∇ũn|2 implies that this
convergence holds in fact in L1(Ω) weakly, and so

lim
n→∞

∫
Ω

M̃n∇(un − ũn) · ∇(un − ũn) dx = 0,

which by the ellipticity of M̃n implies that ∇(un − ũn) converges strongly to zero
in L2(Ω)N . Thus, (un,Mn∇un, χωn

) T -converges to (u,M∇u, θ), and, by (4.1), the
sequential continuity of G with respect to the weak topology in H1

0 (Ω), and (5.55),
we have

lim
n→∞

(∫
Ω

F (∇un) dx + G(un)

)
= limn→∞

(∫
Ω
F (∇ũn) dx + G(un)

)
=

∫
Ω
H(∇u,M∇u, θ) dx + G(u) = J.
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Proof of Proposition 4.6. We consider λ, p1, p2 ∈ [0, 1], ξ1, ξ2, η1, η2 ∈ RN such
that η1 = η2 for N = 1, and (ξ1 − ξ2) · (η1 − η2) = 0 for N > 1.

We take χ =
∑

k∈Z χ(k,k+λ) ∈ L∞
� (0, 1).

If ξ1 �= ξ2, we define un ∈ W 1,∞
loc (RN ), σn ∈ L∞(RN )N , and θn ∈ L∞(RN ) by

un(x) = ξ2 · x +
1

n

∫ n(ξ1−ξ2)·x

0

χ(s) ds, σn(x) = η2 +
(
η1 − η2)χ(n(ξ1 − ξ2) · x

)
,

θn(x) = p2 + (p1 − p2)χ
(
n(ξ1 − ξ2) · x

)
, a.e. x ∈ RN ,

respectively, and we observe that, by defining

u(x) = (λξ1 + (1 − λ)ξ2) · x, σ(x) = λη1 + (1 − λ)η2,

θ(x) = λp1 + (1 − λ)p2, a.e. x ∈ RN ,

we have that, for every smooth bounded open set ω ⊂ RN , un converges to u in
W 1,∞(ω) weak-∗, σn converges to σ in L∞(ω)N weak-∗, and θn converges to θ in
L∞(ω) weak-∗ and div σn = 0 in ω. In particular, (un, σn, θn) T -converges to (u, σ, θ).
Since the functional F defined by (4.19) is lower semicontinuous in ω for the T -
convergence (use Theorem 4.5, with Ω replaced by ω), we get∫

ω

H(λξ1 + (1 − λ)ξ2, λη1 + (1 − λ)η2, λp1 + (1 − λ)p2) dx

= F(u, σ, θ) ≤ lim
n→∞

F(un, σn, θn)

= lim
n→∞

∫
ω

(
H(ξ1, η1, p1)χ(n(ξ1 − ξ2) · x) + H(ξ2, η2, p2)

(
1 − χ(n(ξ1 − ξ2) · x)

))
dx

=

∫
ω

(
λH(ξ1, η1, p1) + (1 − λ)H(ξ2, η2, p2)

)
dx,

which by the arbitrariness of ω implies (4.22) (or (4.21) if N = 1).
If ξ1 = ξ2 (and then N > 1), we reason analogously, by taking ζ �= 0 orthogonal

to η1 − η2 and defining

un(x) = ξ1 · x, σn(x) = η2 +
(
η1 − η2)χ(nζ · x

)
,

θn(x) = p2 + (p1 − p2)χ
(
nζ · x

)
, a.e. x ∈ RN .

Proof of Proposition 4.7. We recall that convex and bounded functions are locally
Lipschitz in the interior of their domain. This can be easily generalized to functions
of several variables, convex in each one of these variables. Then Proposition 4.6 and
(4.11) prove that H is continuous in the interior of its domain. On the other hand,
we consider (ξ, η, p) ∈ Dom(H), p ∈ (0, 1). By reasoning similarly as in the proof of
Theorem 4.2, it is not difficult to show that if p is close to 0 or 1, then H(ξ, η, p) is
close to F (ξ) and that if

ξ · (Λpξ − η) −
(

(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η) · (Λpξ − η)

is small, then∣∣∣∣H(ξ, η, p) − pF

(
ξ + Ξ

(
Λpξ − η

p

))
− (1 − p)F

(
ξ − Ξ

(
Λpξ − η

1 − p

))∣∣∣∣
is small. This proves the continuity of H in the boundary of its domain.
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6. Example. In this section we give an example in dimension N ≥ 2 of a
quadratic function F for which we obtain an explicit expression of the function H
defined by (4.6) in its whole domain. This is given by the following theorem.

Theorem 6.1. We consider N ≥ 2, A,B ∈ Ms
N definite positive, s ∈ R such

that s(A−B) is definite nonnegative, and

F (ξ) = sAξ · ξ ∀ξ ∈ RN .

Then, for every (ξ, η, p) ∈ RN × RN × (0, 1) such that η ∈ K(A,B, p)ξ, we have that
the function H defined by (4.6) is given by

(6.1) H(ξ, η, p) = sAξ · ξ + s(Λpξ − η) · ξ +
s

1 − p
(A−B)ν · ν,

where ν is any vector in RN which satisfies (B −A)ν = Λpξ − η.
In the cases p = 0, p = 1, we have

H(ξ, Aξ, 1) = H(ξ,Bξ, 0) = sAξ · ξ ∀ξ ∈ RN .

Remark 6.1. Since Ran(A−B) = Ker(A−B)⊥, it is clear that the second member
of (6.1) does not depend on the choice of ν. By taking ν = (A − B)†(Λpξ − η), we
have

H(ξ, η, p) = sAξ · ξ + s(Λpξ − η) · ξ +
s

1 − p
(A−B)†(Λpξ − η) · (Λpξ − η)

for every (ξ, η, p) ∈ RN × RN × (0, 1) such that η ∈ K(A,B, p)ξ.
Proof of Theorem 6.1. By (4.12) it is enough to prove (6.1).
For (ξ, η, p) ∈ RN × RN × (0, 1) such that η ∈ K(A,B, p)ξ, we consider Zn, Sn,

wn, ηn as in Remark 4.1, and we define

νn =

∫
Zn

∇wn dy = −
∫
Y \Zn

∇wn dy.

By using that ∇wn has mean value zero and (3.4), we have

(6.2)

∫
Y

sA(ξ + ∇wn) · (ξ + ∇wn)dy = sAξ · ξ +

∫
Y

sA∇wn · ∇wndy

= sAξ · ξ + s(Λpξ − ηn) · ξ +

∫
Y \Zn

s(A−B)∇wn · ∇wn dy.

Thanks to s(A−B) nonnegative, the Cauchy–Schwarz inequality proves that

s(A−B)νn · νn = −
∫
Y \Zn

s(A−B)∇wn · νn dy

≤
∫
Y \Zn

(s(A−B)∇wn · ∇wn)
1
2 (s(A−B)νn · νn)

1
2 dy

≤
(∫

Y \Zn

s(A−B)∇wn · ∇wndy

) 1
2 (

(1 − p)s(A−B)νn · νn
) 1

2

and so

s

1 − p
(A−B)νn · νn ≤

∫
Y \Zn

s(A−B)∇wn · ∇wndy,
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which substituted in (6.2) and then passed to the limit in n proves that

(6.3) H(ξ, η, p) ≥ sAξ · ξ + s(Λpξ − η) · ξ +
s

1 − p
(A−B)ν · ν,

where ν equals the limit of νn (it exists for a subsequence) and satisfies (A− B)ν =
η − Λpξ.

In order to prove the contrary inequality, we remark that if η ∈ Λpξ+Ran(A−B)
is such that

(6.4)

(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η) · (Λpξ − η) = ξ · (Λpξ − η),

then (6.1) follows from Theorem 4.2 by taking ν = Ξ(Λpξ − η) and using(
A

p
+

B

1 − p

)
ν · ν = (Λpξ − η) · ξ.

Thus, it is enough to consider the case where η ∈ Λpξ + Ran(A−B) satisfies

(6.5)

(
(A−B)

(
A

p
+

B

1 − p

)−1

(A−B)

)†

(Λpξ − η) · (Λpξ − η) < ξ · (Λpξ − η).

By taking as above ν = Ξ(Λpξ − η), we have

η = Λpξ + (A−B)ν,

(
A

p
+

B

1 − p

)
ν · ν < (B −A)ν · ξ.

The last inequality implies that there exists r ∈ (0, p) such that(
1

p− r
− 1

p

)
Aν · ν = (B −A)ν · ξ −

(
A

p
+

B

1 − p

)
ν · ν.

For ν̂ = ν/(1− r) we then have that η̂ = Λp̂ξ+(A−B)ν̂, p̂ = (p− r)/(1− r) are such
that η̂ ∈ Λp̂ξ + Ran(A−B) and that (6.4) holds with η and p, respectively, replaced
by η̂ and p̂. By taking into account

p = r + (1 − r)p̂, η = rAξ + (1 − r)η̂

and using the convexity property (4.22) of H, we then obtain

(6.6)

H(ξ, η, p) ≤ rH(ξ, Aξ, 1) + (1 − r)H(ξ, η̂, p̂)

= sAξ · ξ + s(A−B)ν · ξ +
s

1 − p
(A−B)ν · ν.

This finishes the proof of Theorem 6.1.
Remark 6.2. By the proof of Theorem 6.1, we see that the sequence Zn given by

Remark 4.1 must be chosen in such a way that the value of ∇wn in Y \ Zn is close
to a constant. For N ≥ 2, (ξ, η, p) ∈ RN × RN × (0, 1), η ∈ K(A,B, p)ξ, η �= Λpξ,
this can be carried on by using two laminations as follows: We take ν = Ξ(Λpξ − η)
and r and p̂ as in the proof of Theorem 6.1, and then we construct a matrix M by a
lamination of A and B in the direction of ν with respective proportions p̂ and 1−p̂ and
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then a lamination of A and M in an orthogonal direction to (M −A)ξ with respective
proportions r and 1−r. This is the idea that we used in the proof of inequality (6.6).

As a particular case of Theorem 6.1, we have the following result.
Corollary 6.2. Assume that N ≥ 2, A = αI, B = βI, with 0 < α < β, and

for s ∈ R take F (ξ) = s|ξ|2 for every ξ ∈ RN . Then the function H defined by (4.6)
satisfies

H(ξ, η, p) = s|ξ|2 +
s

β
(Λpξ − η) · ξ +

s

β(β − α)p
|Λpξ − η|2 if s ≥ 0,

H(ξ, η, p) = s|ξ|2 +
s

α
(Λpξ − η) · ξ − s

α(β − α)(1 − p)
|Λpξ − η|2 if s ≤ 0

for every ξ ∈ RN , p ∈ (0, 1), η ∈ K(A,B, p)ξ.
Proof. It is enough to apply Theorem 6.1 where the matrices A and B and the

constant s must be replaced, respectively, by βI, αI, and s/β in the case s ≥ 0 and
by αI, βI, and s/α in the case s ≤ 0.

Remark 6.3. Corollary 6.2 and Theorem 4.3 give the relaxation of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

inf

{
s

∫
Ω

|∇u|2 dx
}
,

−div (αχω + βχΩ\ω)∇u = f in Ω,

u ∈ H1
0 (Ω),

ω ⊂ Ω measurable, |ω| ≤ κ|Ω|.

In the case where s > 0, this relaxation was obtained by Bellido and Pedregal in [3]
(see also [15]) for N = 2 and independently by Grabovsky in [10] for arbitrary N . The
method used in the present paper is different from the ones used by these authors.
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