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1. Introduction

In this paper we study a control problem for elliptic nonlinear monotone
problems with Dirichlet boundary conditions where the control variables are
the coefficients of the equation and the open set where the partial differential
problem is studied.

More exactly, we consider a bounded open set Ω ⊂ RN and a mono-
tone operator A from H1(Ω) to H−1(Ω), mapping y ∈ H1(Ω) in Ay =
−div a(x,∇y) ∈ H−1(Ω), where a : Ω×RN → RN is a Carathéodory function
which defines a monotone Leray-Lions operator of order 2.

Our problem is to find an open set Ω̃ ⊂ Ω and A on the conditions above,
such that for f ∈ H−1(Ω), the solution y of

{
Ay = f in Ω̃

y ∈H1
0 (Ω̃)

(1.1)

minimize a functional J : H1
0 (Ω) → R (the solution of (1.1) will be considered

extended by zero outside Ω̃ and then, defined as an element of H1
0 (Ω)).

When Ω̃ is fixed (see [18], [19], [20]) or A is fixed (see [3], [4]), the problem
has been studied in several papers, usually for linear problems. It is well know
that these problems has no solution in general. In the present paper, we show
the existence of solution when the controls are searched in a large set.
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Our results can be generalized to systems of M equations and operators
of order p ∈ (1,+∞) (see [5]). Here, by simplicity, we study the scalar case
with p = 2.

From the point of view of the applications, the results exposed in the
present paper are related with the selection of optimal shape material (take
into account that the coefficients of the equation depend on the choice of the
materials).

2. Notation and preliminaries

Let Ω be a bounded open subset of RN . For a measure µ, we denote by
L2

µ(Ω), the space of the functions which are µ-measurable and have its power
two µ-integrable. If µ is the Lebesgue measure, we write Lp(Ω,RM ).

We denote by H1
0 (Ω) the closure of the C∞ functions with compact support

for the norm ‖u‖H1
0 (Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω)N . The dual space of H1

0 (Ω),
it is denoted by H−1(Ω).

For every subset B ⊂ Ω, and p ∈ (1,+∞), we denote by C(B, Ω) the
capacity of B (in Ω), which is defined as the infimum of

∫

Ω
|∇y|2 dx

over the set of the functions y ∈ H1
0 (Ω) such that y ≥ 1 a.e. in a neighbourhood

of B.
We say that a property P(x) holds C-quasi everywhere (abbreviated as

q.e.) in a set E, if there exists N ⊂ E with C(N,Ω) = 0 such that P(x) holds
for all x ∈ E\N .

A function y : Ω → R is said to be quasi continous, if for every ε > 0 there
exists N ⊂ Ω, with C(N,Ω) < ε, such that the restriction of y to Ω\N is
continuous. It is well know that every y ∈ H1

0 (Ω) has a quasi continuous rep-
resentative (see [15], [16], [24]). We always identify y with its quasi continuous
representative.

A subset A ⊂ Ω is said to be quasi open in Ω, if for every ε > 0 there
exists an open subset U ⊂ Ω, with C(U,Ω) < ε, such that A ∪N is open.

We denote by M2
0(Ω) the class of all Borel measures which vanish on the

sets of capacity zero and satisfy

µ(B) = inf{µ(A) : A quasi open, B ⊆ A ⊆ Ω}
for every Borel set B ⊆ Ω.
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Definition 2.1. For α, γ > 0 , we denote by A(α, γ) the set of Carathéo-
dory functions a : Ω× RN → RN such that

(i) a(x, 0) = 0 for a.e. x ∈ Ω;

(ii) (a(x, ξ1) − a(x, ξ2))(ξ1 − ξ2) ≥ max{α|ξ1 − ξ2|2, γ|a(x, ξ1) − a(x, ξ2)|2}
for all ξ1, ξ2 ∈ RN , a.e. x ∈ Ω.

Remark 2.2. If a belongs to A(α, γ), then a satisfies

(iii) |a(x, ξ1)− a(x, ξ2)| ≤ 1
γ
|ξ1 − ξ2| for all ξ1, ξ2 ∈ R, a.e. x ∈ Ω.

Reciprocally, if a function a satisfies

(a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2) ≥ α|ξ1 − ξ2|2

for all ξ1, ξ2 ∈ R, a.e. x ∈ Ω, and there exists β > 0 such that

|a(x, ξ1)− a(x, ξ2)| ≤ β|ξ1 − ξ2|

for all ξ1, ξ2 ∈ R, a.e. x ∈ Ω, then a satisfies (ii) with γ =
α

β2
.

Definition 2.3. We denote by U(α, γ) the set of pairs (µ, F ) such that
µ ∈M2

0(Ω) and F : Ω× R→ R satisfies

(a) F ( · , s) is µ-measurable for very s ∈ R;

(b) F (x, 0) = 0, µ-a.e. x ∈ Ω;

(c) (F (x, s1)−F (x, s2))(s1−s2) ≥ max{α|s1−s2|2, γ|F (x, s1)−F (x, s2)|2}
for all s1, s2 ∈ R, µ-a.e. x ∈ Ω.

Remark 2.4. Hypothesis (c) is equivalent to:

1
γ

(s1 − s2) ≥ F (x, s1)− F (x, s2) ≥ α(s1 − s2)

for all s1, s2 ∈ R, s1 ≥ s2, µ-a.e. x ∈ Ω.

We consider a functional J : H1
0 (Ω) → R which is sequentially weakly

lower semicontinuous, i.e.:

yn ⇀ y ⇒ lim inf
n→∞ J(yn) ≥ J(y). (2.2)



266 c. calvo jurado, j. casado d́ıaz

3. Existence of solution for the optimal design problem

For f ∈ H−1(Ω), Ω̃ ⊂ Ω and a ∈ A , we consider the partial differential
problem {

−div a(x,∇y) = f in Ω̃
y ∈ H1

0 (Ω̃).
(3.3)

Our purpose is to find Ω̃ and a ∈ A which solve the minimum problem
{

minJ(y)
a ∈ A, Ω̃ ⊂ Ω.

(3.4)

In order to show the existence of solution for (3.4), we can try to use the direct
method of calculus of variations. For that, we consider Ωn ⊂ Ω opens, and
an ∈ A such that the sequence yn of solutions of

{ −div an(x,∇yn) = f in Ωn

yn ∈ H1
0 (Ωn)

(3.5)

is minimizing, i.e.:
lim inf
n→∞ J(yn) = I

where
I = inf{J(y) : a ∈ A, Ω̃ ⊂ Ω, y satisfies (3.3)}.

Taking yn as test function in (3.5), we deduce
∫

Ω
an(x,∇yn)∇yn dx =

∫

Ω
fyn dx,

which by (ii) implies

‖yn‖H1
0 (Ω) ≤

‖f‖H−1(Ω)√
α

,

where we have identified yn with its extension by zero to Ω\Ωn. So, there exists
a subsequence (still denoted by yn) which converges weakly to a function y in
H1

0 (Ω). By the lower semicontinuity (2.2) of J , we have J(y) ≤ I. If there
exists Ω̃ ⊂ Ω and a ∈ A such that y satisfies (3.3), then J(y) = I and the
problem is solved.

Therefore, we need to find the equation satisfied by the function y and
to know if it is of the same type that (3.3). Thus, we need to study the
homogenization problem

{ −div an(x,∇yn) = f in D′(Ωn)
yn ∈ H1

0 (Ωn),
(3.6)
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where an ∈ A and Ωn is a sequence of arbitrary open sets contained in a given
bounded open set Ω ⊂ RN . This is a question which is well known when Ωn

or an is fixed.
When Ωn is fixed it has been proved (see for example [21], for the linear

problem and [22], [23] for the nonlinear one) that there exists a function a ∈ A
such that (for a sequence) the solutions yn of (3.6) with Ωn = Ω̃ fixed, converge
weakly in H1

0 (Ω) to the solution y of
{
−div a(x,∇y) = f in Ω̃

y ∈ H1
0 (Ω̃),

where a does not depend of f . In particular, this implies that the initial
problem (3.4), has a solution if we assume that Ω̃ is not variable (control
coefficients problem).

However, when an is fixed, it is not true in general that there exists a
subsequence of Ωn, still denoted by Ωn, and open set Ω̃ ⊂ Ω such that the
solutions of (3.6) with an = a fixed, converge weakly in H1

0 (Ω) to the solution
y of {

−div a(x,∇y) = f in D′(Ω̃)
y ∈ H1

0 (Ω̃).

For example, if N = 3, and Ωn = Ω\⋃
k∈ZN B( k

n , 1
n3 ), it has been proved in

[8], that the sequence of solutions yn of (3.6) with a(x, ξ) = ξ, for all ξ ∈ R,
a.e. x ∈ Ω, (laplacian operator) converges weakly in H1

0 (Ω) to the unique
solution y of { −∆ y + 4π

3 y = f in Ω
y ∈ H1

0 (Ω).
(3.7)

As a consequence of this result, let us now prove

Theorem 3.1. The problem (3.4) has no solution in general.

Proof. Let Ω ⊂ RN be a bounded open set. We respectively denote by y0

the solution of (3.7) with f = 1 and by ȳ the solution of
{ −∆ȳ = 1 in Ω

ȳ ∈H1
0 (Ω).

(3.8)

We consider J : H1
0 (Ω) → R as J(y) =

∫
Ω |y − y0|2 dy, for all y ∈ H1

0 (Ω) and
α = 1− ε, γ = 1

1+ε , with ε small enough such that
(

ε2 + 4ε

1− ε

)2 ∫

Ω
|∇ȳ|2 dy <

∫

Ω
|∇(ȳ − y0)|2 dy. (3.9)
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Remark that yn ⇀ y in H1
0 (Ω) implies J(yn) → J(y) in R.

It is clear for the result of Cianorescu-Murat mentioned above, that in this
case I = 0. So, if there exists (a, Ω̃) solution of (3.4), then

{
−div a(x,∇y0) = 1 in Ω̃

y0 ∈ H1
0 (Ω̃).

Now, y0 ∈ H1
0 (Ω̃), implies that y0 = 0 q.e. in Ω\Ω̃, but the strong maximum

principle implies that y0 > 0 in Ω. So, Ω\Ω̃ has capacity zero, but then H1
0 (Ω)

is equal to H1
0 (Ω̃), and y0 is also the solution of the problem

{ −div a(x,∇y0) = 1 in Ω
y0 ∈ H1

0 (Ω).
(3.10)

On the other hand, by (ii), for every ξ ∈ RN and a.e. x ∈ Ω, we have

|ξ − a(x, ξ)| = |ξ|2 + |a(x, ξ)|2 − 2a(x, ξ)ξ

≤ |ξ|2 + (1 + ε)2|ξ|2 − 2(1− ε)|ξ|2 = (4ε + ε2)|ξ|2. (3.11)

Taking y0 − ȳ as test function in the difference of (3.8) and (3.10), we deduce
∫

Ω
[a(x,∇y0)−∇ȳ]∇(y0 − ȳ) dy = 0,

and then, using (ii) and (iii), we obtain

(1− ε)
∫

Ω
|∇(y0 − ȳ)|2 dy ≤

∫

Ω
[a(x,∇y0)− a(x,∇ȳ)]∇(y0 − ȳ) dy

≤
∫

Ω
[∇ȳ − a(x,∇ȳ)]∇(y0 − ȳ) dy (3.12)

≤ (4ε + ε2)
(∫

Ω
|∇ȳ|2 dy

) 1
2
(∫

Ω
|∇(y0 − ȳ)|2 dy

) 1
2

.

From (3.9) and (3.12) we deduce the absurd.

Our interest in the following is to show that the control problem has a
solution if we search for the control variables in a more large set. For this
purpose, following G. Dal Maso and U. Mosco (see [11]), we remark that
defining for Ω̃ ⊂ Ω open, the measure µ ∈M2

0(Ω) as

µ(B) =

{
0 if cap((Ω\Ω̃) ∩B) = 0

+∞ if cap((Ω\Ω̃) ∩B) > 0,
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and taking F , such that the pair (µ, F ) belongs to U(α, γ) (it always exists)
the problem (3.3) is equivalent to the variational problem





y ∈ H1
0 (Ω) ∩L2

µ(Ω)∫

Ω
a(x,∇y)∇v dx +

∫

Ω
F (x, y)v dµ = 〈f, v〉

∀v ∈ H1
0 (Ω) ∩L2

µ(Ω)

(3.13)

Then, at the place of the original control problem, we can consider the follow-
ing one

min{J(y) : a ∈ A(α, γ), (F, µ) ∈ U(α, γ)}, (3.14)

where for A(α, γ), (F, µ) ∈ U(α, γ), y is the unique solution of (3.13). The
advantage of the new formulation is clear from the following theorem.

Theorem 3.2. For every sequences an in A(α, γ) and (Fn, µn) in U(α, γ),
there exists a subsequence, still denoted by n, such that for every f ∈ H−1(Ω),
the solution yn of





yn ∈ H1
0 (Ω) ∩ ∩ L2

µn
(Ω)∫

Ω
an(x,∇yn)∇v dx +

∫

Ω
Fn(x, yn)v dµn = 〈f, v〉

∀v ∈ H1
0 (Ω) ∩ ∩ L2

µn
(Ω)

(3.15)

converges weakly in H1
0 (Ω) to the solution y of (3.13).

Theorem 3.2 has been proved by the authors in [5], in fact it is true for
operators of order p ∈ (1, +∞) and for systems. In particular, it gives the
form of the limit problem of (3.6) for arbitrary Ωn and an. When µn is zero
for every n, the result can be found in [22] and [23]. For the case an constant,
the theorem has been shown in [7], although it is not proved that the pair
(F, µ) which appears in the limit problem is in U(α, γ) (see also [6], [8], [9],
[10], [11], [12], . . . ). When an and Fn are linear, the result appears in [14].

For the double homogenization problem, with monotone operators, a pre-
vious result has been proved in [17], but in this work µn are not general, they
correspond to a sequence of open sets Ωn, such that the measure µ in the limit
is the Lebesgue measure.

Using Theorem 3.2, we can now apply the direct method of the calculus
of variations as above to prove
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Theorem 3.3. The problem (3.14) admits at least a solution a ∈ A(α, γ),
(F, µ) ∈ U(α, γ).

The question which remains is to know if the problem (3.15) is a relaxation
of (3.4), i.e., if for every a ∈ A(α, γ) and (F, µ) ∈ U(α, γ), there exists an ∈ A
and Ωn ⊂ Ω open, such that the solutions yn of (3.6) converge weakly in
H1

0 (Ω) to the solution y of (3.13). This is true if we ask for the elements of A
and U to be linear in its second variable (see [14]).
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