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ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS IN VARYING
DOMAINS WITH BOUNDARY CONDITIONS ON VARYING SETS

Carmen Calvo-Jurado1, Juan Casado-Dı́az2 and Manuel Luna-Laynez2

Abstract. For a fixed bounded open set Ω ⊂ RN , a sequence of open sets Ωn ⊂ Ω and a sequence
of sets Γn ⊂ ∂Ω ∩ ∂Ωn, we study the asymptotic behavior of the solution of a nonlinear elliptic
system posed on Ωn, satisfying Neumann boundary conditions on Γn and Dirichlet boundary conditions
on ∂Ωn \ Γn. We obtain a representation of the limit problem which is stable by homogenization and
we prove that this representation depends on Ωn and Γn locally.
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1. Introduction

For a given Lipschitz bounded open set Ω ⊂ RN , N ≥ 2, a sequence of open sets Ωn ⊂ Ω and a sequence of
sets Γn ⊂ ∂Ω ∩ ∂Ωn, we study the asymptotic behavior of the solution un of the nonlinear elliptic system⎧⎪⎨

⎪⎩
−div (a(x,Dun) −Gn) = gn in Ωn

un = 0 on ∂Ωn \ Γn

(a(x,Dun) −Gn) ν = 0 on Γn,

(1.1)

where a : Ω × RM×N → RM×N , M ≥ 1, is a Carathéodory function which satisfies standard assumptions so
that the operator v ∈ W 1,p

0 (Ω)M �→ −div a(x,Dv) ∈ W−1,p′
(Ω)M , p ≥ 2, defines a monotone operator in the

sense of Leray and Lions [16] (see Sect. 2 for the precise assumptions on a) and ν denotes the unitary outward
normal to Ω. The sequences gn and Gn are assumed to converge in Lp′

(Ω)M weakly and Lp′
(Ω)M×N strongly

to some functions g and G respectively.
Assuming that ‖un‖W 1,p(Ωn)M is bounded (this holds for example if there exists C > 0 independent of n with

‖v‖W 1,p(Ωn) ≤ C‖∇v‖Lp(Ωn)N , for every v ∈ W 1,p(Ωn), v = 0 on ∂Ωn\Γn) and extending un by zero outside Ωn,
we prove the existence of a nonnegative Borel measure μ in Ω which does not charge sets of p-capacity zero,
and a μ-Carathéodory function F : Ω × RM → RM satisfying monotonicity and continuity properties related
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to those imposed to a (see (3.20), (3.21), (3.22)), such that un converges weakly in W 1,p(Ω)M and strongly
in W 1,q(Ω)M , 1 ≤ q < p, to the solution u of the problem

⎧⎪⎪⎨
⎪⎪⎩

u ∈ W 1,p(Ω)M ∩ Lp
μ(Ω)M∫

Ω

a(x,Du) : Dv dx+
∫

Ω

F (x, u)v dμ =
∫

Ω

gv dx+
∫

Ω

G : Dv dx

∀v ∈ W 1,p(Ω)M ∩ Lp
μ(Ω)M ,

(1.2)

which (if μ is smooth) can be written as

{ −div (a(x,Du) −G) + F (x, u)μ = g in Ω
(a(x,Du) −G) ν + F (x, u)μ = 0 on ∂Ω.

(1.3)

The pair (F, μ) does not depend on gn or Gn, and it depends on Ωn and Γn locally in the sense that if we
consider a Lipschitz open set ω ⊂ Ω and we replace in (1.1) Ωn by Ωn ∩ ω, Γn by Γn ∩ ω, then the previous
result holds with (F, μ) replaced by (F|ω̄ , μ|ω̄).

The term F (x, u)μ in (1.2) is similar to the strange term which appears in the homogenization of Dirichlet
problems on varying domains (see [1,3–12,19,20]). In fact, if Γn is empty, our result follows from [5]. When Γn is
not empty the main difference is that now μ is defined on Ω̄ and not only on Ω and then the term F (x, u)μ does
not only appears in the equation but also in the boundary conditions of (1.3). Taking Ω = Ωn for every n ∈ N,
the above result proves that the boundary condition corresponding to the limit of a sequence of nonlinear elliptic
systems with Dirichlet an Neumann conditions on varying subsets of ∂Ω is a Fourier-Robin condition. Indeed,
the proof of this fact was the origin of the present work. We have preferred to present here the more general
case where the open sets Ωn are variable, in order to show that the homogenization of elliptic Dirichlet problems
in varying domains (corresponding to Γn = ∅) and the homogenization of elliptic problems with Neumann and
Dirichlet conditions imposed on varying sets of the boundary admit a common formulation.

As in the case of Dirichlet problems on varying domains [9], we observe that (1.1) can be written in such way
that its structure is similar to (1.2). For this purpose, it is enough to define μn as (Cp stands for the p-capacity,
see Sect. 2)

μn(B) =

{
+∞ if Cp(B ∩ (Ω \ (Ωn ∪ Γn))) > 0
0 if Cp(B ∩ (Ω \ (Ωn ∪ Γn))) = 0,

∀B ⊂ Ω Borel, (1.4)

and Fn : Ω × RM −→ RM as, for example, Fn(x, s) = |s|p−2s. Then (1.1) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

un ∈ W 1,p(Ω)M ∩ Lp
μn

(Ω)M∫
Ω

a(x,Dun) : Dv dx+
∫

Ω

Fn(x, un)v dμn =
∫

Ω

gnv dx+
∫

Ω

Gn : Dv dx

∀v ∈W 1,p(Ω)M ∩ Lp
μn

(Ω)M .

(1.5)

Hence, we can consider (1.1) as a particular case of (1.2). For this reason, better than the homogenization
of (1.1), we will study the homogenization of (1.5) for a sequence μn of Borel measures in Ω (not necessarily
defined from sequences Ωn, Γn as above) which vanish on sets of p-capacity zero and a sequence Fn : Ω×RM −→
RM of monotone μn-measurable functions (see Sect. 2 for the precise hypotheses on Fn). We prove that, in this
more general form, the problem is stable for homogenization, i.e. for every sequences μn and Fn there exist μ
and F such that, at least for a subsequence, the limit problem of (1.5) is still given by (1.2).

Throughout the paper we just consider the case p ≥ 2. The case 1 ≤ p < 2 can be treated in a similar way,
after proper modification on the growth and coerciveness hypotheses for the functions a and Fn. The case of
linear equations and μn concentrated on ∂Ω (which for problem (1.1) means Ωn = Ω for every n ∈ N) has been
studied in [2], see also [13] for related problems.
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2. Notations and definitions

The minimum and the maximum of two numbers a, b are respectively denoted by a ∧ b, a ∨ b.
The scalar product of two matrices A, B ∈ RM×N will be denoted by A : B.
For a Borel set B ⊂ RN and a Borel measure μ in B, we denote by Lq

μ(B), 1 ≤ q ≤ +∞, the usual Lebesgue
spaces with respect to the measure μ. If μ is the Lebesgue measure, we use the standard notation Lq(B).

For every Lipschitz open set O ⊂ RN , we denote by W 1,q(O), 1 ≤ q ≤ +∞, the usual Sobolev spaces. We
recall that, since we are assuming O Lipschitz, the elements of W 1,q(O) have a trace on ∂O and then, they are
defined in O. Moreover, C∞(O) is dense in W 1,q(O) if q < +∞. For every subset Υ of ∂O, we define W 1,q

Υ (O)
as the closure in W 1,q(O) of the functions in C∞(O) which vanish in a neighborhood of Υ. In the case Υ = ∂O,
we write W 1,q

0 (O) instead of W 1,q
Υ (O).

Along the paper we denote by p a fixed number such that p ≥ 2. Also we consider a bounded Lipschitz open
set Ω ⊂ RN , N ≥ 2, and a bounded open set Ω̂, such that Ω ⊂ Ω̂.

We denote by P : W 1,p(Ω) −→W 1,p
0 (Ω̂) a bounded linear operator such that

P (u) = u in Ω, ∀u ∈ W 1,p(Ω). (2.6)

This operator is also chosen bounded from W 1,p(Ω)∩L∞(Ω) into W 1,p
0 (Ω̂)∩L∞(Ω̂) and such that it transforms

nonnegative functions into nonnegative functions. The existence of this extension operator is guaranteed because
Ω is Lipschitz (see e.g. [17]).

For a Lipschitz open set ω ⊂ Ω, we denote

Sω = {ϕ : ϕ ∈W 1,∞(ω), ϕ = 0 in a neighborhood of ∂ω ∩ Ω}.

Also, we define the bounded linear operators Zω : W 1,p
∂ω∩Ω(ω) →W 1,p(Ω), Qω : W 1,p

∂ω∩Ω(ω) →W 1,p
0 (Ω̂) as

Zω(u) =
{
u in ω
0 in Ω \ ω, Qω = P ◦ Zω.

When u = (u1, . . . , uM ) is vectorial, we denote

P (u) = (P (u1), . . . , P (uM )), Zω(u) = (Zω(u1), . . . , Zω(uM )),
Qω(u) = (Qω(u1), . . . , Qω(uM )).

For E ⊂ Ω̂ and 1 < p < +∞, the p-capacity of E in Ω̂, denoted by Cp(E), is defined by

Cp(E) = inf
{∫

Ω̂

|∇u|p dx : u ∈ W 1,p
0 (Ω̂), u ≥ 1 a.e. in a neighborhood of E

}
.

This definition depends on Ω̂, however the sets of p-capacity zero are independent of Ω̂.
We say that a property P(x) holds quasi everywhere (abbreviated as q.e.) in a set B ⊂ Ω̂ if it holds for

all x ∈ B \N , with Cp(N) = 0.
A function u : Ω̂ −→ R is said to be quasi continuous if for every ε > 0 there exists a set B ⊂ Ω̂, with

Cp(B) < ε, such that the restriction of u to Ω̂ \ B is continuous. It is well known (see e.g. [14,15,21]) that
every u ∈W 1,p(Ω̂) has a quasi continuous representative. We shall always identify u ∈ W 1,p(Ω̂) with this quasi
continuous representative.

A subset O of Ω̂ is said to be quasi open if for every ε > 0 there exists B ⊂ Ω̂, with Cp(B) < ε, such that
O ∪B is open.
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Following [8,9], for every Borel subset B of Ω̂, we denote by Mp
0(B) the class of all non negative Borel

measures μ in B which vanish on Borel sets of p-capacity zero and satisfy the following condition

μ(E) = inf{μ(O ∩B) : O quasi open, E ⊂ O ⊂ Ω̂}, ∀E ⊂ B Borel. (2.7)

We will denote by a : Ω × RM×N −→ RM×N a Carathéodory function such that there exist two positive
constants α, γ, and r ∈ L

p
p−2 (Ω) satisfying

a(x, 0) = 0 a.e. x ∈ Ω, (2.8)

(a(x, ξ1) − a(x, ξ2)) : (ξ1 − ξ2) ≥ α|ξ1 − ξ2|p, ∀ξ1, ξ2 ∈ RM×N , a.e. x ∈ Ω, (2.9)

|a(x, ξ1) − a(x, ξ2)| ≤
(
r(x) + γ(|ξ1| + |ξ2|)p−2

) |ξ1 − ξ2|, ∀ξ1, ξ2 ∈ RM×N , a.e. x ∈ Ω. (2.10)

Observe that these hypotheses imply in particular that there exist β > 0 and h ∈ Lp′
(Ω) such that

a(x, ξ) : ξ ≥ α|ξ|p, ∀ξ ∈ RM×N , a.e. x ∈ Ω, (2.11)

|a(x, ξ)| ≤ h(x) + β|ξ|p−1, ∀ξ ∈ RM×N , a.e. x ∈ Ω. (2.12)

For every n ∈ N, we will also consider μn ∈ Mp
0(Ω) and Fn : Ω × RM −→ RM such that

Fn(·, s) μn-measurable, ∀s ∈ RM , (2.13)

Fn(x, 0) = 0, μn-a.e. x ∈ Ω, (2.14)

(Fn(x, s1) − Fn(x, s2))(s1 − s2) ≥ α|s1 − s2|p, ∀s1, s2 ∈ RM , μn-a.e. x ∈ Ω, (2.15)

|Fn(x, s1) − Fn(x, s2)| ≤ γ(|s1| + |s2|)p−2|s1 − s2|, ∀s1, s2 ∈ RM , μn-a.e. x ∈ Ω. (2.16)

Thus, for β > 0 as above, we have

Fn(x, s)s ≥ α|s|p, ∀s ∈ RM , μn-a.e. x ∈ Ω, (2.17)

|Fn(x, s)| ≤ β|s|p−1, ∀s ∈ RM , μn-a.e. x ∈ Ω. (2.18)

Remark 2.1. To simplify the exposition we have considered p ≥ 2. The case 1 < p < 2 can be studied
similarly after proper modification on the hypotheses on a and Fn. We can also consider hypotheses less
restrictive than (2.10) and (2.16), assuming that a(x, ξ) and Fn(x, s) are locally Hölder continuous with respect
to ξ and s respectively.

We denote by C a generic constant which does not depend on n and can change from line to line.
We denote by Om,n and On generic sequences of real numbers which can change from line to line and satisfy

lim
m→∞ lim

n→∞ |Om,n| = 0, lim
n→∞On = 0.
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3. Homogenization result

In this section we state the main results of the paper, relative to the homogenization problem (1.5).

Theorem 3.1. Let a, μn and Fn be in the conditions of Section 2. Then, there exist a subsequence of n, still
denoted by n, a measure μ ∈ Mp

0(Ω) and a function F : Ω × RM −→ RM , with

F (·, s) μ-measurable, ∀s ∈ RM , (3.19)

F (x, 0) = 0, μ-a.e. x ∈ Ω, (3.20)

|F (x, s2) − F (x, s1)| ≤ C1(|s1| + |s2|)
p(p−2)

p−1 |s2 − s1| 1
p−1 , ∀s1, s2 ∈ RM , μ-a.e. x ∈ Ω, (3.21)

(F (x, s2) − F (x, s1))(s2 − s1) ≥ C2|s2 − s1|p, ∀s1, s2 ∈ RM , μ-a.e. x ∈ Ω, (3.22)

such that the following homogenization result holds: Let ω ⊂ Ω be a Lipschitz open set and consider a se-
quence gn ∈ Lp′

(ω)M which converges weakly in Lp′
(ω)M to a function g, a sequence Gn ∈ Lp′

(ω)M×N which
converges strongly in Lp′

(ω)M×N to a function G and a sequence un ∈ W 1,p(ω)M ∩ Lp
μn

(ω \ ∂ω ∩ Ω) which
satisfies

‖un‖W 1,p(ω)M∩Lp
µn (ω\∂ω∩Ω)M ≤ C, (3.23)

and ⎧⎨
⎩

∫
ω

a(x,Dun) : Dv dx+
∫

ω

Fn(x, un)v dμn =
∫

ω

gnv dx+
∫

ω

Gn : Dv dx

∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μn
(ω)M .

(3.24)

Then, every cluster point u of un in the weak topology of W 1,p(ω)M satisfies

⎧⎪⎪⎨
⎪⎪⎩

u ∈ W 1,p(ω)M ∩ Lp
μ(ω \ ∂ω ∩ Ω)M∫

ω

a(x,Du) : Dv dx+
∫

ω

F (x, u)v dμ =
∫

ω

gv dx+
∫

ω

G : Dv dx

∀v ∈ W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M .

(3.25)

Moreover, the measure μ can be taken independently of a.

The proof of this result is carried on in Section 6. To do it, in Section 5 we consider a bounded open
set Ω̂ with Ω ⊂ Ω̂ and then, for un and u as in the statement of Theorem 3.1, we estimate the difference
between un and the corrector with limit u relative to the homogenization problem for the operator v →
−div

(|∇v|p−2∇v)+ |v|p−2v dμn in Ω̂ with Dirichlet conditions. The properties of this corrector will be recalled
in Section 4. As a consequence we obtain some estimates for Dun (Lems. 5.2 and 5.3) which allow us to prove
(Prop. 5.4) the existence of μ ∈ Mp

0(Ω) and T ∈ Lp′
μ (ω \∂ω ∩ Ω)M such that u belongs to Lp

μ(ω \∂ω ∩ Ω)M and

∫
ω

a(x,Du) : Dv dx+
∫

ω

Tv dμ =
∫

ω

gv dx+
∫

ω

G : Dv dx,

for every v ∈ W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M (see [8,10]). The estimates obtained in Section 5 prove that T is of the
form F (x, u(x)) (estimate (5.60)), but for a function F only defined on the set of pairs (x, v(x)) such that v is the
limit of some sequence vn in the conditions of the sequence un which appears in the statement of Theorem 3.1.
We will prove in Lemma 6.1 that the set of such functions v is large enough to allow us to define F in the whole
of Ω × RM and then to conclude Theorem 3.1.

We will also prove in Section 6 the following consequence of Theorem 3.1.
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Theorem 3.2. Under the same assumptions that Theorem 3.1, the following results hold:
(i) For every λ > 0, the unique solution un of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

un ∈ W 1,p
∂ω∩Ω(ω)M ∩ Lp

μn
(ω)M∫

ω

a(x,Dun) : Dv dx+ λ

∫
ω

|un|p−2unv dx+
∫

ω

Fn(x, un)v dμn =∫
ω

gnv dx+
∫

ω

Gn : Dv dx

∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μn
(ω)M ,

(3.26)

converges weakly in W 1,p
∂ω∩Ω(ω)M and strongly in W 1,q

∂ω∩Ω(ω)M , 1 ≤ q < p, to the unique solution u of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M∫
ω

a(x,Du) : Dv dx+ λ

∫
ω

|u|p−2uv dx+
∫

ω

F (x, u)v dμ =
∫

ω

gv dx+
∫

ω

G : Dv dx

∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M .

(3.27)

(ii) Assume that there exists (a Poincaré’s constant) CP > 0 such that

‖υ‖Lp(ω) ≤ CP

(
‖∇υ‖p

Lp(ω)N + ‖υ‖p
Lp

µn(ω)

) 1
p

, ∀υ ∈ W 1,p
∂ω∩Ω(ω) ∩ Lp

μn
(ω), ∀n ∈ N. (3.28)

Then, the unique solution un of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un ∈ W 1,p
∂ω∩Ω(ω)M ∩ Lp

μn
(ω)M∫

ω

a(x,Dun) : Dv dx+
∫

ω

Fn(x, un)v dμn =
∫

ω

gnv dx+
∫

ω

Gn : Dv dx

∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μn
(ω)M ,

(3.29)

converges weakly in W 1,p
∂ω∩Ω(ω)M and strongly in W 1,q

∂ω∩Ω(ω)M , 1 ≤ q < p, to the unique solution u of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M∫
ω

a(x,Du) : Dv dx+
∫

ω

F (x, u)v dμ =
∫

ω

gv dx+
∫

ω

G : Dv dx

∀v ∈ W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M .

(3.30)

Remark 3.3. As we said in the Introduction, the homogenization of problem (3.29) gives in particular the
homogenization of problem (1.1). For this, given a sequence of Lipschitz open sets Ωn ⊂ Ω and a sequence Γn ⊂
∂Ω ∩ Ωn, we define a sequence of measures μn ∈ Mp

0(Ω) by (1.4). Then, problem (1.1), understood in the
variational form ⎧⎪⎪⎨

⎪⎪⎩
un ∈W 1,p(Ωn)M , un = 0 q.e. on ∂Ωn \ Γn∫

Ωn

a(x,Dun) : Dv dx =
∫

Ωn

gnv dx+
∫

Ωn

Gn : Dv dx

∀v ∈W 1,p(Ωn)M , v = 0 q.e. on ∂Ωn \ Γn,

is equivalent to problem (3.29) with ω = Ω and (for example) Fn(x, s) = |s|p−2s. An interesting particular case
is when Ωn = Ω for every n ∈ N, i.e. when we have a nonlinear homogenization problem in a fixed bounded
open set Ω ⊂ RN , where we impose Dirichlet and Neumann conditions in varying subsets of the boundary.
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In this case, by Proposition 4.4 the measure μ is supported on ∂Ω, and thus, if μ is sufficiently smooth, the
limit problem (3.30) is equivalent to the Fourier-Robin problem

{ −div (a(x,Du) −G) = g in Ω
(a(x,Du) −G) ν + F (x, u)μ = 0 on ∂Ω.

Remark 3.4. Similarly to the homogenization of nonlinear Dirichlet problems in varying domains (see e.g. [5]),
some properties on a and Fn are inherited by F . Namely, we have:

(i) If a(x, ξ) is linear with respect to ξ and Fn(x, s) is linear with respect to s, for every n ∈ N (so, p = 2),
then, F (x, s) is linear with respect to s.

(ii) If a and Fn, n ∈ N, satisfy the homogeneity assumption

a(x, λξ) = |λ|p−2λa(x, ξ), ∀λ ∈ R, ∀ξ ∈ RM×N , a.e. x ∈ Ω,

Fn(x, λs) = |λ|p−2λFn(x, s), ∀λ ∈ R, ∀s ∈ RM , μn-a.e. x ∈ Ω,

then F also satisfies

F (x, λs) = |λ|p−2λF (x, s), ∀λ ∈ R, ∀s ∈ RM , μ-a.e. x ∈ Ω.

The proof of these results is analogous to the corresponding one of Theorems 8.1 and 8.5 in [5] and follows from
the fact that the functions qm

n of Lemma 6.1 satisfy

(λq1 + τq2)m
n = λ(q1)m

n + τ(q2)m
n , ∀q1, q2 ∈ QM , ∀λ, τ ∈ R,

if we assume (i), and

(λq)m
n = λ(q)m

n , ∀q ∈ QM , ∀λ ∈ R,

if we assume (ii). Thus the functions Tq defined by Lemma 6.1 satisfy

Tλq1+τq2 = λTq1 + τTq2 , ∀q1, q2 ∈ QM , ∀λ, τ ∈ R,

if we assume (i), and

Tλq = |λ|p−2λTq, ∀q ∈ QM , ∀λ ∈ R,

if we assume (ii).

4. Preliminaries

In this section we recall some results related to the homogenization of the p-Laplace operator with Dirichlet
boundary conditions in varying domains. From them we will obtain other results we will use later.

Throughout this section, we consider a sequence μ̂n ∈ Mp
0(Ω̂) and we denote by wn the solution of the

problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn ∈W 1,p
0 (Ω̂) ∩ Lp

μ̂n
(Ω̂)∫

Ω̂

|∇wn|p−2∇wn∇v dx+
∫

Ω̂

|wn|p−2wnv dμ̂n =
∫

Ω̂

v dx

∀v ∈ W 1,p
0 (Ω̂) ∩ Lp

μ̂n
(Ω̂).

(4.31)

The following result has been proved in [8,10].
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Proposition 4.1. Let wn be the sequence defined by (4.31). Then wn is nonnegative q.e. in Ω̂ and its norm
in W 1,p

0 (Ω̂) ∩ L∞(Ω̂) ∩ Lp
μ̂n

(Ω̂) is bounded. Up to a subsequence, there exists a nonnegative function w ∈
W 1,p

0 (Ω̂) ∩ L∞(Ω̂), such that wn converges weakly to w in W 1,p
0 (Ω̂), strongly in W 1,q

0 (Ω̂), 1 ≤ q < p, and
weakly-∗ in L∞(Ω̂). Moreover, there exists a unique measure μ̂ ∈ Mp

0(Ω̂) such that w is the solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w ∈ W 1,p
0 (Ω̂) ∩ Lp

μ̂(Ω̂)∫
Ω̂

|∇w|p−2∇w∇v dx+
∫

Ω̂

|w|p−2wv dμ̂ =
∫

Ω̂

v dx

∀v ∈W 1,p
0 (Ω̂) ∩ Lp

μ̂(Ω̂).

(4.32)

The interest of wn is that for a function ψ smooth enough, the sequence wnψ provides a corrector with
limit wψ relative to the homogenization problem for the operator v → −div

(|∇v|p−2∇v) + |v|p−2v dμn in Ω̂
with Dirichlet conditions [8,10]. The following properties of wn, w and μ̂ have been proved in [8,10] (see also [5]).

Proposition 4.2. The sequence of solutions wn of (4.31), the function w and the measure μ̂ given by Proposi-
tion 4.1 satisfy

(a) For every Borel set B ⊂ Ω̂ with Cp(B ∩ {w = 0}) > 0, it holds μ̂(B) = +∞.

(b) The set {wϕ : ϕ ∈ C∞
c (Ω̂)} is dense in W 1,p

0 (Ω̂) ∩ Lp
μ̂(Ω̂).

(c) For every ψ, ϕ ∈W 1,p(Ω̂) ∩ L∞(Ω̂), we have

lim
n→∞

(∫
Ω̂

|∇((wn − w)ψ)|pϕdx +
∫

Ω̂

|wnψ|pϕdμ̂n

)
=

∫
Ω̂

|wψ|pϕdμ̂. (4.33)

(d) If vn is a sequence in W 1,p(Ω̂) which converges weakly in W 1,p(Ω̂) to a function v, then it holds

lim inf
n→∞

(∫
Ω̂

|∇(vn − v)|p dx+
∫

Ω̂

|vn|p dμ̂n

)
≥

∫
Ω̂

|v|p dμ̂. (4.34)

In particular, if ‖vn‖Lp
µ̂n

(Ω̂) is bounded, the function v is in Lp
μ̂(Ω̂).

Remark 4.3. We will apply the previous results to the sequence μ̂n defined by (see Sect. 2)

μ̂n(B) = μn(B ∩ Ω), ∀B ⊂ Ω̂ Borel. (4.35)

From Proposition 4.2, every function v ∈ Lp
μ̂n

(Ω̂) vanishes q.e. on {wn = 0}. So, although in Section 2 we have
considered Fn defined on Ω̂ × RM , only its values in {wn > 0} × RM are relevant.

In the present paper, we are interested in a sequence of measures μ̂n having their supports contained in a
fixed closed set (see (4.35)). We will use the following result.

Proposition 4.4. If there exists a compact set K ⊂ Ω̂ such that supp (μ̂n) ⊂ K, for every n ∈ N, then the
measure μ̂ given by Proposition 4.1 also satisfies supp (μ̂) ⊂ K.

Proof. Since −div(|∇wn|p−2∇wn) = 1 in Ω̂ \ K, and wn converges weakly to w in W 1,p
0 (Ω̂) and strongly

in W 1,q
0 (Ω̂), 1 ≤ q < p, we deduce that

− div(|∇w|p−2∇w) = 1 in Ω̂ \K. (4.36)

Then, taking in (4.32) v = wϕ, with ϕ ∈ C∞
c (Ω̂ \K), we get∫

Ω̂

|w|pϕdμ̂ = 0, ∀ϕ ∈ C∞
c (Ω̂ \K). (4.37)
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On the other hand, from w ≥ 0 q.e. in Ω̂, (4.36) and the strong maximum principle for the p-Laplace operator
(see e.g. [18]), we deduce w > 0 in Ω̂ \K. Together with (4.37), this implies that the support of μ̂ is contained
in K. ��

Better than Proposition 4.2 (b) and (d), we will use the following results.

Proposition 4.5. Assume that the support of the measure μ̂ given by Proposition 4.1 is contained in Ω and let
ω be a Lipschitz open subset of Ω. Then, the set

Dω = {wϕ : ϕ ∈ Sω ∩ C∞(ω)}, (4.38)

is dense in W 1,p
∂ω∩Ω(ω) ∩ Lp

μ̂(ω).

Proof. First of all, we remark that for every u in W 1,p
∂ω∩Ω(ω) ∩ Lp

μ̂(ω), there exist a sequence un ∈ W 1,p
∂ω∩Ω(ω) ∩

Lp
μ̂(ω) and On ⊂ Ω̂ open, with ∂ω ∩ Ω ⊂ On, such that un = 0 q.e. in On ∩ ω and un converges to u

in W 1,p
∂ω∩Ω(ω)∩Lp

μ̂(ω). For this purpose, we use that by definition of W 1,p
∂ω∩Ω(ω), there exists a sequence On ⊂ Ω̂

open, with ∂ω ∩ Ω ⊂ On and ψn ∈ C∞(ω), with ψn = 0 in On ∩ ω, such that ψn converges to u in W 1,p(ω).
Then we take

un = (ψn ∧ u+)+ − ((−ψn) ∧ u−)+.

In order to prove Proposition 4.5, it is then enough to show that for every u ∈ W 1,p
∂ω∩Ω(ω) ∩ Lp

μ̂(ω) such
that there exits an open set O ⊂ Ω̂ with ∂ω ∩ Ω ⊂ O, u = 0 q.e. in O ∩ ω, and for every ε > 0, there exists
ϕ ∈ C∞

c (Ω̂) which vanishes in a neighborhood of ∂ω ∩ Ω such that

‖u− wϕ‖W 1,p(ω)∩Lp
µ̂
(ω) < ε. (4.39)

Using a regularization by convolution, it is enough to prove (4.39) for ϕ in W 1,p
0 (Ω̂)∩L∞(Ω̂) which vanishes on

a neighborhood of ∂ω ∩ Ω.
Given u, O and ε as above, we observe that Zω(u) is in W 1,p(Ω) ∩ Lp

μ̂(Ω) and, since supp(μ̂) ⊂ Ω, we have
that Qω(u) ∈ W 1,p

0 (Ω̂) ∩ Lp
μ̂(Ω̂) (P , Zω and Qω are defined in Sect. 2). Thus, taking an open set O′ with

∂ω ∩ Ω ⊂ O′, O′ ⊂ O and a function ψ ∈ C∞(Ω̂), with ψ = 1 in Ω̂ \O, ψ = 0 in O′, the function u∗ = Qω(u)ψ
is in W 1,p

0 (Ω̂) ∩ Lp
μ̂(Ω̂), vanishes in O′ and is equal to u q.e. in ω.

We define μ∗ ∈ Mp
0(Ω̂) by

μ∗(B) =
{
μ̂(B) if Cp(B ∩O′) = 0
+∞ if Cp(B ∩O′) > 0,

∀B ⊂ Ω̂ Borel,

and we observe that since u∗ = 0 in O′ then u∗ ∈ Lp
μ∗(Ω̂). From Proposition 4.2(b) applied to μ∗ we derive

that taking w∗ as the solution of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w∗ ∈W 1,p
0 (Ω̂) ∩ Lp

μ∗(Ω̂)∫
Ω̂

|∇w∗|p−2∇w∗∇v dx+
∫

Ω̂

|w∗|p−2w∗v dμ∗ =
∫

Ω̂

v dx

∀v ∈ W 1,p
0 (Ω̂) ∩ Lp

μ∗(Ω̂),

(4.40)

there exists ϕ∗ ∈ C∞
c (Ω̂) such that

‖u∗ − w∗ϕ∗‖W 1,p
0 (Ω̂)∩Lp

µ∗ (Ω̂) < ε.
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Using then that (w∗ − η)+ϕ∗ converges to w∗ϕ∗ in W 1,p
0 (Ω̂) ∩ Lp

μ∗(Ω̂) when η tends to zero from the right, we
also have, for η > 0 small enough

‖u∗ − (w∗ − η)+ϕ∗‖W 1,p
0 (Ω̂)∩Lp

µ∗(Ω̂) < ε. (4.41)

Since u∗ and (w∗ − η)+ vanish in O′, this also holds replacing μ∗ by μ̂.
From μ̂ ≤ μ∗, the comparison principle (see Prop. 1.5 in [8]) proves that 0 ≤ w∗ ≤ w and thus,

w
(w∗ − η)+

w ∨ η ϕ∗ = (w∗ − η)+ϕ∗.

Taking then

ϕ =
(w∗ − η)+

w ∨ η ϕ∗ ∈ W 1,p
∂ω∩Ω(ω) ∩ L∞(ω),

and using that w∗ and then ϕ vanishes in O′, we conclude from (4.41) the proof of Proposition 4.5. ��

Proposition 4.6. Assume that in Proposition 4.1 supp (μ̂n) ⊂ Ω, for every n ∈ N, and consider an open
Lipschitz subset ω of Ω. Then for every sequence vn ∈ W 1,p(ω), which converges weakly in W 1,p(ω) to a
function v and every ψ ∈ Sω, we have

lim inf
n→∞

(∫
ω

|∇(vn − v)|p|ψ|p dx+
∫

ω

|vn|p|ψ|p dμ̂n

)
≥ 1

‖P‖
∫

ω

|v|p|ψ|p dμ̂. (4.42)

Proof. Similarly to the proof of Proposition 4.5, we remark that thanks to supp(μ̂n) ⊂ Ω, we have that∫
ω

|vn|p|ψ|p dμ̂n =
∫

Ω̂

|Qω(vnψ)|p dμ̂n.

So, using the convexity of the function ξ ∈ RN → |ξ|p ∈ R, Rellich-Kondrachov’s compactness theorem,
‖P‖ ≥ 1, ‖Zω‖ = 1 and (4.34), we obtain∫

ω

|∇(vn − v)|p|ψ|p dx+
∫

ω

|vn|p|ψ|p dμ̂n ≥

‖(vn − v)ψ‖p
W 1,p(ω) − p

∫
ω

|∇((vn − v)ψ)|p−2∇((vn − v)ψ)∇ψ (vn − v) dx

−
∫

ω

|(vn − v)ψ|p dx+
∫

ω

|vn|p|ψ|p dμ̂n

= ‖(vn − v)ψ‖p
W 1,p(ω) +

∫
ω

|vn|p|ψ|p dμ̂n +On

≥ 1
‖P‖

∫
Ω̂

|∇Qω((vn − v)ψ)|p dx+
∫

Ω̂

|Qω(vnψ)|p dμ̂n +On

≥ 1
‖P‖

(∫
Ω̂

|∇Qω((vn − v)ψ)|p dx+
∫

Ω̂

|Qω(vnψ)|p dμ̂n

)
+On

≥ 1
‖P‖

∫
Ω̂

|Qω(vψ)|p dμ̂+On =
1

‖P‖
∫

ω

|v|p|ψ|p dμ̂+On.

This proves (4.42). ��



SYSTEMS IN VARYING DOMAINS WITH VARYING BOUNDARY CONDITIONS 59

5. Estimates and a local first representation of the limit problem

For Ω, a, μn and Fn as in Section 2 and a Lipschitz open subset ω of Ω, we will consider along this section
a sequence un ∈ W 1,p(ω)M ∩ Lp

μn
(ω \ ∂ω ∩ Ω)M which satisfies (3.23) and (3.24), with gn converging weakly

in Lp′
(ω)M to a function g and Gn converging strongly in Lp′

(ω)M×N to a function G. Thanks to Proposition 4.1
applied to the sequence μ̂n defined as

μ̂n(B) = μn(B ∩ Ω), ∀B ⊂ Ω̂ Borel, (5.43)

we can also assume that there exist w and μ̂ in the conditions of this proposition. By Proposition 4.4, the
support of this measure μ̂ is contained in Ω. The restriction of μ̂ to Ω will be denoted by μ.

Thanks to (3.23), we can also assume that there exists u ∈ W 1,p(ω)M such that un converges weakly to u
in W 1,p(ω)M . Since by (3.23) and (4.42), the function u satisfies∫

ω̂

|u|p|ψ|p dμ ≤ C‖ψ‖L∞(ω), ∀ψ ∈ Sω,

we also get from the monotone convergence theorem that u satisfies

u ∈ Lp
μ(ω \ ∂ω ∩ Ω)M . (5.44)

Our purpose in the present section is to obtain some estimates for the sequence un. As a consequence,
we will obtain a first representation for the problem satisfied by the function u (limit problem). The fact of
considering ω instead of Ω will allow us to prove the local character of the limit problem.

In order to study the asymptotic behavior of un, we start with the following result, which follows from
Proposition 5.4 in [5].

Proposition 5.1. The sequence un considered above converges to u strongly in W 1,q(ω)M , 1 ≤ q < p and
therefore Dun converges in measure in ω.

As a consequence, we have the following lemma.

Lemma 5.2. The following convergences hold

a(x,Dun) → a(x,Du) strongly in Lr(ω)M×N , 1 ≤ r < p′, and weakly in Lp′
(ω)M×N , (5.45)

|a(x,Dun) − a(x,D(un − u))| → |a(x,Du)| strongly in Lp′
(ω). (5.46)

Proof. From Proposition 5.1, (2.10) and (2.12), we easily derive (5.45).
To prove (5.46) we use that Proposition 5.1 and the inequality

|a(x,Dun) − a(x,D(un − u))| ≤ γ(r + |Dun| + |D(un − u)|)p−2|Du| a.e. in Ω,

show that |a(x,Dun)−a(x,D(un−u))| converges in measure to |a(x,Du)| and its p′-th power is equiintegrable.
This implies (5.46). ��

For un and zn satisfying similar conditions to un, the following lemma provides an estimate for D(un − zn).
The idea is to study the difference un − zn −wnψm, where ψm is such that wψm is close to u− z (z is the limit
of zn). Recall that wnψm is the corrector with limit wψm ∼ u − z relative to the homogenization problem for
the operator v → −div

(|∇v|p−2∇v) + |v|p−2v dμn in Ω̂ with Dirichlet conditions.

Lemma 5.3. There exists C > 0 which only depends on α and γ such that for every ϕ ∈ Sω, ϕ ≥ 0 in ω, we
have

lim sup
n→∞

(∫
ω

|D(un − u)|pϕdx+
∫

ω

|un|pϕdμn

)
≤ C

∫
ω

|u|pϕdμ. (5.47)
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Moreover, if besides un, u, gn, g, Gn and G, we consider zn ∈ W 1,p(ω)M ∩ Lp
μn

(ω \ ∂ω ∩ Ω)M with
‖zn‖W 1,p(ω)M∩Lp

µn(ω\∂ω∩Ω)M bounded, converging weakly in W 1,p(ω)M to a function z ∈ W 1,p(ω)M ∩ Lp
μ(ω \

∂ω ∩ Ω)M , such that there exist hn converging weakly in Lp′
(ω)M to a function h and Hn converging strongly

in Lp′
(ω)M×N to a function H with

⎧⎪⎨
⎪⎩

∫
ω

a(x,Dzn) : Dv dx+
∫

ω

Fn(x, zn)v dμn =
∫

ω

hnv dx+
∫

ω

Hn : Dv dx

∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μn
(ω)M ,

(5.48)

then, for every ϕ ∈ Sω, ϕ ≥ 0 in ω, we have

lim sup
n→∞

(∫
ω

|D(un − zn − u+ z)|pϕdx+
∫

ω

|un − zn|pϕdμn

)
≤ C

∫
ω

(|u| + |z|) p(p−2)
p−1 |u− z| p

p−1ϕdμ. (5.49)

Proof. For ϕ ∈ Sω, ϕ ≥ 0 in ω, we consider φ ∈ Sω , such that φ = 1 in supp(ϕ). Then, (u − z)φ ∈
W 1,p

∂ω∩Ω(ω)M ∩ Lp
μ(ω)M and so, from Proposition 4.5, there exists ψm ∈ SM

ω such that wψm converges to
(u − z)φ in W 1,p

∂ω∩Ω(ω)M ∩ Lp
μ(ω)M . Taking (un − zn − wnψm)ϕ as test function in the difference of (3.24)

and (5.48), we get

∫
ω

[a(x,Dun)− a(x,Dzn)] : D(un − zn −wnψm)ϕdx+
∫

ω

[a(x,Dun)− a(x,Dzn)] : [(un − zn −wnψm)⊗∇ϕ]dx

+
∫

ω

[Fn(x, un) − Fn(x, zn)](un − zn − wnψm)ϕdμn =
∫

ω

(gn − hn)(un − zn − wnψm)ϕdx

+
∫

ω

(Gn −Hn) : D((un − zn − wnψm)ϕ)dx.

Applying (5.46) to un and zn and using that (un−zn−wnψm) converges weakly in W 1,p(ω)M , and then strongly
in Lp(ω)M , to (u−z)(1−φ) when n and then m tends to infinity, gn−hn converges weakly in Lp′

(ω)M , Gn−Hn

converges strongly in Lp′
(ω)M×N and φ = 1 in supp(ϕ), the above equality gives

∫
ω

[a(x,D(un − u)) − a(x,D(zn − z))] : D(un − zn − wnψm)ϕdx

+
∫

ω

[Fn(x, un) − Fn(x, zn)](un − zn − wnψm)ϕdμn = Om,n,

or

∫
ω

[a(x,D(un − u)) − a(x,D(zn − z))] : D(un − zn − u+ z)ϕdx+
∫

ω

[Fn(x, un) − Fn(x, zn)](un − zn)ϕdμn =

∫
ω

[a(x,D(un − u)) − a(x,D(zn − z))] : D(wnψm − u+ z)ϕdx+
∫

ω

[Fn(x, un) − Fn(x, zn)]wnψmϕdμn +Om,n.
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By (2.9), (2.10), |D(un − zn − u + z)|ϕ converging weakly to zero in Lp′
(ω) (use Lem. 5.1), (2.15) and (2.16),

this gives

α

∫
ω

|D(un − u− zn + z)|pϕdx+ α

∫
ω

|un − zn|pϕdμn ≤

γ

∫
ω

[|D(un−u)|+|D(zn−z)|]p−2|D(un−zn−u+z)||D((wn−w)ψm+wψm−u+z)|ϕdx

+ γ

∫
ω

(|un| + |zn|)p−2|un − zn||wnψm|ϕdμn +Om,n.

Young’s and Hölder’s inequality allows us to write

∫
ω

|D(un − u− zn + z)|pϕdx+
∫

ω

|un − zn|pϕdμn ≤

C

(∫
ω

(|D(un − u)| + |D(zn − z)|)pϕdx+
∫

ω

(|un| + |zn|)pϕdμn

) p−2
p−1

×
(∫

ω

|D((wn − w)ψm)|pϕdx+
∫

ω

|wnψm|pϕdμ̂n

) 1
p−1

+Om,n

≤ C

(∫
ω

(|D(un − u)| + |D(zn − z)|)pϕdx +
∫

ω

(|un| + |zn|)pϕdμn

) p−2
p−1

×
(∫

Ω̂

|D(
(wn − w)Qω(ψm)

)|pQω(ϕ) dx +
∫

Ω̂

|wnQω(ψm)|pQω(ϕ)dμ̂n

) 1
p−1

+Om,n. (5.50)

Taking zn = z = 0 in (5.50), and using (4.33), supp(μ̂) ⊂ Ω and μ equals to the restriction of μ̂ in Ω, we
deduce (5.47).

Finally, to obtain (5.49), it is enough to apply (4.33) in (5.50) together with the estimation (5.47) for un

and zn. ��

Using Lemma 5.3, we will now obtain a first version of the limit problem satisfied by u.

Proposition 5.4. There exists T ∈ Lp′
μ (ω \ ∂ω ∩ Ω)M such that u satisfies

⎧⎪⎪⎨
⎪⎪⎩

u ∈W 1,p(ω)M ∩ Lp
μ(ω \ ∂ω ∩ Ω)M∫

ω

a(x,Du) : Dv dx+
∫

ω

Tv dμ =
∫

ω

gv dx+
∫

ω

G : Dv dx

∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M .

(5.51)

The function T is such that for every ψ ∈ SM
ω , we have

∫
ω

Twψ dμ = lim
n→∞

(∫
ω

a(x,D(un − u)) : (ψ ⊗∇(wn − w))dx +
∫

ω

Fn(x, un)wnψ dμn

)
, (5.52)

and satisfies that there exists C > 0, which only depends on α and γ, such that

|T | ≤ C|u|p−1 μ-a.e. in ω \ ∂ω ∩ Ω. (5.53)
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Proof. Given ψ ∈ SM
ω , we take wnψ as test function in (3.24). This gives

∫
ω

a(x,Dun) : Dψwndx+
∫

ω

a(x,Dun) : (ψ ⊗∇w) dx

+
∫

ω

a(x,Dun) : (ψ ⊗∇(wn − w))dx +
∫

ω

Fn(x, un)wnψ dμn =

∫
ω

gnwnψ dx+
∫

ω

Gn : D(wnψ)dx. (5.54)

Using that gn converges weakly in Lp′
(ω)M to g, Gn converges strongly in Lp′

(ω)M×N to G and un and
wn converge weakly in W 1,p(ω)M and W 1,p(Ω) to u and w respectively (and then strongly in Lp(ω)M and
Lp(Ω)), (5.45) and (5.46), we get

∫
ω

a(x,Du) : D(wψ)dx +
∫

ω

a(x,D(un − u)) : (ψ ⊗∇(wn − w))dx

+
∫

ω

Fn(x, un)wnψ dμn =
∫

ω

gwψ dx+
∫

ω

G : D(wψ)dx +On. (5.55)

Since ‖wn‖W 1,p
0 (Ω̂)∩Lp

µn (Ω̂) is bounded, (3.23), (2.12) and (2.18), we have

∫
ω

|a(x,D(un − u))||∇(wn − w)|dx +
∫

ω

|Fn(x, un)||wn|dμn ≤ C.

Thus, there exists a vector Radon measure ρ on ω̄, such that for every ϕ ∈ C0(ω)M , it holds

lim
n→∞

(∫
ω

a(x,D(un − u))(ϕ⊗∇(wn − w))dx +
∫

ω

Fn(x, un)wnϕdμn

)
=

∫
ω

ϕdρ. (5.56)

Using the Cauchy-Schwartz inequality, (2.12), (2.18), the weak convergence of |∇(wn−w)| to zero in Lp(ω), (5.47)
and (4.33), we deduce that ρ satisfies

∣∣∣∣
∫

ω

ϕdρ
∣∣∣∣ ≤ C lim sup

n→+∞

(∫
ω

|D(un − u)|p|ϕ|dx+
∫

ω

|un|p|ϕ|dμn

) p−1
p

×
(∫

ω

|∇(wn − w)|p|ϕ|dx+
∫

ω

wp
n|ϕ|dμn

) 1
p

≤ C

(∫
ω

|u|p|ϕ|dμ
) p−1

p
(∫

ω

wp|ϕ|dμ
) 1

p

, ∀ϕ ∈ SM
ω , (5.57)

where C only depends on α and γ. From the derivation measures theorem, we deduce that there exists a
μ-measurable vector function L : ω \ ∂ω ∩ Ω → RM such that

∫
ω

ϕdρ =
∫

ω

Lϕdμ, ∀ϕ ∈ SM
ω ,

and
|L| ≤ C|u|p−1w μ-a.e. in ω \ ∂ω ∩ Ω.
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Defining then T = (L
w )χ{w �=0} ∈ Lp′

μ (ω \ ∂ω ∩ Ω)M , we have that T satisfies (5.52) and (5.53). Moreover,
from (5.55) and (5.56) we obtain

∫
ω

a(x,Du) : D(wψ)dx +
∫

ω

Twψ dμ =
∫

ω

gwψ dx+
∫

ω

G : D(wψ)dx,

for every ψ ∈ SM
ω , which by the density of the set Dω given by (4.38) proves that u satisfies (5.51). ��

To finish this section, let us obtain an estimate about the dependence of the function T given by Proposi-
tion 5.4 with respect to u. For this purpose, as in Lemma 5.3, we consider zn ∈ W 1,p(ω)M ∩Lp

μn
(ω \ ∂ω ∩ Ω)M

with ‖zn‖W 1,p(ω)M∩Lp
µn (ω\∂ω∩Ω)M bounded, converging weakly in W 1,p(ω)M to a function z ∈ W 1,p(ω)M ∩

Lp
μ(ω \ ∂ω ∩ Ω)M , such that there exist hn converging weakly in Lp′

(ω)M to a function h and Hn converging
strongly in Lp′

(ω)M×N to a function H which satisfy (5.48). From Proposition 5.4, we also know that there
exits T ′ ∈ Lp′

μ (ω \ ∂ω ∩ Ω)M such that

∫
ω

T ′wψ dμ= lim
n→∞

(∫
ω

a(x,D(zn − z)) : (ψ ⊗∇(wn − w))dx+
∫

ω

Fn(x, zn)wnψ dμn

)
, (5.58)

for every ψ ∈ SM
ω , and

∫
ω

a(x,Dz):Dv dx+
∫

ω

T ′v dμ =
∫

ω

hv dx+
∫

ω

H :Dv dx, ∀v ∈W 1,p
∂ω∩Ω(ω)M ∩ Lp

μ(ω)M . (5.59)

The following result estimates the difference between T and T ′.

Lemma 5.5. There exist C1, C2 > 0, such that T and T ′ satisfy

|T − T ′| ≤ C1(|u| + |z|) p(p−2)
p−1 |u− z| 1

p−1 μ-a.e. in ω \ ∂ω ∩ Ω, (5.60)

and
(T − T ′)(u − z) ≥ C2|u− z|p μ-a.e. in ω \ ∂ω ∩ Ω. (5.61)

The constant C1 only depends on α and γ. The constant C2 only depends on α, Ω and Ω̂.

Proof. By (5.52), (5.58), (2.10), (2.16) and Proposition 5.1, for every ψ ∈ SM
ω , we have

∣∣∣∣
∫

ω

(T − T ′)wψ dμ
∣∣∣∣ ≤ C

∫
ω

(|D(un − u)| + |D(zn − z)|)p−2 |D(un − zn − u+ z)||∇(wn − w)||ψ|dx

+
∫

ω

(|un| + |zn|)p−2 |un − zn||ψ|wn dμn +On,

which by Hölder’s inequality, (5.47) (applied to un and zn) and (5.49) gives

∣∣∣∣
∫

ω

(T − T ′)wψ dμ
∣∣∣∣ ≤ C

(∫
ω

(|u| + |z|)p|ψ|dμ
) p−2

p−1
(∫

ω

|u− z|p|ψ|dμ
) 1

p(p−1)
(∫

ω

|w|p|ψ|dμ
) 1

p

.

From the measures derivation theorem, we then deduce (5.60).
Let us now prove (5.61). For ϕ ∈ Sω, ϕ ≥ 0, we take (un − zn)ϕp as test function in the difference of (3.24)

and (5.48). Using Rellich-Kondrachov’s compactness theorem, the weak convergence of gn − hn in Lp′
(ω)M ,
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the strong convergence of Gn −Hn in Lp′
(ω)M×N , (5.51) and (5.59), we have

∫
ω

[a(x,Dun) − a(x,Dzn)] : D(un − zn)ϕp dx+
∫

ω

[Fn(x, un) − Fn(x, vn)](un − zn)ϕp dμn =

∫
ω

(g − h)(u− z)ϕp dx
∫

ω

(G−H) : D((u − z)ϕp)dx+

− p

∫
ω

[a(x,Du) − a(x,Dz)] : [(u− z) ⊗∇ϕ]ϕp−1 dx+On

=
∫

ω

[a(x,Du) − a(x,Dz)] : D(u− z)ϕp dx+
∫

ω

(T − T ′)(u− z)ϕp dμ+On, (5.62)

which by (5.46) (applied to un and zn) implies

∫
ω

(T − T ′)(u− z)ϕp dμ = lim
n→∞

(∫
ω

[a(x,D(un − u)) − a(x,D(zn − z))] : D(un − zn − u+ z)ϕp dx

+
∫

ω

[Fn(x, un) − Fn(x, zn)](un − zn)ϕp dμn

)
. (5.63)

Using in the right-hand side of this inequality (2.9), (2.15) and (4.42), we deduce

∫
ω

(T − T ′)(u− z)ϕp dμ ≥ α

(∫
ω

|D(un − u− zn + z)|pϕp dx+
∫

ω

|un − zn|pϕp dμn

)

≥ α

‖P‖
∫

ω

|u− z|pϕp dμ+On, ∀ϕ ∈ Sω, ϕ ≥ 0. (5.64)

From the measures derivation theorem, this proves (5.61). ��

6. Proof of the main results

In this section we prove that there exists a μ-Carathéodory function F : Ω̄ × RM → RM such that the
function T given by Proposition 5.4 satisfies T (x) = F (x, u(x)) μ-a.e. in ω\∂ω ∩ Ω. We start with the following
lemma. Its proof is completely similar to the one of Theorem 6.9 in [5], and thus we omit it.

Lemma 6.1. We consider a subsequence of n such that there exists the measure μ defined in the beginning of
Section 5. Then, up to another subsequence, we have that for every q ∈ QM and every m ∈ N, the solution qm

n of

⎧⎪⎪⎨
⎪⎪⎩

qm
n ∈ W 1,p(Ω)M ∩ Lp

μn
(Ω)M∫

Ω

a(x,Dqm
n ) : Dv dx+

∫
Ω

Fn(x, qm
n )v dμn = m

∫
Ω

[|wnq|p−2wnq − |qm
n |p−2qm

n ]v dx

∀v ∈ W 1,p(Ω)M ∩ Lp
μn

(Ω)M ,

(6.65)

converges to a function qm weakly in W 1,p(Ω)M . This function satisfies that there exists Tm
q ∈ Lp′

(Ω) such that

⎧⎪⎪⎨
⎪⎪⎩

qm ∈W 1,p(Ω)M ∩ Lp
μ(Ω)M∫

Ω

a(x,Dqm) : Dv dx+
∫

Ω

Tm
q v dμ = m

∫
Ω

[|wq|p−2wq − |qm|p−2qm]v dx

∀v ∈W 1,p(Ω)M ∩ Lp
μ(Ω)M .

(6.66)
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When m tends to infinity, the sequence qm converges to wq strongly in W 1,p(Ω)M ∩ Lp
μn

(Ω)M and the se-
quence Tm

q converges strongly in Lp′
μ (Ω)M to a function Tq.

Definition 6.2. We consider the subsequence of n given by Lemma 6.1. Then, we define F : Ω×QM → RM by

F(x, q) = Tq(x), ∀q ∈ QM , μ-a.e. x ∈ Ω.

By Lemma 6.1, (5.53), (5.60) and (5.61), it is easy to show that for every q1, q2 ∈ QM and μ-a.e. x ∈ Ω, we
have

F(x, 0) = 0, (6.67)

|F(x, q2) −F(x, q1)| ≤ C1(|q1| + |q2|)
p(p−2)

p−1 |q2 − q1| 1
p−1w(x)p−1, (6.68)

(F(x, q2) −F(x, q1))(q2 − q1) ≥ C2|q2 − q1|pw(x)p−1. (6.69)

Using (6.68), we can extend by continuity F to Ω × RM . Then, we define F : Ω × RM → RM by

F (x, s) =

⎧⎨
⎩ F

(
x,

s

w(x)

)
if w(x) > 0

|s|p−2s if w(x) = 0.

Thanks to Lemma 6.1, Proposition 5.4 and estimate (5.60) we can now prove Theorem 3.1.

Proof of Theorem 3.1. We take un and u as in the statement of the theorem. By Proposition 5.4, there exists
T ∈ Lp′

μ (ω)M such that u is a solution of (5.51). Applying (5.60), with z replaced by qm, we have

|T − Tm
q | ≤ C(|u| + |qm|) p(p−2)

p−1 |u− qm| 1
p−1 μ-a.e. in ω \ ∂ω ∩ Ω, (6.70)

and therefore, taking the limit as m tends to infinity, we obtain

|T − F (x,wq)| ≤ C(|u| + |wq|) p(p−2)
p−1 |u− wq| 1

p−1 μ-a.e. in ω \ ∂ω ∩ Ω.

Thus, for every simple function φ(x) =
∑l

i=1 siχBi(x), with si ∈ RM , Bi Borel, we have

|T − F (x,wφ)| ≤ C(|u| + |wφ|) p(p−2)
p−1 |u− wφ| 1

p−1 μ-a.e. in ω \ ∂ω ∩ Ω.

Finally, taking in this inequality φ as a sequence φn such that wφn converges μ-a.e. to u in ω \ ∂ω ∩ Ω (the
existence of such sequence is an easy consequence of Prop. 4.5) and passing to the limit in n thanks to the
continuity of F with respect to its second variable, we get

T = F (x, u) μ-a.e. in ω \ ∂ω ∩ Ω.

This proves (3.25) thanks to (5.51) and the fact that the functions of W 1,p
∂ω∩Ω(ω) are zero q.e. on ∂ω ∩ Ω. ��

Proof of Theorem 3.2. Let us just prove (ii). The proof of (i) is much simpler.
Thanks to (3.28) and the assumptions on a and Fn, problem (3.29) has a unique solution. Moreover,

taking un as test function in (3.29) and using (3.28), (2.11) and (2.17) we get that un satisfies (3.23). Thus,
from W 1,p

∂ω∩Ω(ω) closed, Theorem 3.1 and Proposition 5.1, we deduce that there exists a subsequence of un which
converges weakly in W 1,p

∂ω∩Ω(ω)M and strongly in W 1,q
∂ω∩Ω(ω)M , 1 ≤ q < p, to a solution u of (3.30). If we prove

that u is unique, then the whole sequence un will converge to u and the proof of (ii) will be finished. For this
purpose, it is enough to prove that the measure μ also satisfies (3.28) and then, from (2.9) and (3.22), we will
get the uniqueness of solution of problem (3.30).
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Let υ be in W 1,p
∂ω∩Ω(ω) ∩ Lp

μ(ω). Using Proposition 4.5, we consider ψm ∈ Sω such that wψm converges to υ
in W 1,p

∂ω∩Ω(ω) ∩ Lp
μ(ω). From (3.28), for every m ∈ N, we have

∫
ω

|wnψm|p dx ≤ Cp
P

(∫
ω

|∇(wnψm)|p dx+
∫

ω

|wnψm|p dμn

)

≤ Cp
P

(∫
ω

(|∇(wnψm)|p − |∇((wn − w)ψm)|p) dx
)

+ Cp
P

(∫
Ω̂

∣∣∇(
(wn − w)Qω(ψm)

)∣∣p dx+
∫

Ω̂

|wnQω(ψm)|p dμ̂n

)
.

Since wn converges strongly to w in W 1,q(Ω̂), 1 ≤ q < p, reasoning similarly to the proof of (5.46), we have that
|∇(wnψm)|p − |∇((wn − w)ψm)|p converges strongly to |∇(wψm)|p in L1(ω) and thus

∫
ω

(|∇(wnψm)|p − |∇((wn − w)ψm)|p) dx→
∫

ω

|∇(wψm)|p dx,

whereas from (4.33) and μ = μ̂ in supp(μ̂) = Ω we have
∫

Ω̂

|∇((wn − w)Qω(ψm))|p dx+
∫

Ω̂

|wnQω(ψm)|p dμ̂n →
∫

ω

|wψm|p dμ.

Thus, using also the semicontinuity of the norm in Lp(ω), we get

∫
ω

|wψm|p dx ≤ Cp
P

(∫
ω

|∇(wψm)|p dx+
∫

ω

|wψm|p dμ
)
.

Taking then m tending to infinity we derive

∫
ω

|υ|p dx ≤ Cp
P

(∫
ω

|∇υ|p dx+
∫

ω

|υ|p dμ
)
, ∀υ ∈ W 1,p

∂ω∩Ω(ω) ∩ Lp
μ(ω).

This finishes the proof of (ii). ��
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