# ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS IN VARYING DOMAINS WITH BOUNDARY CONDITIONS ON VARYING SETS 

Carmen Calvo-Jurado ${ }^{1}$, Juan Casado-Díaz ${ }^{2}$ and Manuel Luna-Laynez ${ }^{2}$


#### Abstract

For a fixed bounded open set $\Omega \subset \mathbb{R}^{N}$, a sequence of open sets $\Omega_{n} \subset \Omega$ and a sequence of sets $\Gamma_{n} \subset \partial \Omega \cap \partial \Omega_{n}$, we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on $\Omega_{n}$, satisfying Neumann boundary conditions on $\Gamma_{n}$ and Dirichlet boundary conditions on $\partial \Omega_{n} \backslash \Gamma_{n}$. We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on $\Omega_{n}$ and $\Gamma_{n}$ locally.


Mathematics Subject Classification. 35B40.
Received March 15, 2007. Revised April 10, 2007 and June 26, 2007.
Published online March 6, 2008.

## 1. Introduction

For a given Lipschitz bounded open set $\Omega \subset \mathbb{R}^{N}, N \geq 2$, a sequence of open sets $\Omega_{n} \subset \Omega$ and a sequence of sets $\Gamma_{n} \subset \partial \Omega \cap \partial \Omega_{n}$, we study the asymptotic behavior of the solution $u_{n}$ of the nonlinear elliptic system

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(x, D u_{n}\right)-G_{n}\right)=g_{n} \text { in } \Omega_{n}  \tag{1.1}\\
u_{n}=0 \text { on } \partial \Omega_{n} \backslash \Gamma_{n} \\
\left(a\left(x, D u_{n}\right)-G_{n}\right) \nu=0 \text { on } \Gamma_{n},
\end{array}\right.
$$

where $a: \Omega \times \mathbb{R}^{M \times N} \rightarrow \mathbb{R}^{M \times N}, M \geq 1$, is a Carathéodory function which satisfies standard assumptions so that the operator $v \in W_{0}^{1, p}(\Omega)^{M} \mapsto-\operatorname{div} a(x, D v) \in W^{-1, p^{\prime}}(\Omega)^{M}, p \geq 2$, defines a monotone operator in the sense of Leray and Lions [16] (see Sect. 2 for the precise assumptions on $a$ ) and $\nu$ denotes the unitary outward normal to $\Omega$. The sequences $g_{n}$ and $G_{n}$ are assumed to converge in $L^{p^{\prime}}(\Omega)^{M}$ weakly and $L^{p^{\prime}}(\Omega)^{M \times N}$ strongly to some functions $g$ and $G$ respectively.

Assuming that $\left\|u_{n}\right\|_{W^{1, p}\left(\Omega_{n}\right)^{M}}$ is bounded (this holds for example if there exists $C>0$ independent of $n$ with $\|v\|_{W^{1, p}\left(\Omega_{n}\right)} \leq C\|\nabla v\|_{L^{p}\left(\Omega_{n}\right)^{N}}$, for every $v \in W^{1, p}\left(\Omega_{n}\right), v=0$ on $\left.\partial \Omega_{n} \backslash \Gamma_{n}\right)$ and extending $u_{n}$ by zero outside $\Omega_{n}$, we prove the existence of a nonnegative Borel measure $\mu$ in $\bar{\Omega}$ which does not charge sets of $p$-capacity zero, and a $\mu$-Carathéodory function $F: \bar{\Omega} \times \mathbb{R}^{M} \rightarrow \mathbb{R}^{M}$ satisfying monotonicity and continuity properties related

[^0]to those imposed to $a$ (see (3.20), (3.21), (3.22)), such that $u_{n}$ converges weakly in $W^{1, p}(\Omega)^{M}$ and strongly in $W^{1, q}(\Omega)^{M}, 1 \leq q<p$, to the solution $u$ of the problem
\[

\left\{$$
\begin{array}{l}
u \in W^{1, p}(\Omega)^{M} \cap L_{\mu}^{p}(\bar{\Omega})^{M}  \tag{1.2}\\
\int_{\Omega} a(x, D u): D v \mathrm{~d} x+\int_{\bar{\Omega}} F(x, u) v \mathrm{~d} \mu=\int_{\Omega} g v \mathrm{~d} x+\int_{\Omega} G: D v \mathrm{~d} x \\
\forall v \in W^{1, p}(\Omega)^{M} \cap L_{\mu}^{p}(\bar{\Omega})^{M}
\end{array}
$$\right.
\]

which (if $\mu$ is smooth) can be written as

$$
\left\{\begin{align*}
-\operatorname{div}(a(x, D u)-G)+F(x, u) \mu=g & \text { in } \Omega  \tag{1.3}\\
(a(x, D u)-G) \nu+F(x, u) \mu=0 & \text { on } \partial \Omega .
\end{align*}\right.
$$

The pair $(F, \mu)$ does not depend on $g_{n}$ or $G_{n}$, and it depends on $\Omega_{n}$ and $\Gamma_{n}$ locally in the sense that if we consider a Lipschitz open set $\omega \subset \Omega$ and we replace in (1.1) $\Omega_{n}$ by $\Omega_{n} \cap \omega, \Gamma_{n}$ by $\Gamma_{n} \cap \bar{\omega}$, then the previous result holds with $(F, \mu)$ replaced by $\left(F_{\mid \bar{\omega}}, \mu_{\mid \bar{\omega}}\right)$.

The term $F(x, u) \mu$ in (1.2) is similar to the strange term which appears in the homogenization of Dirichlet problems on varying domains (see $[1,3-12,19,20]$ ). In fact, if $\Gamma_{n}$ is empty, our result follows from [5]. When $\Gamma_{n}$ is not empty the main difference is that now $\mu$ is defined on $\bar{\Omega}$ and not only on $\Omega$ and then the term $F(x, u) \mu$ does not only appears in the equation but also in the boundary conditions of (1.3). Taking $\Omega=\Omega_{n}$ for every $n \in \mathbb{N}$, the above result proves that the boundary condition corresponding to the limit of a sequence of nonlinear elliptic systems with Dirichlet an Neumann conditions on varying subsets of $\partial \Omega$ is a Fourier-Robin condition. Indeed, the proof of this fact was the origin of the present work. We have preferred to present here the more general case where the open sets $\Omega_{n}$ are variable, in order to show that the homogenization of elliptic Dirichlet problems in varying domains (corresponding to $\Gamma_{n}=\emptyset$ ) and the homogenization of elliptic problems with Neumann and Dirichlet conditions imposed on varying sets of the boundary admit a common formulation.

As in the case of Dirichlet problems on varying domains [9], we observe that (1.1) can be written in such way that its structure is similar to (1.2). For this purpose, it is enough to define $\mu_{n}$ as ( $C_{p}$ stands for the $p$-capacity, see Sect. 2)

$$
\mu_{n}(B)=\left\{\begin{array}{ll}
+\infty & \text { if } C_{p}\left(B \cap\left(\bar{\Omega} \backslash\left(\Omega_{n} \cup \Gamma_{n}\right)\right)\right)>0  \tag{1.4}\\
0 & \text { if } C_{p}\left(B \cap\left(\bar{\Omega} \backslash\left(\Omega_{n} \cup \Gamma_{n}\right)\right)\right)=0,
\end{array} \quad \forall B \subset \bar{\Omega}\right. \text { Borel, }
$$

and $F_{n}: \bar{\Omega} \times \mathbb{R}^{M} \longrightarrow \mathbb{R}^{M}$ as, for example, $F_{n}(x, s)=|s|^{p-2} s$. Then (1.1) is equivalent to

$$
\left\{\begin{array}{l}
u_{n} \in W^{1, p}(\Omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\Omega})^{M}  \tag{1.5}\\
\int_{\Omega} a\left(x, D u_{n}\right): D v \mathrm{~d} x+\int_{\bar{\Omega}} F_{n}\left(x, u_{n}\right) v \mathrm{~d} \mu_{n}=\int_{\Omega} g_{n} v \mathrm{~d} x+\int_{\Omega} G_{n}: D v \mathrm{~d} x \\
\forall v \in W^{1, p}(\Omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\Omega})^{M}
\end{array}\right.
$$

Hence, we can consider (1.1) as a particular case of (1.2). For this reason, better than the homogenization of (1.1), we will study the homogenization of (1.5) for a sequence $\mu_{n}$ of Borel measures in $\bar{\Omega}$ (not necessarily defined from sequences $\Omega_{n}, \Gamma_{n}$ as above) which vanish on sets of $p$-capacity zero and a sequence $F_{n}: \bar{\Omega} \times \mathbb{R}^{M} \longrightarrow$ $\mathbb{R}^{M}$ of monotone $\mu_{n}$-measurable functions (see Sect. 2 for the precise hypotheses on $F_{n}$ ). We prove that, in this more general form, the problem is stable for homogenization, i.e. for every sequences $\mu_{n}$ and $F_{n}$ there exist $\mu$ and $F$ such that, at least for a subsequence, the limit problem of (1.5) is still given by (1.2).

Throughout the paper we just consider the case $p \geq 2$. The case $1 \leq p<2$ can be treated in a similar way, after proper modification on the growth and coerciveness hypotheses for the functions $a$ and $F_{n}$. The case of linear equations and $\mu_{n}$ concentrated on $\partial \Omega$ (which for problem (1.1) means $\Omega_{n}=\Omega$ for every $n \in \mathbb{N}$ ) has been studied in [2], see also [13] for related problems.

## 2. Notations and definitions

The minimum and the maximum of two numbers $a, b$ are respectively denoted by $a \wedge b, a \vee b$.
The scalar product of two matrices $A, B \in \mathbb{R}^{M \times N}$ will be denoted by $A: B$.
For a Borel set $B \subset \mathbb{R}^{N}$ and a Borel measure $\mu$ in $B$, we denote by $L_{\mu}^{q}(B), 1 \leq q \leq+\infty$, the usual Lebesgue spaces with respect to the measure $\mu$. If $\mu$ is the Lebesgue measure, we use the standard notation $L^{q}(B)$.

For every Lipschitz open set $O \subset \mathbb{R}^{N}$, we denote by $W^{1, q}(O), 1 \leq q \leq+\infty$, the usual Sobolev spaces. We recall that, since we are assuming $O$ Lipschitz, the elements of $W^{1, q}(O)$ have a trace on $\partial O$ and then, they are defined in $\bar{O}$. Moreover, $C^{\infty}(\bar{O})$ is dense in $W^{1, q}(O)$ if $q<+\infty$. For every subset $\Upsilon$ of $\partial O$, we define $W_{\Upsilon}^{1, q}(O)$ as the closure in $W^{1, q}(O)$ of the functions in $C^{\infty}(\bar{O})$ which vanish in a neighborhood of $\bar{\Upsilon}$. In the case $\Upsilon=\partial O$, we write $W_{0}^{1, q}(O)$ instead of $W_{\Upsilon}^{1, q}(O)$.

Along the paper we denote by $p$ a fixed number such that $p \geq 2$. Also we consider a bounded Lipschitz open set $\Omega \subset \mathbb{R}^{N}, N \geq 2$, and a bounded open set $\hat{\Omega}$, such that $\bar{\Omega} \subset \hat{\Omega}$.

We denote by $P: W^{1, p}(\Omega) \longrightarrow W_{0}^{1, p}(\hat{\Omega})$ a bounded linear operator such that

$$
\begin{equation*}
P(u)=u \text { in } \Omega, \quad \forall u \in W^{1, p}(\Omega) . \tag{2.6}
\end{equation*}
$$

This operator is also chosen bounded from $W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ into $W_{0}^{1, p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$ and such that it transforms nonnegative functions into nonnegative functions. The existence of this extension operator is guaranteed because $\Omega$ is Lipschitz (see e.g. [17]).

For a Lipschitz open set $\omega \subset \Omega$, we denote

$$
\mathcal{S}_{\omega}=\left\{\varphi: \varphi \in W^{1, \infty}(\omega), \quad \varphi=0 \text { in a neighborhood of } \overline{\partial \omega \cap \Omega}\right\}
$$

Also, we define the bounded linear operators $Z_{\omega}: W_{\partial \omega \cap \Omega}^{1, p}(\omega) \rightarrow W^{1, p}(\Omega), Q_{\omega}: W_{\partial \omega \cap \Omega}^{1, p}(\omega) \rightarrow W_{0}^{1, p}(\hat{\Omega})$ as

$$
Z_{\omega}(u)=\left\{\begin{array}{ll}
u & \text { in } \bar{\omega} \\
0 & \text { in } \bar{\Omega} \backslash \bar{\omega},
\end{array} \quad Q_{\omega}=P \circ Z_{\omega}\right.
$$

When $u=\left(u_{1}, \ldots, u_{M}\right)$ is vectorial, we denote

$$
\begin{gathered}
P(u)=\left(P\left(u_{1}\right), \ldots, P\left(u_{M}\right)\right), \quad Z_{\omega}(u)=\left(Z_{\omega}\left(u_{1}\right), \ldots, Z_{\omega}\left(u_{M}\right)\right), \\
Q_{\omega}(u)=\left(Q_{\omega}\left(u_{1}\right), \ldots, Q_{\omega}\left(u_{M}\right)\right) .
\end{gathered}
$$

For $E \subset \hat{\Omega}$ and $1<p<+\infty$, the $p$-capacity of $E$ in $\hat{\Omega}$, denoted by $C_{p}(E)$, is defined by

$$
C_{p}(E)=\inf \left\{\int_{\hat{\Omega}}|\nabla u|^{p} \mathrm{~d} x: u \in W_{0}^{1, p}(\hat{\Omega}), u \geq 1 \text { a.e. in a neighborhood of } E\right\} .
$$

This definition depends on $\hat{\Omega}$, however the sets of $p$-capacity zero are independent of $\hat{\Omega}$.
We say that a property $\mathcal{P}(x)$ holds quasi everywhere (abbreviated as q.e.) in a set $B \subset \hat{\Omega}$ if it holds for all $x \in B \backslash N$, with $C_{p}(N)=0$.

A function $u: \hat{\Omega} \longrightarrow \mathbb{R}$ is said to be quasi continuous if for every $\varepsilon>0$ there exists a set $B \subset \hat{\Omega}$, with $C_{p}(B)<\varepsilon$, such that the restriction of $u$ to $\hat{\Omega} \backslash B$ is continuous. It is well known (see e.g. [14,15,21]) that every $u \in W^{1, p}(\hat{\Omega})$ has a quasi continuous representative. We shall always identify $u \in W^{1, p}(\hat{\Omega})$ with this quasi continuous representative.

A subset $O$ of $\hat{\Omega}$ is said to be quasi open if for every $\varepsilon>0$ there exists $B \subset \hat{\Omega}$, with $C_{p}(B)<\varepsilon$, such that $O \cup B$ is open.

Following [8,9], for every Borel subset $B$ of $\hat{\Omega}$, we denote by $\mathcal{M}_{0}^{p}(B)$ the class of all non negative Borel measures $\mu$ in $B$ which vanish on Borel sets of $p$-capacity zero and satisfy the following condition

$$
\begin{equation*}
\mu(E)=\inf \{\mu(O \cap B): O \text { quasi open, } \quad E \subset O \subset \hat{\Omega}\}, \quad \forall E \subset B \text { Borel. } \tag{2.7}
\end{equation*}
$$

We will denote by $a: \Omega \times \mathbb{R}^{M \times N} \longrightarrow \mathbb{R}^{M \times N}$ a Carathéodory function such that there exist two positive constants $\alpha, \gamma$, and $r \in L^{\frac{p}{p-2}}(\Omega)$ satisfying

$$
\begin{gather*}
a(x, 0)=0 \text { a.e. } x \in \Omega,  \tag{2.8}\\
\left(a\left(x, \xi_{1}\right)-a\left(x, \xi_{2}\right)\right):\left(\xi_{1}-\xi_{2}\right) \geq \alpha\left|\xi_{1}-\xi_{2}\right|^{p}, \quad \forall \xi_{1}, \xi_{2} \in \mathbb{R}^{M \times N}, \quad \text { a.e. } x \in \Omega  \tag{2.9}\\
\left|a\left(x, \xi_{1}\right)-a\left(x, \xi_{2}\right)\right| \leq\left(r(x)+\gamma\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{p-2}\right)\left|\xi_{1}-\xi_{2}\right|, \quad \forall \xi_{1}, \xi_{2} \in \mathbb{R}^{M \times N}, \text { a.e. } x \in \Omega . \tag{2.10}
\end{gather*}
$$

Observe that these hypotheses imply in particular that there exist $\beta>0$ and $h \in L^{p^{\prime}}(\Omega)$ such that

$$
\begin{gather*}
a(x, \xi): \xi \geq \alpha|\xi|^{p}, \quad \forall \xi \in \mathbb{R}^{M \times N}, \text { a.e. } x \in \Omega  \tag{2.11}\\
|a(x, \xi)| \leq h(x)+\beta|\xi|^{p-1}, \quad \forall \xi \in \mathbb{R}^{M \times N}, \text { a.e. } x \in \Omega \tag{2.12}
\end{gather*}
$$

For every $n \in \mathbb{N}$, we will also consider $\mu_{n} \in \mathcal{M}_{0}^{p}(\bar{\Omega})$ and $F_{n}: \bar{\Omega} \times \mathbb{R}^{M} \longrightarrow \mathbb{R}^{M}$ such that

$$
\begin{gather*}
F_{n}(\cdot, s) \mu_{n} \text {-measurable, } \forall s \in \mathbb{R}^{M},  \tag{2.13}\\
F_{n}(x, 0)=0, \quad \mu_{n} \text {-a.e. } x \in \bar{\Omega},  \tag{2.14}\\
\left(F_{n}\left(x, s_{1}\right)-F_{n}\left(x, s_{2}\right)\right)\left(s_{1}-s_{2}\right) \geq \alpha\left|s_{1}-s_{2}\right|^{p}, \quad \forall s_{1}, s_{2} \in \mathbb{R}^{M}, \quad \mu_{n} \text {-a.e. } x \in \bar{\Omega},  \tag{2.15}\\
\left|F_{n}\left(x, s_{1}\right)-F_{n}\left(x, s_{2}\right)\right| \leq \gamma\left(\left|s_{1}\right|+\left|s_{2}\right|\right)^{p-2}\left|s_{1}-s_{2}\right|, \quad \forall s_{1}, s_{2} \in \mathbb{R}^{M}, \quad \mu_{n} \text {-a.e. } x \in \bar{\Omega} . \tag{2.16}
\end{gather*}
$$

Thus, for $\beta>0$ as above, we have

$$
\begin{gather*}
F_{n}(x, s) s \geq \alpha|s|^{p}, \quad \forall s \in \mathbb{R}^{M}, \quad \mu_{n} \text {-a.e. } x \in \bar{\Omega}  \tag{2.17}\\
\left|F_{n}(x, s)\right| \leq \beta|s|^{p-1}, \quad \forall s \in \mathbb{R}^{M}, \quad \mu_{n} \text {-a.e. } x \in \bar{\Omega} . \tag{2.18}
\end{gather*}
$$

Remark 2.1. To simplify the exposition we have considered $p \geq 2$. The case $1<p<2$ can be studied similarly after proper modification on the hypotheses on $a$ and $F_{n}$. We can also consider hypotheses less restrictive than (2.10) and (2.16), assuming that $a(x, \xi)$ and $F_{n}(x, s)$ are locally Hölder continuous with respect to $\xi$ and $s$ respectively.

We denote by $C$ a generic constant which does not depend on $n$ and can change from line to line.
We denote by $O_{m, n}$ and $O_{n}$ generic sequences of real numbers which can change from line to line and satisfy

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left|O_{m, n}\right|=0, \quad \lim _{n \rightarrow \infty} O_{n}=0
$$

## 3. Homogenization result

In this section we state the main results of the paper, relative to the homogenization problem (1.5).
Theorem 3.1. Let $a, \mu_{n}$ and $F_{n}$ be in the conditions of Section 2. Then, there exist a subsequence of $n$, still denoted by $n$, a measure $\mu \in \mathcal{M}_{0}^{p}(\bar{\Omega})$ and a function $F: \bar{\Omega} \times \mathbb{R}^{M} \longrightarrow \mathbb{R}^{M}$, with

$$
\begin{gather*}
F(\cdot, s) \mu \text {-measurable, } \forall s \in \mathbb{R}^{M},  \tag{3.19}\\
F(x, 0)=0, \quad \mu \text {-a.e. } x \in \bar{\Omega},  \tag{3.20}\\
\left|F\left(x, s_{2}\right)-F\left(x, s_{1}\right)\right| \leq C_{1}\left(\left|s_{1}\right|+\left|s_{2}\right|\right)^{\frac{p(p-2)}{p-1}}\left|s_{2}-s_{1}\right|^{\frac{1}{p-1}}, \quad \forall s_{1}, s_{2} \in \mathbb{R}^{M}, \quad \mu \text {-a.e. } x \in \bar{\Omega},  \tag{3.21}\\
\left(F\left(x, s_{2}\right)-F\left(x, s_{1}\right)\right)\left(s_{2}-s_{1}\right) \geq C_{2}\left|s_{2}-s_{1}\right|^{p}, \quad \forall s_{1}, s_{2} \in \mathbb{R}^{M}, \quad \mu \text {-a.e. } x \in \bar{\Omega}, \tag{3.22}
\end{gather*}
$$

such that the following homogenization result holds: Let $\omega \subset \Omega$ be a Lipschitz open set and consider a sequence $g_{n} \in L^{p^{\prime}}(\omega)^{M}$ which converges weakly in $L^{p^{\prime}}(\omega)^{M}$ to a function $g$, a sequence $G_{n} \in L^{p^{\prime}}(\omega)^{M \times N}$ which converges strongly in $L^{p^{\prime}}(\omega)^{M \times N}$ to a function $G$ and a sequence $u_{n} \in W^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})$ which satisfies

$$
\begin{equation*}
\left\|u_{n}\right\|_{W^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \partial \omega \cap \Omega)^{M}} \leq C, \tag{3.23}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\int_{\omega} a\left(x, D u_{n}\right): D v \mathrm{~d} x+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) v \mathrm{~d} \mu_{n}=\int_{\omega} g_{n} v \mathrm{~d} x+\int_{\omega} G_{n}: D v \mathrm{~d} x  \tag{3.24}\\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

Then, every cluster point $u$ of $u_{n}$ in the weak topology of $W^{1, p}(\omega)^{M}$ satisfies

$$
\left\{\begin{array}{l}
u \in W^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}  \tag{3.25}\\
\int_{\omega} a(x, D u): D v \mathrm{~d} x+\int_{\bar{\omega}} F(x, u) v \mathrm{~d} \mu=\int_{\omega} g v \mathrm{~d} x+\int_{\omega} G: D v \mathrm{~d} x \\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

Moreover, the measure $\mu$ can be taken independently of $a$.
The proof of this result is carried on in Section 6. To do it, in Section 5 we consider a bounded open set $\hat{\Omega}$ with $\bar{\Omega} \subset \hat{\Omega}$ and then, for $u_{n}$ and $u$ as in the statement of Theorem 3.1, we estimate the difference between $u_{n}$ and the corrector with limit $u$ relative to the homogenization problem for the operator $v \rightarrow$ $-\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)+|v|^{p-2} v \mathrm{~d} \mu_{n}$ in $\hat{\Omega}$ with Dirichlet conditions. The properties of this corrector will be recalled in Section 4. As a consequence we obtain some estimates for $D u_{n}$ (Lems. 5.2 and 5.3) which allow us to prove (Prop. 5.4) the existence of $\mu \in \mathcal{M}_{0}^{p}(\bar{\Omega})$ and $T \in L_{\mu}^{p^{\prime}}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ such that $u$ belongs to $L_{\mu}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ and

$$
\int_{\omega} a(x, D u): D v \mathrm{~d} x+\int_{\bar{\omega}} T v \mathrm{~d} \mu=\int_{\omega} g v \mathrm{~d} x+\int_{\omega} G: D v \mathrm{~d} x
$$

for every $v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}$ (see $[8,10]$ ). The estimates obtained in Section 5 prove that $T$ is of the form $F(x, u(x))$ (estimate (5.60)), but for a function $F$ only defined on the set of pairs $(x, v(x))$ such that $v$ is the limit of some sequence $v_{n}$ in the conditions of the sequence $u_{n}$ which appears in the statement of Theorem 3.1. We will prove in Lemma 6.1 that the set of such functions $v$ is large enough to allow us to define $F$ in the whole of $\bar{\Omega} \times \mathbb{R}^{M}$ and then to conclude Theorem 3.1.

We will also prove in Section 6 the following consequence of Theorem 3.1.

Theorem 3.2. Under the same assumptions that Theorem 3.1, the following results hold:
(i) For every $\lambda>0$, the unique solution $u_{n}$ of

$$
\begin{cases}u_{n} \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega})^{M}  \tag{3.26}\\ \int_{\omega} a\left(x, D u_{n}\right): D v \mathrm{~d} x+\lambda \int_{\omega}\left|u_{n}\right|^{p-2} u_{n} v \mathrm{~d} x+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) v \mathrm{~d} \mu_{n}= \\ & \int_{\omega} g_{n} v \mathrm{~d} x+\int_{\omega} G_{n}: D v \mathrm{~d} x \\ \forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega})^{M},\end{cases}
$$

converges weakly in $W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M}$ and strongly in $W_{\partial \omega \cap \Omega}^{1, q}(\omega)^{M}, 1 \leq q<p$, to the unique solution $u$ of

$$
\left\{\begin{array}{l}
u \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}  \tag{3.27}\\
\int_{\omega} a(x, D u): D v \mathrm{~d} x+\lambda \int_{\omega}|u|^{p-2} u v \mathrm{~d} x+\int_{\bar{\omega}} F(x, u) v \mathrm{~d} \mu=\int_{\omega} g v \mathrm{~d} x+\int_{\omega} G: D v \mathrm{~d} x \\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

(ii) Assume that there exists (a Poincaré's constant) $C_{P}>0$ such that

$$
\begin{equation*}
\|v\|_{L^{p}(\omega)} \leq C_{P}\left(\|\nabla v\|_{L^{p}(\omega)^{N}}^{p}+\|v\|_{L_{\mu_{n}}(\bar{\omega})}^{p}\right)^{\frac{1}{p}}, \quad \forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\mu_{n}}^{p}(\bar{\omega}), \forall n \in \mathbb{N} . \tag{3.28}
\end{equation*}
$$

Then, the unique solution $u_{n}$ of

$$
\left\{\begin{array}{l}
u_{n} \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega})^{M}  \tag{3.29}\\
\int_{\omega} a\left(x, D u_{n}\right): D v \mathrm{~d} x+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) v \mathrm{~d} \mu_{n}=\int_{\omega} g_{n} v \mathrm{~d} x+\int_{\omega} G_{n}: D v \mathrm{~d} x \\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

converges weakly in $W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M}$ and strongly in $W_{\partial \omega \cap \Omega}^{1, q}(\omega)^{M}, 1 \leq q<p$, to the unique solution $u$ of

$$
\left\{\begin{array}{l}
u \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}  \tag{3.30}\\
\int_{\omega} a(x, D u): D v \mathrm{~d} x+\int_{\bar{\omega}} F(x, u) v \mathrm{~d} \mu=\int_{\omega} g v \mathrm{~d} x+\int_{\omega} G: D v \mathrm{~d} x \\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

Remark 3.3. As we said in the Introduction, the homogenization of problem (3.29) gives in particular the homogenization of problem (1.1). For this, given a sequence of Lipschitz open sets $\Omega_{n} \subset \Omega$ and a sequence $\Gamma_{n} \subset$ $\partial \Omega \cap \Omega_{n}$, we define a sequence of measures $\mu_{n} \in \mathcal{M}_{0}^{p}(\bar{\Omega})$ by (1.4). Then, problem (1.1), understood in the variational form

$$
\left\{\begin{array}{l}
u_{n} \in W^{1, p}\left(\Omega_{n}\right)^{M}, \quad u_{n}=0 \text { q.e. on } \partial \Omega_{n} \backslash \Gamma_{n} \\
\int_{\Omega_{n}} a\left(x, D u_{n}\right): D v \mathrm{~d} x=\int_{\Omega_{n}} g_{n} v \mathrm{~d} x+\int_{\Omega_{n}} G_{n}: D v \mathrm{~d} x \\
\forall v \in W^{1, p}\left(\Omega_{n}\right)^{M}, \quad v=0 \text { q.e. on } \partial \Omega_{n} \backslash \Gamma_{n},
\end{array}\right.
$$

is equivalent to problem (3.29) with $\omega=\Omega$ and (for example) $F_{n}(x, s)=|s|^{p-2} s$. An interesting particular case is when $\Omega_{n}=\Omega$ for every $n \in \mathbb{N}$, i.e. when we have a nonlinear homogenization problem in a fixed bounded open set $\Omega \subset \mathbb{R}^{N}$, where we impose Dirichlet and Neumann conditions in varying subsets of the boundary.

In this case, by Proposition 4.4 the measure $\mu$ is supported on $\partial \Omega$, and thus, if $\mu$ is sufficiently smooth, the limit problem (3.30) is equivalent to the Fourier-Robin problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(a(x, D u)-G)=g \text { in } \Omega \\
(a(x, D u)-G) \nu+F(x, u) \mu=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Remark 3.4. Similarly to the homogenization of nonlinear Dirichlet problems in varying domains (see e.g. [5]), some properties on $a$ and $F_{n}$ are inherited by $F$. Namely, we have:
(i) If $a(x, \xi)$ is linear with respect to $\xi$ and $F_{n}(x, s)$ is linear with respect to $s$, for every $n \in \mathbb{N}$ (so, $p=2$ ), then, $F(x, s)$ is linear with respect to $s$.
(ii) If $a$ and $F_{n}, n \in \mathbb{N}$, satisfy the homogeneity assumption

$$
\begin{gathered}
a(x, \lambda \xi)=|\lambda|^{p-2} \lambda a(x, \xi), \quad \forall \lambda \in \mathbb{R}, \quad \forall \xi \in \mathbb{R}^{M \times N}, \text { a.e. } x \in \Omega, \\
F_{n}(x, \lambda s)=|\lambda|^{p-2} \lambda F_{n}(x, s), \quad \forall \lambda \in \mathbb{R}, \forall s \in \mathbb{R}^{M}, \mu_{n} \text {-a.e. } x \in \bar{\Omega},
\end{gathered}
$$

then $F$ also satisfies

$$
F(x, \lambda s)=|\lambda|^{p-2} \lambda F(x, s), \quad \forall \lambda \in \mathbb{R}, \forall s \in \mathbb{R}^{M}, \mu \text {-a.e. } x \in \bar{\Omega}
$$

The proof of these results is analogous to the corresponding one of Theorems 8.1 and 8.5 in [5] and follows from the fact that the functions $q_{n}^{m}$ of Lemma 6.1 satisfy

$$
\left(\lambda q_{1}+\tau q_{2}\right)_{n}^{m}=\lambda\left(q_{1}\right)_{n}^{m}+\tau\left(q_{2}\right)_{n}^{m}, \quad \forall q_{1}, q_{2} \in \mathbb{Q}^{M}, \forall \lambda, \tau \in \mathbb{R}
$$

if we assume (i), and

$$
(\lambda q)_{n}^{m}=\lambda(q)_{n}^{m}, \quad \forall q \in \mathbb{Q}^{M}, \forall \lambda \in \mathbb{R},
$$

if we assume (ii). Thus the functions $T_{q}$ defined by Lemma 6.1 satisfy

$$
T_{\lambda q_{1}+\tau q_{2}}=\lambda T_{q_{1}}+\tau T_{q_{2}}, \quad \forall q_{1}, q_{2} \in \mathbb{Q}^{M}, \forall \lambda, \tau \in \mathbb{R}
$$

if we assume (i), and

$$
T_{\lambda q}=|\lambda|^{p-2} \lambda T_{q}, \quad \forall q \in \mathbb{Q}^{M}, \forall \lambda \in \mathbb{R}
$$

if we assume (ii).

## 4. Preliminaries

In this section we recall some results related to the homogenization of the $p$-Laplace operator with Dirichlet boundary conditions in varying domains. From them we will obtain other results we will use later.

Throughout this section, we consider a sequence $\hat{\mu}_{n} \in \mathcal{M}_{0}^{p}(\hat{\Omega})$ and we denote by $w_{n}$ the solution of the problem

$$
\left\{\begin{array}{l}
w_{n} \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}_{n}}^{p}(\hat{\Omega})  \tag{4.31}\\
\int_{\hat{\Omega}}\left|\nabla w_{n}\right|^{p-2} \nabla w_{n} \nabla v \mathrm{~d} x+\int_{\hat{\Omega}}\left|w_{n}\right|^{p-2} w_{n} v \mathrm{~d} \hat{\mu}_{n}=\int_{\hat{\Omega}} v \mathrm{~d} x \\
\forall v \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}_{n}}^{p}(\hat{\Omega}) .
\end{array}\right.
$$

The following result has been proved in $[8,10]$.

Proposition 4.1. Let $w_{n}$ be the sequence defined by (4.31). Then $w_{n}$ is nonnegative q.e. in $\hat{\Omega}$ and its norm in $W_{0}^{1, p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega}) \cap L_{\hat{\mu}_{n}}^{p}(\hat{\Omega})$ is bounded. Up to a subsequence, there exists a nonnegative function $w \in$ $W_{0}^{1, p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$, such that $w_{n}$ converges weakly to $w$ in $W_{0}^{1, p}(\hat{\Omega})$, strongly in $W_{0}^{1, q}(\hat{\Omega}), 1 \leq q<p$, and weakly-* in $L^{\infty}(\hat{\Omega})$. Moreover, there exists a unique measure $\hat{\mu} \in \mathcal{M}_{0}^{p}(\hat{\Omega})$ such that $w$ is the solution of

$$
\left\{\begin{array}{l}
w \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}}^{p}(\hat{\Omega})  \tag{4.32}\\
\int_{\hat{\Omega}}|\nabla w|^{p-2} \nabla w \nabla v \mathrm{~d} x+\int_{\hat{\Omega}}|w|^{p-2} w v \mathrm{~d} \hat{\mu}=\int_{\hat{\Omega}} v \mathrm{~d} x \\
\forall v \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}}^{p}(\hat{\Omega})
\end{array}\right.
$$

The interest of $w_{n}$ is that for a function $\psi$ smooth enough, the sequence $w_{n} \psi$ provides a corrector with limit $w \psi$ relative to the homogenization problem for the operator $v \rightarrow-\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)+|v|^{p-2} v \mathrm{~d} \mu_{n}$ in $\hat{\Omega}$ with Dirichlet conditions [8,10]. The following properties of $w_{n}, w$ and $\hat{\mu}$ have been proved in $[8,10]$ (see also [5]).
Proposition 4.2. The sequence of solutions $w_{n}$ of (4.31), the function $w$ and the measure $\hat{\mu}$ given by Proposition 4.1 satisfy
(a) For every Borel set $B \subset \hat{\Omega}$ with $C_{p}(B \cap\{w=0\})>0$, it holds $\hat{\mu}(B)=+\infty$.
(b) The set $\left\{w \varphi: \varphi \in C_{c}^{\infty}(\hat{\Omega})\right\}$ is dense in $W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}}^{p}(\hat{\Omega})$.
(c) For every $\psi, \varphi \in W^{1, p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\int_{\hat{\Omega}}\left|\nabla\left(\left(w_{n}-w\right) \psi\right)\right|^{p} \varphi \mathrm{~d} x+\int_{\hat{\Omega}}\left|w_{n} \psi\right|^{p} \varphi \mathrm{~d} \hat{\mu}_{n}\right)=\int_{\hat{\Omega}}|w \psi|^{p} \varphi \mathrm{~d} \hat{\mu} \tag{4.33}
\end{equation*}
$$

(d) If $v_{n}$ is a sequence in $W^{1, p}(\hat{\Omega})$ which converges weakly in $W^{1, p}(\hat{\Omega})$ to a function $v$, then it holds

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\int_{\hat{\Omega}}\left|\nabla\left(v_{n}-v\right)\right|^{p} \mathrm{~d} x+\int_{\hat{\Omega}}\left|v_{n}\right|^{p} \mathrm{~d} \hat{\mu}_{n}\right) \geq \int_{\hat{\Omega}}|v|^{p} \mathrm{~d} \hat{\mu} \tag{4.34}
\end{equation*}
$$

In particular, if $\left\|v_{n}\right\|_{L_{\hat{\mu}_{n}}^{p}(\hat{\Omega})}$ is bounded, the function $v$ is in $L_{\hat{\mu}}^{p}(\hat{\Omega})$.
Remark 4.3. We will apply the previous results to the sequence $\hat{\mu}_{n}$ defined by (see Sect. 2)

$$
\begin{equation*}
\hat{\mu}_{n}(B)=\mu_{n}(B \cap \bar{\Omega}), \quad \forall B \subset \hat{\Omega} \text { Borel. } \tag{4.35}
\end{equation*}
$$

From Proposition 4.2, every function $v \in L_{\hat{\mu}_{n}}^{p}(\hat{\Omega})$ vanishes q.e. on $\left\{w_{n}=0\right\}$. So, although in Section 2 we have considered $F_{n}$ defined on $\hat{\Omega} \times \mathbb{R}^{M}$, only its values in $\left\{w_{n}>0\right\} \times \mathbb{R}^{M}$ are relevant.

In the present paper, we are interested in a sequence of measures $\hat{\mu}_{n}$ having their supports contained in a fixed closed set (see (4.35)). We will use the following result.
Proposition 4.4. If there exists a compact set $K \subset \hat{\Omega}$ such that $\operatorname{supp}\left(\hat{\mu}_{n}\right) \subset K$, for every $n \in \mathbb{N}$, then the measure $\hat{\mu}$ given by Proposition 4.1 also satisfies $\operatorname{supp}(\hat{\mu}) \subset K$.
Proof. Since $-\operatorname{div}\left(\left|\nabla w_{n}\right|^{p-2} \nabla w_{n}\right)=1$ in $\hat{\Omega} \backslash K$, and $w_{n}$ converges weakly to $w$ in $W_{0}^{1, p}(\hat{\Omega})$ and strongly in $W_{0}^{1, q}(\hat{\Omega}), 1 \leq q<p$, we deduce that

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)=1 \text { in } \hat{\Omega} \backslash K \tag{4.36}
\end{equation*}
$$

Then, taking in (4.32) $v=w \varphi$, with $\varphi \in C_{c}^{\infty}(\hat{\Omega} \backslash K)$, we get

$$
\begin{equation*}
\int_{\hat{\Omega}}|w|^{p} \varphi \mathrm{~d} \hat{\mu}=0, \quad \forall \varphi \in C_{c}^{\infty}(\hat{\Omega} \backslash K) \tag{4.37}
\end{equation*}
$$

On the other hand, from $w \geq 0$ q.e. in $\hat{\Omega}$, (4.36) and the strong maximum principle for the $p$-Laplace operator (see e.g. [18]), we deduce $w>0$ in $\hat{\Omega} \backslash K$. Together with (4.37), this implies that the support of $\hat{\mu}$ is contained in $K$.

Better than Proposition 4.2 (b) and (d), we will use the following results.
Proposition 4.5. Assume that the support of the measure $\hat{\mu}$ given by Proposition 4.1 is contained in $\bar{\Omega}$ and let $\omega$ be a Lipschitz open subset of $\Omega$. Then, the set

$$
\begin{equation*}
D_{\omega}=\left\{w \varphi: \varphi \in \mathcal{S}_{\omega} \cap C^{\infty}(\bar{\omega})\right\} \tag{4.38}
\end{equation*}
$$

is dense in $W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\hat{\mu}}^{p}(\bar{\omega})$.
Proof. First of all, we remark that for every $u$ in $W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\hat{\mu}}^{p}(\bar{\omega})$, there exist a sequence $u_{n} \in W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap$ $L_{\hat{\mu}}^{p}(\bar{\omega})$ and $O_{n} \subset \hat{\Omega}$ open, with $\overline{\partial \omega \cap \Omega} \subset O_{n}$, such that $u_{n}=0$ q.e. in $O_{n} \cap \bar{\omega}$ and $u_{n}$ converges to $u$ in $W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\hat{\mu}}^{p}(\bar{\omega})$. For this purpose, we use that by definition of $W_{\partial \omega \cap \Omega}^{1, p}(\omega)$, there exists a sequence $O_{n} \subset \hat{\Omega}$ open, with $\overline{\partial \omega \cap \Omega} \subset O_{n}$ and $\psi_{n} \in C^{\infty}(\bar{\omega})$, with $\psi_{n}=0$ in $O_{n} \cap \bar{\omega}$, such that $\psi_{n}$ converges to $u$ in $W^{1, p}(\omega)$. Then we take

$$
u_{n}=\left(\psi_{n} \wedge u^{+}\right)^{+}-\left(\left(-\psi_{n}\right) \wedge u^{-}\right)^{+}
$$

In order to prove Proposition 4.5, it is then enough to show that for every $u \in W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\hat{\mu}}^{p}(\bar{\omega})$ such that there exits an open set $O \subset \hat{\Omega}$ with $\overline{\partial \omega \cap \Omega} \subset O, u=0$ q.e. in $O \cap \bar{\omega}$, and for every $\varepsilon>0$, there exists $\varphi \in C_{c}^{\infty}(\hat{\Omega})$ which vanishes in a neighborhood of $\overline{\partial \omega \cap \Omega}$ such that

$$
\begin{equation*}
\|u-w \varphi\|_{W^{1, p}(\omega) \cap L_{\mu}^{p}(\bar{\omega})}<\varepsilon . \tag{4.39}
\end{equation*}
$$

Using a regularization by convolution, it is enough to prove (4.39) for $\varphi$ in $W_{0}^{1, p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$ which vanishes on a neighborhood of $\overline{\partial \omega \cap \Omega}$.

Given $u, O$ and $\varepsilon$ as above, we observe that $Z_{\omega}(u)$ is in $W^{1, p}(\Omega) \cap L_{\hat{\mu}}^{p}(\bar{\Omega})$ and, since $\operatorname{supp}(\hat{\mu}) \subset \bar{\Omega}$, we have that $Q_{\omega}(u) \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}}^{p}(\hat{\Omega})\left(P, Z_{\omega}\right.$ and $Q_{\omega}$ are defined in Sect. 2). Thus, taking an open set $O^{\prime}$ with $\overline{\partial \omega \cap \Omega} \subset O^{\prime}, \overline{O^{\prime}} \subset O$ and a function $\psi \in C^{\infty}(\hat{\Omega})$, with $\psi=1$ in $\hat{\Omega} \backslash O, \psi=0$ in $O^{\prime}$, the function $u^{*}=Q_{\omega}(u) \psi$ is in $W_{0}^{1, p}(\hat{\Omega}) \cap L_{\hat{\mu}}^{p}(\hat{\Omega})$, vanishes in $O^{\prime}$ and is equal to $u$ q.e. in $\bar{\omega}$.

We define $\mu^{*} \in \mathcal{M}_{0}^{p}(\hat{\Omega})$ by

$$
\mu^{*}(B)=\left\{\begin{array}{ll}
\hat{\mu}(B) & \text { if } C_{p}\left(B \cap O^{\prime}\right)=0 \\
+\infty & \text { if } C_{p}\left(B \cap O^{\prime}\right)>0,
\end{array} \quad \forall B \subset \hat{\Omega}\right. \text { Borel, }
$$

and we observe that since $u^{*}=0$ in $O^{\prime}$ then $u^{*} \in L_{\mu^{*}}^{p}(\hat{\Omega})$. From Proposition $4.2(\mathrm{~b})$ applied to $\mu^{*}$ we derive that taking $w^{*}$ as the solution of

$$
\left\{\begin{array}{l}
w^{*} \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\mu^{*}}^{p}(\hat{\Omega})  \tag{4.40}\\
\int_{\hat{\Omega}}\left|\nabla w^{*}\right|^{p-2} \nabla w^{*} \nabla v \mathrm{~d} x+\int_{\hat{\Omega}}\left|w^{*}\right|^{p-2} w^{*} v \mathrm{~d} \mu^{*}=\int_{\hat{\Omega}} v \mathrm{~d} x \\
\forall v \in W_{0}^{1, p}(\hat{\Omega}) \cap L_{\mu^{*}}^{p}(\hat{\Omega}),
\end{array}\right.
$$

there exists $\varphi^{*} \in C_{c}^{\infty}(\hat{\Omega})$ such that

$$
\left\|u^{*}-w^{*} \varphi^{*}\right\|_{W_{0}^{1, p}(\hat{\Omega}) \cap L_{\mu^{*}}^{p}(\hat{\Omega})}<\varepsilon
$$

Using then that $\left(w^{*}-\eta\right)^{+} \varphi^{*}$ converges to $w^{*} \varphi^{*}$ in $W_{0}^{1, p}(\hat{\Omega}) \cap L_{\mu^{*}}^{p}(\hat{\Omega})$ when $\eta$ tends to zero from the right, we also have, for $\eta>0$ small enough

$$
\begin{equation*}
\left\|u^{*}-\left(w^{*}-\eta\right)^{+} \varphi^{*}\right\|_{W_{0}^{1, p}(\hat{\Omega}) \cap L_{\mu^{*}}^{p}(\hat{\Omega})}<\varepsilon . \tag{4.41}
\end{equation*}
$$

Since $u^{*}$ and $\left(w^{*}-\eta\right)^{+}$vanish in $O^{\prime}$, this also holds replacing $\mu^{*}$ by $\hat{\mu}$.
From $\hat{\mu} \leq \mu^{*}$, the comparison principle (see Prop. 1.5 in [8]) proves that $0 \leq w^{*} \leq w$ and thus,

$$
w \frac{\left(w^{*}-\eta\right)^{+}}{w \vee \eta} \varphi^{*}=\left(w^{*}-\eta\right)^{+} \varphi^{*}
$$

Taking then

$$
\varphi=\frac{\left(w^{*}-\eta\right)^{+}}{w \vee \eta} \varphi^{*} \in W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L^{\infty}(\omega)
$$

and using that $w^{*}$ and then $\varphi$ vanishes in $O^{\prime}$, we conclude from (4.41) the proof of Proposition 4.5.
Proposition 4.6. Assume that in Proposition $4.1 \operatorname{supp}\left(\hat{\mu}_{n}\right) \subset \bar{\Omega}$, for every $n \in \mathbb{N}$, and consider an open Lipschitz subset $\omega$ of $\Omega$. Then for every sequence $v_{n} \in W^{1, p}(\omega)$, which converges weakly in $W^{1, p}(\omega)$ to a function $v$ and every $\psi \in \mathcal{S}_{\omega}$, we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\int_{\omega}\left|\nabla\left(v_{n}-v\right)\right|^{p}|\psi|^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left|v_{n}\right|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu}_{n}\right) \geq \frac{1}{\|P\|} \int_{\bar{\omega}}|v|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu} \tag{4.42}
\end{equation*}
$$

Proof. Similarly to the proof of Proposition 4.5, we remark that thanks to $\operatorname{supp}\left(\hat{\mu}_{n}\right) \subset \bar{\Omega}$, we have that

$$
\int_{\bar{\omega}}\left|v_{n}\right|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu}_{n}=\int_{\hat{\Omega}}\left|Q_{\omega}\left(v_{n} \psi\right)\right|^{p} \mathrm{~d} \hat{\mu}_{n}
$$

So, using the convexity of the function $\xi \in \mathbb{R}^{N} \rightarrow|\xi|^{p} \in \mathbb{R}$, Rellich-Kondrachov's compactness theorem, $\|P\| \geq 1,\left\|Z_{\omega}\right\|=1$ and (4.34), we obtain

$$
\begin{aligned}
& \int_{\omega}\left|\nabla\left(v_{n}-v\right)\right|^{p}|\psi|^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left|v_{n}\right|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu}_{n} \geq \\
& \left\|\left(v_{n}-v\right) \psi\right\|_{W^{1, p}(\omega)}^{p}-p \int_{\omega}\left|\nabla\left(\left(v_{n}-v\right) \psi\right)\right|^{p-2} \nabla\left(\left(v_{n}-v\right) \psi\right) \nabla \psi\left(v_{n}-v\right) \mathrm{d} x \\
& -\int_{\omega}\left|\left(v_{n}-v\right) \psi\right|^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left|v_{n}\right|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu}_{n} \\
& =\left\|\left(v_{n}-v\right) \psi\right\|_{W^{1, p}(\omega)}^{p}+\int_{\bar{\omega}}\left|v_{n}\right|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu}_{n}+O_{n} \\
& \geq \frac{1}{\|P\|} \int_{\hat{\Omega}}\left|\nabla Q_{\omega}\left(\left(v_{n}-v\right) \psi\right)\right|^{p} \mathrm{~d} x+\int_{\hat{\Omega}}\left|Q_{\omega}\left(v_{n} \psi\right)\right|^{p} \mathrm{~d} \hat{\mu}_{n}+O_{n} \\
& \geq \frac{1}{\|P\|}\left(\int_{\hat{\Omega}}\left|\nabla Q_{\omega}\left(\left(v_{n}-v\right) \psi\right)\right|^{p} \mathrm{~d} x+\int_{\hat{\Omega}}\left|Q_{\omega}\left(v_{n} \psi\right)\right|^{p} \mathrm{~d} \hat{\mu}_{n}\right)+O_{n} \\
& \geq \frac{1}{\|P\|} \int_{\hat{\Omega}}\left|Q_{\omega}(v \psi)\right|^{p} \mathrm{~d} \hat{\mu}+O_{n}=\frac{1}{\|P\|} \int_{\bar{\omega}}|v|^{p}|\psi|^{p} \mathrm{~d} \hat{\mu}+O_{n} .
\end{aligned}
$$

This proves (4.42).

## 5. Estimates and a local first representation of the limit problem

For $\Omega, a, \mu_{n}$ and $F_{n}$ as in Section 2 and a Lipschitz open subset $\omega$ of $\Omega$, we will consider along this section a sequence $u_{n} \in W^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ which satisfies (3.23) and (3.24), with $g_{n}$ converging weakly in $L^{p^{\prime}}(\omega)^{M}$ to a function $g$ and $G_{n}$ converging strongly in $L^{p^{\prime}}(\omega)^{M \times N}$ to a function $G$. Thanks to Proposition 4.1 applied to the sequence $\hat{\mu}_{n}$ defined as

$$
\begin{equation*}
\hat{\mu}_{n}(B)=\mu_{n}(B \cap \bar{\Omega}), \quad \forall B \subset \hat{\Omega} \text { Borel }, \tag{5.43}
\end{equation*}
$$

we can also assume that there exist $w$ and $\hat{\mu}$ in the conditions of this proposition. By Proposition 4.4, the support of this measure $\hat{\mu}$ is contained in $\bar{\Omega}$. The restriction of $\hat{\mu}$ to $\bar{\Omega}$ will be denoted by $\mu$.

Thanks to (3.23), we can also assume that there exists $u \in W^{1, p}(\omega)^{M}$ such that $u_{n}$ converges weakly to $u$ in $W^{1, p}(\omega)^{M}$. Since by (3.23) and (4.42), the function $u$ satisfies

$$
\int_{\hat{\omega}}|u|^{p}|\psi|^{p} \mathrm{~d} \mu \leq C\|\psi\|_{L^{\infty}(\omega)}, \quad \forall \psi \in S_{\omega}
$$

we also get from the monotone convergence theorem that $u$ satisfies

$$
\begin{equation*}
u \in L_{\mu}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M} \tag{5.44}
\end{equation*}
$$

Our purpose in the present section is to obtain some estimates for the sequence $u_{n}$. As a consequence, we will obtain a first representation for the problem satisfied by the function $u$ (limit problem). The fact of considering $\omega$ instead of $\Omega$ will allow us to prove the local character of the limit problem.

In order to study the asymptotic behavior of $u_{n}$, we start with the following result, which follows from Proposition 5.4 in [5].
Proposition 5.1. The sequence $u_{n}$ considered above converges to $u$ strongly in $W^{1, q}(\omega)^{M}, 1 \leq q<p$ and therefore $D u_{n}$ converges in measure in $\omega$.

As a consequence, we have the following lemma.
Lemma 5.2. The following convergences hold

$$
\begin{align*}
a\left(x, D u_{n}\right) \rightarrow & a(x, D u) \text { strongly in } L^{r}(\omega)^{M \times N}, 1 \leq r<p^{\prime}, \text { and weakly in } L^{p^{\prime}}(\omega)^{M \times N},  \tag{5.45}\\
& \left|a\left(x, D u_{n}\right)-a\left(x, D\left(u_{n}-u\right)\right)\right| \rightarrow|a(x, D u)| \text { strongly in } L^{p^{\prime}}(\omega) . \tag{5.46}
\end{align*}
$$

Proof. From Proposition 5.1, (2.10) and (2.12), we easily derive (5.45).
To prove (5.46) we use that Proposition 5.1 and the inequality

$$
\left|a\left(x, D u_{n}\right)-a\left(x, D\left(u_{n}-u\right)\right)\right| \leq \gamma\left(r+\left|D u_{n}\right|+\left|D\left(u_{n}-u\right)\right|\right)^{p-2}|D u| \text { a.e. in } \Omega,
$$

show that $\left|a\left(x, D u_{n}\right)-a\left(x, D\left(u_{n}-u\right)\right)\right|$ converges in measure to $|a(x, D u)|$ and its $p^{\prime}$-th power is equiintegrable. This implies (5.46).

For $u_{n}$ and $z_{n}$ satisfying similar conditions to $u_{n}$, the following lemma provides an estimate for $D\left(u_{n}-z_{n}\right)$. The idea is to study the difference $u_{n}-z_{n}-w_{n} \psi_{m}$, where $\psi_{m}$ is such that $w \psi_{m}$ is close to $u-z(z$ is the limit of $z_{n}$ ). Recall that $w_{n} \psi_{m}$ is the corrector with limit $w \psi_{m} \sim u-z$ relative to the homogenization problem for the operator $v \rightarrow-\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)+|v|^{p-2} v \mathrm{~d} \mu_{n}$ in $\hat{\Omega}$ with Dirichlet conditions.
Lemma 5.3. There exists $C>0$ which only depends on $\alpha$ and $\gamma$ such that for every $\varphi \in \mathcal{S}_{\omega}, \varphi \geq 0$ in $\omega$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\int_{\omega}\left|D\left(u_{n}-u\right)\right|^{p} \varphi \mathrm{~d} x+\int_{\bar{\omega}}\left|u_{n}\right|^{p} \varphi \mathrm{~d} \mu_{n}\right) \leq C \int_{\bar{\omega}}|u|^{p} \varphi \mathrm{~d} \mu . \tag{5.47}
\end{equation*}
$$

Moreover, if besides $u_{n}, u, g_{n}, g, G_{n}$ and $G$, we consider $z_{n} \in W^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ with $\left\|z_{n}\right\|_{W^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}}$ bounded, converging weakly in $W^{1, p}(\omega)^{M}$ to a function $z \in W^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega} \backslash$ $\overline{\partial \omega \cap \Omega})^{M}$, such that there exist $h_{n}$ converging weakly in $L^{p^{\prime}}(\omega)^{M}$ to a function $h$ and $H_{n}$ converging strongly in $L^{p^{\prime}}(\omega)^{M \times N}$ to a function $H$ with

$$
\left\{\begin{array}{l}
\int_{\omega} a\left(x, D z_{n}\right): D v \mathrm{~d} x+\int_{\bar{\omega}} F_{n}\left(x, z_{n}\right) v \mathrm{~d} \mu_{n}=\int_{\omega} h_{n} v \mathrm{~d} x+\int_{\omega} H_{n}: D v \mathrm{~d} x  \tag{5.48}\\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

then, for every $\varphi \in \mathcal{S}_{\omega}, \varphi \geq 0$ in $\omega$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\int_{\omega}\left|D\left(u_{n}-z_{n}-u+z\right)\right|^{p} \varphi \mathrm{~d} x+\int_{\bar{\omega}}\left|u_{n}-z_{n}\right|^{p} \varphi \mathrm{~d} \mu_{n}\right) \leq C \int_{\bar{\omega}}(|u|+|z|)^{\frac{p(p-2)}{p-1}}|u-z|^{\frac{p}{p-1}} \varphi \mathrm{~d} \mu \tag{5.49}
\end{equation*}
$$

Proof. For $\varphi \in \mathcal{S}_{\omega}, \varphi \geq 0$ in $\omega$, we consider $\phi \in \mathcal{S}_{\omega}$, such that $\phi=1$ in $\operatorname{supp}(\varphi)$. Then, $(u-z) \phi \in$ $W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}$ and so, from Proposition 4.5, there exists $\psi_{m} \in S_{\omega}^{M}$ such that $w \psi_{m}$ converges to $(u-z) \phi$ in $W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}$. Taking $\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi$ as test function in the difference of (3.24) and (5.48), we get

$$
\begin{array}{r}
\int_{\omega}\left[a\left(x, D u_{n}\right)-a\left(x, D z_{n}\right)\right]: D\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi \mathrm{d} x+\int_{\omega}\left[a\left(x, D u_{n}\right)-a\left(x, D z_{n}\right)\right]:\left[\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \otimes \nabla \varphi\right] \mathrm{d} x \\
+\int_{\bar{\omega}}\left[F_{n}\left(x, u_{n}\right)-F_{n}\left(x, z_{n}\right)\right]\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi \mathrm{d} \mu_{n}=\int_{\omega}\left(g_{n}-h_{n}\right)\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi \mathrm{d} x \\
\\
\quad+\int_{\omega}\left(G_{n}-H_{n}\right): D\left(\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi\right) \mathrm{d} x
\end{array}
$$

Applying (5.46) to $u_{n}$ and $z_{n}$ and using that $\left(u_{n}-z_{n}-w_{n} \psi_{m}\right)$ converges weakly in $W^{1, p}(\omega)^{M}$, and then strongly in $L^{p}(\omega)^{M}$, to $(u-z)(1-\phi)$ when $n$ and then $m$ tends to infinity, $g_{n}-h_{n}$ converges weakly in $L^{p^{\prime}}(\omega)^{M}, G_{n}-H_{n}$ converges strongly in $L^{p^{\prime}}(\omega)^{M \times N}$ and $\phi=1$ in $\operatorname{supp}(\varphi)$, the above equality gives
$\int_{\omega}\left[a\left(x, D\left(u_{n}-u\right)\right)-a\left(x, D\left(z_{n}-z\right)\right)\right]: D\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi \mathrm{d} x$

$$
+\int_{\bar{\omega}}\left[F_{n}\left(x, u_{n}\right)-F_{n}\left(x, z_{n}\right)\right]\left(u_{n}-z_{n}-w_{n} \psi_{m}\right) \varphi \mathrm{d} \mu_{n}=O_{m, n}
$$

or
$\int_{\omega}\left[a\left(x, D\left(u_{n}-u\right)\right)-a\left(x, D\left(z_{n}-z\right)\right)\right]: D\left(u_{n}-z_{n}-u+z\right) \varphi \mathrm{d} x+\int_{\bar{\omega}}\left[F_{n}\left(x, u_{n}\right)-F_{n}\left(x, z_{n}\right)\right]\left(u_{n}-z_{n}\right) \varphi \mathrm{d} \mu_{n}=$
$\int_{\omega}\left[a\left(x, D\left(u_{n}-u\right)\right)-a\left(x, D\left(z_{n}-z\right)\right)\right]: D\left(w_{n} \psi_{m}-u+z\right) \varphi \mathrm{d} x+\int_{\bar{\omega}}\left[F_{n}\left(x, u_{n}\right)-F_{n}\left(x, z_{n}\right)\right] w_{n} \psi_{m} \varphi \mathrm{~d} \mu_{n}+O_{m, n}$.

By (2.9), (2.10), $\left|D\left(u_{n}-z_{n}-u+z\right)\right| \varphi$ converging weakly to zero in $L^{p^{\prime}}(\omega)$ (use Lem. 5.1), (2.15) and (2.16), this gives

$$
\begin{aligned}
& \alpha \int_{\omega}\left|D\left(u_{n}-u-z_{n}+z\right)\right|^{p} \varphi \mathrm{~d} x+\alpha \int_{\bar{\omega}}\left|u_{n}-z_{n}\right|^{p} \varphi \mathrm{~d} \mu_{n} \leq \\
& \qquad \begin{aligned}
& \gamma \int_{\omega}\left[\left|D\left(u_{n}-u\right)\right|+\left|D\left(z_{n}-z\right)\right|\right]^{p-2}\left|D\left(u_{n}-z_{n}-u+z\right)\right|\left|D\left(\left(w_{n}-w\right) \psi_{m}+w \psi_{m}-u+z\right)\right| \varphi \mathrm{d} x \\
&+\gamma \int_{\bar{\omega}}\left(\left|u_{n}\right|+\left|z_{n}\right|\right)^{p-2}\left|u_{n}-z_{n}\right|\left|w_{n} \psi_{m}\right| \varphi \mathrm{d} \mu_{n}+O_{m, n}
\end{aligned}
\end{aligned}
$$

Young's and Hölder's inequality allows us to write

$$
\begin{align*}
\int_{\omega} \mid D\left(u_{n}-u-z_{n}+\right. & z)\left.\right|^{p} \varphi \mathrm{~d} x+\int_{\bar{\omega}}\left|u_{n}-z_{n}\right|^{p} \varphi \mathrm{~d} \mu_{n} \leq \\
& C\left(\int_{\omega}\left(\left|D\left(u_{n}-u\right)\right|+\left|D\left(z_{n}-z\right)\right|\right)^{p} \varphi \mathrm{~d} x+\int_{\bar{\omega}}\left(\left|u_{n}\right|+\left|z_{n}\right|\right)^{p} \varphi \mathrm{~d} \mu_{n}\right)^{\frac{p-2}{p-1}} \\
& \times\left(\int_{\omega}\left|D\left(\left(w_{n}-w\right) \psi_{m}\right)\right|^{p} \varphi \mathrm{~d} x+\int_{\bar{\omega}}\left|w_{n} \psi_{m}\right|^{p} \varphi \mathrm{~d} \hat{\mu}_{n}\right)^{\frac{1}{p-1}}+O_{m, n} \\
\leq & C\left(\int_{\omega}\left(\left|D\left(u_{n}-u\right)\right|+\left|D\left(z_{n}-z\right)\right|\right)^{p} \varphi \mathrm{~d} x+\int_{\bar{\omega}}\left(\left|u_{n}\right|+\left|z_{n}\right|\right)^{p} \varphi \mathrm{~d} \mu_{n}\right)^{\frac{p-2}{p-1}} \\
\times & \left(\int_{\hat{\Omega}}\left|D\left(\left(w_{n}-w\right) Q_{\omega}\left(\psi_{m}\right)\right)\right|^{p} Q_{\omega}(\varphi) \mathrm{d} x+\int_{\hat{\Omega}}\left|w_{n} Q_{\omega}\left(\psi_{m}\right)\right|^{p} Q_{\omega}(\varphi) \mathrm{d} \hat{\mu}_{n}\right)^{\frac{1}{p-1}}+O_{m, n} \tag{5.50}
\end{align*}
$$

Taking $z_{n}=z=0$ in (5.50), and using (4.33), $\operatorname{supp}(\hat{\mu}) \subset \bar{\Omega}$ and $\mu$ equals to the restriction of $\hat{\mu}$ in $\bar{\Omega}$, we deduce (5.47).

Finally, to obtain (5.49), it is enough to apply (4.33) in (5.50) together with the estimation (5.47) for $u_{n}$ and $z_{n}$.

Using Lemma 5.3, we will now obtain a first version of the limit problem satisfied by $u$.
Proposition 5.4. There exists $T \in L_{\mu}^{p^{\prime}}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ such that $u$ satisfies

$$
\left\{\begin{array}{l}
u \in W^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}  \tag{5.51}\\
\int_{\omega} a(x, D u): D v \mathrm{~d} x+\int_{\bar{\omega}} T v \mathrm{~d} \mu=\int_{\omega} g v \mathrm{~d} x+\int_{\omega} G: D v \mathrm{~d} x \\
\forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M}
\end{array}\right.
$$

The function $T$ is such that for every $\psi \in \mathcal{S}_{\omega}^{M}$, we have

$$
\begin{equation*}
\int_{\bar{\omega}} T w \psi \mathrm{~d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\omega} a\left(x, D\left(u_{n}-u\right)\right):\left(\psi \otimes \nabla\left(w_{n}-w\right)\right) \mathrm{d} x+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) w_{n} \psi \mathrm{~d} \mu_{n}\right) \tag{5.52}
\end{equation*}
$$

and satisfies that there exists $C>0$, which only depends on $\alpha$ and $\gamma$, such that

$$
\begin{equation*}
|T| \leq C|u|^{p-1} \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega} . \tag{5.53}
\end{equation*}
$$

Proof. Given $\psi \in \mathcal{S}_{\omega}^{M}$, we take $w_{n} \psi$ as test function in (3.24). This gives

$$
\begin{align*}
& \int_{\omega} a\left(x, D u_{n}\right): D \psi w_{n} \mathrm{~d} x+\int_{\omega} a\left(x, D u_{n}\right):(\psi \otimes \nabla w) \mathrm{d} x \\
& +\int_{\omega} a\left(x, D u_{n}\right):\left(\psi \otimes \nabla\left(w_{n}-w\right)\right) \mathrm{d} x+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) w_{n} \psi \mathrm{~d} \mu_{n}= \\
& \qquad \int_{\omega} g_{n} w_{n} \psi \mathrm{~d} x+\int_{\omega} G_{n}: D\left(w_{n} \psi\right) \mathrm{d} x . \tag{5.54}
\end{align*}
$$

Using that $g_{n}$ converges weakly in $L^{p^{\prime}}(\omega)^{M}$ to $g, G_{n}$ converges strongly in $L^{p^{\prime}}(\omega)^{M \times N}$ to $G$ and $u_{n}$ and $w_{n}$ converge weakly in $W^{1, p}(\omega)^{M}$ and $W^{1, p}(\Omega)$ to $u$ and $w$ respectively (and then strongly in $L^{p}(\omega)^{M}$ and $\left.L^{p}(\Omega)\right),(5.45)$ and (5.46), we get

$$
\begin{align*}
& \int_{\omega} a(x, D u): D(w \psi) \mathrm{d} x+\int_{\omega} a\left(x, D\left(u_{n}-u\right)\right):\left(\psi \otimes \nabla\left(w_{n}-w\right)\right) \mathrm{d} x \\
&+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) w_{n} \psi \mathrm{~d} \mu_{n}=\int_{\omega} g w \psi \mathrm{~d} x+\int_{\omega} G: D(w \psi) \mathrm{d} x+O_{n} \tag{5.55}
\end{align*}
$$

Since $\left\|w_{n}\right\|_{W_{0}^{1, p}(\hat{\Omega}) \cap L_{\mu_{n}}^{p}(\hat{\Omega})}$ is bounded, (3.23), (2.12) and (2.18), we have

$$
\int_{\omega}\left|a\left(x, D\left(u_{n}-u\right)\right)\right|\left|\nabla\left(w_{n}-w\right)\right| \mathrm{d} x+\int_{\bar{\omega}}\left|F_{n}\left(x, u_{n}\right)\right|\left|w_{n}\right| \mathrm{d} \mu_{n} \leq C .
$$

Thus, there exists a vector Radon measure $\rho$ on $\bar{\omega}$, such that for every $\varphi \in C^{0}(\bar{\omega})^{M}$, it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\int_{\omega} a\left(x, D\left(u_{n}-u\right)\right)\left(\varphi \otimes \nabla\left(w_{n}-w\right)\right) \mathrm{d} x+\int_{\bar{\omega}} F_{n}\left(x, u_{n}\right) w_{n} \varphi \mathrm{~d} \mu_{n}\right)=\int_{\bar{\omega}} \varphi \mathrm{d} \rho . \tag{5.56}
\end{equation*}
$$

Using the Cauchy-Schwartz inequality, (2.12), (2.18), the weak convergence of $\left|\nabla\left(w_{n}-w\right)\right|$ to zero in $L^{p}(\omega)$, (5.47) and (4.33), we deduce that $\rho$ satisfies

$$
\begin{align*}
\left|\int_{\bar{\omega}} \varphi \mathrm{d} \rho\right| \leq & C \limsup _{n \rightarrow+\infty}\left(\int_{\omega}\left|D\left(u_{n}-u\right)\right|^{p}|\varphi| \mathrm{d} x+\int_{\bar{\omega}}\left|u_{n}\right|^{p}|\varphi| \mathrm{d} \mu_{n}\right)^{\frac{p-1}{p}} \\
& \times\left(\int_{\omega}\left|\nabla\left(w_{n}-w\right)\right|^{p}|\varphi| \mathrm{d} x+\int_{\bar{\omega}} w_{n}^{p}|\varphi| \mathrm{d} \mu_{n}\right)^{\frac{1}{p}} \\
\leq & C\left(\int_{\bar{\omega}}|u|^{p}|\varphi| \mathrm{d} \mu\right)^{\frac{p-1}{p}}\left(\int_{\bar{\omega}} w^{p}|\varphi| \mathrm{d} \mu\right)^{\frac{1}{p}}, \quad \forall \varphi \in \mathcal{S}_{\omega}^{M} \tag{5.57}
\end{align*}
$$

where $C$ only depends on $\alpha$ and $\gamma$. From the derivation measures theorem, we deduce that there exists a $\mu$-measurable vector function $L: \bar{\omega} \backslash \overline{\partial \omega \cap \Omega} \rightarrow \mathbb{R}^{M}$ such that

$$
\int_{\bar{\omega}} \varphi \mathrm{d} \rho=\int_{\bar{\omega}} L \varphi \mathrm{~d} \mu, \quad \forall \varphi \in \mathcal{S}_{\omega}^{M},
$$

and

$$
|L| \leq C|u|^{p-1} w \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega}
$$

Defining then $T=\left(\frac{L}{w}\right) \chi_{\{w \neq 0\}} \in L_{\mu}^{p^{\prime}}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$, we have that $T$ satisfies (5.52) and (5.53). Moreover, from (5.55) and (5.56) we obtain

$$
\int_{\omega} a(x, D u): D(w \psi) \mathrm{d} x+\int_{\bar{\omega}} T w \psi \mathrm{~d} \mu=\int_{\omega} g w \psi \mathrm{~d} x+\int_{\omega} G: D(w \psi) \mathrm{d} x
$$

for every $\psi \in \mathcal{S}_{\omega}^{M}$, which by the density of the set $D_{\omega}$ given by (4.38) proves that $u$ satisfies (5.51).
To finish this section, let us obtain an estimate about the dependence of the function $T$ given by Proposition 5.4 with respect to $u$. For this purpose, as in Lemma 5.3, we consider $z_{n} \in W^{1, p}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ with $\left\|z_{n}\right\|_{W^{1, p}}(\omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ bounded, converging weakly in $W^{1, p}(\omega)^{M}$ to a function $z \in W^{1, p}(\omega)^{M} \cap$ $L_{\mu}^{p}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$, such that there exist $h_{n}$ converging weakly in $L^{p^{\prime}}(\omega)^{M}$ to a function $h$ and $H_{n}$ converging strongly in $L^{p^{\prime}}(\omega)^{M \times N}$ to a function $H$ which satisfy (5.48). From Proposition 5.4, we also know that there exits $T^{\prime} \in L_{\mu}^{p^{\prime}}(\bar{\omega} \backslash \overline{\partial \omega \cap \Omega})^{M}$ such that

$$
\begin{equation*}
\int_{\bar{\omega}} T^{\prime} w \psi \mathrm{~d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\omega} a\left(x, D\left(z_{n}-z\right)\right):\left(\psi \otimes \nabla\left(w_{n}-w\right)\right) \mathrm{d} x+\int_{\bar{\omega}} F_{n}\left(x, z_{n}\right) w_{n} \psi \mathrm{~d} \mu_{n}\right), \tag{5.58}
\end{equation*}
$$

for every $\psi \in \mathcal{S}_{\omega}^{M}$, and

$$
\begin{equation*}
\int_{\omega} a(x, D z): D v \mathrm{~d} x+\int_{\bar{\omega}} T^{\prime} v \mathrm{~d} \mu=\int_{\omega} h v \mathrm{~d} x+\int_{\omega} H: D v \mathrm{~d} x, \forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M} \cap L_{\mu}^{p}(\bar{\omega})^{M} . \tag{5.59}
\end{equation*}
$$

The following result estimates the difference between $T$ and $T^{\prime}$.
Lemma 5.5. There exist $C_{1}, C_{2}>0$, such that $T$ and $T^{\prime}$ satisfy

$$
\begin{equation*}
\left|T-T^{\prime}\right| \leq C_{1}(|u|+|z|)^{\frac{p(p-2)}{p-1}}|u-z|^{\frac{1}{p-1}} \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega}, \tag{5.60}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T-T^{\prime}\right)(u-z) \geq C_{2}|u-z|^{p} \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega} . \tag{5.61}
\end{equation*}
$$

The constant $C_{1}$ only depends on $\alpha$ and $\gamma$. The constant $C_{2}$ only depends on $\alpha, \Omega$ and $\hat{\Omega}$.
Proof. By (5.52), (5.58), (2.10), (2.16) and Proposition 5.1, for every $\psi \in \mathcal{S}_{\omega}^{M}$, we have

$$
\begin{aligned}
\left|\int_{\bar{\omega}}\left(T-T^{\prime}\right) w \psi \mathrm{~d} \mu\right| \leq & C \int_{\omega}\left(\left|D\left(u_{n}-u\right)\right|+\left|D\left(z_{n}-z\right)\right|\right)^{p-2}\left|D\left(u_{n}-z_{n}-u+z\right)\right|\left|\nabla\left(w_{n}-w\right)\right||\psi| \mathrm{d} x \\
& +\int_{\bar{\omega}}\left(\left|u_{n}\right|+\left|z_{n}\right|\right)^{p-2}\left|u_{n}-z_{n}\right||\psi| w_{n} \mathrm{~d} \mu_{n}+O_{n}
\end{aligned}
$$

which by Hölder's inequality, (5.47) (applied to $u_{n}$ and $z_{n}$ ) and (5.49) gives

$$
\left|\int_{\bar{\omega}}\left(T-T^{\prime}\right) w \psi \mathrm{~d} \mu\right| \leq C\left(\int_{\bar{\omega}}(|u|+|z|)^{p}|\psi| \mathrm{d} \mu\right)^{\frac{p-2}{p-1}}\left(\int_{\bar{\omega}}|u-z|^{p}|\psi| \mathrm{d} \mu\right)^{\frac{1}{p(p-1)}}\left(\int_{\bar{\omega}}|w|^{p}|\psi| \mathrm{d} \mu\right)^{\frac{1}{p}} .
$$

From the measures derivation theorem, we then deduce (5.60).
Let us now prove (5.61). For $\varphi \in S_{\omega}, \varphi \geq 0$, we take $\left(u_{n}-z_{n}\right) \varphi^{p}$ as test function in the difference of (3.24) and (5.48). Using Rellich-Kondrachov's compactness theorem, the weak convergence of $g_{n}-h_{n}$ in $L^{p^{\prime}}(\omega)^{M}$,
the strong convergence of $G_{n}-H_{n}$ in $L^{p^{\prime}}(\omega)^{M \times N}$, (5.51) and (5.59), we have

$$
\begin{align*}
\int_{\omega}\left[a\left(x, D u_{n}\right)-a\left(x, D z_{n}\right)\right]: & D\left(u_{n}-z_{n}\right) \varphi^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left[F_{n}\left(x, u_{n}\right)-F_{n}\left(x, v_{n}\right)\right]\left(u_{n}-z_{n}\right) \varphi^{p} \mathrm{~d} \mu_{n}= \\
& \int_{\omega}(g-h)(u-z) \varphi^{p} \mathrm{~d} x \int_{\omega}(G-H): D\left((u-z) \varphi^{p}\right) \mathrm{d} x+ \\
- & p \int_{\omega}[a(x, D u)-a(x, D z)]:[(u-z) \otimes \nabla \varphi] \varphi^{p-1} \mathrm{~d} x+O_{n} \\
= & \int_{\omega}[a(x, D u)-a(x, D z)]: D(u-z) \varphi^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left(T-T^{\prime}\right)(u-z) \varphi^{p} \mathrm{~d} \mu+O_{n} \tag{5.62}
\end{align*}
$$

which by (5.46) (applied to $u_{n}$ and $z_{n}$ ) implies

$$
\begin{align*}
\int_{\bar{\omega}}\left(T-T^{\prime}\right)(u-z) \varphi^{p} \mathrm{~d} \mu= & \lim _{n \rightarrow \infty}\left(\int_{\omega}\left[a\left(x, D\left(u_{n}-u\right)\right)-a\left(x, D\left(z_{n}-z\right)\right)\right]: D\left(u_{n}-z_{n}-u+z\right) \varphi^{p} \mathrm{~d} x\right. \\
& \left.+\int_{\bar{\omega}}\left[F_{n}\left(x, u_{n}\right)-F_{n}\left(x, z_{n}\right)\right]\left(u_{n}-z_{n}\right) \varphi^{p} \mathrm{~d} \mu_{n}\right) . \tag{5.63}
\end{align*}
$$

Using in the right-hand side of this inequality (2.9), (2.15) and (4.42), we deduce

$$
\begin{align*}
\int_{\bar{\omega}}\left(T-T^{\prime}\right)(u-z) \varphi^{p} \mathrm{~d} \mu & \geq \alpha\left(\int_{\omega}\left|D\left(u_{n}-u-z_{n}+z\right)\right|^{p} \varphi^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left|u_{n}-z_{n}\right|^{p} \varphi^{p} \mathrm{~d} \mu_{n}\right) \\
& \geq \frac{\alpha}{\|P\|} \int_{\bar{\omega}}|u-z|^{p} \varphi^{p} \mathrm{~d} \mu+O_{n}, \quad \forall \varphi \in S_{\omega}, \varphi \geq 0 \tag{5.64}
\end{align*}
$$

From the measures derivation theorem, this proves (5.61).

## 6. Proof of the main Results

In this section we prove that there exists a $\mu$-Carathéodory function $F: \bar{\Omega} \times \mathbb{R}^{M} \rightarrow \mathbb{R}^{M}$ such that the function $T$ given by Proposition 5.4 satisfies $T(x)=F(x, u(x)) \mu$-a.e. in $\bar{\omega} \backslash \overline{\partial \omega \cap \Omega}$. We start with the following lemma. Its proof is completely similar to the one of Theorem 6.9 in [5], and thus we omit it.

Lemma 6.1. We consider a subsequence of $n$ such that there exists the measure $\mu$ defined in the beginning of Section 5. Then, up to another subsequence, we have that for every $q \in \mathbb{Q}^{M}$ and every $m \in \mathbb{N}$, the solution $q_{n}^{m}$ of

$$
\left\{\begin{array}{l}
q_{n}^{m} \in W^{1, p}(\Omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\Omega})^{M}  \tag{6.65}\\
\int_{\Omega} a\left(x, D q_{n}^{m}\right): D v \mathrm{~d} x+\int_{\bar{\Omega}} F_{n}\left(x, q_{n}^{m}\right) v \mathrm{~d} \mu_{n}=m \int_{\Omega}\left[\left|w_{n} q\right|^{p-2} w_{n} q-\left|q_{n}^{m}\right|^{p-2} q_{n}^{m}\right] v \mathrm{~d} x \\
\forall v \in W^{1, p}(\Omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\Omega})^{M}
\end{array}\right.
$$

converges to a function $q^{m}$ weakly in $W^{1, p}(\Omega)^{M}$. This function satisfies that there exists $T_{q}^{m} \in L^{p^{\prime}}(\bar{\Omega})$ such that

$$
\left\{\begin{array}{l}
q^{m} \in W^{1, p}(\Omega)^{M} \cap L_{\mu}^{p}(\bar{\Omega})^{M}  \tag{6.66}\\
\int_{\Omega} a\left(x, D q^{m}\right): D v \mathrm{~d} x+\int_{\bar{\Omega}} T_{q}^{m} v \mathrm{~d} \mu=m \int_{\Omega}\left[|w q|^{p-2} w q-\left|q^{m}\right|^{p-2} q^{m}\right] v \mathrm{~d} x \\
\forall v \in W^{1, p}(\Omega)^{M} \cap L_{\mu}^{p}(\bar{\Omega})^{M}
\end{array}\right.
$$

When $m$ tends to infinity, the sequence $q^{m}$ converges to $w q$ strongly in $W^{1, p}(\Omega)^{M} \cap L_{\mu_{n}}^{p}(\bar{\Omega})^{M}$ and the sequence $T_{q}^{m}$ converges strongly in $L_{\mu}^{p^{\prime}}(\bar{\Omega})^{M}$ to a function $T_{q}$.
Definition 6.2. We consider the subsequence of $n$ given by Lemma 6.1. Then, we define $\mathcal{F}: \bar{\Omega} \times \mathbb{Q}^{M} \rightarrow \mathbb{R}^{M}$ by

$$
\mathcal{F}(x, q)=T_{q}(x), \quad \forall q \in \mathbb{Q}^{M}, \mu \text {-a.e. } x \in \bar{\Omega} .
$$

By Lemma $6.1,(5.53),(5.60)$ and (5.61), it is easy to show that for every $q_{1}, q_{2} \in \mathbb{Q}^{M}$ and $\mu$-a.e. $x \in \bar{\Omega}$, we have

$$
\begin{gather*}
\mathcal{F}(x, 0)=0  \tag{6.67}\\
\left|\mathcal{F}\left(x, q_{2}\right)-\mathcal{F}\left(x, q_{1}\right)\right| \leq C_{1}\left(\left|q_{1}\right|+\left|q_{2}\right|\right)^{\frac{p(p-2)}{p-1}}\left|q_{2}-q_{1}\right|^{\frac{1}{p-1}} w(x)^{p-1}  \tag{6.68}\\
\left(\mathcal{F}\left(x, q_{2}\right)-\mathcal{F}\left(x, q_{1}\right)\right)\left(q_{2}-q_{1}\right) \geq C_{2}\left|q_{2}-q_{1}\right|^{p} w(x)^{p-1} \tag{6.69}
\end{gather*}
$$

Using (6.68), we can extend by continuity $\mathcal{F}$ to $\bar{\Omega} \times \mathbb{R}^{M}$. Then, we define $F: \bar{\Omega} \times \mathbb{R}^{M} \rightarrow \mathbb{R}^{M}$ by

$$
F(x, s)= \begin{cases}\mathcal{F}\left(x, \frac{s}{w(x)}\right) & \text { if } w(x)>0 \\ |s|^{p-2} s & \text { if } w(x)=0\end{cases}
$$

Thanks to Lemma 6.1, Proposition 5.4 and estimate (5.60) we can now prove Theorem 3.1.
Proof of Theorem 3.1. We take $u_{n}$ and $u$ as in the statement of the theorem. By Proposition 5.4, there exists $T \in L_{\mu}^{p^{\prime}}(\bar{\omega})^{M}$ such that $u$ is a solution of (5.51). Applying (5.60), with $z$ replaced by $q^{m}$, we have

$$
\begin{equation*}
\left|T-T_{q}^{m}\right| \leq C\left(|u|+\left|q^{m}\right|\right)^{\frac{p(p-2)}{p-1}}\left|u-q^{m}\right|^{\frac{1}{p-1}} \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega} \tag{6.70}
\end{equation*}
$$

and therefore, taking the limit as $m$ tends to infinity, we obtain

$$
|T-F(x, w q)| \leq C(|u|+|w q|)^{\frac{p(p-2)}{p-1}}|u-w q|^{\frac{1}{p-1}} \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega} .
$$

Thus, for every simple function $\phi(x)=\sum_{i=1}^{l} s_{i} \chi_{B_{i}}(x)$, with $s_{i} \in \mathbb{R}^{M}$, $B_{i}$ Borel, we have

$$
|T-F(x, w \phi)| \leq C(|u|+|w \phi|)^{\frac{p(p-2)}{p-1}}|u-w \phi|^{\frac{1}{p-1}} \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega} .
$$

Finally, taking in this inequality $\phi$ as a sequence $\phi_{n}$ such that $w \phi_{n}$ converges $\mu$-a.e. to $u$ in $\bar{\omega} \backslash \overline{\partial \omega \cap \Omega}$ (the existence of such sequence is an easy consequence of Prop. 4.5) and passing to the limit in $n$ thanks to the continuity of $F$ with respect to its second variable, we get

$$
T=F(x, u) \quad \mu \text {-a.e. in } \bar{\omega} \backslash \overline{\partial \omega \cap \Omega}
$$

This proves (3.25) thanks to (5.51) and the fact that the functions of $W_{\partial \omega \cap \Omega}^{1, p}(\omega)$ are zero q.e. on $\overline{\partial \omega \cap \Omega}$.
Proof of Theorem 3.2. Let us just prove (ii). The proof of (i) is much simpler.
Thanks to (3.28) and the assumptions on $a$ and $F_{n}$, problem (3.29) has a unique solution. Moreover, taking $u_{n}$ as test function in (3.29) and using (3.28), (2.11) and (2.17) we get that $u_{n}$ satisfies (3.23). Thus, from $W_{\partial \omega \cap \Omega}^{1, p}(\omega)$ closed, Theorem 3.1 and Proposition 5.1, we deduce that there exists a subsequence of $u_{n}$ which converges weakly in $W_{\partial \omega \cap \Omega}^{1, p}(\omega)^{M}$ and strongly in $W_{\partial \omega \cap \Omega}^{1, q}(\omega)^{M}, 1 \leq q<p$, to a solution $u$ of (3.30). If we prove that $u$ is unique, then the whole sequence $u_{n}$ will converge to $u$ and the proof of (ii) will be finished. For this purpose, it is enough to prove that the measure $\mu$ also satisfies (3.28) and then, from (2.9) and (3.22), we will get the uniqueness of solution of problem (3.30).

Let $v$ be in $W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\mu}^{p}(\bar{\omega})$. Using Proposition 4.5, we consider $\psi_{m} \in \mathcal{S}_{\omega}$ such that $w \psi_{m}$ converges to $v$ in $W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\mu}^{p}(\bar{\omega})$. From (3.28), for every $m \in \mathbb{N}$, we have

$$
\begin{aligned}
\int_{\omega}\left|w_{n} \psi_{m}\right|^{p} \mathrm{~d} x \leq & C_{P}^{p}\left(\int_{\omega}\left|\nabla\left(w_{n} \psi_{m}\right)\right|^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left|w_{n} \psi_{m}\right|^{p} \mathrm{~d} \mu_{n}\right) \\
\leq & C_{P}^{p}\left(\int_{\omega}\left(\left|\nabla\left(w_{n} \psi_{m}\right)\right|^{p}-\left|\nabla\left(\left(w_{n}-w\right) \psi_{m}\right)\right|^{p}\right) \mathrm{d} x\right) \\
& +C_{P}^{p}\left(\int_{\hat{\Omega}}\left|\nabla\left(\left(w_{n}-w\right) Q_{\omega}\left(\psi_{m}\right)\right)\right|^{p} \mathrm{~d} x+\int_{\hat{\Omega}}\left|w_{n} Q_{\omega}\left(\psi_{m}\right)\right|^{p} \mathrm{~d} \hat{\mu}_{n}\right) .
\end{aligned}
$$

Since $w_{n}$ converges strongly to $w$ in $W^{1, q}(\hat{\Omega}), 1 \leq q<p$, reasoning similarly to the proof of (5.46), we have that $\left|\nabla\left(w_{n} \psi_{m}\right)\right|^{p}-\left|\nabla\left(\left(w_{n}-w\right) \psi_{m}\right)\right|^{p}$ converges strongly to $\left|\nabla\left(w \psi_{m}\right)\right|^{p}$ in $L^{1}(\omega)$ and thus

$$
\int_{\omega}\left(\left|\nabla\left(w_{n} \psi_{m}\right)\right|^{p}-\left|\nabla\left(\left(w_{n}-w\right) \psi_{m}\right)\right|^{p}\right) \mathrm{d} x \rightarrow \int_{\omega}\left|\nabla\left(w \psi_{m}\right)\right|^{p} \mathrm{~d} x
$$

whereas from (4.33) and $\mu=\hat{\mu}$ in $\operatorname{supp}(\hat{\mu})=\bar{\Omega}$ we have

$$
\int_{\hat{\Omega}}\left|\nabla\left(\left(w_{n}-w\right) Q_{\omega}\left(\psi_{m}\right)\right)\right|^{p} \mathrm{~d} x+\int_{\hat{\Omega}}\left|w_{n} Q_{\omega}\left(\psi_{m}\right)\right|^{p} \mathrm{~d} \hat{\mu}_{n} \rightarrow \int_{\bar{\omega}}\left|w \psi_{m}\right|^{p} \mathrm{~d} \mu
$$

Thus, using also the semicontinuity of the norm in $L^{p}(\omega)$, we get

$$
\int_{\omega}\left|w \psi_{m}\right|^{p} \mathrm{~d} x \leq C_{P}^{p}\left(\int_{\omega}\left|\nabla\left(w \psi_{m}\right)\right|^{p} \mathrm{~d} x+\int_{\bar{\omega}}\left|w \psi_{m}\right|^{p} \mathrm{~d} \mu\right) .
$$

Taking then $m$ tending to infinity we derive

$$
\int_{\omega}|v|^{p} \mathrm{~d} x \leq C_{P}^{p}\left(\int_{\omega}|\nabla v|^{p} \mathrm{~d} x+\int_{\bar{\omega}}|v|^{p} \mathrm{~d} \mu\right), \quad \forall v \in W_{\partial \omega \cap \Omega}^{1, p}(\omega) \cap L_{\mu}^{p}(\bar{\omega}) .
$$

This finishes the proof of (ii).

Acknowledgements. This work has been partly supported by the projects MTM2005-04914 of the Ministerio de Eduación y Ciencia of Spain and FQM-309 of the Junta de Andalucía.

## References

[1] C. Calvo-Jurado and J. Casado-Díaz, The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pures Appl. 81 (2002) 471-493.
[2] C. Calvo-Jurado, J. Casado-Díaz and M. Luna-Laynez, Homogenization of elliptic problems with the Dirichlet and Neumann conditions imposed on varying subsets. Math. Meth. Appl. Sci. 30 (2007) 1611-1625.
[3] J. Casado-Díaz, Homogenization of general quasi-linear Dirichlet problems with quadratic growth in perforated domains. J. Math. Pures Appl. 76 (1997) 431-476.
[4] J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains. Proc. Roy. Soc. Edinburgh A 127 (1997) 457-478.
[5] J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains. SIAM J. Math. Anal. 31 (2000) 581-624.
[6] D. Cionarescu and F. Murat, Un terme étrange venu d'ailleurs, in Nonlinear partial differential equations and their applications, Collège de France seminar, Vols. II and III, H. Brézis and J.-L. Lions Eds., Research Notes in Math. 60 and 70, Pitman, London (1982) 98-138 and 154-78.
[7] G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains. Manuscripta Math. 61 (1988) 251-278.
[8] G. Dal Maso and A. Garroni, New results on the asymptotic behaviour of Dirichlet problems in perforated domains. Math. Mod. Meth. Appl. Sci. 3 (1994) 373-407.
[9] G. Dal Maso and U. Mosco, Wiener-criterion and 「-convergence. Appl. Math. Optim. 15 (1987) 15-63.
[10] G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Sc. Norm. Sup. Pisa 7 (1997) 765-803.
[11] G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 445-486.
[12] G. Dal Maso, A. Garroni and I.V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators. J. Anal. Math. 71 (1997) 263-313.
[13] A. Damlamian and T. Li, Boundary homogenization for elliptic problems. J. Math. Pures Appl. 66 (1987) 351-361.
[14] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992).
[15] H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivaties are p-th power sumable. Indiana Univ. Math. J. 22 (1972) 139-158.
[16] J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de MintyBrowder. Bull. Soc. Math. France 93 (1965) 97-107.
[17] J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
[18] J. Serrin, Local behaviour of solutions of quasilinear equations. Acta Math. 111 (1964) 302-347.
[19] I.V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains. Mat. Sb. 184 (1993) 67-90.
[20] I.V. Skrypnik, Averaging of quasilinear parabolic problems in domains with fine-grained boundary. Diff. Equations 31 (1995) 327-339.
[21] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989).


[^0]:    Keywords and phrases. Homogenization, varying domains, nonlinear problems.
    ${ }^{1}$ Dpto. de Matemáticas, Escuela Politécnica, Avenida de la Universidad s/n, 10071 Cáceres, Spain. ccalvo@unex.es
    ${ }^{2}$ Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, C. Tarfia s/n, 41012 Sevilla, Spain.
    jcasadod@us.es; mllaynez@us.es

