ESAIM: COCV 15 (2009) 49–67 DOI: 10.1051/cocv:2008021 ESAIM: Control, Optimisation and Calculus of Variations www.esaim-cocv.org

ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS IN VARYING DOMAINS WITH BOUNDARY CONDITIONS ON VARYING SETS

CARMEN CALVO-JURADO¹, JUAN CASADO-DÍAZ² AND MANUEL LUNA-LAYNEZ²

Abstract. For a fixed bounded open set $\Omega \subset \mathbb{R}^N$, a sequence of open sets $\Omega_n \subset \Omega$ and a sequence of sets $\Gamma_n \subset \partial\Omega \cap \partial\Omega_n$, we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on Ω_n , satisfying Neumann boundary conditions on Γ_n and Dirichlet boundary conditions on $\partial\Omega_n \setminus \Gamma_n$. We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on Ω_n and Γ_n locally.

Mathematics Subject Classification. 35B40.

Received March 15, 2007. Revised April 10, 2007 and June 26, 2007. Published online March 6, 2008.

1. INTRODUCTION

For a given Lipschitz bounded open set $\Omega \subset \mathbb{R}^N$, $N \geq 2$, a sequence of open sets $\Omega_n \subset \Omega$ and a sequence of sets $\Gamma_n \subset \partial\Omega \cap \partial\Omega_n$, we study the asymptotic behavior of the solution u_n of the nonlinear elliptic system

$$\begin{cases} -\operatorname{div}\left(a(x, Du_n) - G_n\right) = g_n & \text{in } \Omega_n \\ u_n = 0 & \text{on } \partial\Omega_n \setminus \Gamma_n \\ (a(x, Du_n) - G_n) \nu = 0 & \text{on } \Gamma_n, \end{cases}$$
(1.1)

where $a: \Omega \times \mathbb{R}^{M \times N} \to \mathbb{R}^{M \times N}$, $M \geq 1$, is a Carathéodory function which satisfies standard assumptions so that the operator $v \in W_0^{1,p}(\Omega)^M \mapsto -\operatorname{div} a(x, Dv) \in W^{-1,p'}(\Omega)^M$, $p \geq 2$, defines a monotone operator in the sense of Leray and Lions [16] (see Sect. 2 for the precise assumptions on a) and ν denotes the unitary outward normal to Ω . The sequences g_n and G_n are assumed to converge in $L^{p'}(\Omega)^M$ weakly and $L^{p'}(\Omega)^{M \times N}$ strongly to some functions g and G respectively.

Assuming that $||u_n||_{W^{1,p}(\Omega_n)^M}$ is bounded (this holds for example if there exists C > 0 independent of n with $||v||_{W^{1,p}(\Omega_n)} \leq C ||\nabla v||_{L^p(\Omega_n)^N}$, for every $v \in W^{1,p}(\Omega_n)$, v = 0 on $\partial \Omega_n \setminus \Gamma_n$) and extending u_n by zero outside Ω_n , we prove the existence of a nonnegative Borel measure μ in $\overline{\Omega}$ which does not charge sets of p-capacity zero, and a μ -Carathéodory function $F : \overline{\Omega} \times \mathbb{R}^M \to \mathbb{R}^M$ satisfying monotonicity and continuity properties related

Article published by EDP Sciences

Keywords and phrases. Homogenization, varying domains, nonlinear problems.

 $^{^1}$ D
pto. de Matemáticas, Escuela Politécnica, Avenida de la Universidad
s/n, 10071 Cáceres, Spain. ccalvo@unex.es

 $^{^2}$ D
pto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, C. Tarfi
a $\rm s/n,\,41012$ Sevilla, Spain.

jcasadod@us.es; mllaynez@us.es

to those imposed to a (see (3.20), (3.21), (3.22)), such that u_n converges weakly in $W^{1,p}(\Omega)^M$ and strongly in $W^{1,q}(\Omega)^M$, $1 \le q < p$, to the solution u of the problem

$$\begin{cases} u \in W^{1,p}(\Omega)^M \cap L^p_{\mu}(\overline{\Omega})^M \\ \int_{\Omega} a(x, Du) : Dv \, dx + \int_{\overline{\Omega}} F(x, u)v \, d\mu = \int_{\Omega} gv \, dx + \int_{\Omega} G : Dv \, dx \\ \forall v \in W^{1,p}(\Omega)^M \cap L^p_{\mu}(\overline{\Omega})^M, \end{cases}$$
(1.2)

which (if μ is smooth) can be written as

$$\begin{cases} -\operatorname{div}\left(a(x,Du)-G\right)+F(x,u)\mu=g & \text{in }\Omega\\ \left(a(x,Du)-G\right)\nu+F(x,u)\mu=0 & \text{on }\partial\Omega. \end{cases}$$
(1.3)

The pair (F,μ) does not depend on g_n or G_n , and it depends on Ω_n and Γ_n locally in the sense that if we consider a Lipschitz open set $\omega \subset \Omega$ and we replace in (1.1) Ω_n by $\Omega_n \cap \omega$, Γ_n by $\Gamma_n \cap \overline{\omega}$, then the previous result holds with (F,μ) replaced by $(F_{|\bar{\omega}},\mu_{|\bar{\omega}})$.

The term $F(x, u)\mu$ in (1.2) is similar to the strange term which appears in the homogenization of Dirichlet problems on varying domains (see [1,3–12,19,20]). In fact, if Γ_n is empty, our result follows from [5]. When Γ_n is not empty the main difference is that now μ is defined on $\overline{\Omega}$ and not only on Ω and then the term $F(x, u)\mu$ does not only appears in the equation but also in the boundary conditions of (1.3). Taking $\Omega = \Omega_n$ for every $n \in \mathbb{N}$, the above result proves that the boundary condition corresponding to the limit of a sequence of nonlinear elliptic systems with Dirichlet an Neumann conditions on varying subsets of $\partial\Omega$ is a Fourier-Robin condition. Indeed, the proof of this fact was the origin of the present work. We have preferred to present here the more general case where the open sets Ω_n are variable, in order to show that the homogenization of elliptic Dirichlet problems in varying domains (corresponding to $\Gamma_n = \emptyset$) and the homogenization of elliptic problems with Neumann and Dirichlet conditions imposed on varying sets of the boundary admit a common formulation.

As in the case of Dirichlet problems on varying domains [9], we observe that (1.1) can be written in such way that its structure is similar to (1.2). For this purpose, it is enough to define μ_n as (C_p stands for the *p*-capacity, see Sect. 2)

$$\mu_n(B) = \begin{cases} +\infty & \text{if } C_p(B \cap (\overline{\Omega} \setminus (\Omega_n \cup \Gamma_n))) > 0 \\ 0 & \text{if } C_p(B \cap (\overline{\Omega} \setminus (\Omega_n \cup \Gamma_n))) = 0, \end{cases} \quad \forall B \subset \overline{\Omega} \text{ Borel}, \tag{1.4}$$

and $F_n: \overline{\Omega} \times \mathbb{R}^M \longrightarrow \mathbb{R}^M$ as, for example, $F_n(x,s) = |s|^{p-2}s$. Then (1.1) is equivalent to

$$\begin{cases} u_n \in W^{1,p}(\Omega)^M \cap L^p_{\mu_n}(\overline{\Omega})^M \\ \int_{\Omega} a(x, Du_n) : Dv \, \mathrm{d}x + \int_{\overline{\Omega}} F_n(x, u_n) v \, \mathrm{d}\mu_n = \int_{\Omega} g_n v \, \mathrm{d}x + \int_{\Omega} G_n : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}(\Omega)^M \cap L^p_{\mu_n}(\overline{\Omega})^M. \end{cases}$$
(1.5)

Hence, we can consider (1.1) as a particular case of (1.2). For this reason, better than the homogenization of (1.1), we will study the homogenization of (1.5) for a sequence μ_n of Borel measures in $\overline{\Omega}$ (not necessarily defined from sequences Ω_n , Γ_n as above) which vanish on sets of *p*-capacity zero and a sequence $F_n : \overline{\Omega} \times \mathbb{R}^M \longrightarrow \mathbb{R}^M$ of monotone μ_n -measurable functions (see Sect. 2 for the precise hypotheses on F_n). We prove that, in this more general form, the problem is stable for homogenization, *i.e.* for every sequences μ_n and F_n there exist μ and F such that, at least for a subsequence, the limit problem of (1.5) is still given by (1.2).

Throughout the paper we just consider the case $p \ge 2$. The case $1 \le p < 2$ can be treated in a similar way, after proper modification on the growth and coerciveness hypotheses for the functions a and F_n . The case of linear equations and μ_n concentrated on $\partial\Omega$ (which for problem (1.1) means $\Omega_n = \Omega$ for every $n \in \mathbb{N}$) has been studied in [2], see also [13] for related problems.

2. NOTATIONS AND DEFINITIONS

The minimum and the maximum of two numbers a, b are respectively denoted by $a \wedge b$, $a \vee b$.

The scalar product of two matrices $A, B \in \mathbb{R}^{M \times N}$ will be denoted by A : B.

For a Borel set $B \subset \mathbb{R}^N$ and a Borel measure μ in B, we denote by $L^q_{\mu}(B)$, $1 \leq q \leq +\infty$, the usual Lebesgue

spaces with respect to the measure μ . If μ is the Lebesgue measure, we use the standard notation $L^q(B)$. For every Lipschitz open set $O \subset \mathbb{R}^N$, we denote by $W^{1,q}(O)$, $1 \le q \le +\infty$, the usual Sobolev spaces. We recall that, since we are assuming O Lipschitz, the elements of $W^{1,q}(O)$ have a trace on ∂O and then, they are defined in \overline{O} . Moreover, $C^{\infty}(\overline{O})$ is dense in $W^{1,q}(O)$ if $q < +\infty$. For every subset Υ of ∂O , we define $W^{1,q}_{\Upsilon}(O)$ as the closure in $W^{1,q}(O)$ of the functions in $C^{\infty}(\overline{O})$ which vanish in a neighborhood of $\overline{\Upsilon}$. In the case $\Upsilon = \partial O$, we write $W_0^{1,q}(O)$ instead of $W_{\Upsilon}^{1,q}(O)$.

Along the paper we denote by p a fixed number such that $p \ge 2$. Also we consider a bounded Lipschitz open set $\Omega \subset \mathbb{R}^N$, $N \geq 2$, and a bounded open set $\hat{\Omega}$, such that $\overline{\Omega} \subset \hat{\Omega}$.

We denote by $P: W^{1,p}(\Omega) \longrightarrow W_0^{1,p}(\hat{\Omega})$ a bounded linear operator such that

$$P(u) = u \text{ in } \Omega, \quad \forall u \in W^{1,p}(\Omega).$$
(2.6)

This operator is also chosen bounded from $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ into $W_0^{1,p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$ and such that it transforms nonnegative functions into nonnegative functions. The existence of this extension operator is guaranteed because Ω is Lipschitz (see *e.g.* [17]).

For a Lipschitz open set $\omega \subset \Omega$, we denote

$$\mathcal{S}_{\omega} = \{ \varphi : \varphi \in W^{1,\infty}(\omega), \quad \varphi = 0 \text{ in a neighborhood of } \overline{\partial \omega \cap \Omega} \}.$$

Also, we define the bounded linear operators $Z_{\omega}: W^{1,p}_{\partial\omega\cap\Omega}(\omega) \to W^{1,p}(\Omega), \ Q_{\omega}: W^{1,p}_{\partial\omega\cap\Omega}(\omega) \to W^{1,p}_0(\hat{\Omega})$ as

$$Z_{\omega}(u) = \begin{cases} u & \text{in } \overline{\omega} \\ 0 & \text{in } \overline{\Omega} \setminus \overline{\omega}, \end{cases} \qquad Q_{\omega} = P \circ Z_{\omega}.$$

When $u = (u_1, \ldots, u_M)$ is vectorial, we denote

$$P(u) = (P(u_1), \dots, P(u_M)), \quad Z_{\omega}(u) = (Z_{\omega}(u_1), \dots, Z_{\omega}(u_M)),$$
$$Q_{\omega}(u) = (Q_{\omega}(u_1), \dots, Q_{\omega}(u_M)).$$

For $E \subset \dot{\Omega}$ and 1 , the*p* $-capacity of E in <math>\dot{\Omega}$, denoted by $C_p(E)$, is defined by

$$C_p(E) = \inf\left\{\int_{\hat{\Omega}} |\nabla u|^p \, \mathrm{d}x: \ u \in W_0^{1,p}(\hat{\Omega}), u \ge 1 \text{ a.e. in a neighborhood of } E\right\}.$$

This definition depends on $\hat{\Omega}$, however the sets of *p*-capacity zero are independent of $\hat{\Omega}$.

We say that a property $\mathcal{P}(x)$ holds quasi everywhere (abbreviated as q.e.) in a set $B \subset \hat{\Omega}$ if it holds for all $x \in B \setminus N$, with $C_p(N) = 0$.

A function $u: \hat{\Omega} \longrightarrow \mathbb{R}$ is said to be quasi continuous if for every $\varepsilon > 0$ there exists a set $B \subset \hat{\Omega}$, with $C_p(B) < \varepsilon$, such that the restriction of u to $\hat{\Omega} \setminus B$ is continuous. It is well known (see e.g. [14,15,21]) that every $u \in W^{1,p}(\hat{\Omega})$ has a quasi continuous representative. We shall always identify $u \in W^{1,p}(\hat{\Omega})$ with this quasi continuous representative.

A subset O of $\hat{\Omega}$ is said to be quasi open if for every $\varepsilon > 0$ there exists $B \subset \hat{\Omega}$, with $C_p(B) < \varepsilon$, such that $O \cup B$ is open.

Following [8,9], for every Borel subset B of $\hat{\Omega}$, we denote by $\mathcal{M}_0^p(B)$ the class of all non negative Borel measures μ in B which vanish on Borel sets of p-capacity zero and satisfy the following condition

$$\mu(E) = \inf\{\mu(O \cap B) : O \text{ quasi open}, \quad E \subset O \subset \widehat{\Omega}\}, \qquad \forall E \subset B \text{ Borel}.$$
(2.7)

We will denote by $a: \Omega \times \mathbb{R}^{M \times N} \longrightarrow \mathbb{R}^{M \times N}$ a Carathéodory function such that there exist two positive constants α , γ , and $r \in L^{\frac{p}{p-2}}(\Omega)$ satisfying

$$a(x,0) = 0 \quad \text{a.e.} \quad x \in \Omega, \tag{2.8}$$

$$(a(x,\xi_1) - a(x,\xi_2)) : (\xi_1 - \xi_2) \ge \alpha |\xi_1 - \xi_2|^p, \quad \forall \xi_1, \, \xi_2 \in \mathbb{R}^{M \times N}, \quad \text{a.e. } x \in \Omega,$$
(2.9)

$$|a(x,\xi_1) - a(x,\xi_2)| \le \left(r(x) + \gamma(|\xi_1| + |\xi_2|)^{p-2}\right)|\xi_1 - \xi_2|, \quad \forall \xi_1, \xi_2 \in \mathbb{R}^{M \times N}, \text{ a.e. } x \in \Omega.$$
(2.10)

Observe that these hypotheses imply in particular that there exist $\beta > 0$ and $h \in L^{p'}(\Omega)$ such that

$$a(x,\xi): \xi \ge \alpha |\xi|^p, \quad \forall \xi \in \mathbb{R}^{M \times N}, \text{ a.e. } x \in \Omega,$$

$$(2.11)$$

$$|a(x,\xi)| \le h(x) + \beta |\xi|^{p-1}, \quad \forall \xi \in \mathbb{R}^{M \times N}, \text{ a.e. } x \in \Omega.$$
(2.12)

For every $n \in \mathbb{N}$, we will also consider $\mu_n \in \mathcal{M}_0^p(\overline{\Omega})$ and $F_n : \overline{\Omega} \times \mathbb{R}^M \longrightarrow \mathbb{R}^M$ such that

$$F_n(\cdot, s) \ \mu_n$$
-measurable, $\forall s \in \mathbb{R}^M$, (2.13)

$$F_n(x,0) = 0, \quad \mu_n \text{-a.e.} \ x \in \overline{\Omega},$$

$$(2.14)$$

$$(F_n(x,s_1) - F_n(x,s_2))(s_1 - s_2) \ge \alpha |s_1 - s_2|^p, \quad \forall s_1, \, s_2 \in \mathbb{R}^M, \quad \mu_n \text{-a.e. } x \in \overline{\Omega},$$
(2.15)

$$|F_n(x,s_1) - F_n(x,s_2)| \le \gamma (|s_1| + |s_2|)^{p-2} |s_1 - s_2|, \quad \forall s_1, s_2 \in \mathbb{R}^M, \quad \mu_n \text{-a.e. } x \in \overline{\Omega}.$$
(2.16)

Thus, for $\beta > 0$ as above, we have

$$F_n(x,s)s \ge \alpha |s|^p, \quad \forall s \in \mathbb{R}^M, \quad \mu_n \text{-a.e. } x \in \overline{\Omega},$$

$$(2.17)$$

$$|F_n(x,s)| \le \beta |s|^{p-1}, \quad \forall s \in \mathbb{R}^M, \quad \mu_n\text{-a.e. } x \in \overline{\Omega}.$$
(2.18)

Remark 2.1. To simplify the exposition we have considered $p \ge 2$. The case 1 can be studiedsimilarly after proper modification on the hypotheses on <math>a and F_n . We can also consider hypotheses less restrictive than (2.10) and (2.16), assuming that $a(x,\xi)$ and $F_n(x,s)$ are locally Hölder continuous with respect to ξ and s respectively.

We denote by C a generic constant which does not depend on n and can change from line to line. We denote by $O_{m,n}$ and O_n generic sequences of real numbers which can change from line to line and satisfy

$$\lim_{m \to \infty} \lim_{n \to \infty} |O_{m,n}| = 0, \quad \lim_{n \to \infty} O_n = 0.$$

3. Homogenization result

In this section we state the main results of the paper, relative to the homogenization problem (1.5).

Theorem 3.1. Let a, μ_n and F_n be in the conditions of Section 2. Then, there exist a subsequence of n, still denoted by n, a measure $\mu \in \mathcal{M}_0^p(\overline{\Omega})$ and a function $F : \overline{\Omega} \times \mathbb{R}^M \longrightarrow \mathbb{R}^M$, with

$$F(\cdot, s) \ \mu\text{-measurable}, \ \forall s \in \mathbb{R}^M, \tag{3.19}$$

$$F(x,0) = 0, \quad \mu\text{-a.e.} \ x \in \overline{\Omega}, \tag{3.20}$$

$$|F(x,s_2) - F(x,s_1)| \le C_1(|s_1| + |s_2|)^{\frac{p(p-2)}{p-1}} |s_2 - s_1|^{\frac{1}{p-1}}, \quad \forall s_1, s_2 \in \mathbb{R}^M, \ \mu\text{-a.e.} \ x \in \overline{\Omega},$$
(3.21)

$$(F(x,s_2) - F(x,s_1))(s_2 - s_1) \ge C_2 |s_2 - s_1|^p, \quad \forall s_1, s_2 \in \mathbb{R}^M, \ \mu\text{-a.e.} \ x \in \overline{\Omega},$$
(3.22)

such that the following homogenization result holds: Let $\omega \subset \Omega$ be a Lipschitz open set and consider a sequence $g_n \in L^{p'}(\omega)^M$ which converges weakly in $L^{p'}(\omega)^M$ to a function g, a sequence $G_n \in L^{p'}(\omega)^{M \times N}$ which converges strongly in $L^{p'}(\omega)^{M \times N}$ to a function G and a sequence $u_n \in W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})$ which satisfies

$$\|u_n\|_{W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \partial \omega \cap \Omega)^M} \le C, \tag{3.23}$$

and

$$\begin{cases} \int_{\omega} a(x, Du_n) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} F_n(x, u_n) v \, \mathrm{d}\mu_n = \int_{\omega} g_n v \, \mathrm{d}x + \int_{\omega} G_n : Dv \, \mathrm{d}x \\ \forall v \in W^{1, p}_{\partial \omega \cap \Omega}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega})^M. \end{cases}$$
(3.24)

Then, every cluster point u of u_n in the weak topology of $W^{1,p}(\omega)^M$ satisfies

$$\begin{cases} u \in W^{1,p}(\omega)^M \cap L^p_{\mu}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M \\ \int_{\omega} a(x, Du) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} F(x, u)v \, \mathrm{d}\mu = \int_{\omega} gv \, \mathrm{d}x + \int_{\omega} G : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial \omega \cap \Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M. \end{cases}$$
(3.25)

Moreover, the measure μ can be taken independently of a.

The proof of this result is carried on in Section 6. To do it, in Section 5 we consider a bounded open set $\hat{\Omega}$ with $\overline{\Omega} \subset \hat{\Omega}$ and then, for u_n and u as in the statement of Theorem 3.1, we estimate the difference between u_n and the corrector with limit u relative to the homogenization problem for the operator $v \to -\text{div}\left(|\nabla v|^{p-2}\nabla v\right) + |v|^{p-2}v \,\mathrm{d}\mu_n$ in $\hat{\Omega}$ with Dirichlet conditions. The properties of this corrector will be recalled in Section 4. As a consequence we obtain some estimates for Du_n (Lems. 5.2 and 5.3) which allow us to prove (Prop. 5.4) the existence of $\mu \in \mathcal{M}_0^p(\overline{\Omega})$ and $T \in L_{\mu}^{p'}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ such that u belongs to $L_{\mu}^p(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ and

$$\int_{\omega} a(x, Du) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} Tv \, \mathrm{d}\mu = \int_{\omega} gv \, \mathrm{d}x + \int_{\omega} G : Dv \, \mathrm{d}x,$$

for every $v \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M$ (see [8,10]). The estimates obtained in Section 5 prove that T is of the form F(x, u(x)) (estimate (5.60)), but for a function F only defined on the set of pairs (x, v(x)) such that v is the limit of some sequence v_n in the conditions of the sequence u_n which appears in the statement of Theorem 3.1. We will prove in Lemma 6.1 that the set of such functions v is large enough to allow us to define F in the whole of $\overline{\Omega} \times \mathbb{R}^M$ and then to conclude Theorem 3.1.

We will also prove in Section 6 the following consequence of Theorem 3.1.

Theorem 3.2. Under the same assumptions that Theorem 3.1, the following results hold: (i) For every $\lambda > 0$, the unique solution u_n of

$$\begin{cases} u_n \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega})^M \\ \int_{\omega} a(x, Du_n) : Dv \, \mathrm{d}x + \lambda \int_{\omega} |u_n|^{p-2} u_n v \, \mathrm{d}x + \int_{\overline{\omega}} F_n(x, u_n) v \, \mathrm{d}\mu_n = \\ \int_{\omega} g_n v \, \mathrm{d}x + \int_{\omega} G_n : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega})^M, \end{cases}$$
(3.26)

converges weakly in $W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M$ and strongly in $W^{1,q}_{\partial\omega\cap\Omega}(\omega)^M$, $1 \leq q < p$, to the unique solution u of

$$\begin{cases} u \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M \\ \int_{\omega} a(x,Du) : Dv \, \mathrm{d}x + \lambda \int_{\omega} |u|^{p-2} uv \, \mathrm{d}x + \int_{\overline{\omega}} F(x,u) v \, \mathrm{d}\mu = \int_{\omega} gv \, \mathrm{d}x + \int_{\omega} G : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M. \end{cases}$$
(3.27)

(ii) Assume that there exists (a Poincaré's constant) $C_P > 0$ such that

$$\|v\|_{L^{p}(\omega)} \leq C_{P} \left(\|\nabla v\|_{L^{p}(\omega)^{N}}^{p} + \|v\|_{L^{p}_{\mu_{n}}(\overline{\omega})}^{p} \right)^{\frac{1}{p}}, \quad \forall v \in W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^{p}_{\mu_{n}}(\overline{\omega}), \ \forall n \in \mathbb{N}.$$
(3.28)

Then, the unique solution u_n of

$$\begin{cases} u_n \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega})^M \\ \int_{\omega} a(x, Du_n) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} F_n(x, u_n) v \, \mathrm{d}\mu_n = \int_{\omega} g_n v \, \mathrm{d}x + \int_{\omega} G_n : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega})^M, \end{cases}$$
(3.29)

converges weakly in $W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M$ and strongly in $W^{1,q}_{\partial\omega\cap\Omega}(\omega)^M$, $1 \leq q < p$, to the unique solution u of

$$\begin{cases} u \in W^{1,p}_{\partial \omega \cap \Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M \\ \int_{\omega} a(x, Du) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} F(x, u)v \, \mathrm{d}\mu = \int_{\omega} gv \, \mathrm{d}x + \int_{\omega} G : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial \omega \cap \Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M. \end{cases}$$
(3.30)

Remark 3.3. As we said in the Introduction, the homogenization of problem (3.29) gives in particular the homogenization of problem (1.1). For this, given a sequence of Lipschitz open sets $\Omega_n \subset \Omega$ and a sequence $\Gamma_n \subset \partial \Omega \cap \Omega_n$, we define a sequence of measures $\mu_n \in \mathcal{M}_0^p(\overline{\Omega})$ by (1.4). Then, problem (1.1), understood in the variational form

$$\begin{cases} u_n \in W^{1,p}(\Omega_n)^M, & u_n = 0 \text{ q.e. on } \partial\Omega_n \setminus \Gamma_n \\ \int_{\Omega_n} a(x, Du_n) : Dv \, \mathrm{d}x = \int_{\Omega_n} g_n v \, \mathrm{d}x + \int_{\Omega_n} G_n : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}(\Omega_n)^M, \quad v = 0 \text{ q.e. on } \partial\Omega_n \setminus \Gamma_n, \end{cases}$$

is equivalent to problem (3.29) with $\omega = \Omega$ and (for example) $F_n(x,s) = |s|^{p-2}s$. An interesting particular case is when $\Omega_n = \Omega$ for every $n \in \mathbb{N}$, *i.e.* when we have a nonlinear homogenization problem in a fixed bounded open set $\Omega \subset \mathbb{R}^N$, where we impose Dirichlet and Neumann conditions in varying subsets of the boundary.

In this case, by Proposition 4.4 the measure μ is supported on $\partial\Omega$, and thus, if μ is sufficiently smooth, the limit problem (3.30) is equivalent to the Fourier-Robin problem

$$\begin{cases} -\operatorname{div}\left(a(x,Du)-G\right) = g \text{ in } \Omega\\ \left(a(x,Du)-G\right)\nu + F(x,u)\mu = 0 \text{ on } \partial\Omega \end{cases}$$

Remark 3.4. Similarly to the homogenization of nonlinear Dirichlet problems in varying domains (see *e.g.* [5]), some properties on a and F_n are inherited by F. Namely, we have:

(i) If $a(x,\xi)$ is linear with respect to ξ and $F_n(x,s)$ is linear with respect to s, for every $n \in \mathbb{N}$ (so, p = 2), then, F(x,s) is linear with respect to s.

(ii) If a and F_n , $n \in \mathbb{N}$, satisfy the homogeneity assumption

$$a(x,\lambda\xi) = |\lambda|^{p-2}\lambda a(x,\xi), \quad \forall \lambda \in \mathbb{R}, \ \forall \xi \in \mathbb{R}^{M \times N}, \ \text{a.e.} \ x \in \Omega,$$
$$F_n(x,\lambda s) = |\lambda|^{p-2}\lambda F_n(x,s), \quad \forall \lambda \in \mathbb{R}, \ \forall s \in \mathbb{R}^M, \ \mu_n\text{-a.e.} \ x \in \overline{\Omega},$$

then F also satisfies

$$F(x,\lambda s) = |\lambda|^{p-2} \lambda F(x,s), \quad \forall \lambda \in \mathbb{R}, \ \forall s \in \mathbb{R}^M, \ \mu\text{-a.e.} \ x \in \overline{\Omega}.$$

The proof of these results is analogous to the corresponding one of Theorems 8.1 and 8.5 in [5] and follows from the fact that the functions q_n^m of Lemma 6.1 satisfy

$$(\lambda q_1 + \tau q_2)_n^m = \lambda (q_1)_n^m + \tau (q_2)_n^m, \quad \forall q_1, q_2 \in \mathbb{Q}^M, \ \forall \lambda, \tau \in \mathbb{R},$$

if we assume (i), and

$$(\lambda q)_n^m = \lambda(q)_n^m, \quad \forall q \in \mathbb{Q}^M, \ \forall \lambda \in \mathbb{R},$$

if we assume (ii). Thus the functions T_q defined by Lemma 6.1 satisfy

$$T_{\lambda q_1 + \tau q_2} = \lambda T_{q_1} + \tau T_{q_2}, \quad \forall q_1, q_2 \in \mathbb{Q}^M, \ \forall \lambda, \tau \in \mathbb{R},$$

if we assume (i), and

$$T_{\lambda q} = |\lambda|^{p-2} \lambda T_q, \quad \forall q \in \mathbb{Q}^M, \ \forall \lambda \in \mathbb{R},$$

if we assume (ii).

4. Preliminaries

In this section we recall some results related to the homogenization of the *p*-Laplace operator with Dirichlet boundary conditions in varying domains. From them we will obtain other results we will use later.

Throughout this section, we consider a sequence $\hat{\mu}_n \in \mathcal{M}_0^p(\hat{\Omega})$ and we denote by w_n the solution of the problem

$$\begin{cases} w_n \in W_0^{1,p}(\hat{\Omega}) \cap L^p_{\hat{\mu}_n}(\hat{\Omega}) \\ \int_{\hat{\Omega}} |\nabla w_n|^{p-2} \nabla w_n \nabla v \, \mathrm{d}x + \int_{\hat{\Omega}} |w_n|^{p-2} w_n v \, \mathrm{d}\hat{\mu}_n = \int_{\hat{\Omega}} v \, \mathrm{d}x \\ \forall v \in W_0^{1,p}(\hat{\Omega}) \cap L^p_{\hat{\mu}_n}(\hat{\Omega}). \end{cases}$$
(4.31)

The following result has been proved in [8,10].

Proposition 4.1. Let w_n be the sequence defined by (4.31). Then w_n is nonnegative q.e. in $\hat{\Omega}$ and its norm in $W_0^{1,p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega}) \cap L_{\hat{\mu}_n}^p(\hat{\Omega})$ is bounded. Up to a subsequence, there exists a nonnegative function $w \in W_0^{1,p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$, such that w_n converges weakly to w in $W_0^{1,p}(\hat{\Omega})$, strongly in $W_0^{1,q}(\hat{\Omega})$, $1 \leq q < p$, and weakly-* in $L^{\infty}(\hat{\Omega})$. Moreover, there exists a unique measure $\hat{\mu} \in \mathcal{M}_0^p(\hat{\Omega})$ such that w is the solution of

$$\begin{cases} w \in W_0^{1,p}(\hat{\Omega}) \cap L_{\hat{\mu}}^p(\hat{\Omega}) \\ \int_{\hat{\Omega}} |\nabla w|^{p-2} \nabla w \nabla v \, \mathrm{d}x + \int_{\hat{\Omega}} |w|^{p-2} wv \, \mathrm{d}\hat{\mu} = \int_{\hat{\Omega}} v \, \mathrm{d}x \\ \forall v \in W_0^{1,p}(\hat{\Omega}) \cap L_{\hat{\mu}}^p(\hat{\Omega}). \end{cases}$$
(4.32)

The interest of w_n is that for a function ψ smooth enough, the sequence $w_n \psi$ provides a corrector with limit $w\psi$ relative to the homogenization problem for the operator $v \to -\text{div}\left(|\nabla v|^{p-2}\nabla v\right) + |v|^{p-2}v \,\mathrm{d}\mu_n$ in $\hat{\Omega}$ with Dirichlet conditions [8,10]. The following properties of w_n , w and $\hat{\mu}$ have been proved in [8,10] (see also [5]).

Proposition 4.2. The sequence of solutions w_n of (4.31), the function w and the measure $\hat{\mu}$ given by Proposition 4.1 satisfy

- (a) For every Borel set $B \subset \hat{\Omega}$ with $C_p(B \cap \{w = 0\}) > 0$, it holds $\hat{\mu}(B) = +\infty$.
- (b) The set $\{w\varphi: \varphi \in C_c^{\infty}(\hat{\Omega})\}$ is dense in $W_0^{1,p}(\hat{\Omega}) \cap L^p_{\hat{\mu}}(\hat{\Omega})$.
- (c) For every $\psi, \varphi \in W^{1,p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$, we have

$$\lim_{n \to \infty} \left(\int_{\hat{\Omega}} |\nabla((w_n - w)\psi)|^p \varphi \, \mathrm{d}x + \int_{\hat{\Omega}} |w_n\psi|^p \varphi \, \mathrm{d}\hat{\mu}_n \right) = \int_{\hat{\Omega}} |w\psi|^p \varphi \, \mathrm{d}\hat{\mu}.$$
(4.33)

(d) If v_n is a sequence in $W^{1,p}(\hat{\Omega})$ which converges weakly in $W^{1,p}(\hat{\Omega})$ to a function v, then it holds

$$\liminf_{n \to \infty} \left(\int_{\hat{\Omega}} |\nabla (v_n - v)|^p \, \mathrm{d}x + \int_{\hat{\Omega}} |v_n|^p \, \mathrm{d}\hat{\mu}_n \right) \ge \int_{\hat{\Omega}} |v|^p \, \mathrm{d}\hat{\mu}.$$
(4.34)

In particular, if $\|v_n\|_{L^p_{\hat{\alpha}_-}(\hat{\Omega})}$ is bounded, the function v is in $L^p_{\hat{\mu}}(\hat{\Omega})$.

Remark 4.3. We will apply the previous results to the sequence $\hat{\mu}_n$ defined by (see Sect. 2)

$$\hat{\mu}_n(B) = \mu_n(B \cap \overline{\Omega}), \quad \forall B \subset \hat{\Omega} \text{ Borel.}$$
(4.35)

From Proposition 4.2, every function $v \in L^p_{\hat{\mu}_n}(\hat{\Omega})$ vanishes q.e. on $\{w_n = 0\}$. So, although in Section 2 we have considered F_n defined on $\hat{\Omega} \times \mathbb{R}^M$, only its values in $\{w_n > 0\} \times \mathbb{R}^M$ are relevant.

In the present paper, we are interested in a sequence of measures $\hat{\mu}_n$ having their supports contained in a fixed closed set (see (4.35)). We will use the following result.

Proposition 4.4. If there exists a compact set $K \subset \hat{\Omega}$ such that $\operatorname{supp}(\hat{\mu}_n) \subset K$, for every $n \in \mathbb{N}$, then the measure $\hat{\mu}$ given by Proposition 4.1 also satisfies $\operatorname{supp}(\hat{\mu}) \subset K$.

Proof. Since $-\operatorname{div}(|\nabla w_n|^{p-2}\nabla w_n) = 1$ in $\hat{\Omega} \setminus K$, and w_n converges weakly to w in $W_0^{1,p}(\hat{\Omega})$ and strongly in $W_0^{1,q}(\hat{\Omega}), 1 \leq q < p$, we deduce that

$$-\operatorname{div}(|\nabla w|^{p-2}\nabla w) = 1 \quad \text{in } \hat{\Omega} \setminus K.$$

$$(4.36)$$

Then, taking in (4.32) $v = w\varphi$, with $\varphi \in C_c^{\infty}(\hat{\Omega} \setminus K)$, we get

$$\int_{\hat{\Omega}} |w|^p \varphi \,\mathrm{d}\hat{\mu} = 0, \quad \forall \varphi \in C_c^{\infty}(\hat{\Omega} \setminus K).$$
(4.37)

On the other hand, from $w \ge 0$ q.e. in $\hat{\Omega}$, (4.36) and the strong maximum principle for the *p*-Laplace operator (see *e.g.* [18]), we deduce w > 0 in $\hat{\Omega} \setminus K$. Together with (4.37), this implies that the support of $\hat{\mu}$ is contained in K.

Better than Proposition 4.2 (b) and (d), we will use the following results.

Proposition 4.5. Assume that the support of the measure $\hat{\mu}$ given by Proposition 4.1 is contained in $\overline{\Omega}$ and let ω be a Lipschitz open subset of Ω . Then, the set

$$D_{\omega} = \{ w\varphi : \ \varphi \in \mathcal{S}_{\omega} \cap C^{\infty}(\overline{\omega}) \}, \tag{4.38}$$

is dense in $W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\hat{\mu}}(\overline{\omega}).$

Proof. First of all, we remark that for every u in $W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\hat{\mu}}(\overline{\omega})$, there exist a sequence $u_n \in W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\hat{\mu}}(\overline{\omega})$ and $O_n \subset \hat{\Omega}$ open, with $\overline{\partial\omega\cap\Omega} \subset O_n$, such that $u_n = 0$ q.e. in $O_n \cap \overline{\omega}$ and u_n converges to u in $W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\hat{\mu}}(\overline{\omega})$. For this purpose, we use that by definition of $W^{1,p}_{\partial\omega\cap\Omega}(\omega)$, there exists a sequence $O_n \subset \hat{\Omega}$ open, with $\overline{\partial\omega\cap\Omega} \subset O_n$ and $\psi_n \in C^{\infty}(\overline{\omega})$, with $\psi_n = 0$ in $O_n \cap \overline{\omega}$, such that ψ_n converges to u in $W^{1,p}(\omega)$. Then we take

$$u_n = (\psi_n \wedge u^+)^+ - ((-\psi_n) \wedge u^-)^+.$$

In order to prove Proposition 4.5, it is then enough to show that for every $u \in W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\hat{\mu}}(\overline{\omega})$ such that there exits an open set $O \subset \hat{\Omega}$ with $\overline{\partial\omega\cap\Omega} \subset O$, u = 0 q.e. in $O \cap \overline{\omega}$, and for every $\varepsilon > 0$, there exists $\varphi \in C^\infty_c(\hat{\Omega})$ which vanishes in a neighborhood of $\overline{\partial\omega\cap\Omega}$ such that

$$\|u - w\varphi\|_{W^{1,p}(\omega) \cap L^p_{\hat{\alpha}}(\overline{\omega})} < \varepsilon.$$

$$(4.39)$$

Using a regularization by convolution, it is enough to prove (4.39) for φ in $W_0^{1,p}(\hat{\Omega}) \cap L^{\infty}(\hat{\Omega})$ which vanishes on a neighborhood of $\overline{\partial \omega \cap \Omega}$.

Given u, O and ε as above, we observe that $Z_{\omega}(u)$ is in $W^{1,p}(\Omega) \cap L^p_{\hat{\mu}}(\overline{\Omega})$ and, since $\operatorname{supp}(\hat{\mu}) \subset \overline{\Omega}$, we have that $Q_{\omega}(u) \in W^{1,p}_0(\hat{\Omega}) \cap L^p_{\hat{\mu}}(\hat{\Omega})$ (P, Z_{ω} and Q_{ω} are defined in Sect. 2). Thus, taking an open set O' with $\overline{\partial \omega \cap \Omega} \subset O', \overline{O'} \subset O$ and a function $\psi \in C^{\infty}(\hat{\Omega})$, with $\psi = 1$ in $\hat{\Omega} \setminus O, \psi = 0$ in O', the function $u^* = Q_{\omega}(u)\psi$ is in $W^{1,p}_0(\hat{\Omega}) \cap L^p_{\hat{\mu}}(\hat{\Omega})$, vanishes in O' and is equal to u q.e. in $\overline{\omega}$.

We define $\mu^* \in \mathcal{M}_0^p(\hat{\Omega})$ by

$$\mu^*(B) = \begin{cases} \hat{\mu}(B) & \text{if } C_p(B \cap O') = 0\\ +\infty & \text{if } C_p(B \cap O') > 0, \end{cases} \quad \forall B \subset \hat{\Omega} \text{ Borel},$$

and we observe that since $u^* = 0$ in O' then $u^* \in L^p_{\mu^*}(\hat{\Omega})$. From Proposition 4.2(b) applied to μ^* we derive that taking w^* as the solution of

$$\begin{cases} w^* \in W_0^{1,p}(\hat{\Omega}) \cap L^p_{\mu^*}(\hat{\Omega}) \\ \int_{\hat{\Omega}} |\nabla w^*|^{p-2} \nabla w^* \nabla v \, \mathrm{d}x + \int_{\hat{\Omega}} |w^*|^{p-2} w^* v \, \mathrm{d}\mu^* = \int_{\hat{\Omega}} v \, \mathrm{d}x \\ \forall v \in W_0^{1,p}(\hat{\Omega}) \cap L^p_{\mu^*}(\hat{\Omega}), \end{cases}$$
(4.40)

there exists $\varphi^* \in C_c^{\infty}(\hat{\Omega})$ such that

$$\|u^* - w^*\varphi^*\|_{W^{1,p}_0(\hat{\Omega}) \cap L^p_{\mu^*}(\hat{\Omega})} < \varepsilon.$$

Using then that $(w^* - \eta)^+ \varphi^*$ converges to $w^* \varphi^*$ in $W_0^{1,p}(\hat{\Omega}) \cap L^p_{\mu^*}(\hat{\Omega})$ when η tends to zero from the right, we also have, for $\eta > 0$ small enough

$$\|u^* - (w^* - \eta)^+ \varphi^*\|_{W_0^{1,p}(\hat{\Omega}) \cap L^p_{\mu^*}(\hat{\Omega})} < \varepsilon.$$
(4.41)

Since u^* and $(w^* - \eta)^+$ vanish in O', this also holds replacing μ^* by $\hat{\mu}$.

From $\hat{\mu} \leq \mu^*$, the comparison principle (see Prop. 1.5 in [8]) proves that $0 \leq w^* \leq w$ and thus,

$$w\frac{(w^*-\eta)^+}{w\vee\eta}\varphi^* = (w^*-\eta)^+\varphi^*$$

Taking then

$$\varphi = \frac{(w^* - \eta)^+}{w \lor \eta} \varphi^* \in W^{1,p}_{\partial \omega \cap \Omega}(\omega) \cap L^{\infty}(\omega),$$

and using that w^* and then φ vanishes in O', we conclude from (4.41) the proof of Proposition 4.5.

Proposition 4.6. Assume that in Proposition 4.1 supp $(\hat{\mu}_n) \subset \overline{\Omega}$, for every $n \in \mathbb{N}$, and consider an open Lipschitz subset ω of Ω . Then for every sequence $v_n \in W^{1,p}(\omega)$, which converges weakly in $W^{1,p}(\omega)$ to a function v and every $\psi \in S_{\omega}$, we have

$$\liminf_{n \to \infty} \left(\int_{\omega} |\nabla (v_n - v)|^p |\psi|^p \, \mathrm{d}x + \int_{\overline{\omega}} |v_n|^p |\psi|^p \, \mathrm{d}\hat{\mu}_n \right) \ge \frac{1}{\|P\|} \int_{\overline{\omega}} |v|^p |\psi|^p \, \mathrm{d}\hat{\mu}.$$
(4.42)

Proof. Similarly to the proof of Proposition 4.5, we remark that thanks to $\operatorname{supp}(\hat{\mu}_n) \subset \overline{\Omega}$, we have that

$$\int_{\overline{\omega}} |v_n|^p |\psi|^p \,\mathrm{d}\hat{\mu}_n = \int_{\hat{\Omega}} |Q_{\omega}(v_n\psi)|^p \,\mathrm{d}\hat{\mu}_n.$$

So, using the convexity of the function $\xi \in \mathbb{R}^N \to |\xi|^p \in \mathbb{R}$, Rellich-Kondrachov's compactness theorem, $||P|| \ge 1$, $||Z_{\omega}|| = 1$ and (4.34), we obtain

$$\begin{split} &\int_{\omega} |\nabla(v_n - v)|^p |\psi|^p \, \mathrm{d}x + \int_{\overline{\omega}} |v_n|^p |\psi|^p \, \mathrm{d}\hat{\mu}_n \geq \\ &\|(v_n - v)\psi\|_{W^{1,p}(\omega)}^p - p \int_{\omega} |\nabla((v_n - v)\psi)|^{p-2} \nabla((v_n - v)\psi) \nabla \psi \, (v_n - v) \, \mathrm{d}x \\ &- \int_{\omega} |(v_n - v)\psi|^p \, \mathrm{d}x + \int_{\overline{\omega}} |v_n|^p |\psi|^p \, \mathrm{d}\hat{\mu}_n \\ &= \|(v_n - v)\psi\|_{W^{1,p}(\omega)}^p + \int_{\overline{\omega}} |v_n|^p |\psi|^p \, \mathrm{d}\hat{\mu}_n + O_n \\ &\geq \frac{1}{\|P\|} \int_{\hat{\Omega}} |\nabla Q_{\omega}((v_n - v)\psi)|^p \, \mathrm{d}x + \int_{\hat{\Omega}} |Q_{\omega}(v_n\psi)|^p \, \mathrm{d}\hat{\mu}_n + O_n \\ &\geq \frac{1}{\|P\|} \left(\int_{\hat{\Omega}} |\nabla Q_{\omega}((v_n - v)\psi)|^p \, \mathrm{d}x + \int_{\hat{\Omega}} |Q_{\omega}(v_n\psi)|^p \, \mathrm{d}\hat{\mu}_n\right) + O_n \\ &\geq \frac{1}{\|P\|} \int_{\hat{\Omega}} |Q_{\omega}(v\psi)|^p \, \mathrm{d}\hat{\mu} + O_n = \frac{1}{\|P\|} \int_{\overline{\omega}} |v|^p |\psi|^p \, \mathrm{d}\hat{\mu} + O_n. \end{split}$$

This proves (4.42).

5. Estimates and a local first representation of the limit problem

For Ω , a, μ_n and F_n as in Section 2 and a Lipschitz open subset ω of Ω , we will consider along this section a sequence $u_n \in W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ which satisfies (3.23) and (3.24), with g_n converging weakly in $L^{p'}(\omega)^M$ to a function g and G_n converging strongly in $L^{p'}(\omega)^{M \times N}$ to a function G. Thanks to Proposition 4.1 applied to the sequence $\hat{\mu}_n$ defined as

$$\hat{\mu}_n(B) = \mu_n(B \cap \overline{\Omega}), \quad \forall B \subset \hat{\Omega} \text{ Borel},$$
(5.43)

we can also assume that there exist w and $\hat{\mu}$ in the conditions of this proposition. By Proposition 4.4, the support of this measure $\hat{\mu}$ is contained in $\overline{\Omega}$. The restriction of $\hat{\mu}$ to $\overline{\Omega}$ will be denoted by μ .

Thanks to (3.23), we can also assume that there exists $u \in W^{1,p}(\omega)^M$ such that u_n converges weakly to u in $W^{1,p}(\omega)^M$. Since by (3.23) and (4.42), the function u satisfies

$$\int_{\hat{\omega}} |u|^p |\psi|^p \, \mathrm{d}\mu \le C \|\psi\|_{L^{\infty}(\omega)}, \quad \forall \psi \in S_{\omega},$$

we also get from the monotone convergence theorem that u satisfies

$$u \in L^p_\mu(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M. \tag{5.44}$$

Our purpose in the present section is to obtain some estimates for the sequence u_n . As a consequence, we will obtain a first representation for the problem satisfied by the function u (limit problem). The fact of considering ω instead of Ω will allow us to prove the local character of the limit problem.

In order to study the asymptotic behavior of u_n , we start with the following result, which follows from Proposition 5.4 in [5].

Proposition 5.1. The sequence u_n considered above converges to u strongly in $W^{1,q}(\omega)^M$, $1 \leq q < p$ and therefore Du_n converges in measure in ω .

As a consequence, we have the following lemma.

Lemma 5.2. The following convergences hold

$$a(x, Du_n) \to a(x, Du)$$
 strongly in $L^r(\omega)^{M \times N}$, $1 \le r < p'$, and weakly in $L^{p'}(\omega)^{M \times N}$, (5.45)

$$|a(x, Du_n) - a(x, D(u_n - u))| \to |a(x, Du)| \text{ strongly in } L^{p'}(\omega).$$
(5.46)

Proof. From Proposition 5.1, (2.10) and (2.12), we easily derive (5.45).

To prove (5.46) we use that Proposition 5.1 and the inequality

$$|a(x, Du_n) - a(x, D(u_n - u))| \le \gamma (r + |Du_n| + |D(u_n - u)|)^{p-2} |Du| \text{ a.e. in } \Omega,$$

show that $|a(x, Du_n) - a(x, D(u_n - u))|$ converges in measure to |a(x, Du)| and its p'-th power is equiintegrable. This implies (5.46).

For u_n and z_n satisfying similar conditions to u_n , the following lemma provides an estimate for $D(u_n - z_n)$. The idea is to study the difference $u_n - z_n - w_n \psi_m$, where ψ_m is such that $w \psi_m$ is close to u - z (z is the limit of z_n). Recall that $w_n \psi_m$ is the corrector with limit $w \psi_m \sim u - z$ relative to the homogenization problem for the operator $v \to -\text{div} \left(|\nabla v|^{p-2} \nabla v \right) + |v|^{p-2} v \, d\mu_n$ in $\hat{\Omega}$ with Dirichlet conditions.

Lemma 5.3. There exists C > 0 which only depends on α and γ such that for every $\varphi \in S_{\omega}$, $\varphi \ge 0$ in ω , we have

$$\limsup_{n \to \infty} \left(\int_{\omega} |D(u_n - u)|^p \varphi \, \mathrm{d}x + \int_{\overline{\omega}} |u_n|^p \varphi \, \mathrm{d}\mu_n \right) \le C \int_{\overline{\omega}} |u|^p \varphi \, \mathrm{d}\mu.$$
(5.47)

Moreover, if besides u_n , u, g_n , g, G_n and G, we consider $z_n \in W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ with $\|z_n\|_{W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M}$ bounded, converging weakly in $W^{1,p}(\omega)^M$ to a function $z \in W^{1,p}(\omega)^M \cap L^p_{\mu}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$, such that there exist h_n converging weakly in $L^{p'}(\omega)^M$ to a function h and H_n converging strongly in $L^{p'}(\omega)^{M \times N}$ to a function H with

$$\begin{cases} \int_{\omega} a(x, Dz_n) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} F_n(x, z_n) v \, \mathrm{d}\mu_n = \int_{\omega} h_n v \, \mathrm{d}x + \int_{\omega} H_n : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial \omega \cap \Omega}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega})^M, \end{cases}$$
(5.48)

then, for every $\varphi \in S_{\omega}$, $\varphi \geq 0$ in ω , we have

$$\limsup_{n \to \infty} \left(\int_{\omega} |D(u_n - z_n - u + z)|^p \varphi \, \mathrm{d}x + \int_{\overline{\omega}} |u_n - z_n|^p \varphi \, \mathrm{d}\mu_n \right) \le C \int_{\overline{\omega}} (|u| + |z|)^{\frac{p(p-2)}{p-1}} |u - z|^{\frac{p}{p-1}} \varphi \, \mathrm{d}\mu.$$
(5.49)

Proof. For $\varphi \in S_{\omega}$, $\varphi \geq 0$ in ω , we consider $\phi \in S_{\omega}$, such that $\phi = 1$ in $\operatorname{supp}(\varphi)$. Then, $(u - z)\phi \in W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M$ and so, from Proposition 4.5, there exists $\psi_m \in S^M_{\omega}$ such that $w\psi_m$ converges to $(u - z)\phi$ in $W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M \cap L^p_{\mu}(\overline{\omega})^M$. Taking $(u_n - z_n - w_n\psi_m)\varphi$ as test function in the difference of (3.24) and (5.48), we get

$$\begin{split} \int_{\omega} [a(x, Du_n) - a(x, Dz_n)] &: D(u_n - z_n - w_n \psi_m) \varphi \, \mathrm{d}x + \int_{\omega} [a(x, Du_n) - a(x, Dz_n)] : [(u_n - z_n - w_n \psi_m) \otimes \nabla \varphi] \mathrm{d}x \\ &+ \int_{\overline{\omega}} [F_n(x, u_n) - F_n(x, z_n)](u_n - z_n - w_n \psi_m) \varphi \, \mathrm{d}\mu_n = \int_{\omega} (g_n - h_n)(u_n - z_n - w_n \psi_m) \varphi \, \mathrm{d}x \\ &+ \int_{\omega} (G_n - H_n) : D((u_n - z_n - w_n \psi_m) \varphi) \mathrm{d}x. \end{split}$$

Applying (5.46) to u_n and z_n and using that $(u_n - z_n - w_n \psi_m)$ converges weakly in $W^{1,p}(\omega)^M$, and then strongly in $L^p(\omega)^M$, to $(u-z)(1-\phi)$ when n and then m tends to infinity, $g_n - h_n$ converges weakly in $L^{p'}(\omega)^M$, $G_n - H_n$ converges strongly in $L^{p'}(\omega)^{M \times N}$ and $\phi = 1$ in $\operatorname{supp}(\varphi)$, the above equality gives

$$\begin{split} \int_{\omega} [a(x, D(u_n - u)) - a(x, D(z_n - z))] &: D(u_n - z_n - w_n \psi_m) \varphi \, \mathrm{d}x \\ &+ \int_{\overline{\omega}} [F_n(x, u_n) - F_n(x, z_n)](u_n - z_n - w_n \psi_m) \varphi \, \mathrm{d}\mu_n = O_{m,n}, \end{split}$$

or

$$\int_{\omega} [a(x, D(u_n - u)) - a(x, D(z_n - z))] : D(u_n - z_n - u + z)\varphi \, dx + \int_{\overline{\omega}} [F_n(x, u_n) - F_n(x, z_n)](u_n - z_n)\varphi \, d\mu_n = \int_{\omega} [a(x, D(u_n - u)) - a(x, D(z_n - z))] : D(w_n \psi_m - u + z)\varphi \, dx + \int_{\overline{\omega}} [F_n(x, u_n) - F_n(x, z_n)]w_n \psi_m \varphi \, d\mu_n + O_{m,n}$$

By (2.9), (2.10), $|D(u_n - z_n - u + z)|\varphi$ converging weakly to zero in $L^{p'}(\omega)$ (use Lem. 5.1), (2.15) and (2.16), this gives

$$\begin{split} \alpha \int_{\omega} |D(u_n - u - z_n + z)|^p \varphi \, \mathrm{d}x + \alpha \int_{\overline{\omega}} |u_n - z_n|^p \varphi \, \mathrm{d}\mu_n &\leq \\ \gamma \int_{\omega} [|D(u_n - u)| + |D(z_n - z)|]^{p-2} |D(u_n - z_n - u + z)| |D((w_n - w)\psi_m + w\psi_m - u + z)| \varphi \, \mathrm{d}x \\ &+ \gamma \int_{\overline{\omega}} (|u_n| + |z_n|)^{p-2} |u_n - z_n| |w_n \psi_m| \varphi \, \mathrm{d}\mu_n + O_{m,n}. \end{split}$$

Young's and Hölder's inequality allows us to write

$$\int_{\omega} |D(u_n - u - z_n + z)|^p \varphi \, \mathrm{d}x + \int_{\overline{\omega}} |u_n - z_n|^p \varphi \, \mathrm{d}\mu_n \leq C \left(\int_{\omega} (|D(u_n - u)| + |D(z_n - z)|)^p \varphi \, \mathrm{d}x + \int_{\overline{\omega}} (|u_n| + |z_n|)^p \varphi \, \mathrm{d}\mu_n \right)^{\frac{p-2}{p-1}} \\
\times \left(\int_{\omega} |D((w_n - w)\psi_m)|^p \varphi \, \mathrm{d}x + \int_{\overline{\omega}} |w_n\psi_m|^p \varphi \, \mathrm{d}\hat{\mu}_n \right)^{\frac{1}{p-1}} + O_{m,n} \\
\leq C \left(\int_{\omega} (|D(u_n - u)| + |D(z_n - z)|)^p \varphi \, \mathrm{d}x + \int_{\overline{\omega}} (|u_n| + |z_n|)^p \varphi \, \mathrm{d}\mu_n \right)^{\frac{p-2}{p-1}} \\
\times \left(\int_{\hat{\Omega}} |D((w_n - w)Q_{\omega}(\psi_m))|^p Q_{\omega}(\varphi) \, \mathrm{d}x + \int_{\hat{\Omega}} |w_nQ_{\omega}(\psi_m)|^p Q_{\omega}(\varphi) \mathrm{d}\hat{\mu}_n \right)^{\frac{1}{p-1}} + O_{m,n}. \quad (5.50)$$

Taking $z_n = z = 0$ in (5.50), and using (4.33), $\operatorname{supp}(\hat{\mu}) \subset \overline{\Omega}$ and μ equals to the restriction of $\hat{\mu}$ in $\overline{\Omega}$, we deduce (5.47).

Finally, to obtain (5.49), it is enough to apply (4.33) in (5.50) together with the estimation (5.47) for u_n and z_n .

Using Lemma 5.3, we will now obtain a first version of the limit problem satisfied by u.

Proposition 5.4. There exists $T \in L^{p'}_{\mu}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ such that u satisfies

$$\begin{cases} u \in W^{1,p}(\omega)^{M} \cap L^{p}_{\mu}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^{M} \\ \int_{\omega} a(x, Du) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} Tv \, \mathrm{d}\mu = \int_{\omega} gv \, \mathrm{d}x + \int_{\omega} G : Dv \, \mathrm{d}x \\ \forall v \in W^{1,p}_{\partial \omega \cap \Omega}(\omega)^{M} \cap L^{p}_{\mu}(\overline{\omega})^{M}. \end{cases}$$
(5.51)

The function T is such that for every $\psi \in \mathcal{S}^M_{\omega}$, we have

$$\int_{\overline{\omega}} Tw\psi \,\mathrm{d}\mu = \lim_{n \to \infty} \left(\int_{\omega} a(x, D(u_n - u)) : (\psi \otimes \nabla(w_n - w)) \mathrm{d}x + \int_{\overline{\omega}} F_n(x, u_n) w_n \psi \,\mathrm{d}\mu_n \right),\tag{5.52}$$

and satisfies that there exists C > 0, which only depends on α and γ , such that

$$|T| \le C|u|^{p-1} \quad \mu\text{-}a.e. \text{ in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega}.$$
(5.53)

Proof. Given $\psi \in \mathcal{S}^M_{\omega}$, we take $w_n \psi$ as test function in (3.24). This gives

$$\int_{\omega} a(x, Du_n) : D\psi \, w_n \mathrm{d}x + \int_{\omega} a(x, Du_n) : (\psi \otimes \nabla w) \, \mathrm{d}x \\ + \int_{\omega} a(x, Du_n) : (\psi \otimes \nabla (w_n - w)) \mathrm{d}x + \int_{\overline{\omega}} F_n(x, u_n) w_n \psi \, \mathrm{d}\mu_n = \\ \int_{\omega} g_n w_n \psi \, \mathrm{d}x + \int_{\omega} G_n : D(w_n \psi) \mathrm{d}x.$$
(5.54)

Using that g_n converges weakly in $L^{p'}(\omega)^M$ to g, G_n converges strongly in $L^{p'}(\omega)^{M \times N}$ to G and u_n and w_n converge weakly in $W^{1,p}(\omega)^M$ and $W^{1,p}(\Omega)$ to u and w respectively (and then strongly in $L^p(\omega)^M$ and $L^p(\Omega)$), (5.45) and (5.46), we get

$$\int_{\omega} a(x, Du) : D(w\psi) dx + \int_{\omega} a(x, D(u_n - u)) : (\psi \otimes \nabla(w_n - w)) dx + \int_{\overline{\omega}} F_n(x, u_n) w_n \psi d\mu_n = \int_{\omega} gw\psi dx + \int_{\omega} G : D(w\psi) dx + O_n.$$
(5.55)

Since $||w_n||_{W_0^{1,p}(\hat{\Omega})\cap L^p_{\mu_n}(\hat{\Omega})}$ is bounded, (3.23), (2.12) and (2.18), we have

$$\int_{\omega} |a(x, D(u_n - u))| |\nabla(w_n - w)| \mathrm{d}x + \int_{\overline{\omega}} |F_n(x, u_n)| |w_n| \mathrm{d}\mu_n \le C.$$

Thus, there exists a vector Radon measure ρ on $\bar{\omega}$, such that for every $\varphi \in C^0(\bar{\omega})^M$, it holds

$$\lim_{n \to \infty} \left(\int_{\omega} a(x, D(u_n - u))(\varphi \otimes \nabla(w_n - w)) \mathrm{d}x + \int_{\overline{\omega}} F_n(x, u_n) w_n \varphi \, \mathrm{d}\mu_n \right) = \int_{\overline{\omega}} \varphi \, \mathrm{d}\rho.$$
(5.56)

Using the Cauchy-Schwartz inequality, (2.12), (2.18), the weak convergence of $|\nabla(w_n - w)|$ to zero in $L^p(\omega)$, (5.47) and (4.33), we deduce that ρ satisfies

$$\left| \int_{\overline{\omega}} \varphi \, \mathrm{d}\rho \right| \leq C \limsup_{n \to +\infty} \left(\int_{\omega} |D(u_n - u)|^p |\varphi| \mathrm{d}x + \int_{\overline{\omega}} |u_n|^p |\varphi| \mathrm{d}\mu_n \right)^{\frac{p-1}{p}} \\ \times \left(\int_{\omega} |\nabla(w_n - w)|^p |\varphi| \mathrm{d}x + \int_{\overline{\omega}} w_n^p |\varphi| \mathrm{d}\mu_n \right)^{\frac{1}{p}} \\ \leq C \left(\int_{\overline{\omega}} |u|^p |\varphi| \mathrm{d}\mu \right)^{\frac{p-1}{p}} \left(\int_{\overline{\omega}} w^p |\varphi| \mathrm{d}\mu \right)^{\frac{1}{p}}, \quad \forall \varphi \in \mathcal{S}^M_{\omega},$$
(5.57)

where C only depends on α and γ . From the derivation measures theorem, we deduce that there exists a μ -measurable vector function $L: \overline{\omega} \setminus \overline{\partial \omega \cap \Omega} \to \mathbb{R}^M$ such that

$$\int_{\overline{\omega}} \varphi \, \mathrm{d}\rho = \int_{\overline{\omega}} L\varphi \, \mathrm{d}\mu, \quad \forall \varphi \in \mathcal{S}^M_{\omega},$$

and

$$|L| \leq C|u|^{p-1}w$$
 μ -a.e. in $\overline{\omega} \setminus \overline{\partial \omega \cap \Omega}$.

$$\int_{\omega} a(x, Du) : D(w\psi) dx + \int_{\overline{\omega}} Tw\psi \, d\mu = \int_{\omega} gw\psi \, dx + \int_{\omega} G : D(w\psi) dx,$$

for every $\psi \in \mathcal{S}^M_{\omega}$, which by the density of the set D_{ω} given by (4.38) proves that u satisfies (5.51).

To finish this section, let us obtain an estimate about the dependence of the function T given by Proposition 5.4 with respect to u. For this purpose, as in Lemma 5.3, we consider $z_n \in W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ with $||z_n||_{W^{1,p}(\omega)^M \cap L^p_{\mu_n}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M}$ bounded, converging weakly in $W^{1,p}(\omega)^M$ to a function $z \in W^{1,p}(\omega)^M \cap L^p_{\mu}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$, such that there exist h_n converging weakly in $L^{p'}(\omega)^M$ to a function h and H_n converging strongly in $L^{p'}(\omega)^{M \times N}$ to a function H which satisfy (5.48). From Proposition 5.4, we also know that there exist $T' \in L^p_{\mu'}(\overline{\omega} \setminus \overline{\partial \omega \cap \Omega})^M$ such that

$$\int_{\overline{\omega}} T' w \psi \, \mathrm{d}\mu = \lim_{n \to \infty} \left(\int_{\omega} a(x, D(z_n - z)) : (\psi \otimes \nabla(w_n - w)) \mathrm{d}x + \int_{\overline{\omega}} F_n(x, z_n) w_n \psi \, \mathrm{d}\mu_n \right), \tag{5.58}$$

for every $\psi \in \mathcal{S}^M_{\omega}$, and

$$\int_{\omega} a(x, Dz) : Dv \, \mathrm{d}x + \int_{\overline{\omega}} T' v \, \mathrm{d}\mu = \int_{\omega} hv \, \mathrm{d}x + \int_{\omega} H : Dv \, \mathrm{d}x, \ \forall v \in W^{1, p}_{\partial \omega \cap \Omega}(\omega)^{M} \cap L^{p}_{\mu}(\overline{\omega})^{M}.$$
(5.59)

The following result estimates the difference between T and T'.

Lemma 5.5. There exist $C_1, C_2 > 0$, such that T and T' satisfy

$$|T - T'| \le C_1 (|u| + |z|)^{\frac{p(p-2)}{p-1}} |u - z|^{\frac{1}{p-1}} \quad \mu\text{-a.e. in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega},$$
(5.60)

and

$$(T - T')(u - z) \ge C_2 |u - z|^p \quad \mu\text{-a.e. in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega}.$$
(5.61)

The constant C_1 only depends on α and γ . The constant C_2 only depends on α , Ω and $\hat{\Omega}$. Proof. By (5.52), (5.58), (2.10), (2.16) and Proposition 5.1, for every $\psi \in \mathcal{S}^M_{\omega}$, we have

$$\left| \int_{\overline{\omega}} (T - T') w \psi \, \mathrm{d}\mu \right| \le C \int_{\omega} \left(|D(u_n - u)| + |D(z_n - z)| \right)^{p-2} |D(u_n - z_n - u + z)| |\nabla(w_n - w)| |\psi| \mathrm{d}x + \int_{\overline{\omega}} \left(|u_n| + |z_n| \right)^{p-2} |u_n - z_n| |\psi| w_n \, \mathrm{d}\mu_n + O_n,$$

which by Hölder's inequality, (5.47) (applied to u_n and z_n) and (5.49) gives

$$\left|\int_{\overline{\omega}} (T-T')w\psi \,\mathrm{d}\mu\right| \le C \left(\int_{\overline{\omega}} (|u|+|z|)^p |\psi| \mathrm{d}\mu\right)^{\frac{p-2}{p-1}} \left(\int_{\overline{\omega}} |u-z|^p |\psi| \mathrm{d}\mu\right)^{\frac{1}{p(p-1)}} \left(\int_{\overline{\omega}} |w|^p |\psi| \mathrm{d}\mu\right)^{\frac{1}{p}}.$$

From the measures derivation theorem, we then deduce (5.60).

Let us now prove (5.61). For $\varphi \in S_{\omega}$, $\varphi \geq 0$, we take $(u_n - z_n)\varphi^p$ as test function in the difference of (3.24) and (5.48). Using Rellich-Kondrachov's compactness theorem, the weak convergence of $g_n - h_n$ in $L^{p'}(\omega)^M$,

the strong convergence of $G_n - H_n$ in $L^{p'}(\omega)^{M \times N}$, (5.51) and (5.59), we have

$$\int_{\omega} [a(x, Du_n) - a(x, Dz_n)] : D(u_n - z_n)\varphi^p \, \mathrm{d}x + \int_{\overline{\omega}} [F_n(x, u_n) - F_n(x, v_n)](u_n - z_n)\varphi^p \, \mathrm{d}\mu_n = \int_{\omega} (g - h)(u - z)\varphi^p \, \mathrm{d}x \int_{\omega} (G - H) : D((u - z)\varphi^p) \, \mathrm{d}x + - p \int_{\omega} [a(x, Du) - a(x, Dz)] : [(u - z) \otimes \nabla \varphi]\varphi^{p-1} \, \mathrm{d}x + O_n = \int_{\omega} [a(x, Du) - a(x, Dz)] : D(u - z)\varphi^p \, \mathrm{d}x + \int_{\overline{\omega}} (T - T')(u - z)\varphi^p \, \mathrm{d}\mu + O_n, \quad (5.62)$$

which by (5.46) (applied to u_n and z_n) implies

$$\int_{\overline{\omega}} (T - T')(u - z)\varphi^p \,\mathrm{d}\mu = \lim_{n \to \infty} \left(\int_{\omega} [a(x, D(u_n - u)) - a(x, D(z_n - z))] : D(u_n - z_n - u + z)\varphi^p \,\mathrm{d}x + \int_{\overline{\omega}} [F_n(x, u_n) - F_n(x, z_n)](u_n - z_n)\varphi^p \,\mathrm{d}\mu_n \right).$$
(5.63)

Using in the right-hand side of this inequality (2.9), (2.15) and (4.42), we deduce

$$\int_{\overline{\omega}} (T - T')(u - z)\varphi^{p} d\mu \geq \alpha \left(\int_{\omega} |D(u_{n} - u - z_{n} + z)|^{p} \varphi^{p} dx + \int_{\overline{\omega}} |u_{n} - z_{n}|^{p} \varphi^{p} d\mu_{n} \right)$$
$$\geq \frac{\alpha}{\|P\|} \int_{\overline{\omega}} |u - z|^{p} \varphi^{p} d\mu + O_{n}, \qquad \forall \varphi \in S_{\omega}, \ \varphi \geq 0.$$
(5.64)

From the measures derivation theorem, this proves (5.61).

6. Proof of the main results

In this section we prove that there exists a μ -Carathéodory function $F : \overline{\Omega} \times \mathbb{R}^M \to \mathbb{R}^M$ such that the function T given by Proposition 5.4 satisfies $T(x) = F(x, u(x)) \mu$ -a.e. in $\overline{\omega} \setminus \overline{\partial \omega \cap \Omega}$. We start with the following lemma. Its proof is completely similar to the one of Theorem 6.9 in [5], and thus we omit it.

Lemma 6.1. We consider a subsequence of n such that there exists the measure μ defined in the beginning of Section 5. Then, up to another subsequence, we have that for every $q \in \mathbb{Q}^M$ and every $m \in \mathbb{N}$, the solution q_n^m of

$$\begin{cases} q_n^m \in W^{1,p}(\Omega)^M \cap L^p_{\mu_n}(\overline{\Omega})^M \\ \int_{\Omega} a(x, Dq_n^m) : Dv \, \mathrm{d}x + \int_{\overline{\Omega}} F_n(x, q_n^m) v \, \mathrm{d}\mu_n = m \int_{\Omega} [|w_n q|^{p-2} w_n q - |q_n^m|^{p-2} q_n^m] v \, \mathrm{d}x \\ \forall v \in W^{1,p}(\Omega)^M \cap L^p_{\mu_n}(\overline{\Omega})^M, \end{cases}$$
(6.65)

converges to a function q^m weakly in $W^{1,p}(\Omega)^M$. This function satisfies that there exists $T^m_q \in L^{p'}(\overline{\Omega})$ such that

$$\begin{cases} q^m \in W^{1,p}(\Omega)^M \cap L^p_{\mu}(\overline{\Omega})^M \\ \int_{\Omega} a(x, Dq^m) : Dv \, \mathrm{d}x + \int_{\overline{\Omega}} T^m_q v \, \mathrm{d}\mu = m \int_{\Omega} [|wq|^{p-2} wq - |q^m|^{p-2} q^m] v \, \mathrm{d}x \\ \forall v \in W^{1,p}(\Omega)^M \cap L^p_{\mu}(\overline{\Omega})^M. \end{cases}$$
(6.66)

When m tends to infinity, the sequence q^m converges to we strongly in $W^{1,p}(\Omega)^M \cap L^p_{\mu_n}(\overline{\Omega})^M$ and the sequence T^m_q converges strongly in $L^{p'}_{\mu}(\overline{\Omega})^M$ to a function T_q .

Definition 6.2. We consider the subsequence of *n* given by Lemma 6.1. Then, we define $\mathcal{F}: \overline{\Omega} \times \mathbb{Q}^M \to \mathbb{R}^M$ by

$$\mathcal{F}(x,q) = T_q(x), \quad \forall q \in \mathbb{Q}^M, \ \mu\text{-a.e.} \ x \in \overline{\Omega}.$$

By Lemma 6.1, (5.53), (5.60) and (5.61), it is easy to show that for every $q_1, q_2 \in \mathbb{Q}^M$ and μ -a.e. $x \in \overline{\Omega}$, we have

$$\mathcal{F}(x,0) = 0,\tag{6.67}$$

$$|\mathcal{F}(x,q_2) - \mathcal{F}(x,q_1)| \le C_1 (|q_1| + |q_2|)^{\frac{p(p-2)}{p-1}} |q_2 - q_1|^{\frac{1}{p-1}} w(x)^{p-1}, \tag{6.68}$$

$$(\mathcal{F}(x,q_2) - \mathcal{F}(x,q_1))(q_2 - q_1) \ge C_2 |q_2 - q_1|^p w(x)^{p-1}.$$
(6.69)

Using (6.68), we can extend by continuity \mathcal{F} to $\overline{\Omega} \times \mathbb{R}^M$. Then, we define $F : \overline{\Omega} \times \mathbb{R}^M \to \mathbb{R}^M$ by

$$F(x,s) = \begin{cases} \mathcal{F}\left(x,\frac{s}{w(x)}\right) & \text{if } w(x) > 0\\ |s|^{p-2}s & \text{if } w(x) = 0. \end{cases}$$

Thanks to Lemma 6.1, Proposition 5.4 and estimate (5.60) we can now prove Theorem 3.1.

Proof of Theorem 3.1. We take u_n and u as in the statement of the theorem. By Proposition 5.4, there exists $T \in L^{p'}_{\mu}(\overline{\omega})^M$ such that u is a solution of (5.51). Applying (5.60), with z replaced by q^m , we have

$$|T - T_q^m| \le C(|u| + |q^m|)^{\frac{p(p-2)}{p-1}} |u - q^m|^{\frac{1}{p-1}} \quad \mu\text{-a.e. in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega}, \tag{6.70}$$

and therefore, taking the limit as m tends to infinity, we obtain

$$|T - F(x, wq)| \le C(|u| + |wq|)^{\frac{p(p-2)}{p-1}} |u - wq|^{\frac{1}{p-1}} \quad \mu\text{-a.e. in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega}.$$

Thus, for every simple function $\phi(x) = \sum_{i=1}^{l} s_i \chi_{B_i}(x)$, with $s_i \in \mathbb{R}^M$, B_i Borel, we have

$$|T - F(x, w\phi)| \le C(|u| + |w\phi|)^{\frac{p(p-2)}{p-1}} |u - w\phi|^{\frac{1}{p-1}} \quad \mu\text{-a.e. in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega}$$

Finally, taking in this inequality ϕ as a sequence ϕ_n such that $w\phi_n$ converges μ -a.e. to u in $\overline{\omega} \setminus \overline{\partial \omega \cap \Omega}$ (the existence of such sequence is an easy consequence of Prop. 4.5) and passing to the limit in n thanks to the continuity of F with respect to its second variable, we get

$$T = F(x, u) \quad \mu\text{-a.e. in } \overline{\omega} \setminus \overline{\partial \omega \cap \Omega}.$$

This proves (3.25) thanks to (5.51) and the fact that the functions of $W^{1,p}_{\partial\omega\cap\Omega}(\omega)$ are zero q.e. on $\overline{\partial\omega\cap\Omega}$.

Proof of Theorem 3.2. Let us just prove (ii). The proof of (i) is much simpler.

Thanks to (3.28) and the assumptions on a and F_n , problem (3.29) has a unique solution. Moreover, taking u_n as test function in (3.29) and using (3.28), (2.11) and (2.17) we get that u_n satisfies (3.23). Thus, from $W^{1,p}_{\partial\omega\cap\Omega}(\omega)$ closed, Theorem 3.1 and Proposition 5.1, we deduce that there exists a subsequence of u_n which converges weakly in $W^{1,p}_{\partial\omega\cap\Omega}(\omega)^M$ and strongly in $W^{1,q}_{\partial\omega\cap\Omega}(\omega)^M$, $1 \leq q < p$, to a solution u of (3.30). If we prove that u is unique, then the whole sequence u_n will converge to u and the proof of *(ii)* will be finished. For this purpose, it is enough to prove that the measure μ also satisfies (3.28) and then, from (2.9) and (3.22), we will get the uniqueness of solution of problem (3.30).

Let v be in $W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\mu}(\overline{\omega})$. Using Proposition 4.5, we consider $\psi_m \in \mathcal{S}_{\omega}$ such that $w\psi_m$ converges to v in $W^{1,p}_{\partial\omega\cap\Omega}(\omega) \cap L^p_{\mu}(\overline{\omega})$. From (3.28), for every $m \in \mathbb{N}$, we have

$$\begin{split} \int_{\omega} |w_n \psi_m|^p \, \mathrm{d}x &\leq C_P^p \left(\int_{\omega} |\nabla(w_n \psi_m)|^p \, \mathrm{d}x + \int_{\overline{\omega}} |w_n \psi_m|^p \, \mathrm{d}\mu_n \right) \\ &\leq C_P^p \left(\int_{\omega} (|\nabla(w_n \psi_m)|^p - |\nabla((w_n - w)\psi_m)|^p) \, \mathrm{d}x \right) \\ &+ C_P^p \left(\int_{\widehat{\Omega}} |\nabla((w_n - w)Q_{\omega}(\psi_m))|^p \, \mathrm{d}x + \int_{\widehat{\Omega}} |w_n Q_{\omega}(\psi_m)|^p \, \mathrm{d}\mu_n \right). \end{split}$$

Since w_n converges strongly to w in $W^{1,q}(\hat{\Omega})$, $1 \leq q < p$, reasoning similarly to the proof of (5.46), we have that $|\nabla(w_n\psi_m)|^p - |\nabla((w_n - w)\psi_m)|^p$ converges strongly to $|\nabla(w\psi_m)|^p$ in $L^1(\omega)$ and thus

$$\int_{\omega} \left(|\nabla(w_n \psi_m)|^p - |\nabla((w_n - w)\psi_m)|^p \right) \mathrm{d}x \to \int_{\omega} |\nabla(w\psi_m)|^p \,\mathrm{d}x,$$

whereas from (4.33) and $\mu = \hat{\mu}$ in $\operatorname{supp}(\hat{\mu}) = \overline{\Omega}$ we have

$$\int_{\hat{\Omega}} |\nabla((w_n - w)Q_{\omega}(\psi_m))|^p \,\mathrm{d}x + \int_{\hat{\Omega}} |w_n Q_{\omega}(\psi_m)|^p \,\mathrm{d}\hat{\mu}_n \to \int_{\overline{\omega}} |w\psi_m|^p \,\mathrm{d}\mu.$$

Thus, using also the semicontinuity of the norm in $L^p(\omega)$, we get

$$\int_{\omega} |w\psi_m|^p \,\mathrm{d}x \le C_P^p \left(\int_{\omega} |\nabla(w\psi_m)|^p \,\mathrm{d}x + \int_{\overline{\omega}} |w\psi_m|^p \,\mathrm{d}\mu \right).$$

Taking then m tending to infinity we derive

$$\int_{\omega} |v|^p \, \mathrm{d}x \le C_P^p \left(\int_{\omega} |\nabla v|^p \, \mathrm{d}x + \int_{\overline{\omega}} |v|^p \, \mathrm{d}\mu \right), \qquad \forall v \in W^{1,p}_{\partial \omega \cap \Omega}(\omega) \cap L^p_{\mu}(\overline{\omega}).$$

This finishes the proof of *(ii)*.

Acknowledgements. This work has been partly supported by the projects MTM2005-04914 of the Ministerio de Eduación y Ciencia of Spain and FQM-309 of the Junta de Andalucía.

References

- C. Calvo-Jurado and J. Casado-Díaz, The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pures Appl. 81 (2002) 471–493.
- [2] C. Calvo-Jurado, J. Casado-Díaz and M. Luna-Laynez, Homogenization of elliptic problems with the Dirichlet and Neumann conditions imposed on varying subsets. *Math. Meth. Appl. Sci.* **30** (2007) 1611–1625.
- [3] J. Casado-Díaz, Homogenization of general quasi-linear Dirichlet problems with quadratic growth in perforated domains. J. Math. Pures Appl. 76 (1997) 431–476.
- [4] J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains. Proc. Roy. Soc. Edinburgh A 127 (1997) 457–478.
- [5] J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains. SIAM J. Math. Anal. 31 (2000) 581–624.

- [6] D. Cionarescu and F. Murat, Un terme étrange venu d'ailleurs, in Nonlinear partial differential equations and their applications, Collège de France seminar, Vols. II and III, H. Brézis and J.-L. Lions Eds., Research Notes in Math. 60 and 70, Pitman, London (1982) 98–138 and 154–78.
- [7] G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains. Manuscripta Math. 61 (1988) 251–278.
- [8] G. Dal Maso and A. Garroni, New results on the asymptotic behaviour of Dirichlet problems in perforated domains. Math. Mod. Meth. Appl. Sci. 3 (1994) 373-407.
- [9] G. Dal Maso and U. Mosco, Wiener-criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15–63.
- [10] G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Sc. Norm. Sup. Pisa 7 (1997) 765–803.
- [11] G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré Anal. Non Linéaire **21** (2004) 445–486.
- [12] G. Dal Maso, A. Garroni and I.V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators. J. Anal. Math. 71 (1997) 263–313.
- [13] A. Damlamian and T. Li, Boundary homogenization for elliptic problems. J. Math. Pures Appl. 66 (1987) 351–361.
- [14] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992).
- [15] H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivaties are p-th power sumable. Indiana Univ. Math. J. 22 (1972) 139–158.
- [16] J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97–107.
- [17] J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
- [18] J. Serrin, Local behaviour of solutions of quasilinear equations. Acta Math. 111 (1964) 302–347.
- [19] I.V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains. Mat. Sb. 184 (1993) 67–90.
- [20] I.V. Skrypnik, Averaging of quasilinear parabolic problems in domains with fine-grained boundary. Diff. Equations 31 (1995) 327–339.
- [21] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989).