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Abstract

We describe the Gevrey series solutions at singular points of the irregular hypergeometric
system (GKZ system) associated with an affine monomial curve. We also describe the irregularity
complex of such a system with respect to its singular support.
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Introduction

We explicitly describe the Gevrey solutions of the hypergeometric system associated with an affine
monomial curve in C" by using I'-series introduced by .M. Gel’fand, M.I. Graev, M.M. Kapranov and
A.V. Zelevinsky [8], [10] and also used by M. Saito, B. Sturmfels and N. Takayama [30] in a very useful
and slightly different form. We use these I'-series to study the Gevrey filtration of the irreqularity
complex —as defined by Z. Mebkhout in [25] Sec. 6]- of the corresponding analytic hypergeometric
D-module with respect to its singular support. Here D is the sheaf of linear differential operators
with holomorphic coefficients on C".

A general hypergeometric system M4(3) is associated with a pair (A, 3) where A = (a;;) is an
integer d x n matrix of full rank d and 3 is a parameter vector in C¢ ([8], [9], [10]). The system
M 4(3) is defined by the following system of linear partial differential equations in the unknown :

ﬁ (ai)m (¢) = ﬁ (ai)m (¢) =0 for (u,v € N", Au = Av)

i=1 i=1

arXiv:0811.3392v1 [math

Z%l’j%—ﬁmzo fori=1,...,d.
=1 i

Ifd=1 (ie. if A= (ayas --- a,)) we say that the hypergeometric system M4(() is associated
with the affine monomial curve defined by A in C". If d = 2 and the vector (1,---,1) is in the Q-row
span of A then we say that M4(3) is associated with the projective monomial curve defined by A in
P,_1(C).

Rational solutions of the hypergeometric system associated with a projective monomial curve have
been studied in [6]. The holomorphic solutions of general hypergeometric systems at a generic point
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in C"™ have been widely studied (see e.g. [9], [10], [T, [30], [27]). The rank of a general M(3) is by
definition the number of linearly independent holomorphic solutions of M4(3) at a generic point in
C". This rank equals, for generic 3 € C? and assuming ZA = Z?, the normalized volume vol(A) of
the convex hull A of the columns of A and the origin, considered as points in R? ([I0] and [1]).

Several recent papers are devoted to the study of the exceptional parameters 3, i.e. for which the
rank jumps (see [23] and the references therein, see also [4]).

To setup the problem of computing the Gevrey solutions of a left D—module, we will first recall
the situation in the one dimensional case.

Let P = a,, ddTn + -+ a1% + ag be an ordinary linear differential operator, of order m, with
a; = a;(x) a holomorphic function at the origin in C. The slopes of P are the slopes of the Newton
polygon N (P) of P defined as the convex hull of the union of the quadrants (7,7 —v(a;)) + (Z<o)? for
i =0,...,m, where v(q;) is the multiplicity of the zero of a;(x) at z = 0. By Fuchs’ Theorem, P is
regular at = 0 if and only if N(P) is the quadrant (m,m — v(a,,)) + (Z<)?.

Malgrange-Komatsu’s comparison Theorem states that P is regular at z = 0 if and only if the
solution space Sol(P; ©/O) is zero ([16], [22]). Here P acts naturally on the quotient @ /O where O =
C[[z]] (resp. O = C{x}) is the ring of formal (resp. convergent) power series in the variable x. This
solution space measures the irregularity of P at # = 0 and will be denoted Irro(P) := Sol(P; O/O).

Moreover, the vector space Irrg(P) is filtered by the so-called Gevrey solutions of the equation
P(u) = 0. Let us denote by (55 c O the subring of Gevrey series of order less than or equal to
s (where s > 1 is a real number). A formal power series f = >, fiz" € O is in O, if and only if
the series ps(f) := >_,(i)! % f;z" is convergent at = 0. The irregularity Irro(P) is filtered by the
solution subspaces Irrgs)(P) := Sol(P; 0,/0). By the comparison Theorem of J.P. Ramis [28] the
jumps in this filtration are in bijective correspondence with the slopes of N(P) and the dimension of
each Irr(()s)(P) can also be read on N(P).

In higher dimension, one has analogous results but the situation is much more involved. Let X
be a complex manifold of dimension n > 1 and let us denote by Oy (resp. Dx) the sheaf of rings of
holomorphic functions on X (resp. of linear differential operators with holomorphic coefficients). The
role of the previous equation P(u) = 0 is played here by a maximally overdetermined system of linear
partial differential equations on X, or intrinsically by a holonomic Dx—module M. Z. Mebkhout
introduced in [25] the irregularity of M along a smooth hypersurface Y C X as the complex of

OxTy
Ox |y
@) v is the formal completion of Ox with respect to Y. This irregularity is nothing but the solution
complex of M with values in Qy. Z. Mebkhout also introduced the irregularity of order s of M
along Y as the solution complex of M with values in Qy(s), i.e. Irrl (M) := RHomp, (M, Qy(s))

where Qy(s) is the quotient of the Gevrey series OX|Y( s) of order less than or equal to s along Y
by the sheaf Oxy. Z. Mebkhout proved [25] that these irregularity complexes belong to Per(Cy),

the abelian category of perverse sheaves on Y and that Irrgf) (M) is an increasing filtration of the
irregularity Irry (M). A real number s > 1 is said to be an analytic slope of M along Y at a point
p € Y if the inclusion Irr§f,)(./\/l) C Irrgf) (M) is strict in a neighborhood of p € Y for 1 < &' < s.

On the other hand, Y. Laurent defined the algebraic slopes of M by using interpolations of the
order filtration and the Malgrange-Kashiwara filtration along Y [18]. Y. Laurent also proved that
these algebraic slopes form a finite set of rational numbers.

The comparison Theorem of Y. Laurent and Z. Mebkhout [I9] proves that the analytic and
the algebraic slopes coincide. Although the slopes of a Dxy—module ./\/l can be computed by an
algorithm when M is algebraic [2], computations of the irregularity IrrY (M) are very rare. More
precisely, under some conditions on the matrix A, the slopes of a hypergeometric system M4 (/) can

be combinatorially described from the matrix A (ﬂ?ﬁﬂ, see also [5], [11]).

sheaves of vector spaces Irry (M) := RHomp, (M, Qy) where Qy is the quotient Qy = and



In this paper we explicitly describe the irregularity Irrgf) (M) for any s and for M = M 4(f3) the
hypergeometric system associated with an affine monomial curve when the associated semigroup is
positive. Here Y is the singular support of the system.

The paper has the following structure. In Sections [Iland Pl we recall the definition of Gevrey series
and some essential results, proved by Z. Mebkhout [25], about the irreqularity complex Irry (M) of
a holonomic D-module M with respect to a hypersurface Y in a complex manifold. We also recall
the comparison theorem of Y. Laurent and Z. Mebkhout for the algebraic and analytic slopes of a
holonomic D-module [19].

Section B deals with the basic properties of the I'-series associated with the pair (A, 3) following
[8], [10, Sec. 1] and [30], Sec. 3.4].

Sections Ml and [G] are devoted to the computation of the cohomology of the irregularity complex
Irrgf)(/\/l 4(0)) of the hypergeometric system M 4(3) associated with a smooth monomial curve and
with a general monomial curve respectively, at any point of the singular support Y of the system. In
both cases the associated semigroup is assumed to be positive.

Proofs are fulfilled by reducing the number of variables, by using the restriction functor in D—
module theory, and then applying the results from the 2 dimensional case [7].

This paper can be considered as a natural continuation of [7], [5] and [11] and its results should be
related to the ones of [33]. We have often used some essential results of the book [30] about solutions
of hypergeometric systems. Some of our results are related to [26] and also to [21] and [12].

The authors would like to thank Ch. Berkesch, N. Takayama and J.M. Tornero for their useful
comments.

1 Gevrey series.

Let X be a complex manifold of dimension n > 1, Ox (or simply O) the sheaf of holomorphic
functions on X and Dy (or simply D) the sheaf of linear differential operators with coefficients in
Ox. The sheaf Oy has a natural structure of left Dx—module. Let Z be a hypersurface in X with
defining ideal 7. We denote by Ox/; the restriction to Z of the sheaf Ox (and we will also denote
by Ox|z its extension by 0 on X). Recall that the formal completion of Ox along Z is defined as

Og = lim Ox /T3,
k
By definition O <7 is a sheaf on X supported on Z and has a natural structure of left Dy—module.
We will also denote by O)TZ the corresponding sheaf on Z. We denote by Qy the quotient sheaf

defined by the following exact sequence
OHOX‘Z%O)?Z%QZHO.
The sheaf Q; has then a natural structure of left Dx—module.

Remark 1.1. If X = C and Z = {0} then O)ﬁzo is nothing but C[[z]] the ring of formal power series

in one variable x, while O)?sz = 0 for any nonzero p € X. In this case Qz = g@f and Qz, =0
forp # 0.

Definition 1.2. Assume Y C X is a smooth hypersurface and that around a point p € X the
hypersurface Y is locally defined by x, = 0 for some system of local coordinates (z1,...,x,). Let us

consider a real number s > 1. A germ f = 3. fi(v1,. ..  Tp1)T € Of\?,p is said to be a Gevrey

series of order s (along Y at the point p) if the power series

)= Y ko

i>0



15 convergent at p.

The sheaf O@ admits a natural filtration by the sub-sheaves O@(s) of Gevrey series of order
s, 1 < s < oo where by definition Oﬁ(oo) = O;ﬂ?' So we have Oﬁ,(l) = Oxjy. We can also
consider the induced filtration on Qy, i.e. the filtration by the sub-sheaves Qy(s) defined by the

exact sequence:

0— Oxy — Oﬁ/(‘S) — Qy(s) — 0 (1)
Definition 1.3. Let Y be a smooth hypersurface in X = C" and let p be a point in' Y. The Gevrey
index of a formal power series f € O;ﬂ?p with respect to Y s the smallest 1 < s < oo such that
f € Oz ()

2 Irregularity complex and slopes

Let X be a complex manifold. We recall here the definition of the irregularity (also called the
irregularity complex) of a left coherent Dx—module given by Z. Mebkhout [25 (2.1.2) and page 98].

Recall that if M is a coherent left Dx—module and F is any Dx-module, the solution complex of
M with values in F is by definition the complex

RHomp, (M, F)

which is an object of D*(Cyx) the derived category of bounded complexes of sheaves of C-vector
spaces on X. The cohomology sheaves of the solution complex are then £xt}, (M, F) (or simply

Ext' (M, F)) for i € N.

Definition 2.1. |25 (2.1.2) and page 98] Let Z be a hypersurface in X. The irregularity of M along
Z (denoted by Irrz(M)) is the solution complex of M with values in Q, i.e.

Irrz (M) := RHomp, (M, Qz)
If Y is a smooth hypersurface in X we also have the following definition (see [25, Déf. 6.3.7])

Definition 2.2. For each 1 < s < oo, the irreqularity of order s of M with respect to Y 1is the
complex Irrgf)(/\/l) = RHomp, (M, Qy(s)).
Remark 2.3. Since Oﬁ,(oo) = Oxpy we have Irrgfo) (M) = Irry (M). The support of the irreqularity
of M along Z (resp. Irr§f)(./\/l)) is contained in Z (resp. in'Y ).

If X =C, Z={0} and M = Dx/DxP is the Dx-module defined by some nonzero linear differ-
ential operator P(x, %) with holomorphic coefficients, then Irrz(M) is represented by the complex

o) e ),
Cfa} Cfa}
where P acts naturally on the quotient g{[z]}]

Z. Mebkhout have proved [25 Th. 6.3.3] that for any holonomic Dx-module M the complex
Irrgf)(/\/l) is a perverse sheaf on the smooth hypersurface Y C X for any 1 < s < oc.

A complex F* € D°(Cy) of sheaves of vector spaces is said to be constructible if there exists a
stratification (X)) of X such that the cohomology sheaves H'(F*) are local systems on each X,. A

constructible complex F* satisfies the support condition on X if the following conditions hold:
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1. HY(F*) =0 fori<0andi>n=dm(X).
2. The dimension of the support of H!(F*) is less than or equal to n —i for 0 <i < n.

A constructible complex F* is said to be perverse on X (or even a perverse sheaf on X) if both
F* and its dual RHomc, (F*, Cx) satisfy the support condition.
The category Per(Cx) of perverse sheaves on X is an abelian category (see [3]).

Remark 2.4. From [25, Cor. 6.3.5] each Irr§f)(—) for 1 < s < o0, is an exact functor from the
category of holonomic Dx-modules to the category of perverse sheaves on 'Y .

Moreover, the sheaves Irrgf)(/\/l), 1 < s < oo, form an increasing filtration of Irrgfo)(/\/l) =
Irry (M). This filtration is called the Gevrey filtration of Irry (M) (see [25, Sec. 6]).

Let us denote by

I (s)
Grs(Irry (M) = %W)
Irry (M)

for 1 < s < oo the graded object associated with the Gevrey filtration of the irregularity Irry (M)
(see |19, Sec. 2.4]).

We say, with [19, Sec. 2.4], that 1 < s < oo is an analytic slope of M along Y at a point p € Y
if p belongs to the closure of the support of Gry(Irry(M)). Y. Laurent ([17], [I8]) defines, in an
algebraic way, the algebraic slopes of any coherent Dx—module M along Y. These algebraic slopes
can be algorithmically computed if the module M is defined by differential operators with polynomial
coeflicients [2].

In [I9, Th. 2.5.3] Y. Laurent and Z. Mebkhout prove that for any holonomic Dx-module the
analytic and the algebraic slopes, with respect to any smooth hypersurface, coincide and that they
are rational numbers. In [5] and [I1] are described the slopes at the origin (with respect to any
hyperplane in C") of the hypergeometric system associated to any affine monomial curve. In [32]
M. Schulze and U. Walther describe the slopes of any hypergeometric system with respect to any
coordinate variety in C" under some assumption on the semigroup associated with the system. By
technical reasons the definition of slope given in [5] and [L1] is slightly different to the one of Y.
Laurent: a real number —oo < r < 0 is called a slope in [5] and [I1] if %1 is an algebraic slope in
the sense of Y. Laurent [I§].

3 Hypergeometric systems and ['—series

Hypergeometric systems are defined on X = C". We denote by A,(C) or simply A, the complex
Weyl algebra of order n, i.e. the ring of linear differential operators with coefficients in the polynomial
ring Clz]| := Clxy,...,x,]. The partial derivative a%i will be denoted by 0.

Let A = (a;;) be an integer d x n matrix with rank d and 3 € C% Let us denote by FE;(3) for
i = 1,...,d, the operator Ey(8) := > 7 a;z;0; — ;. The toric ideal 14 C C[J] := C[0y,...,0,]
associated with A is generated by the binomials [, := 0"+ — 9"~ for u € Z" such that Au = 0 where
u=uy —u_ and uy,u_ are both in N” and have disjoint support.

The left ideal A, 14 + ), A, Ei(B) C A, is denoted by H4(8) and it will be called the hypergeo-
metric ideal associated with (A, 3). The (global) hypergeometric module associated with (A, 3) is by
definition (see [§], [10]) the quotient Ma(53) := A,/Ha(5).

When X = C" is considered as complex manifold, to the pair (A, (5) we can also associate the
corresponding analytic hypergeometric Dy—module, denoted by M 4(3), which is the quotient of Dy
modulo the sheaf of left ideals in Dx generated by H4(f3).



In what follows we will use I'-series following [8] and [10, Sec. 1] and in the way these objects are
handled in [30} Sec. 3.4].

Let the pair (A, 3) be as before. Assume v € C". We will consider the '-series

1

v i=2a’ E — " € 2°C[[z7, ..., 2"

2 x - F(v+u+1)x T Hxl Ty H
u€lyg

where 1 = (1,1,...,1) € N*, Ly = kery(A) and for v = (71,...,7,) € C™ one has by definition
I'(y) = [1,T(7) (where I is the Euler gamma function). Notice that the set x*C[[z7", ..., z"]]
has a natural structure of left A,(C)-module although it is not a Dy ¢-module. Nevertheless, if
Av = [3 then the expression ¢, formally satisfies the operators defining M 4(/3). Let us notice that if
u € Ly then ¢, = @yiy-

If v e (C\Z<y)" then the coefficient m is non-zero for all u € L, such that u; +v; > 0 for

all « with v; € N. We also have the following equality

v+ 1) (V)u_

Totut D) (ot wh, ?

where for any z € C" and any o € N we have the convention

a;—1

o= T1 TIG-.

i, ;>0 j=0

Following [30, p. 132-133] the negative support of v (denoted by nsupp(v)) is the set of indices
1 such that v; € Z.y. We say that v has minimal negative support if there is no u € L, such that
nsupp(v + u) is a proper subset of nsupp(v).

Assume v € (C\ Z-o)" has minimal negative support. The negative support of v is then a non-
empty set and I'(v + 1) = co. Moreover for each u € L, at least one coordinate of v 4+ u must be
strictly negative (otherwise nsupp(v + u) = () € nsupp(v)). So I'(v + u+ 1) = oo for all u € L4 and
Py = 0.

If v g (C\Z-o)" does not have minimal negative support then there exists u € L, such that v+u
has minimal negative support. If nsupp(v + u) = @ then ¢, = @, # 0 while if nsupp(v + u) # 0
then Po = Potu = 0.

Following loc. cit., for any v € C" we will consider the series

e U (U>U— u
M

uE Ny

where N, = {u € L4 | nsupp(v + u) = nsupp(v) }.
If Av = 3 then ¢, is a solution of the hypergeometric ideal H4(f3) (i.e. ¢, is formally annihilated
by Ha((3)) if and only if v has minimal negative support [30, Prop. 3.4.13].
For v € (C\ Z-y)"™ we have
T(v+1) (©)u

Plov+u+1)  (v+u),,

and ['(v + 1)y, = ¢,.
If v (C\ Zo)" then the coefficient of 2V in ¢, is non-zero (in fact this coefficient is 1) while it
is zero in (,,.
In order to simplify notations we will adopt in the sequel the following convention: for v € C"
and u € L we will denote )
U)u_

Clv;ul == CES
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if w € N, and I'[v; u] := 0 otherwise. With this convention we have

Oy =" Z [[v; ulz®.

uel g

In what follows we will describe the irregularity, along the singular locus, of the hypergeometric
system associated with an affine monomial curve in X = C"” and with a parameter 3 € C.

4 The case of a smooth monomial curve

Let A= (lay -+ a,) be an integer row matrix with 1 < as < --- < a, and € C. Let us denote by
M 4 (/) the corresponding analytic hypergeometric system on X = C". We will simply denote D the
sheaf Dy of linear differential operators with holomorphic coefficients.

Although it can be deduced from general results (see [8] and [I, Th. 3.9]), a direct computation
shows in this case that the characteristic variety of M () equals 75X U Ty X where Y = (z,, = 0).
The module M 4(f3) is then holonomic and its singular support is Y. Let us denote by Z C C™ the
hyperplane z,_; = 0.

One of the main results in this Section is

Theorem 4.1. Let A = (1 ay -+ a,) be an integer row matriz with 1 < as < -+ < a, and § € C.
Then the cohomology sheaves of Irrgf) (Ma(B)) satisfy:

i) Extd(Ma(B), Qy(s)) =0 for 1 < 5 < ay/an_1.

ii) Extp(Ma(B), Qv (s))ynz =0 for 1 < s < oo.
iii) dime (Extd(Ma(B), Qy (5))p) = an_1 for all s > ap/an_ andp €Y \ Z.
w) Extly(Ma(B),Qy(s)) =0 fori>1and1 < s< oo,

The main ingredients in the proof of Theorem [4.1] are: Corollary .4 the corresponding results
for the case of monomial plane curves [7], Cauchy-Kovalevskaya Theorem for Gevrey series (see [20,

Cor. 2.2.4)), the perversity of Irr§f) (M4(B)) [25, Th. 6.3.3] and Kashiwara’s constructibility theorem
[13].

We will also describe a basis of the solution vector space in part 4ii) of Theorem [4.1] (see Theorem

4.23).

4.1 Reduction of the number of variables by restriction

In the sequel we will use some results concerning restriction of hypergeometric systems.

Theorem 4.2. [5, Th. 4.4] Let A= (1ay --- a,) be an integer row matriz with 1 < ay < --- < ay,
and 3 € C. Then fori=2,...,n, the restriction of M a((3) to (z; = 0) is isomorphic to the D’'-module

M)y = prrm s = 2y
A= " DL (B) + 2D~ D'Hy(B)
where A = (1 ay -+ a;—1 a1 -+ a,) and D' is the sheaf of linear differential operators with
holomorphic coefficients on C*™1 (with coordinates x1, ..., Ti 1, Tis1, .-, Tp).



Theorem 4.3. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb and a,b
relatively prime. Then for all 5 € C there exist By, ..., Ok—1 € C such that the restriction of M ()
to (1 = 0) is isomorphic to the D'-module

T
L

D
Ma(B)@r=0) =

= D5+ D~ DM )

7
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where D' is the sheaf of linear differential operators on the plane (x1 = 0) and A" = (a b). Moreover,
for all but finitely many 5 € C we can take (3; = %, 1=0,1,...,k—1.

An ingredient in the proof of Theorem [4.1]is the following

Corollary 4.4. Let A= (1 ay --- ay,) be an integer row matriz with 1 < ay < -+ < a, and B € C.
Then there exist ; € C, i = 0,...,k — 1 such that the restriction of Ma(B) to X' = (1 = x9 =
o =x,_9 = 0) is isomorphic to the D'-module

Ead

D 1
MalBx = DHA(B) + (x1, 72, -+, Zn_2)D - Mar(B)

Il
o

%

where D' is the sheaf of linear differential operators on X', A" = %(an_l a,) and k = ged(a,_1,ay,).
Moreover, for all but finitely many 8 € C we can take (3; = %, 1=0,1,...,k—1.

Let us fix some notations and state some preliminaries results in order to prove Theorem [£.3]

Notation 4.5. Let A be an integer d X n—matrixz of rank d and 3 € C". For any weight vector w € R"
and any ideal J C C[0] = C[0y,...,0,] we denote by in,(J) the initial ideal of J with respect to the
graduation on C[0] induced by w. According to [30, p. 106] the fake initial ideal of Ha(() is the ideal
fin,(Ha(B)) = Aning(1a) + An(A0 — 5) where 8 = (04, ...,6,) and 0; = ,;0;.

Assume now A = (1 ka kb) is an integer row matriz with 1 < a < b, 1 < ka < kb and a,b
relatively prime.

Let us write Py = 05 — 03, Py = 0¥ — 0y, Py = O — 03 and E = 0, + kafy + kbls — (3. It is clear
that P, € HA(ﬂ) = <P2,P3,E> C As.

Let us consider < a monomial order on the monomials in As satisfying:

M+ ays +bys <)+ avy + by
or = 20" < 2% "
Y1+ aye + bys = v + avh + bys and 3avys + 2bys < 3avh + 2074

Write w = (1,0,0) and let us denote by <, the monomial order on the monomials in Az defined

as
o I A~ Def. ’71—0&1<’71—O/1
2407 <, 2407 = or
Y —ap =7 —a) and 2297 < 29

Lemma 4.6. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb and a,b
relatively prime. Then

ﬁl’lw(HA(ﬂ)> = Aginw(IA) + AgE = Ag(Pl, E, 8{{)
for B ¢ N*:= N\ {0} and for all 5 € N* big enough.

Proof. The proof follows from the application of Buchberger’s algorithm in the Weyl algebra A3 and
the fact that 9F € fin,(H4(3)) for 3 as in the statement. O
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Definition 4.7. [30, Def. 5.1.1] Let I C A, be a holonomic ideal (i.e. A, /I is holonomic) and
w e R\ {0}. The b-function I with respect to @ is the monic generator of the ideal

in(_g@)(]) N C[T]

where T = w10y + - - + Wpb, and in_g g (1) is the initial ideal of I with respect to the weight vector
(_C‘J> 6‘3) :

Corollary 4.8. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb and a,b
relatively prime. Then the b-function of H(3) with respect to w = (1,0,0) is

b(r)=7(r=1)--- (7= (k=1))
for all but finitely many 5 € C.

Proof. From [30, Th. 3.1.3] for all but finitely many § € C we have

0 (Ha(9)) = fin (Ha(5)).

Then by using Lemma .G we get
iN(—ww) (Ha(B)) = A3(Pr, B, 0F)

for all but finitely many 3 € C. An easy computation shows that {P;, E, 0"} is a Groebner basis of
the ideal in_y, ) (Ha(3)) with respect to any monomial order > satisfying 65 > 61,6, and 95 > 5.
In particular we can consider the lexicographic order

ZL’3>$2>02>03>[L’1>81
which is an elimination order for z; and d;. So we get

in () (Ha(8)) N Clan) (1) = (2F)

and since z50F = 0,(6; — 1)--- (0, — (k — 1)), we have

() (Ha(3)) NCloh] = (61(61 — 1) -~ (61 — (k= 1)))
This proves the corollary. O

Remark 4.9. Corollary[{.§ can be related to [4, Th. 4.3] which proves that for A = (1 ay --- ay)
with 1 < ag < -+ < ay, the b-function of Ha(() with respect to e; is b(t) =1, fori =2,...,n. Here
e; € R"™ is the vector with a 1 in the i-th coordinate and 0 elsewhere.

Recall (see e.g. [30, Def. 1.1.3]) that a Groebner basis of a left ideal I C A, with respect to
(—w,w) € R?™ (or simply with respect to w € R") is a finite subset G C I such that I = A,G and
in(_w,w)(l) = Anin(_w,w)(G) where in(_w,w)(G) = {in(_%w)(P) | P e G}

Lemma 4.10. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb and a,b
relatively prime. For all but finitely many € C, a Groebner basis of Ha([3) C As with respect to
w=(1,0,0) is

{Py, P,, P;, E, R}

for some R € Az satisfying in(_, ) (R) = OF.



The following Proposition is a particular case of [4, Th. 6.5.] (see also [29, Th. 2.1]) and it will
be used later.

Proposition 4.11. Assume A = (aj ay- - -ay) is an integer row matriz with 0 < a; < ag < -+ < ay,.
For 3,3 € C* we have that Ma(B3) ~ M4(3') if and only if one of the following conditions holds:

i) 3,0 € NA.
i) 3,3 € Z\ NA.
iii) 3,8 ¢ 7 but 3 — 3 € Z.

Proof. (Theorem [4.3]) We have A = (1 ka kb) with 1 < a < b, 1 < ka < kb and a, b relatively
prime. From Proposition L.I7]it is enough to compute the restriction for all but finitely many 3 € C.
We will compute the restriction of M4(3) to (z; = 0) by using an algorithm by T. Oaku and N.
Takayama [30, Algorithm 5.2.8].

Let r = k — 1 be the biggest integer root of the Bernstein polynomial b(7) of H4(/3) with respect
tow = (1,0,0) (see Corollary [L.8)). Recall that D" = D¢z and that we are using (z, x3) as coordinates
in C?. We consider the free D'-module with basis By_1 := {8} : i =0,1,...,k—1}:

k—1
(D) + = (D) ~ P Do
1=0

To apply [30, Algorithm 5.2.8] to our case we will use the elements with w—order less than or equal
to k — 1, in the Groebner basis G := { Py, P», P3, E, R} of Hs(/3). Recall that G is given by Lemma
for all but finitely many 3 € C. Each operator 9iP;, 0F,i =0,...,k — 1, must be written
as a C-linear combination of monomials z“0” and then substitute z; = 0 into this expression. The
result is an element of (D')¥ = D'By. In this case we get:

(01 P1)je1=0 = P10}, (O1E)jpy—0 = (kazs0s + kbx30; — B+ 14)0;, i =0,....k—1
and this proves the theorem. O

Remark 4.12. Let us consider A = (1 ay -+ ay,), 1 < ay < -++ < a,, k = ged(a,_1,a,) and
A" = L(ap-1,a,). We can apply Cauchy-Kovalevskaya Theorem for Geuvrey series (see [20, Cor.
2.2. 4/) Corollary[4.4 and [3, Prop. 4.2] to the hypergeometric system M () to prove that for each
5 € C there exist 3; € C, 1 =0,...,k— 1, and a quasi-isomorphism

k—
RHomp, (Ma(5), Oy (s) @RHomDX, (Mar(3:), O (9))
i=0
forall1 < s < oo whereY = (x, =0), X' = (11 =29 =+ =2, 2 =0) and Y =Y N X"
6 i

Moreover, for all but finitely many 5 we can take ; = ==. Notice that coordinates in X, Y, X', Y’
are £ = (T1,...,Tp), Yy = (X1, ..., Tn_1), ¥’ = (Tp_1, %) and Yy = (z,_1) respectively.
The last quasi-isomorphism induces a C—linear isomorphism

k—1
Exth (Ma(B), O5v () (0...0.0-1.0) = P et (Ma(B), Oz () (en-1.0)
=0

forall e,1 € C, s > 1 and j € N and we also have equivalent results for Qy(s) and Qy.(s) instead

ofOX‘Y( s) and OX,|Y,( s).

10



In particular, using [7, Proposition 5.9], we have:

Proposition 4.13. Let A = (1 ay -+ a,) be an integer row matriz with 1 < ay < -+ < a,. Then
forall 5 € C
. j . (p—1 ZfS 2 a'n/an—b ] =0 and €n—1 7é 0

dime(Eath, (Ma(0), @ (o) = { (7 Do 0
Corollary 4.14. Let A= (1 ay --- ay,) be an integer row matriz with 1 < as < --- < a,. Then for
all e C

Ch(Irr{) (Ma(B)) € T3V | Ty Y

for s > %

Proof. Here Ch(Irrgﬁ) (M4(B))) is the characteristic cycle of the perverse sheaf Irrgf) (Ma(B)) (see e.g.
[19, Sec. 2.4]). The Corollary follows from the inclusion

Ch®(MA(B) C TE X UTEX UTEX
for s > a,/a,_1 and then by applying [19, Prop. 2.4.1]. O

Proof. (Theorem [4.7]) Let us consider the Whitney stratification Y = YUY of Y = (2, =0) C C"
defined as
Vi=Y\(YNnZ)=C"?%xC".

Y=Y NZ=C"2x{0}.

As Irrgf)(/\/lA(ﬁ)) is a perverse sheaf for all § € C and 1 < s < oo [25, Th. 6.3.3] we can apply
Kashiwara’s constructibility Theorem [I3], the Riemann-Hilbert correspondence (see [24] and [15],
[14]) and Corollary .14} to prove that

Eatp(Ma(B), Qv (5))y;

is a locally constant sheaf of finite rank for all ¢ € N, j = 1,2. To finish the proof it is enough to
apply Proposition 4.13] O

Remark 4.15. Last proof uses Mebkhout’s result on the perversity of the irreqularity, Kashiwara’s
constructibility Theorem and the Riemann-Hilbert correspondence, all of them being deep results in
D-module theory. It would be interesting to give a more elementary proof of Theorem[4.1. In [7] such
an elementary proof is given for the case n = 2.

4.2 Gevrey solutions of M ,(f3)

We will compute a basis of the vector spaces Ext'(Ma(5), Qy(s)), forallpe Y, 1< s < oo, €N,
ie€Nand A= (1ay -+ a,) is an integer row matrix with 1 < as < -+ < a,. In fact it is enough

to achieve the computation for i = 0 and p € Y \ Z, otherwise the corresponding germ is zero by
Theorem (.11

Lemma 4.16. Let A= (1 ay --- a,) be an integer row matriz with 1 < ay < --- < a,, and w € RY,
satisfying

a) w; > awy for2<i<n—2 ori=n

b) Ap_1W1 > Wp—1

11



C) Wno1> Wiy, Wnoo
Then H () has a,_1 exponents with respect to w and they have the form

M:Uﬁwa%;AMEC”

n—1

i=0,1,... a, — 1.

Proof. The notion of exponent is given in [30, page 92]. The toric ideal 4 is generated by P;,; =
o' —0,€Clo,i=2,...,n.

Let w = (w1, ...,wy) € RZ, be a weight vector satisfying the statement of the lemma. We have:
- P 0; ifi=2,....,n—2,n
B A N | g |

In particular {P;: ¢ =2,...,n} is a Groebner basis of 14 with respect to (—w,w) and then

iIlwIA = <82, ceey an_g, 81117#1,0”).
The standard pairs of in,(/4) are ([30, Sec. 3.2]):

S(IHW(IA)) = {(8{a {n - 1}) : ] = Oa ]-7 ceesApo1 — 1}
To the standard pair (&, {n — 1}) we associate, following [30, page 108], the fake exponent

B—J

n—1

v/ = (4,0,...,0,

,0)

of the module M 4(3) with respect to w. It is easy to prove that these fake exponents are in fact
exponents since they have minimal negative support [30, Th. 3.4.13]. O

Remark 4.17. With the above notation, the I'~series ¢,; associated with v/ for j =0,..., ap_1 — 1,
1s defined as
by = 2 Z Lv?; u)z"
uel 5

where Ly = kerz(A) is the lattice generated by the vectors {u?, ..., u"} and u® is the (i — 1)-th row of
the matriz

—a; 10 -~ 00 00
—Gpo 0 0 01 00
an—1 0 0 00 -1 0
—a, 0 0 00 01
For any m = (my,...,m,) € Z" ' let us denote u(m) := Y\ ,mu' € Ly. We can write
bo=a Y TWum)e
mMo,..., Mgy —1,mn >0

Pigtn—1ami<jtan_1mn_1
for j = 0,1,...,a,_1 — 1. We have for m = (my,...,m,) € N*! such that j — Ditn1 QMG +
Ap—1Mp—1 Z 0 )
(L) J!

F[Uj;u(m)] = :
mal - my_olmy 1 (j — Z#n_l aim; + ap_1Mmp_1)!
and =
u(m) __ .7 2ui#n—1 @iMi+an-1Mn—1 g Mp—9 —Mnp—1 _m
z =T Lo Xy 9 Xy g X"
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Proposition 4.18. Let A = (1 ay -+ a,) be an integer row matriz with 1 < ay < -+ < ay,
Y=(,=0)CX and Z = (2,.1 =0) C X. Then we have:

ap—1—1

Ext’ (Ma(B), Oy )y Z Cuip

foralleC,peY\ Z.

Proof. Step 1.- Using [10] and [30] we will describe a,,_; linearly independent solutions of M 4(5),,
living in some Nilsson series ring. Then, using initial ideals, we will prove that an upper bound of

the dimension of Ext°(M4(3), X‘Y) is a, 1 for pin Y\ Z.
First of all, the series
{6i|j=0,...;a,—1 — 1} C " C[[xl Ty T, Ty, 1]

described in Remark [LI7], are linearly independent since in,(¢,;) = 2V for 0 < j < a,_; — 1. They
are solutions of the system M4(3) (see [8], [I0, Sec. 1],[30, Sec. 3.4]).
On the other hand

dime Ext° (M A(B), O =)y < a1 (3)

X|Y)

for p=(e1,...,€,-1,0), €,_1 # 0. This follows from the following facts:
a) The initial ideal in,(14) equals (s, . .. 0n 9, 01" ! 0 ,,) for w as in Lemma [£.16
b) The germ of E at p is nothing but E, := E + ZZ ! a;e;0; (here a; = 1) and satisfies

in(—w,w) (Ep) - an—len—lan—l .

c) By [30, Th. 2.5.5] if f € (’)X‘Y is a solution of the ideal H4((3) then in,(f) must the annihilated

by in(_y.w)(Ha(3)). That proves inequality (B]).
Step 2.- It is easy to prove, using standard estimates, that the series ¢,; , are in fact in OXIY

for all p € Y\ Z. Then by step 1, they form a basis of the the vector space Ext?(M4(3), (’)X‘Y) for
peY\Z. O

Remark 4.19. We will prove (see Theorem[{.21) that the Gevrey index of ¢y is ay/an—1 for 3 € C
and p € Y\ Z except for € N and j = q the unique integer 0 < q < a,,_1 —1 such that f—q € a,_1N.
In that case ¢y is a polynomial (see details in Remark[{.29).

Proposition 4.20. Let A = (1 ay -+ a,) be an integer row matriz with 1 < ay < -+ < ay,
Y = (x, =0) C X. Then we have:

i) For each f € C\ N we have Ext! (Ma(3),Ox)y) =0 for all j € N.

i) For each 8 € N the sheaf Ext!(Ma(B), Oxy) is locally constant on'Y of rank 1 for j = 0,1
and it is zero for j > 2.

Proof. For all § € C the characteristic variety of M4(3) is Ch(Ma(8)) = Tx X UTy X (see e.g. [I]).
Then from Kashiwara’s constructibility Theorem [13] we have that, for all j € N, the sheaf

Ext! (M 4(B), Ox)y = Ext! (Ma(B), Oxpy )y (4)

is locally constant.

13



Assume 3 ¢ N. From Corollary 4 and Proposition LTI we have that there exists m € N such
that M () ~ M4(8 —m) and

- .
—m—1
Ma(B) s = Ma(B = m)px = 69 (67)
with X' = (2, = -+ = 2,» = 0) C X, k = ged(an_1,a,) and ay = ¢ for £ = n — 1,n. Then by
applying Cauchy-Kovalevskaya Theorem (see Remark [L12)) we get:
P —m—1
Ext? (MA(/@), OX|Y)|X’ ~ @ Ext? (M(a;71 al)) (T) s OX’\Y’)

=0

with Y = X'NY. '

As 3 ¢ N then ﬁ_z"”_’ ¢ a,_N+a/Nfori=0,...,k—1. Then part i) follows from [7, Proposition
4.5].

Assume now ( € N. From Corollary [£.4] and Proposition .11l we have that there exists m € N
such that M4 (3) =~ M4(8 + m) and

k— .
M (ﬁ)‘X/—MA/g_l_m‘X’ @ nl (ﬁ_l_?:—l)
i=0

Then by applying Cauchy-Kovalevskaya Theorem (see Remark [1.12]) we get:

Ext! (Ma(B), Oxpy ) xr = @mﬂ L) (%),OX,Y,).

By [7] this last module is in fact equal to

- +m—1
Ext! (M, ay) (%) , Oxrpyr)

where iy is the unique integer number such that 0 <ip < k — 1 and + m — iy € kEN. Then part 1)
follows from [7, Proposition 4.6]. O

Theorem 4.21. Let A= (1ay --- a,) be an integer row matriz with 1 < ay < -+ < a,, Y = (z, =
0)C X and Z = (x,—1 =0) C X. Then we have:

1)

Ap—1—1

v (s 69 Coui p

Ext® (MA(ﬂ)

forall3€C,peY \Z and s > a,/a,_1.

ii)
Ext®(Ma(B), Ogiv(s)p = { Cqu Zg i§

forallpe Y\ Z and 1 < s < a,/a,_1, where q is the unique element in {0,1,... a,_1 — 1}
satisfying ai%ql € N and ¢yq is a polynomial.
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Proof. i) Let us consider a,/a,—; < s <ooand p e Y \ Z. Assume first that § ¢ N. By Proposition
and the long exact sequence of cohomology associated with the short exact sequence ([l) we have
that

Ext"(Ma(B), Oy (5))p = Ext’(Ma(B), Qv (s))p

and by Theorem [Tl this last vector space has dimension a,_;. As
Ext’ (M4 (B), (’)i‘\y(s))p C Ext®(Ma(B), Oﬁ,)p

part i) follows from Proposition I I8 if 5 ¢ N.
Assume now 3 € N. Applying the long exact sequence of cohomology associated with the short
exact sequence ([I), Theorem [l and Proposition 20 we get an exact sequence of vector spaces

0—C— Ly — Ext®(Ma(B),9y(s), = C— Ly — 0

where £, = Ext®(Ma(B), O@(s))p and Ly = Ext'(Ma(B), (’)@(s))p. Let us write v; = dimc(L;).
By Theorem [£.1] we also have vy = a,,_1 + 5. On the other hand, by Proposition [£.18], we know that
11 < ap—1. This implies vy = a,,_1 and Lo = {0}. In particular we have the equality

Eat (M (5), Ogy(5)), © Ext(Ma(B), O)y

part i) also follows from Proposition if #eN.

Let us prove part 7). First of all, by Theorem E1], Ext/ (M (), Qy(s)), = 0 for all j € N. Then the
result follows from the long exact sequence of cohomology associated with the short exact sequence
(@) and Proposition [£.20 O

Remark 4.22. Let us recall here the notations introduced in Lemma[{.10. For A= (1ay --- a,) an
integer row matriz with 1 < as < --- < a, and w € RY, satisfying

1. w; > ajwy, for2<i<n—2ori=n
2. Qp_1w1 > Wnp_1
3. Wn1 > Wiy, Wno

we have proved (see Lemma[].10) that Ha(B) has a,—1 exponents with respect to w and that they have
the form.:

W= (0097 gyecn
An—1
F=0,1,... a1 — 1.
The corresponding I'—series ¢,; is defined as:
bo=a Y T

MMy 1 im0
Yign—1aimi<jtan_1mp_1

for 5 =0,1,...,a,_1 — 1, where for any m = (mao,...,m,) € Z" ' we denote u(m) := >\ , mu’ €
Ly.
Form = (my,...,m,) € N""! such that j — D ign_1 Qi + Ap_1my 1 > 0, we have
I'[o?; u(m)] = el

mal -y, _o!my!(j — Zi#n_l aim; + ap_1Mmp_1)!
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and

u(m) Zl;ﬁn 1alml+a” 1Mn—1 ma Mn—-2 —Mn—1_mnp

Y =T Lo~ Tpy_9 Ty 1 Ty -

If 8 € N then there exists a unique 0 < q < a,_1 — 1 such that 3 — q € a,_1N. Let us write
_ B—q

an—1"

Then for m € N big enough mg — a,m is a negative integer and the coefficient I'[v?; u(m)] is zero
and then ¢ya is a polynomial in Clz].
Recall that u"' = (a,_1,0,...,—1,0) € La and let us write

my =

v = v+ (mo + Du"' = (¢ + (mo + 1)an_1,0,...,0,—1,0) = (8 + ap_1,0,...,0,—1,0).

We have Avi = (3 an the corresponding T'~series is

o =" Y ot u(m))z"™

meM(q)
where for m = (my,...,my,) € Z" one has u(m) = >, mu' and

M(q) == {(ma, ..., mn) € N""! g+ (mo+my s +1)an1— Y am; >0},
i#n—1

Let us notice that v¢ does not have minimal negative support (see [30, p. 132-133]) and then the
['—series ¢ is mot a solution of Ha(B). We will prove in Theorem [{.23 that Ha(8)p(¢5,,) C Oxp
forallp € Y \ Z and that ¢  is a Gevrey series of index a,/a, 1.

vd,p

The second main result of this Section is the following

Theorem 4.23. Let A= (1ay -+ ay,) be an integer row matriz with 1 < ay < -+ < a,, Y = (z, =
0)C X and Z = (x,-1 =0) C X. Then for allp e Y \ Z and s > a,/a,_1 we have:

i) If B ¢ N, then:

Ap—1—1

Ext’ (M4 (), Q @ Chui p-

ii) If B € N, then there ezists a unique q € {0,... ,a,_1 — 1} such that % € N and we have:

ap—1—1
gzto (MA(ﬁ) QY @ C¢v3 D @ C¢vq P
q#j=0
Here ¢ stands for the class modulo Oxvyp of ¢ € OX|YP( s).

Proof. Part i) follows from Theorem [1.21] and Proposition [£.20] using the long exact sequence of

cohomology.
Let us prove ii). Since Ext'(M4(8), Qy(s)) = 0 (see Theorem A1) and applying Theorem E2T]
Proposition [£.20] and the long exact sequence in cohomology we get that

Ext' (Ma(B), Ox(5)) vz
is zero for s > a,/a,_1 and locally constant of rank 1 for 1 < s < a,/a,_1. We also have that
Ext' (M4 (B), O@(S))\Ynz
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is locally constant of rank 1 for all s > 1.

Assume s > a,/a,_1. We consider the following long exact sequence associated with the short
exact sequence [ (with p € Y\ Z and M = M4(3))

0 — Ext’ (M, Oxpy)p — Eat’ (M, O3, (s))p > Eat®(M, Qy (s))p — Eat' (M, Oxy)p — 0

We also have
&BtO(MA(ﬁ), Ox‘y)p ~C
ExtO(M(B), Oy (s))p = Tt

Ext’(Ma(B), Qy (s))p = C*
Ext (Ma(B), Oxpy)p = C

Since # € N there exists a unique ¢ = 0,1,...,a,_; — 1 such that 2=2 € N and then ¢, € C[z]

an—1
generates Ext’(M (), Oxy), = Ker(p).
Using the above exact sequence and the first isomorphism theorem we get that the family

{buip: 0<j<an1—1,7#q}

is linearly independent in Qy (s), for allp € Y\ Z.

In a similar way to the proof of Theorem [.T]it can be proved that ¢z € O.(s), forallp € Y\ Z

vd,p XY
and s > a,/a,_1.

Writing ¢,_; = x,*, and defining:

1 1
Ve (21, Tnay b1, @) = 2 (@1, . Ty, t—,:vn)
n—1
we have that
0d S C[[Ila ceey Tp—2, tn—1> $n]]
Taking the subsum of ¢ for my = -+ = m,_9 = 0, m,, = ap,_1m, Mmy_1 = a,m, m € N, we get
the power series
m
Z Cm (tflilxzn”)
m>0

where
(=1)*™(anm)!

(ap—1m)!

This power series has Gevrey index a,/a,—1 with respect to x,, = 0. Then ¢~ has Gevrey index
Ap /1.

We have E(¢) = Pi(¢dz) = 0, for all i = 1,2,...,n —2,n and P,_1(¢) is a meromorphic
function with poles along Z (and holomorphic on X \ Z):

Cmn =

q—Z#n,l aimi+an71(m0+1)xm2 1

Pt = 3 T g
et mal ol (g = 3y i + anr (mg + 1))

méeM (q)

where

M(q) = {(ma,...,mp_2,m,) € N'7?| Zaimi <q+ap-1(mo+1)=p0+ap1}

is a finite set (recall that my = % e N).
In particular, H4(5)(¢z) C Ox (X \ Z).
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So,
b, € Ext’(Ma(B), Qv (s)),
forallpe Y\ Z and s > a,/a,_1.

In order to finish the proof we will see that for all \; € C (j
p €Y\ Z we have

=0,...,a,.1 — 1; 7 # q) and for all

Grip— Y ANidwp ¢ Oxvyp.
J#q

Let us write ]

wvﬂ' (Ilv ey Tp—2, tn—lu xn) = (bvj (xlv ey Tp—2, t—u xn)
n—1

Assume to the contrary that there exist p € Y\ Z and \; € C such that:

Cb{}}jm - Z )\jﬁbvj’p S OX‘va
J#q

Let us consider the holomorphic function at p defined as
foi=a" iy — Z A Wi
J#aq

We have the following equality of holomorphic functions at p:

ps(f+ D Nth) = pa(a” )
Jj#q

for s > a,,.
_ B-

The function ps(l’ﬁ ~) is holomorphic in C™ while each p,(,;) has the form ¢, " e I@DJ with 1;
holomorphic in C".

Making a loop around the t,,_; axis (logt,_1 — logt,_1 + 2mi) we get the equality:

f+ZCJ Ajui) = ps( . o)

J#q

_ B3
where ¢; = e - 12 7é 1 (since = 6 9 ¢ 7Z for all j # q) and f is obtained from f after the loop. Since
f is holomorphic at p then f also is. Subtracting both equalities we get:

ps(f = F 4 (e — DAjtbs)
J#q

and then R
D= DA = f =
J#q
in the neighborhood of p. This contradicts the fact that the power series {¢,; : 7 # ¢,0 < j <

an—1 — 1} are linearly independent modulo Oxy, (here we have ¢; — 1 # 0). This proves the
theorem. 0

Corollary 4.24. If 3 € N then for allp € Y \ Z the vector space Ext'(Ma(3), Oxyy), is generated
by the class of:

(Pa(Pga)s - - s Pu1(953), Puldg), E(¢)) =
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_Zi#nflaimi—i_an*l(mo"l‘l) mo Mp—2 —1

q Mn
— (0.0 Yy Ve B L
A mal - mpotma (g = 325,y @imi 4 ap—1(mo + 1))! o

m
(Oxv)y
Im(?/’& OX|Y)P

where

M(q) = {(ma, ..., mp_2,m,) € N"7? | Zaimi <q+ap-1(mo+1)=p0+ap1}
is a finite set (with mo = fn;j € N) and ¢§ being the dual map of

P : D" — D
(Qla"'aQn) = Z;L:2QJPJ+Q71E

Proof. Tt follows from the proof of Theorem since Ext'(M4(B),Oxy)y, 2 Clorallp e Y\ Z
and moreover

(P2(¢Uj)7-"aPn(¢Uj)7E(¢vj)) =0
fOI‘OSjSan—l_lu.j#q' O

Remark 4.25. We can also compute the holomorphic solutions of M () at any point in X \'Y for
A=(lay ... a,) withl < as < ... < a, and for any § € C, where Y = (x, =0) C X =C". We
consider the vectors w? = (4,0,...,0, i—_f) eC", j=0,1,...,a, — 1 then the germs at p € X \'Y of
the series solutions {¢yi : j =0,1,...,a, — 1} is a basis of Extls(Ma(5), Ox),-

We have summarized the main results of this Section in Figure 1. Here A = (1 ay -+ a,),
szaZ—il,peY\Z,zeYﬂZ, Besp € N and [een ¢ N.

(2, Besp) | (D) Pesp)

(2, Bgen) | (P, Been) | Ext*(Ma(B), F) | Ext!(Ma(B), F)
R
ron |l
F = Qy(s) . - 8 .

Figure 1: Dimension of the germs of £xt%, (Ma(5), F)

5 The case of a monomial curve

Let A = (ay ay -+ a,) be an integer row matrix with 1 < a; < as < -+ < a, and assume without
loss of generality ged(ay, ..., a,) = 1.

In this Section we will compute de dimension of the germs of the cohomology of Irrgf) (Ma(B)) at
any point in Y ={z, =0} C X =C"forall 5 € C and 1 < s < 0.

We will consider the auxiliary matrix A’ = (1 a; -+ a,) and the corresponding hypergeometric
ideal Hu/(6) C A1 where A, is the Weyl algebra of linear differential operators with coefficients
in the polynomial ring C[xg, 1, ..., x,]. We denote 9y the partial derivative with respect to x.
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In this Section we denote X’ = C"™! and we identify X = C" with the hyperplane (zo = 0) in X".
If Dy is the sheaf of linear differential operators with holomorphic coefficients in X’ then the analytic
hypergeometric system associated with (A’ 3), denoted by M 4/((3), is by definition the quotient of
Dy by the sheaf of ideals generated by the hypergeometric ideal H /() C A,+1 (see Section [3)).
One of the main results in this Section is the following

Theorem 5.1. Let A = (1 a1 --- ay,) an integer row matrix with 1 < a; < --- < a, and
ged(ay, ... a,) = 1. For each § € C there exists 3/ € C such that the restriction of Ma/(3) to
X ={zo =0} C X’ is the Dx-module

Pyp— DX,
" DxHu(B) + 2¢Dx

Mu(B)x ~ Ma(8)

where A = (ay ay -+ ay,). Moreover, for all but finitely many 5 we have ' = (3.

Proof. Following [30], we will use the notations defined in Notation and Definition 4.7 For
1 =1,2,...,n let us consider §; € N the smallest integer satisfying 1 + d;a; € Zj# a;N. Such a 9;
exists because ged(ay, ..., a,) = 1.

Let us consider p;; € N such that

1+ 0;a; = Zpijaj~
J#i

Then the operator @Q; := 9yd” — 0 belongs to I, where 97 = [Tiz04 . Moreover, for w =
(1,0,...,0) € N**! we have in(_,, ,)(Q;) = &ﬁfi €ing,ly fori=1,...,n.

We also have that P, = 0" — 01 € T4 and in_y )P = 0y" € in,ly. Then
ing Ly D (08", 000" ..., 000", Th, ..., T, (5)

for any binomial generating system {73,...,T,.} C C[0y,...,d,] of the ideal I, = I N C[0,...,0,]
(notice that u € Ly = kerz(A) C Z" <= (0,u) € La = kerz(A’) C Z™*1).

Using ([@l) we can prove (similarly to the proof of Lemma [L.06 for k£ = 1) that for § ¢ N* or § € N*
big enough, we have

Oy € fin,(Ha(B)) = ing o + (E') (6)

where B/ = E + 290y and E := E(8) = > a;x;0; — . So there exists R € Hu/(3) such that
Jo = in(_, ) (R). In particular we have

(Ha(5), 00) < finy(Ha () € i) (Ha(5))

and the b—function of H /() with respect to w is b(7) = 7. So the restriction of M 4/(3) to (zg = 0)
is a cyclic Dx-module (see [30, Algorithm 5.2.8]).

In order to compute M 4 (/3)|(z,=0) We will follow [30, Algorithm 5.2.8]. First of all we need to
describe the form of a Groebner basis of H4/(3) with respect to w. Let {T%,...,T,, Ry,..., R;} be a
Groebner basis of I, with respect to w. So we have

IA/ - <T1,...,TT,R1,...,R5>
and

ianA/ = <T1, e ,Tr, iIl(_WM)Rl, e ,in(_wM)Rg).
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If, for some i = 0,. .., ¢, the w-order of in(_, ,)R; is 0, then in_y, , R, = R; € Ix NC[0y,...,0,] =
I, and then in_, R, = R; € (T1,...,T}).

If the w-order of in(_, . R; is greater than or equal to 1, then dy divide in(_, .y /2;. Then, according
@), for 5 ¢ N* or § € N* big enough, we have

fin,(Ha(8)) = (00, E, T, ..., Tp) = (O0) + Ans1 Ha(B) € in(ww) (Ha(5)) (7)

From [30, Th. 3.1.3], for all but finitely many § € C, we have
n(—ww)(Ha(B)) = (0o, B, Ty, ..., T;) = () + Any1 Ha(B). (8)
So, for all but finitely many g € C, the set
G=A{R,Ry,...,R,, E'\Th,...,T,}

is a Groebner basis of H 4/ (3) with respect to w, since first of all G is a generating system of Ha/(/3)
and on the other hand in_,, .\ (Ha(3)) = Apt1inw ) (9).

We can now follow [30, Algorithm 5.2.8], as in the proof of Theorem F3] to prove the result for all
but finitely many G € C. Then, to finish the proof it is enough to apply Proposition dLI1] for A’. O

Remark 5.2. Recall that Y = (z, = 0) C X = C" and Z = (x,—1 = 0) C X. Let us denote
Y ={x,=0} Cc X', Z/ ={x,_1 =0} C X'. Notice thatY =Y'NX and Z =7'N X.

By using Cauchy-Kovalevskaya Theorem for Gevrey series (see [20, Cor. 2.2.4]), [3, Proposition
4.2] and Theorem [51l, we get, for all but finitely many 5 € C and for all 1 < s < oo, the following
isomorphism N

RHOmeX, (MA/(ﬁ), OW(S))|X — RHomp, (MA(ﬁ), Oﬁ(s))

We also have the following

Theorem 5.3. Let A = (a; as -+ a,) be an integer row matriz with 1 < a1 < ag < -++ < a, and
ged(ay, ... a,) = 1. Then for all 5 € C we have

i) Exty (Ma(B3),Qy(s)) =0 for 1 <s < an/an_1.
ii) Extp (Ma(B), Qv (s))ynz =0 for 1 < s < oo.
wi) dimg(Exty (Ma(B3), Qy(5))p) = an1 for anfan1 <s<ocandpeY \ Z.
w) Exty (Ma(B),Qy(s)) =0, fori>1and 1 < s < oo.
Here Y = (2, = 0) C C" and Z = (z,_, = 0) C C".
Proof. Tt follows from Remark [5.2, Theorem E.I] and Proposition .11l O

Remark 5.4. With the notations of Theorem[5.3, a basis of the C—vector space Exth(Ma(3), Qy(s)),
for any 22— < s <oo,p€Y\Z and 3 € C is given by the "substitution” (in a sense to be precised)

of zg = 0 in the basis of Extd, (Ma(B), Qy(s)) 0, described in Theorem [[.23
Remind that for A’ = (1 ay ... a,) and § € C the I'=series described in Section[]) are

Gu=@) Y ()

M ey 1 min 20
Pigtn—1aimi<jtan_1mn_1
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where ©' = (xg,x1,...,2,), v = (j,O,...,O,ai%jl,O) c C" for j = 0,1,...,a,_1 — 1 and for
m = (my,...,m,) € Z" we have

Nu(m) __ _Zi;én—l @iMi+an—1Mn—1 Mp—2 —Mn—1_m
(z') = Ty Xy Ty Ty

Form = (my,...,m,) € N" such that j — Z#n_l a;m; + ap_1Mny—1 > 0 we have

- ( 6_‘7 )mnfl ]'
F 7. — an—1 )
[v”; u(m)] ma! - my_olmy (5 — Z#n_l aim; + Gp_1Mp_1)!

Since In = Iy NC[Oy,...,0,], if La(f) = 0 then I4(fizg=0) = 0 for every formal power series
fe OX,‘Y, , where p' = (0,p) € Y N{zy =0} =Y.

Furthermore, a Laurent monomial (x')”" is annihilated by the Euler operator associated with (A', 3)
if and only if A'w' = (8 and after the substitution xo = 0 this monomial becomes zero or x* (in the
case w' = (0,w)) which are both annihilated by the Euler operator associated with (A, [3), since
Aw = A'w' = B in the case w' = (0, w).

Hence, for p € Y, every formal series solution f € OX’lY’ of M (B) becomes, after the
substitution xo = 0, a formal series solution fz,—o € (’)X‘Yp of MA(ﬂ). The analogous result is also
true for convergent series solutions at a point of xqg = 0.

After the substitution xo = 0 in the series ¢,; we get

B=J

(B=), g g gt
An—1 mn—l.]‘xl xn—2 n—1 xn
Puilag=0 = > r.. |

mq.- My—2: My

MY ,eees My —1,Mmn >0
aimi=jtan _1mp_1

for7=0,1,...,a,_1 — 1.
The summation before is taken over the set

Aji={(mq,...,m,) e N": Z aim; = j + ap_1my,_1}.
i#n—1

It is clear that (0,...,0) € Ay and for j > 1, A, is a non empty set since ged(aq, ..., a,) = 1.
Moreover A; is a countably infinite set for j > 0. To this end take some A := (A1,..., \,) € Aj.
Then A+ (0, ...,0,ay, an_1) is also in A; for all p 6 N

The series QS,U]‘IO o 1S a G’em’ey series of order s = =22~ since ¢,; also is. We will see that in fact the

L Ap_1— 1 such that ifl ¢ N. To this end let us consider
the subsum of Gyijzo—o over the set of (ml, ..,mp) € N of the form A9 + N(0,...,0,an, an_1) for
some fized \V) € Aj;. Then we get the series:

Gevrey index of Gui|zo=o 1

. () G) L=l _\W)
. — )\ A a n—1 . . ()
1(B=i ey nT2.91 B—3 (4) —anm, N\ +
]~(an71),\<a> ' Tp—2 Tp_1 (a%1 — Nl D) anm@y, Sy Fan—am
(N (4) Z (4)
)\1 H >\TL—2‘ m>0 (>\TL _'_ a’ﬂ—lm)'

and it can be proven, by using d’Alembert ratio test, that its Gevrey index equals = at any point in
Y\Z, forany j=0,...,a,_1 — 1 such thatai%jl ¢ N.
Forallj=0,...,a,_1 — 1 we have

B=i
(bvj\xo:O S xnaiEl (C[[x17 sy Tp—2, xn117 xn]]
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and in particular these a,_, series are linearly independent and hence a basis of Ext®(MA(B), (’))a\y(s))p
for s > anfan—1 and p € Y\ Z) if all of them are nonzero (see Theorem[].2])).

If there exists 0 < j < ap—1 — 1 such that ¢yijpzg—o = 0 then we have that ¢.; is a polynomial
divisible by xo and this happens if and only if § € N\ NA.

In this last case we do not get a basis of Ext®(M (), Oﬂ(s))p by the previous procedure. We
will proceed as follows. Let us consider w' = (0,w) € N"*! such that 3' .= 8 — Aw' € Zy. Then
taking the basis {¢yi|j = 0,...,an—1 — 1} of SxtO(MA/(ﬂ’),(’)W(S))(Ovp) given by Theorem [].2]]
and after the substitution zo = 0, we get a basis of Ext®(M4(3), Oc<(8)), for s > a,/an_1 and
peY\Z.

Since 3,0 € Z\ NA then 0% : Mu(B') — Ma(0) is an isomorphism (see [31, Remark 3.6] and
[, Lemma 6.2]) and we can use this isomorphism to obtain a basis of Ext®(M (), Oﬁ(s))p.

Using previous discussion and similar ideas to the ones of Section [ (we will use the notations
therein) we can prove the following Theorem.

Xy

Theorem 5.5. Let A = (a; as -+ a,) be an integer row matriz with 0 < a1 < as < -++ < ay,
Y =(x,=0)C X and Z = (x,-1 =0) C X. Then forallp e Y\ Z, 3 € C and s > a,/a,—1 we
have:

i) If B ¢ N, then:

Apn—1—1

gl’tO(MA(6>, QY(S))p = C(¢vj|:c0=0>10‘

=0
ii) If 0 € N, then there ezists a unique q € {0,...,a,—1 — 1} such that fn%ql € N and we have:

ap—1—1

Ext" (Ma(B), Qv (5))p = D CTlhwlzo=0)p © Clyippy—o)r-

q7#j=0

Here ¢ stands for the class modulo Ox|yyp of ¢ € O@p(s).

Remark 5.6. We can also compute the holomorphic solutions of Ma(3) at any point in X \'Y for
A=(ayay ... ap) with0 < ay < ag < ...<a, and for any € C, where Y = (x, =0) C X =C"
(see [T, Sec. 2.1] and Remark[{.25). As in the beginning of Section [ let us consider the auxiliary
matriz A" = (1 a1 ay ... a,) and the notation therein.

Let us consider the vectors w? = (4,0, ...,0, i—;ﬂ) cCl j=0,1,...,a, — 1. Then the germs at
P =(0,p) € X'\ Y' (withp € X \Y) of the series solutions {¢,; : 7 =0,1,...,a, — 1} is a basis of
Ext) (Ma(B),Ox:)y. Taking

{Guwio=0: 7=0,1,...,a, —1}

we get a basis of Exth(Ma(B), Ox), for 3 € C such that § ¢ N\ NA at any pointp € X \'Y. When
B € N\ NA we can proceed as in Remark |54}

Conclusions

1) In Sections M and [f we have proved that the irregularity complex Irrgf)(/\/l 4(B)) is zero for 1 < s <
an/a,—1 and concentrated in degree 0 for a,/a,_1 < s < oo (see Theorems .1l and 5.3]). Here A is a
row integer matrix (aj as -+ a,) with 0 < a1 < as < --- < a, and (3 is a parameter in C. We have
reduced the case a; > 1 to the one where a; = 1 and then to the two dimensional case treated in [7].
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2) We have described a basis of Ext9, (M4(B), Qy(s)), for pe Y\ Z and ap/a,—1 < s < 00 (see
Theorems and 5.H). Here Y = (2, =0) C X =C" and Z = (x,-1 = 0) C X. From the form
of the basis it is easy to see that the eigenvalues of the corresponding monodromy, with respect to
Z, are simply exp(w) for k =0,...,a,_1 — 1. Notice that for 8 € Z one eigenvalue (the one

an—

corresponding to the unique £ = 0,...,a,_1 — 1 such that f%kl € 7Z) is just 1. See Remark [5.4] for
notations.
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