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RESTRICTION OF HYPERGEOMETRIC 2-MODULES WITH
RESPECT TO COORDINATE SUBSPACES

MARIA-CRUZ FERNANDEZ-FERNANDEZ AND ULI WALTHER

ABSTRACT. We compute the restriction of an A-hypergeometric Z-module
with respect to a coordinate subspace under certain genericity conditions on
the parameter.

1. INTRODUCTION

Let A € Z%™ be a matrix of rank d with integer entries ai;, © = 1,...,d,
j=1,...,n. Foru € Z", let uy,u_ € N" be such that u = u; — u_, and write
O, for the element 9%+ — 9%~ of Ry = Cl[0,...,0,]. Here and elsewhere we use

multi-index notation: 8% = [[;_, v; for v € N". The toric ideal associated with A
is the prime binomial ideal

Iy=(0,:ucZ" Au=0)C Ry.

Identifying 0; with the partial derivation operator B%j, let D O R4 be the Weyl
algebra of order n, i.e. the C-algebra of linear partial differential operators with co-
efficients in the polynomial ring Clz1, . .., z,]. Following [GGZ87] and [GZK89], the
hypergeometric ideal associated with a matrix A as above and a vector of complex
parameters 3 € C? is the left ideal

Hs(B):=DIs+D(Es—f8)CD,

where F 4 — (3 is the sequence of Euler operators
n
Ei—ﬁizzaijwjaj—ﬂi, i=1,....,d.
j=1

The (global) hypergeometric D-module associated with (A, ) is by definition the
quotient
Ma(B) := D/Ha(B).

Let & be the sheaf of linear partial differential operators with holomorphic coef-
ficients in C". To the pair (A4, ) one may associate the corresponding analytic
hypergeometric Z-module, denoted by .#4(3), which is the quotient of 2 modulo
the left Z-ideal generated by Ha(5).

The restriction functor is a useful tool for the study of the irregularity of a
holonomic Z-module . (see, for example, the Cauchy-Kovalevskaya theorem for
Gevrey series [LM02, Cor. 2.2.4]). There is an algorithm due to Oaku-Takayama
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(see [0ak97, OTO1]) for the effective computation of the restriction of holonomic
D-modules to linear subspaces by means of Grobner basis calculations in the Weyl
algebra. This algorithm is employed in the proof of the explicit restriction for-
mulas in [CJT03, Thm. 4.4] and [FFCJ11, Thm. 4.2] that hold for certain classes
of hypergeometric systems. The purpose of our paper is, for sufficiently general
parameter 3 € C?, to generalize these formulas to the case of arbitrary A by using
the Euler—Koszul functor developed in [MMWO05]. We also show by example that
there are parameters for which our formula does not hold (see Example 2.8).

2. EXPLICIT RESTRICTION FORMULA FOR .Z4((3).

Notation 2.1. We denote by a; € Z% the j-th column of A, j = 1,...,n. For any
subset 7 C {1,...,n} we shall write 2, = (2;)icr, Or = (0;)icr, Ry = C[0;], and
D, = Clz,](0,). If I, is the toric ideal associated with the submatrix A, consisting
of the columns indexed by 7 then R,/I. = S, is isomorphic to the semigroup ring
S, =C[t* :i e 7] CC[H,...,t31.

Consider for Y; = {z; =0: i ¢ 7} the natural inclusion

i Y, - X =C".

We say that 3 € C? is generic if it is outside a hyperplane arrangement depending
on A, and that (§ is wvery generic if it is outside a locally finite arrangement of
countably many hyperplanes.

With this notation we will prove:

Theorem 2.2. Suppose one of the following conditions holds:
(i) B € C4 is generic and Q>¢A, = Q>oA (i.e., the real positive cones spanned
by the columns of A and A, respectively agree);
(ii) B € C? is very generic and rank(A,) = d.
Choose a collection Q0 C NA of coset representatives for ZA/Z7. Then the (derived)
restriction of M (5) with respect to Y, is given by

(2.1) L—ki;«_%A<ﬁ) ~ { Se)\eﬂ %AT (ﬂ - )\) ZIZ i 8’

Proof. The left-multiplications by z;, ¢ ¢ 7, form commuting endomorphisms of
left Z--modules (but not of left Z4-modules). By [MT04, Prop. 3.1]), Lit.Z4(3)
is quasi-isomorphic to the Koszul complex Kq(z;-: i ¢ 7;.#4(8)) as a complex of
left Z,-modules. Moreover, because of the flatness of the fibers of Z4 (resp. Z;)
over their algebraic counterparts and since affine spaces are D-affine, it suffices to
prove Theorem 2.2 using the global sections D4 (resp. D) instead of the sheaves
D4 (resp. Z;).
Define a Z%-grading on R4 C D4 by

deg(9;) = —a; = — deg(a;), i=1,...,n.

For any Z%-graded R4-module N, the Euler-Koszul complex Ko(E4 — 3, N) (see
[MMWO05, Def. 4.2]) is the Koszul complex of left D 4-modules defined by the se-
quence E4 — (3 of commuting endomorphisms on the left D4-module Dy ®r, N.
This complex is concentrated in homological degrees d to 0. The i-th Euler-Koszul
homology of N is

H(Ex— B;N) = H;(Ke(Eg — 5, N)).
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By [MMWO05, Theorem 6.6], Ko(E4 — 3,54) is a resolution of M4(3) for generic

B.

Set Coo = Ko(xi-: i ¢ T;Ke(Ea — 3,54)), a double complex as follows from

[MMWO05, Lem. 4.3] and

® 2 (Da®R, Sa)a € (Da®ry Sa)a+tas

oz, (Ea—f—a)=(Fs—0—a—a;)z; and

L ICO(EA - /87 SA) - @QGZ‘Z KO(EA - /6 —Q, (DA ®RA SA)O())
showing that all the squares in C, o are commutative.

Denote by 7 the complement A \ 7. Let 7 be the natural projection of C, ¢ to
Ko(z;- 11 ¢ 73 Ma(B)) and let 7 be the natural projection of Ce o to Da/27zDA®p,
Ke(Ea —3,54). Consider the induced morphisms:

(2.2) Tot(Ce,e) — Tot(Ke(z;- 10 ¢ 73 Ma(B))) = Ke(wi- 10 ¢ 75 Ma(3))
and
(2.3) Tot(Ce,e) — Tot(Da/27Da @p, Ke(Ea — B3, 54))

Remark 2.3. By [MMWO05, Thm. 6.6], Ke(E4 — 3,54) is a resolution of M 4(0)
if and only if 8 is not rank-jumping. Thus, for such 3, # and n are a quasi-
isomorphisms and H, Tot(Cy o) = Tor24 (D s/x=Da, Ma(f)).

Notation 2.4. For a toric Sy-module N we write o (E, — 8, N) for the Koszul
complex of left D -modules defined by the sequence E; — 3 on the (a fortiori weakly
toric) S;-module N.

Using the isomorphism (see [MMWO05])
(Da®r, Sa) — Cla=]®@c (Dr ®g, Sa),
(2.4) O O @ m — 2T @ (ak0V) ® 0L m.
one may now identify Da/z7Da ®p, Ke(E — 3,54) with Ke(E, — 3,54) as com-

plexes of D,.-modules. We have thus proved

Lemma 2.5. If 8 is not rank-jumping for A and rank(A,) = rank(A) then
LizMa(B) ~ Ke(Er — 5,54)

as complezes of left D.-modules. O

Remark 2.6. For all 3 € C%, i* M4(8) ~ Ho(E, — (3,54) because i* is right exact.

It is clear that Q>0A = Q>0A, implies that rank(A;) = rank(A) = d and this
last condition is equivalent to [ZA : ZA;] < +oc.

Consider S4 = C[NA] and S; = C[NA;]. Then the assumption Q>0A = Q>4
guarantees that Sy is a finitely generated Z%graded S,-module and so it is a toric
R,-module (see Definition 4.5. and Example 4.7 in [MMWO05]). If we don’t assume
Q>04 = Q>0A. but only rank(A,) = rank(A) = d then S4 is a weakly toric
R.-module (see [SW09)]).

Choose a collection of coset representatives Q C NA for ZA/ZA.. Then, with
S, (M) =t*S,, there is a short exact sequence

(2.5) 0= EPS-(\)—81—@Q—0,
AEQ

where no shifted copy of N7 is contained in NA \ (J,cq(A + N7). In particular,
dim(Q) < d.



4 MARIA-CRUZ FERNANDEZ-FERNANDEZ AND ULI WALTHER

Assume from now on that condition (7) is in force. As Sy is then a finite integral
extension of S;, S,-modules are toric over A precisely when they are toric over 7.
We consider the long exact sequence of Euler—-Koszul homology over D, associated
with the sequence (2.5).

By [MMWO05, Proposition 5.3] vanishing of H;(E, — 3, Q) for all i > 0 is equiv-
alent to —3 ¢ qdeg(Q), where qdeg(Q) is the Zariski closure in C? of the set of the
Z4-degrees of Q. As dim(Q) < d, generic 8 will be outside — qdeg(Q). Hence for
generic  we have

MHi(E, — B3,S4) ~ Hi(E. - 8,5 S-(V)

AEQ
= @Hz(ET _ﬁvs‘r()‘»
AEQ
~ PHiE, —B+AS:)(N)
AEQ

for all 4 > 0, and Ho(E; — B+ A, S;) = Ma_(8 — A). Furthermore, for generic g,
B — X is not rank-jumping for A, and so Hx(E, — 8+ A, S;) =0 for all k£ > 0 and
for all A € Q; this implies that L=Fi* M4 (8) = 0 for all k > 0.

In case (i7) is in force, the argument is similar, using weakly toric modules, which
arise since S4 is not a finite S;-module in this case. The main vanishing tool is
then [SW09, Thm. 5.4] instead of [MMWO05, Prop. 5.3]. This concludes the proof
of Theorem 2.2. O

Remark 2.7. If .# is a holonomic Z-module and Y, is non-characteristic for .#
then L="i*.# = 0 for all k > 0 and the holonomic rank of .# coincides with
the holonomic rank of i¥.# (see for example [MT04]). In our case, Y, is non-
characteristic for .#Z4(0) if and only if 7 contains all the nonzero vertices of the
convex hull Ay of {0,ay,...,a,} CR%

Let us show that formula (2.1) may fail if 8 is not sufficiently generic.

Example 2.8. (1) Let A = (ap a1 a3 a4) with a; = (1) for : =0,1,3,4. In this
case, by [ST98].

VOIZA(AA) =4 if ﬁ e C?~ (é)7

5 it 8=
Consider 7 = {0,1,4} and Y; = {z5 = 0}, so [ZA : Z7] = 1 and Q1A = Q.
According to Remark 2.7 the holonomic rank of ¢¥.#,4(3) is 5 for § = (;)

On the other hand, the toric ideal I, associated with A, is principal and thus
Cohen—Macaulay. It follows that the holonomic rank of .#4_(0) is volz, (A;) = 4
for all B € C? (see [MMWO5, Corollary 9.2]). This implies that for 3 = (é),
i* M4 (B) cannot be isomorphic to .#Z4, (') for any 3 € C2.

(2) Considering A = (ag a1 as a3 ay4) with notation as above, and restricting
to 22 = 0, one has Q4 A = Q47 and ZA = Zr, but the restriction of .#4((3)) is
not A, ( @)) since once again the ranks disagree, this time the original GKZ-system
having smaller rank (the rational quartic is arithmetically Cohen—Macaulay). How-
ever, by [Sai01, Thm. 6.3], #a(3) ~ .#((3)) for 3 € NA and restricting . (8) to
7 for such f leads to .. (8) unless 5 = (;)

rank M4 (8) = {
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Remark 2.9. We do not know a pair (A, 7) for which the conclusion of our theorem
fails on a set that is not a finite subspace arrangement. Indeed, while it seems clear
that 8 not rank-jumping for both A and 7 is relevant, we believe that the question
whether 3 € — qdeg(Q) is a red herring. The situation appears alike to the duality
question discussed in [Wal07]
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