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GALOIS THEORY, DISCRIMINANTS AND TORSION

SUBGROUP OF ELLIPTIC CURVES

IRENE GARCÍA–SELFA, ENRIQUE GONZÁLEZ–JIMÉNEZ, AND JOSÉ M. TORNERO

Abstract. We find a tight relationship between the torsion subgroup and
the image of the mod 2 Galois representation associated to an elliptic curve
defined over the rationals. This is shown using some characterizations for the
squareness of the discriminant of the elliptic curve.

1. Introduction.

In what follows we will denote by Cn and Sn the cyclic group of order n and the
symmetric group acting on n elements, respectively.

Let E be an elliptic curve defined over Q. Let p be a prime number and let E[p]
be the group of points of order p on E(Q), where Q denotes an algebraic closure of
Q. The action of the absolute Galois group GQ = Gal(Q/Q) on E[p] defines a mod
p Galois representation

ρE,p : GQ → Aut(E[p]) ∼= GL2(Fp).

Let Q(E[p]) be the number field generated by the coordinates of the points of E[p].
Therefore, the Galois extension Q(E[p])/Q has Galois group

Gal(Q(E[p])/Q) ∼= ρE,p(GQ)

For p = 2 it is known that ρE,2(GQ) can be determined in terms of the discriminant
∆(E) and E(Q)[2], the points of order 2 defined over the rationals (cf. [20, 19, 21]):

(1) ρE,2(GQ) ∼=















S3 if
√

∆(E) 6∈ Q and #E(Q)[2] = 1,

C3 if
√

∆(E) ∈ Q and #E(Q)[2] = 1,

C2 if
√

∆(E) 6∈ Q and #E(Q)[2] > 1,

{id} if
√

∆(E) ∈ Q and #E(Q)[2] > 1.

Note that GL2(F2) ∼= S3, the non-split Cartan subgroup of GL2(F2) is isomorphic
to C3 and the conjugated Borel subgroup of GL2(F2) is isomorphic to C2.

An elliptic curve E defined over the rationals has always an integral short Weier-
strass form. That is, E has a model of the form

E : Y 2 = X3 + AX + B, with A, B ∈ Z.

Then the discriminant of this model is ∆(E) = −24(4A3 + 27B2). Any change
of variables over the rationals preserving this short form is of the type (x, y) =
(u2x′, u3y′) with u ∈ Q, u 6= 0. Therefore, if E′ is the curve obtained after such a
change, we have u12∆(E′) = ∆(E). Then the squareness of the discriminant of E
does not depend on the short model of E but on E itself.

Our aim is finding if there is a relationship between the torsion group of E(Q)
(noted E(Q)tors in what follows), the discriminant of E and ρE,2(GQ).

Assume E is an elliptic curve which has a non–trivial torsion subgroup. Taking
into account Mazur’s exhaustive classification [16, 17], the possible structures of
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E(Q)tors are Cn for n = 2 . . . 10, 12 and C2 × C2n for n = 1 . . . 4. The easiest cases
are those in which the order of E(Q)tors is even and they will be treated at section
2.

The four remaining cases, E(Q)tors = Cn, with n = 3, 5, 7, 9 will be treated
separately at sections 4, 5, 6, 7, respectively. In these cases, thanks to (1), the
squareness of ∆(E) determines the image of ρE,2. We will prove that there are no
elliptic curves over the rationals with square discriminant and points of order 5, 7
and 9 respectively and we will give a parametrization of the elliptic curves with
square discriminant and a point of order 3.

Section 3 consists of the necessary background for elliptic curves with points of
odd order.

Before stating the main theorems at the last section, we will give a parametriza-
tion of all elliptic curves over the rationals having square discriminant at section 8.
Some remarks on the case of trivial torsion will be given there too.

At section 9, we will state the main theorems of this paper whose proofs will
have been stablished by then.

Finally, in an appendix, we give a complete parametrization of the integer solu-
tions of the Diophantine equations x2 + 3y2 = 4z3. These solutions will be needed
at sections 4 and 8.
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preparation of this paper. Special thanks are due to F. Beukers for suggesting the
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2006–10548 (Ministerio de Educación y Ciencia, Spain) and CCG07–UAM/ESP–
1814 (Universidad Autónoma de Madrid – Comunidad de Madrid, Spain).

2. The even case.

Let E : Y 2 = F (X) = X3 + AX + B be an elliptic curve over Q such that
E(Q)[2] has an even positive number of points. Therefore, by (1), the squareness of
∆(E) determines the image of the mod 2 Galois representation attached to E. By
definition ∆(E) = 24(α1 −α2)

2(α1 −α3)
2(α2 −α3)

2, where α1, α2, α3 are the roots
of F (X). Then if E(Q)tors is non–cyclic we have that α1, α2, α3 ∈ Q and ∆(E) is a
square over Q. Meanwhile, if E(Q)tors is cyclic then there is only a point of order
2 on E(Q) and therefore F (X) = (X − a)(X2 + aX + b) where a, b ∈ Q satisfy
A = b−a2, B = −ab and a2−4b is a non-square over Q. Since ∆(E) = 24∆(F ) we
have ∆(E) = 24(a2 − 4b)(2a2 + b)2 is not a square in Q. This proves the following:

ρE,2(GQ) ∼=
{

C2 if #E(Q)[2] = 2,
{id} if #E(Q)[2] = 4.

3. Families of elliptic curves with a torsion point of odd order.

In this section we are going to introduce the necessary background related to
elliptic curves defined over the rationals with a point of prescribed odd order. There
are well-known rational parametrizations for the modular curve X1(N) with N ∈
{3, 5, 7, 9} (see e.g. Kubert [15]). Therefore these parametrizations give us families
of elliptic curves defined over Q with a point of order N ∈ {3, 5, 7, 9}.

An old characterization of elliptic curves containing a rational point of order 3
is given by the Hessian form. Nevertheless we are going to use a new one (cf. [12])
since this will fit better our purposes.
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Let us introduce the construction given in [12]; every elliptic curve with a rational
point of order 3 can be written in the following form:

E3(α, β) : Y 2 = X3 + (27α4 + 6αβ)X + β2 − 27α6, α, β ∈ Z.

For the remaining cases that will be used below, an analogous expression can be
achieved by means of the Tate normal form [15]:

T ate(b, c) : Y 2 + (1 − c)XY − bY = X3 − bX2, b, c ∈ Q∗.

Denote by En(α) the one-parameter family of curves having a rational point of
order n. Then

E5(α) = T ate(α, α),

E7(α) = T ate(α2(α − 1), α(α − 1))),

E9(α) = T ate(α2(α − 1)(α(α − 1) + 1), α2(α − 1)).

Now we can take the above equations to a short Weierstrass form and find the
parametric family containing all elliptic curves with points of order 5, 7 and 9. The
actual families are:

E5(α) : Y 2 = X3 − 27
(

α4 − 12α3 + 14α2 + 12α + 1
)

X

+ 54
(

α2 + 1
) (

α4 − 18α3 + 74α2 + 18α + 1
)

E7(α) : Y 2 = X3 − 27
(

α8 − 12α7 + 42α6 − 56α5 + 35α4 − 14α2 + 4α + 1
)

X

+ 54
(

α12 − 18α11 + 117α10 − 354α9 + 570α8 − 486α7+

273α6 − 222α5 + 174α4 − 46α3 − 15α2 + 6α + 1
)

E9(α) : Y 2 = X3 − 27
(

α3 − 3α2 + 1 )(α9 − 9α8 + 27α7 − 48α6 + 54α5−
45α4 + 27α3 − 9α2 + 1

)

X

+ 54
(

α18 − 18α17 + 135α16 − 570α15 + 1557α14 − 2970α13+

4128α12 − 4230α11 + 3240α10 − 2032α9 + 1359α8 − 1080α7+

735α6 − 306α5 + 27α4 + 42α3 − 18α2 + 1
)

Therefore, an elliptic curve E defined over Q with a rational point of order n = 3
(resp. n = 5, 7 or 9) is Q–isomorphic to E3(α, β) (resp. En(α) for n = 5, 7 or 9)
for some α, β ∈ Z (resp. α ∈ Q).

These kind of arguments have proved fruitful in the last years, as a number
of results have appeared based on them [1, 14, 11, 13]. Now we can write the
discriminant ∆n for the above elliptic curves En, to obtain

∆3(α, β) = −24 · 33 · (5α3 + β)(9α3 + β)3

∆5(α) = 212 · 312 · α5(α2 − 11α − 1)

∆7(α) = 212 · 312 · α7(α − 1)7(α3 − 8α2 + 5α + 1)

∆9(α) = 212 · 312 · α9(α − 1)9(α2 − α + 1)3(α3 − 6α2 + 3α + 1)

In the following section we will study the rationality of the square root of the
above discriminants to decide whether the corresponding Galois group is C3 or S3.

4. The case n = 3

Elliptic curves with points of order three must yield a discriminant with the form
∆3(α, β) for some α, β ∈ Z. So, in order to find an elliptic curve E having square
discriminant we are bound to find integral solutions to the equation

ω2 = −3 · (5α3 + β)(9α3 + β).
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Let us denote g = gcd(5α3 + β, 9α3 + β). This necessarily leads to

5α3 + β = ±gu2,±3gv2 and 9α3 + β = ∓3gv2,∓gu2, respectively

for some integers u and v. Solving the above Diophantine systems of equations is
equivalent to finding the integer solutions to

x2 + 3y2 = 4z3,

where (x, y, z) = (ug2, vg2,∓αg). Thus, for the first two systems we obtain that
the elliptic curves E3(α, β) have square discriminant for:

(2) (α, β) =

(

∓z

g
,±x2 + 5z3

g3

)

,

and for the last two systems we obtain

(3) (α, β) =

(

∓z

g
,±3y2 + 5z3

g3

)

.

In all those cases x, y, z ∈ Z satisfies x2 + 3y2 = 4z3. At the appendix, we give
parametrizations of all integer solutions of the Diophantine equation x2 +3y2 = 4z3

at Lemma 1 in terms of parameters (a, b, c, d). Then we can clear denominators
and obtain Q-isomorphic elliptic curves

E(i)(a, b, c, d) : Y 2 = P (i)(a, b, c, d)(X)

attached to the parametrization (i), for i = 1, 2, where:

P (1)(a, b, c, d)(X) = X3
− 9(c2 + cd + d2)3(a2 + ab + b2)(3a6c2 + 3a6cd + a6d2 + 9a5bc2

− 3a5bcd

−3a5bd2
− 30a4b2cd − 15a3b3c2

− 15a3b3cd + 25a3b3d2 + 30a2b4cd + 30a2b4d2 + 9ab5c2

+21ab5cd + 9ab5d2 + 3b6c2 + 3b6cd + b6d2)X
+9(c2 + cd + d2)4(6a12c4 + 12a12c3d + 12a12c2d2 + 6a12cd3 + a12d4 + 36a11bc4

+36a11bc3d + 18a11bc2d2
− 6a11bcd3

− 6a11bd4 + 72a10b2c4
− 54a10b2c3d − 72a10b2c2d2

−78a10b2cd3
− 18a10b2d4 + 30a9b3c4

− 318a9b3c3d − 102a9b3c2d2
− 132a9b3cd3

− 4a9b3d4

−81a8b4c4
− 378a8b4c3d + 162a8b4c2d2

− 252a8b4cd3 + 45a8b4d4
− 108a7b5c4

− 108a7b5c3d

+108a7b5c2d2
− 576a7b5cd3 + 216a7b5d4

− 72a6b6c4
− 144a6b6c3d − 468a6b6c2d2

−396a6b6cd3 + 600a6b6d4
− 108a5b7c4

− 324a5b7c3d − 216a5b7c2d2 + 684a5b7cd3

+900a5b7d4
− 81a4b8c4 + 54a4b8c3d + 810a4b8c2d2 + 1386a4b8cd3 + 756a4b8d4 + 30a3b9c4

+438a3b9c3d + 1032a3b9c2d2 + 1002a3b9cd3 + 374a3b9d4 + 72a2b10c4 + 342a2b10c3d

+522a2b10c2d2 + 384a2b10cd3 + 114a2b10d4 + 36ab11c4 + 108ab11c3d + 126ab11c2d2

+78ab11cd3 + 18ab11d4 + 6b12c4 + 12b12c3d + 12b12c2d2 + 6b12cd3 + b12d4)

P (2)(a, b, c, d)(X) = X3
− 3(c2 + cd + d2)3(a2 + ab + b2)(a6c2 + a6cd + 7a6d2 + 3a5bc2 + 39a5bcd

+39a5bd2 + 60a4b2c2 + 150a4b2cd + 60a4b2d2 + 115a3b3c2 + 115a3b3cd − 5a3b3d2 + 60a2b4c2

−30a2b4cd − 30a2b4d2 + 3ab5c2
− 33ab5cd + 3ab5d2 + b6c2 + b6cd + 7b6d2)X

−(c2 + cd + d2)4(2a12c4 + 4a12c3d − 24a12c2d2
− 26a12cd3

− 37a12d4 + 12a11bc4
− 156a11bc3d

−414a11bc2d2
− 534a11bcd3

− 366a11bd4
− 228a10b2c4

− 1446a10b2c3d − 2880a10b2c2d2

−3246a10b2cd3
− 1434a10b2d4

− 1250a9b3c4
− 5902a9b3c3d − 10758a9b3c2d2

− 9508a9b3cd3

−2876a9b3d4
− 4059a8b4c4

− 16002a8b4c3d − 23382a8b4c2d2
− 14868a8b4cd3

− 2925a8b4d4

−8604a7b5c4
− 25740a7b5c3d − 26676a7b5c2d2

− 10944a7b5cd3
− 936a7b5d4

− 11112a6b6c4

−22224a6b6c3d − 13428a6b6c2d2
− 2316a6b6cd3 + 480a6b6d4

− 8604a5b7c4
− 8676a5b7c3d

−1080a5b7c2d2 + 396a5b7cd3 + 468a5b7d4
− 4059a4b8c4

− 234a4b8c3d + 270a4b8c2d2

−126a4b8cd3 + 504a4b8d4
− 1250a3b9c4 + 902a3b9c3d − 552a3b9c2d2 + 698a3b9cd3 + 526a3b9d4

−228a2b10c4 + 534a2b10c3d + 90a2b10c2d2 + 912a2b10cd3 + 150a2b10d4 + 12ab11c4 + 204ab11c3d

+126ab11c2d2 + 222ab11cd3
− 78ab11d4 + 2b12c4 + 4b12c3d − 24b12c2d2

− 26b12cd3
− 37b12d4)
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with the following discriminants

∆
(

E(1)
)

= 2436(c2 + cd + d2)8(a3d + 3a2bc + 3a2bd + 3ab2c − b3d)6

(2a3c + a3d + 3a2bc − 3a2bd − 3ab2c − 6ab2d − 2b3c − b3d)2

∆
(

E(2)
)

= 2434(c2 + cd + d2)8(a3d + 3a2bc + 3a2bd + 3ab2c − b3d)2

(2a3c + a3d + 3a2bc − 3a2bd − 3ab2c − 6ab2d − 2b3c − b3d)6

Therefore we have proved the following result:

Proposition 1. Let E be an elliptic curve defined over Q with a rational point
of order 3 such that

√

∆(E) ∈ Q . Then there exist a, b, c, d ∈ Z such that E is

Q-isomorphic to either E(1)(a, b, c, d) or E(2)(a, b, c, d).

5. The case n = 5

Let us have a look at the case n = 5. If we throw away quadratic factors in
∆5(α) we will find out that curves E with points of order 5, for which

√

∆(E) ∈ Q

are parametrized by the affine rational points of the elliptic curve

D5 : z2 = α(α2 − 11α − 1),

where the discriminant of the right–hand side polynomial is, remarkably, 53.
This is a well–known elliptic curve, in fact is Q-isogenous to the modular curve

X0(20). The elliptic curve D5 is denoted by 20A4 in Cremona’s tables [7] or 20C in
Antwerp tables [3]. Looking on that tables, or using a computer algebra package
like SAGE or MAGMA ([24], [4] resp.), we check that D5(Q) = {(0, 0)} ∪ {[0 : 1 : 0]} .
Therefore the only affine rational point is (0, 0), which implies α = 0. This precise
value does not yield an elliptic curve, but a singular cubic on the family E5(α).
This proves the following result:

Proposition 2. Let E be an elliptic curve with C5 ⊂ E(Q)tors. Then
√

∆(E) /∈ Q.

6. The case n = 7

Move now to n = 7, where the analogous argument to the case n = 5 shows that
curves with points of order seven for which

√

∆(E) ∈ Q are parametrized by the
affine rational points of the hyperelliptic curve

D7 : z2 = α(α − 1)(α3 − 8α2 + 5α + 1),

where, by the way, we have that the discriminant for the right–hand side polynomial
is 74. We have now a hyperelliptic curve of genus 2, a much harder nut to crack; but
we are lucky. Using MAGMA we obtain that the rank of the Jacobian of this genus
2 curve is 0, which makes it perfect for Chabauty’s algorithm [5]. This method
computes the full list of points in the jacobian, then all rational points in the curve,
which turn out to be D7(Q) = {(0, 0), (1, 0)}∪{[0 : 1 : 0]} . Again the affine rational
points annhilate the discriminant of E7(α) and hence we have proven the following
result.

Proposition 3. Let E be an elliptic curve with E(Q)tors ∼= C7. Then
√

∆(E) /∈ Q.
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7. The case n = 9

Finally, the case n = 9. This can also be dealt with in a similar way, but a little
extra work is needed. Following the steps as the above sections, the hyperelliptic
curve parametrizing curves with E(Q)tors ∼= C9 and square discriminant is

D9 : z2 = α(α − 1)(α2 − α + 1)(α3 − 6α2 + 3α + 1) .

Lemma. D9(Q) = {(0, 0), (1, 0)} ∪ {[0 : 1 : 0]} .

Proof. Let u ∈ AutQ(D9) defined by

u(X, Y ) =

(

1

1 − X
,

Y

(1 − X)4

)

.

We have that u has order 3 and Riemann-Hurwitz formulae tell us that the quotient
curve C/〈u〉 has genus 1. In fact this curve is an elliptic curve defined over Q, since
(0, 0) ∈ C(Q) and u is defined over Q. We will denote this elliptic curve by E9. A
Weierstrass equation for E9 is given by v2 = u3 − 27 and the quotient morphism is
given by:

π : D9 −→ E9

(α, z) 7→ (u, v) =

(

α3 − 3α2 + 1

α(α − 1)
,
z(α2 − α + 1)

α2(α − 1)2

)

Using SAGE or MAGMA we compute that E9 is Q-isogenous to the modular curve
X0(36), and it is the elliptic curve denotes by 36A3 in Cremona’s tables or 36C in
Antwerp tables. The Mordell-Weil group of this elliptic curve is:

E9(Q) = {(3, 0), [0 : 1 : 0]} ∼= Z/2Z.

Now, to compute the set D9(Q) we just need to compute the preimages of the points
of E9(Q) by the quotien morphism that are defined over Q and then we obtain the
desired result. �

Then we have proved the following result:

Proposition 4. Let E be an elliptic curve with E(Q)tors ∼= C9. Then
√

∆(E) /∈ Q.

8. The generic elliptic curve with square discriminant.

Let E : Y 2 = X3 + AX + B be an elliptic curve with A, B ∈ Z. Let us study
when the discriminant ∆(E) is a square. This is equivalent to looking for integer
solutions to the Diophantine equation

4A3 + 27B2 = −C2.

Making the change of variables (x, y, z) = (C, 3B,−A) we obtain that the integer
solutions of the generalized Fermat equation x2 + 3y2 = 4z3 give us all the elliptic
curves defined over the rationals with square discriminant. Lemma 1 from the
appendix gives us a complete parametrization of the above Diophantine equation,
which yields to the following elliptic curve:

Ealt(a, b, c, d) : Y 2 = X3 − 34(c2 + cd + d2)(a2 + ab + b2)X

+35(c2 + cd + d2)(a3d + 3a2bc + 3a2bd + 3ab2c − b3d)

with discriminant

∆(Ealt) = 24312(c2+cd+d2)2(2a3c+a3d+3a2bc−3a2bd−3ab2c−6ab2d−2b3c−b3d)2

Propositions 2, 3 and 4, together with Section 2, tell us that the above elliptic
curve has torsion subgroup either trivial, C3 or non-cyclic. Then we have proved
the following result:
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Proposition 5. Let E be an elliptic curve defined over Q such that
√

∆(E) ∈
Q. Then there exist a, b, c, d ∈ Z such that E is Q-isomorphic to Ealt(a, b, c, d).
Moreover, E(Q)tors is either trivial, non-cyclic or C3.

Remark 1. Let P (X) be an irreducible polynomial with integer coefficients and
degree 3 such that the cubic number field attached to P (X) is cyclic. Then the
elliptic curve E : Y 2 = P (X) satisfies E(Q)tors is either trivial or C3. For example,
let be Pm(X) = X3 + mX2 − (m +3)X +1 ∈ Z[X ], m ∈ Z and Em : Y 2 = Pm(X).
The irreducible polynomial Pm(X) defines a cubic fields Km that has been studied
by several authors. This family has been called the simplest cubic field ([22]). Its
discriminant satisfies ∆(Pm) = (m2 + 3m + 9)2, hence Km = Q(E[2]) is cyclic
and therefore ρEm,2(GQ) ∼= Gal(Km/Q) = C3. Therefore Em(Q)tors is trivial or
C3. Moreover, it has been proved [10] that if m2 + 3m + 9 is square-free, then
Em(Q)tors is trivial.

Remark 2. We have checked on the extended Cremona’s tables [8] of elliptic curves
with conductor less than 130.000. Among them, 452.724 curves have torsion sub-
group either trivial or C3. At the table below appears the specific proportions of
curves according to their torsion group and the squareness of their discriminant:

E(Q)tors
√

∆(E) ∈ Q
√

∆(E) 6∈ Q

{O} 0.00383 0.9553
C3 0.00008 0.0408

9. Main theorems.

To end up we will summarize our results in the following theorems.

Theorem 1. Let E be an elliptic curve defined over Q. Then

(1) If E(Q)tors is non–cyclic then
√

∆(E) ∈ Q.

(2) If E(Q)tors ∼= Cn for n = 2, 4, 5 . . .10, 12 then
√

∆(E) 6∈ Q.

(3) E(Q)tors ∼= C3 and
√

∆(E) ∈ Q if and only if there exist a, b, c, d ∈ Z such

that E is Q-isomorphic to either E(1)(a, b, c, d) or E(2)(a, b, c, d) and the
corresponding polynomial P (i)(a, b, c, d)) is irreducible.

(4) E(Q)tors is trivial and
√

∆(E) ∈ Q if and only if there exist a, b, c, d ∈ Z

such that E is Q-isomorphic to Ealt(a, b, c, d) and a, b, c, d /∈ S2,S3 where

S2 =

{

(a, b, c, d) ∈ Z4
∣

∣

∣
Ψ2(a, b, c, d)(X) =

3
∏

i=1

(X − αi) such that α1, α2, α3 ∈ Z

}

S3 =

{

(a, b, c, d) ∈ Z4
∣

∣

∣
∃(α, β) ∈ Q2, such that

{

Ψ3(a, b, c, d)(α) = 0
Ψ2(a, b, c, d)(α) = β2

}

and Ψn(a, b, c, d)(X) denotes the n-division polynomial attached to Ealt(a, b, c, d).

Theorem 2. Let E be an elliptic curve defined over Q. Then

(1) E(Q)tors is non–cyclic if and only if ρE,2(GQ) = {id}.
(2) E(Q)tors ∼= C2n if and only if ρE,2(GQ) ∼= C2.
(3) If E(Q)tors ∼= Cn for n = 5, 7, 9, then ρE,2(GQ) = GL2(F2).
(4) If E(Q)tors ∼= C3 then ρE,2(GQ) ∼= C3 if and only if there exist a, b, c, d ∈

Z such that E is Q-isomorphic to either E(1)(a, b, c, d) or E(2)(a, b, c, d).
Otherwise, ρE,2(GQ) = GL2(F2).

(5) If E(Q)tors is trivial then ρE,2(GQ) ∼= C3 if and only if there exist a, b, c, d ∈
Z such that E is Q-isomorphic to Ealt(a, b, c, d). Otherwise, ρE,2(GQ) =
GL2(F2).
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The next table summarizes part of the main results of this paper:

E(Q)tors
√

∆(E) ∈ Q? ρE,2(GQ)
{O} Yes / No C3 / S3

C2 No C2

C3 Yes / No C3 / S3

C4 No C2

C5 No S3

C6 No C2

C7 No S3

C8 No C2

C9 No S3

C10 No C2

C12 No C2

C2 × C2 Yes {id}
C2 × C4 Yes {id}
C2 × C6 Yes {id}
C2 × C8 Yes {id}

10. Appendix: The generalized Fermat equation x2 + 3y2 = 4z3

The generalized Fermat equation Axp + Byq = Czr, where A, B, C ∈ Z∗ and
p, q, r ∈ Z>0, have been studied by several people for the last decades. Starting
with the huge work on Diophantine equations due to L.J. Mordell [18]. After that
the main results are due to H. Darmon and A. Granville [9], who proved that the
generalized Fermat equation has infinite primitive solutions (i.e. gcd(x, y, z) = 1)
in the case 1/p + 1/q + 1/r > 1. Then F. Beukers [2] gave parametrizations for
the solutions of this equation in the above case. H. Cohen in his huge new books
about number theory calls this equation Super-Fermat equation and he also pro-
vides solutions for several cases. In particular, H. Cohen [6, Proposition 14.2.1(ii)]
displays primitive solutions to the equation we are interested in. However, we
would like to have all integer solutions, not just the primitive ones. The following
parametrization was pointed out to us by F. Beukers:

Lemma 1. The integer solutions of the equation x2 + 3y2 = 4z3 are parametrized
by the following family of four variables:

F :







x = (c2 + cd + d2)(3a2b(c − d) + a3(2c + d) − b3(2c + d) − 3ab2(c + 2d))
y = (c2 + cd + d2)(3ab2c + a3d − b3d + 3a2b(c + d))
z = (c2 + cd + d2)(a2 + ab + b2)

Proof. Let (x, y, z) be an integer solution of the equation x2 + 3y2 = 4z3. Over
Q(

√
−3)we have (x+

√
−3y)(x−

√
−3y) = 4z3. We are going to work over the ring

of algebraic integers of Q(
√
−3), noted O = Z[ρ] where ρ = (1 +

√
−3)/2. This

ring is a P.I.D., where it is easy to check that gcd(x +
√
−3y, x −

√
−3y) = r ∈ Z,

for all x, y ∈ Z. Therefore x +
√
−3y = r · µ, x −

√
−3y = r · µ̄ with µ ∈ O and

gcd(µ, µ̄) = 1.
Let p 6= 3 be a non inert prime dividing r. Thus p = αᾱ for some α ∈ O.

Suppose that α divides µ, then we have r = r′p and µ = αµ′ for some r′ ∈ Z and
µ′ ∈ O. In other words, x +

√
−3y = (r′αᾱ)(αµ′). Therefore

4z3 = r2µµ̄ = (r′)2p3µ′µ̄′,

that is, p divides z. Then we can remove all the primes as above obtaining 4w3 =
s2γγ̄ such that s, γ, γ̄ are pairwise coprimes. This yields s = 2t3 and γ = β3 for
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some t ∈ Z and β ∈ O. Now collecting all the factors back we obtain

x +
√
−3y = 2(a + bρ)3(c + dρ)(c2 + cd + d2)

for some a, b, c, d ∈ Z. Its easy to check that z = NO((a + bρ)(c + dρ)), where NO

denotes the norm on O. In order to attach the parametrization, we only have to
expand the above expression and compute the coefficient of

√
−3 (corresponding

to y) and the part in Z (corresponding to x). �
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