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Hironaka’s characteristic polygon and effective

resolution of surfaces
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Abstract

Hironaka’s concept of characteristic polyhedron of a singularity has
been one of the most powerful and fruitful ideas of the last decades
in singularity theory. In fact, since then combinatorics have become a
major tool in many important results. However, this seminal concept
is still not enough to cope with some effective problems: for instance,
giving a bound on the maximum number of blowing–ups to be per-
formed on a surface before its multiplicity decreases. This short note
shows why such a bounding is not possible, at least with the original
definitions.

Mathematics Subject Classification (2000): 14H20, 32S25.

1 Introduction

In this paper we will deal with embedded algebroid surfaces, that is,
schemes given by the spectrum of a ring R = K[[X,Y,Z]]/(F ), where
K is an algebraically closed field and F is a power series of order
n > 0. Such an F will be called an equation of the surface and n will
be called the multiplicity of the surface.

Theorem.– (Levi–Zariski, algebroid version) Let S be an alge-
broid embedded surface with normal crossing singularities. Then if
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we sucessively blow up smooth equimultiple subvarieties of maximal
dimension, the multiplicity is dropped in a finite number of steps.

The fact that a surface can be resolved by blowing up “maxi-
mal” centers was already investigated by Beppo Levi ([7]) and actually
proved by Zariski ([11]) in characteristic zero as a part of his proof of
the resolution for three–dimensional varieties. His results and tech-
niques were paralleled by Abhyankar in positive characteristic ([1]).

It was Hironaka, however, who got a massive breakthrough by con-
sidering for the first time the use of combinatorial tools in singularity
theory ([5, 6]), a technique who has made possible to tackle a number
of problems (see for instance [2, 8, 9, 4] or, for a much more complete
information, the excellent survey [3]).

As for surfaces is concerned, a combinatorial approach to the Levi–
Zariski theorem was pointed out by Hironaka in the introduction of
[5], and partially developed in [6], although the arguments are not
very clear in the positive characteristic case. The original purpose
of this paper was sharing the combinatorial approach, using a some-
how different induction argument to produce an upper bound for the
number of blowing–ups that can be performed, following the Levi–
Zariski procedure, before the multiplicity drops. In the case of curves,
this was attached quite straightforwardly using the first characteristic
exponent (see, for instance, [5] and [10]). However, we have found
that already for surfaces this bounding is not possible (at least using
Hironaka’s characteristic polygon).

The authors are enormously grateful to Prof. J.L. Vicente, from
whom they learned the subject and who posed this question to the
last author some years ago. This paper is dedicated to him on his
1000000th (binary) birthday .

2 Some technical set–up

For the sake of completeness, we recall here well-known technical re-
sults that will be of some help in the sequel.

Let S be an embedded algebroid surface of multiplicity n, F an
equation of S. After a change of variables, one can take F to the
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(Weierstrass) form

F (X,Y,Z) = Zn +
n−1
∑

k=0

akZ
k, where ak(X,Y ) =

∑

i,j

aijkX
iY j .

To this situation a combinatorial object may be attached: note

N{X,Y,Z}(F ) =
{

(i, j, k) ∈ N3 | aijk 6= 0
}

∪ {(0, 0, n)},

where we will omit the subscript whenever the variables are clear
from the context. The Hironaka (or Newton, or Newton–Hironaka,...)
polygon of F is

∆{X,Y,Z}(F )(or ∆(F )) = CH





⋃

aijk 6=0

[(

i

n − k
,

j

n − k

)

+ N2

]



 ,

where CH stands for the convex hull. This object was already used
in the famous Bowdoin notes lectures by Hironaka ([6]) and it ap-
peared in printed form for the first time in the outstanding paper [5],
where it covered the surface case of the much more general notion of
characteristic polyhedron of a singularity.

Remark.– If we allow Z to vary, using changes of variable of the type

Z 7−→ Z + α(X,Y ), with α ∈ K[[X,Y ]] not a unit,

we obtain a collection of polygons which has a minimal element in the
sense of inclusion (this is not obvious at all in positive characteristic).
This object was called by Hironaka the characteristic polygon of the
pair (S, {X,Y }) ([5]), noted ∆(S, {X,Y }).

Remark.– For the case of characteristic zero or, more broadly, the
case where n does not divide the characteristic of K, it is customary
to make the Tchirnhausen transformation,

Z 7−→ Z −
1

n
an−1(X,Y ),

which is a change of variables of the type considered by Hironaka. Such
an equation will be called a WT equation and it has many interesting
properties, which we will show. To begin with, in these equations, a
permitted (that is, equimultiple and smooth) curve can be written in
the form p = (Z,G(X,Y )).
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Definition.– A vertex (P1, P2) of ∆(F ) is called contractible if there
exists a change of variables ϕ

Z 7−→ Z + αXaY b, with α ∈ K,

such that
∆(ϕ(F )) ⊂ ∆(F ) \ {(P1, P2)}.

Were this the case, ϕ is called the contraction of the vertex (P1, P2).

Remark.– If we can apply the Tchirnhausen transformation, the re-
sulting equation has no contractible vertices. In fact, a vertex (a, b)
is contractible if and only if it represents all the monomials from
(Z + αXaY b)n and this cannot happen since an−1(X,Y ) = 0. As
it will become obvious from the equations associated to the different
blowing–ups, this situation will remain during the resolution process
(at least, until a multiplicity decrease happens). In classical terms,
Z = 0 is a linear hypersurface with permanent maximal contact with
the surface S.

Hironaka proved in [5] (for arbitrary characteristic) that all the ver-
tices of ∆(F ) are not contractible if and only if ∆(F ) = ∆(S, {X,Y }).
From the previous remark this is obvious in the case of WT equations.

3 An interesting example

We will try to prove that Hironaka’s characteristic polygon does not
contain enough information in order to bound the resolution process,
even if we are interested only in a first multiplicity decreasing.

To see that, assume that K has characteristic other than 3 and
consider the surface S defined by the equation

F = Z3 + XmZ + (X − Y )4, with m ≥ 19;

which is, obviously, a WT equation and, hence, the characteristic poly-
gon of S is given by
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We will first make, in absence of permitted curves, a quadratic
transformation (that is, blowing–up the origin) on the direction (1 :
1 : 0), giving as a result the surface S1 defined by

F1 = Z3 + Xm−2Z + XY 4.

Next we will make two quadratic transformations on the direction
(1 : 0 : 0) (no permitted curves in either surfaces) after which we get
S3, defined by

F3 = Z3 + Xm−6Z + X3Y 4.

We are hence forced now to perform a monoidal transformation
(blowing–up of a curve) centered on (Z,X), as it is now permitted.
We get then S4, defined by

F4 = Z3 + Xm−8Z + Y 4.

Now it is straightforward that, after three quadratic transforma-
tions centered on (1 : 0 : 0) and a monoidal transformation center on
(Z,X), we should get a surface S8 defined by

F8 = Z3 + Xm−16Z + Y 4.

Obviously this implies that it is not possible to get a bound for
the number of blowing–ups needed for decreasing the multiplicity of
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S: as we change m we get a family of surfaces with the same Hironaka
polygon but needing an arbitrarily large number of blowing–ups to
get a multiplicity loss.

Remark.– The key for this counterexample is the first quadratic
transformation; in fact it is easy to bound a resolution process us-
ing uniquely monoidal transformations or quadratic transformations
centered in (1 : 0 : 0) and/or (0 : 1 : 0) (this is connected with the
Weak Hironaka’s Polyhedra Game, solved by Spivakovsky in [8]).

However, as this example makes apparent, if we ever want to bound
the resolution process we need to be able to track much more compli-
cated relations between our parameters than the ones considered by
Hironaka. We hope this example sheds some light in order to tackle
this (for us) quite interesting problem.
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