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THE ALGEBRA OF SECONDARY HOMOTOPY OPERATIONS

IN RING SPECTRA

HANS-JOACHIM BAUES AND FERNANDO MURO

Abstract. The primary algebraic model of a ring spectrum R is the ring π∗R

of homotopy groups. We introduce the secondary model π∗,∗R which has the
structure of a secondary analogue of a ring. The homology of π∗,∗R is π∗R

and triple Massey products in π∗,∗R coincide with Toda brackets in π∗R. We
also describe the secondary model of a commutative ring spectrum Q from
which we derive the cup-one square operation in π∗Q. As an application we

obtain for each ring spectrum R new derivations of the ring π∗R.
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Introduction

A ring spectrum R is a topological analogue of a ring. The primary algebraic
model of R is the ring π∗R of its homotopy groups. We study in this paper sec-
ondary homotopy operations in π∗R which lead to the secondary model π∗,∗R
extending the ring π∗R. The model π∗,∗R has the structure of a secondary algebra
which generalizes the notion of algebra in the same sort of way as a 2-group, or
crossed module in the sense of Whitehead [Whi49], generalizes the classical notion
of group by adding a 2-dimensional part. The secondary algebras needed are pair
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2 HANS-JOACHIM BAUES AND FERNANDO MURO

algebras (resp. E∞-pair algebras) and quadratic pair algebras (resp. E∞-quadratic
pair algebras). They are in a natural way secondary models of ring spectra (resp.
commutative ring spectra) and describe new algebraic porperties enriching the com-
monly used paradigm of ring.

A pair algebra B is a ring B0 together with a B0-bimodule morphism

∂ : B1 −→ B0

satisfying ∂(a)b = a∂(b) for a, b ∈ B1. Here B0, B1 and ∂ are N-graded. In
the ungraded case a pair algebra is also termed a crossed bimodule, see [Lod98,
E.1.5.1]. Pair algebras or crossed bimodules are known to represent elements in
Hochschild and Shukla cohomology, see [Lod98, BP]. Moreover, quadratic pair
algebras represent elements in Mac Lane cohomology [BJP06]. The cohomology
class

〈π∗,∗R〉 ∈ HML3(π∗R,Σ
−1π∗R)

represented by π∗,∗R is the universal Toda bracket ([BD89, Sag06]) which represents
the homotopy category of free R-modules as a linear extension of categories.

It is well known that homotopy groups π∗ form a lax symmetric monoidal functor
carrying the symmetric monoidal category of spectra to the symmetric monoidal
category of abelian groups. This, in fact, implies that homotopy groups of a ring
spectrum R form a ring. In a similar way we show that there if a lax symmetric
monoidal functor π∗,∗ on Ω-spectra, given by secondary homotopy groups, which
yields the structure of a secondary algebra on π∗,∗R. We do not know of any other
lax symmetric monoidal functor in the literature leading to such algebraic models
of ring spectra extending the ring π∗R.

A functor in the opposite direction is studied by Shipley in [Shi06] yielding a
ring spectrum HD∗ for a differential graded algebra D∗. In this case π∗,∗HD∗ can
be described by the secondary algebra associated to D∗, see Remark 2.8. Moreover,
ungraded quadratic pair algebras yield examples of rings and commutative rings
in permutative categories, see Remarks 6.9 and 9.14, and Elmendorf and Mandell
define in [EM05] a functor carrying such objects to ring spectra.

Algebraic Massey products in the secondary algebra π∗,∗R coincide with Toda
brackets in π∗R (Theorems 2.7 and 6.4). Moreover, if R is commutative the al-
gebraic cup-one square in π∗,∗R coincides with the topologycal cup-one square in
π∗R (Theorems 3.4 and 9.12).

The new invariant π∗,∗R is strictly stronger than the collection of secondary
operations in π∗R as we illustrate in Example 3.7 by the 3-local sphere spectrum.
This shows examplary computations in the algebraic model π∗,∗R.

In case Rp is the endomorphism ring spectrum of the Eilenberg-Mac Lane spec-
trum HZ/p the ring π∗Rp = A is the mod p Steenrod algebra. In [Bau06] the pair
algebra of secondary cohomology operations B is computed which corresponds to
π∗,∗Rp. It is the purpose of this paper to achieve analogous pair algebras associ-
ated to arbitrary ring spectra. As an example the 0-dimensional part π0,∗KW of
Waldhausen K-theory is computed in [MT06].

The sphere spectrum S (which is a connective commutative ring spectrum) yields
the E∞-quadratic pair algebra π∗,∗S which enriches the structure of the commu-
tative algebra π∗S considerably. This E∞-quadratic pair algebra acts on π∗,∗R for
any other ring spectrum R. The laws of this action (see Definition 10.1) allow the
construction of the derivations θ(b) as follows. Let b ∈ πnS be an element which
maps to zero in πnR by the unit map u : S → R of the ring spectrum R. Then a
derivation of degree n

θ(b) : π∗R −→ Σ−1π∗R
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is constructued which is well defined up to inner derivation. Moreover θ(b) is π∗S-
linear, so it determines a Hochschild cohomology class

θ(b) ∈ HH1
π∗S(π∗R,Σ

−1π∗R).

This class vanishes in case R is commutative. The properties of θ are described in
Theorem 1.5.

Special cases of the derivation θ(b) are known in the literature. For example for
the endomorphism spectrum of HZ/p one has u∗(p · 1) = 0 for 1 ∈ π0S and

θ(p · 1) = κ : A −→ ΣA

is the Kristensen derivation ([Kri63]) for p = 2 which carries Sqn to Sqn−1. For
odd primes κ is computed in [Bau06] by κ(Pn) = 0 and κ(β) = 1. Moreover, if R
is the endomorphism spectrum of a Z/p-space in the sense of Toda then θ(p · 1) for
p odd coincides with the derivation constructed by Toda in [Tod71].

In order to introduce the reader smoothly to the new theory we begin this paper
with a section recalling classical secondary homotopy operations and defining the
derivations θ(b) in a topological language. Afterwards we give linear versions of our
main theorems for the case of ring spectra neglecting the Hopf map. This will help
the reader to understand the more general quadratic versions which are needed to
deal with arbitrary spectra.

We are mainly concerned in this paper with connective spectra in order to avoid
further technicalities.

1. Ring spectra and module spectra

In this paper the framework for stable homotopy theory will be the stable model
category of symmetric spectra of compactly generated topological spaces defined
in [MMSS01, 9]. The smash product of symmetric spectra X ∧ Y defines a sym-
metric monoidal structure in this category. The unit of this monoidal structure is
the sphere spectrum S. Monoids in the category of symmetric spectra are called
ring spectra. Ring spectra, modules over a ring spectrum, and algebras over a
commutative ring spectrum also form model categories, see [MMSS01, 12]. Fibrant
objects in all these categories coincide with the objects which are Ω-spectra. This
crucial fact allows the construction of all the new algebraic invariants presented in
this paper.

The homotopy groups of a ring spectrum π∗R carry Toda bracket operations
which enrich the ring structure of π∗R. Toda brackets have been considered, for
instance, in [Tod62] for the sphere spectrum S and in [Ale72], under the name of
Massey products, for various cobordism spectra.

The homotopy group πnR coincides with the group of morphisms ΣnR → R
in the stable homotopy category of right R-modules. Therefore Toda brackets in
π∗R are defined following [Hel68] by using the triangulated structure in the homo-
topy category of right R-modules, see also [Sag06]. More precisely, given elements
a, b, c ∈ π∗R of degree p, q, r, respectively, with ab = 0 and bc = 0 a generic ele-
ment in the Toda bracket 〈a, b, c〉 ⊂ πp+q+r+1R is a morphism g in the homotopy
category of right R-modules fitting into the commutative diagram

(1.1) Σp+q+r+1R

g

��

Coo

��

Σp+qRoo Σp+q+rR
Σp+qcoo

R ΣpRa
oo Σp+qR

Σpb

oo Σp+q+rR
Σp+qc

oo

where the upper row is an exact triangle. The existence of such a commutative
diagram follows from the axioms of a triangulated category.



4 HANS-JOACHIM BAUES AND FERNANDO MURO

One can also define Toda brackets in π∗R following [BD89] by using tracks in
the category of right R-modules (i.e. homotopy classes of homotopies between
maps). Let us sketch this alternative construction. Since the homotopy groups of
any fibrant replacement of R are isomorphic to π∗R we can suppose without loss of
generality that R is a fibrant ring spectrum. In that case the lower row of diagram
(1.1) can be realized by a diagram in the category of right R-modules

R ΣpR
āoo Σp+qR

Σp b̄oo Σp+q+rR.
Σp+q c̄oo

The vanishing hypotheses ab = 0 and bc = 0 imply the existence of null-homotopies

(1.2) R ΣpR
āoo Σp+qRΣp b̄oo

0

^^ Σp+q+rR
Σp+q c̄

oo

0

}}
f

KS

e
��

.

The pasting of this diagram is a self-track of the trivial map 0: Σp+q+rR → R.
Such a self-track is the same as a homotopy class

g : Σp+q+r+1R −→ R,

which is again a generic element of the Toda bracket 〈a, b, c〉. This is the more
convenient approach from the perspective of this paper. More general Toda brackets
for a right R-module M , 〈a, b, c〉 ⊂ πp+q+r+1M , are defined simply by replacing R
by M on the lower left corner of (1.1) or on the left hand side of diagram (1.2), so
a ∈ π∗M and b, c ∈ π∗R.

The stable homotopy groups of a commutative ring spectrum Q carry an ad-
ditional operation, the cup-one square, defined as follows. Let LQ be a fibrant
replacement of Q in the category of all ring spectra. The ring spectrum LQ is
no longer commutative, but it remains commutative up to a coherent track α1

satisfying the idempotence and the hexagon axioms for symmetric monoidal cat-
egories, compare Lemma 16.2. Given a ∈ π2nQ, n ≥ 0, we take a representative
ā : S2n → LQ where the spectrum Sm is the m-fold suspension of the sphere spec-
trum S, Sm = ΣmS. The symmetry isomorphism for the smash square of an
even-dimensional sphere τ∧ : S2n ∧ S2n ∼= S2n ∧ S2n is homotopic to the identity.
We can choose a track τ̂ : τ∧ ⇒ 1S2n∧S2n , there are two such choices. Consider the
following diagram where µ is the product in LQ.

(1.3) S2n ∧ S2n

τ∧

��

1

""

ā∧ā // LQ ∧ LQ

τ∧

��

µ

$$I
IIIIIIII

LQ

S2n ∧ S2n
ā∧ā

// LQ ∧ LQ

µ

::uuuuuuuuu

ks τ̂ α1

7?www www

The pasting of this diagram is a self-track of µ(ā∧ ā). The classical Barcus-Barratt-
Rutter isomorphism allows us to indetify this self-track with a homotopy class

Sq1(a) : S
4n+1 = Σ(S2n ∧ S2n) −→ Q

measuring the difference between the pasting of (1.3) and the identity self-track on
µ(ā∧ ā). This element Sq1(a) ∈ π4n+1Q is the cup-one square of a. One can check
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that Sq1(a) does not depend on the representative ā. However in general it does
depend on the choice of τ̂ .

Assume now that R is a Q-algebra. The main example is Q = S since all ring
spectra are algebras over the sphere spectrum. Let u : Q→ R be the unit, let τ∧Q

be the symmetry isomorphism for the smash product of Q-modules ∧Q, and let L̄
be a fibrant replacement functor in the category of Q-algebras. The diagram

Q ∧Q R
u∧Q1

//

τ∧Q

��

R ∧Q R

mult.

&&MMMMMMMMMMM

R

R ∧Q Q
1∧Qu

// R ∧Q R

mult.

88qqqqqqqqqqq

commutes but

L̄Q ∧Q L̄R
L̄u∧Q1

//

τ∧Q

��

L̄R ∧Q L̄R

mult.

''NNNNNNNNNNNN

L̄R

L̄R ∧Q L̄Q
1∧QL̄u

// L̄R ∧Q L̄R

mult.

77pppppppppppp

α1

KS

is only commutative up to a certain track α1, compare Remark 10.7.
If b ∈ πnQ is in the kernel of the homomorphism π∗Q → π∗R induced by the

unit map u : Q → R we can choose a representative x : Sn → L̄Q and a track
y : (L̄u)x ⇒ 0. Given a ∈ πmR represented by ā : Sm → L̄R the pasting of the
diagram

Sn ∧ Sm x∧ā //

0

&&

τ∧

��

L̄Q ∧Q L̄R L̄u∧Q1 //

τ∧Q

��

L̄R ∧Q L̄R

mult.

''NNNNNNNNNNNN

L̄R

Sm ∧ Sn ā∧x //

0

88
L̄R ∧Q L̄Q 1∧QL̄u // L̄R ∧Q L̄R

mult.

77pppppppppppp

α1

KS

y∧ā

KS���
���

ā∧y
��
��
�
��
�

is a selft track of 0 : Sn+m = Sn ∧ Sm → L̄R, or equivalently an element

(1.4) θ(x,y)(a) ∈ πn+m+1R.

One can easily check that this element does not depend on the choice of ā. In
Theorem 10.6 we identify θ(x,y)(a) in a purely algebraic way for connective spectra.
This allows to deduce that

θ(x,y) : π∗R −→ Σ−1π∗R
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is a degree n derivation of the graded ring π∗R with coefficients in the desuspended
bimodule Σ−1π∗R. Moreover, Proposition 10.5 implies the following theorem.

Theorem 1.5. Let Q be a connective commutative ring spectrum, let R be a connec-
tive Q-algebra, and let IQ(R) be the kernel of the ring homomorphism π∗u : π∗Q→
π∗R. Then there is a π∗Q-module homomorphism

θ : IQ(R)/IQ(R)2 −→ HH1
π∗Q(π∗R,Σ

−1π∗R), b+ IQ(R)2 7→
{
θ(x,y)

}
.

This homomorphism is natural in R and in Q in the obvious way. This implies that
θ vanishes when R is commutative.

All ring spectra are S-algebras so the theorem applies to all connective ring
spectra for Q = S the sphere spectrum. The example of θ(p · 1) of Toda shows that
θ is non-trivial, see [Tod71].

For a brief remainder of 1-dimensional Hochschild cohomology see the paragraph
preceding Definition 4.10.

In Section 12 we review more technical details about spectra which are needed
for the proofs of the main results in this paper.

2. Pair algebras associated to ring spectra

Let pm be the category of chain complexes of abelian groups concentrated in
degree 0 and 1. Such chain complexes are termed pair modules, see [Bau06], and
are denoted by

M = (∂ : M1 →M0) .

The tensor product of two pair modules M⊗N is obtained from the tensor product
of chain complexesM⊗N by quotienting out the subcomplex generated by elements
in dimension 2, compare [BMR04]. Hence the category pm is symmetric monoidal.
The unit object is Z = (0 → Z). Quasi-isomorphisms in pm are morphisms
inducing isomorphisms on the “homology” functors,

(2.1) h0, h1 : pm −→ Ab,

defined by

h0M = Coker (∂ : M1 →M0) ,

h1M = Ker (∂ : M1 →M0) .

These homology functors come equipped with a natural isomorphism

h0(M)⊗ h0(N) ∼= h0(M⊗N),(2.2)

and with natural pairings

(2.3)
h0(M)⊗ h1(N) −→ h1(M⊗N),
h1(M)⊗ h0(N) −→ h1(M⊗N).

The isomorphism (2.2) and the pairings (2.3) satisfy the obvious associativity and
commutativity properties, i.e. they define a lax symmetric monoidal structure on
the functor (h0, h1, 0, . . . ) from pm to the category of N-graded abelian groups
where N = {0, 1, 2, . . .}.

We mostly deal with N-graded objects. An ungraded object is an N-graded
object concentrated in degree 0.

The category pmN of N-graded pair modules M = (Mn,∗, n ∈ N) is also sym-
metric monoidal with the tensor product

(M⊗N)n,∗ =
⊕

i+j=n

Mi,∗⊗Nj,∗.
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The symmetry isomorphism τ⊗ : M⊗N ∼= N⊗M in pmN is defined by ap,q⊗br,s 7→
(−1)prbr,s ⊗ ap,q. Here the first subscript of ap,q ∈Mp,q will always denote the N-
grading and the second one the {0, 1}-grading of the corresponding pair module
Mp,∗. We point out that ap,1 ⊗ br,1 represents 0 in M⊗N .

A pair algebra is a monoid in pmN. It is given by an N-graded ring B∗,0, an
N-graded B∗,0-bimodule B∗,1, and a B∗,0-bimodule homomorphism ∂ : B∗,1 → B∗,0

such that

a · ∂(b) = ∂(a) · b, a, b ∈ B∗,1.(2.4)

If B is a pair algebra then by using (2.2) and (2.3) h0B is an N-graded ring and
h1B is an h0B-bimodule in a natural way.

Let A be a ring. The most basic examples of pair algebras are the inclusion
of a two-sided ideal I ⊂ A and the zero morphism 0: M → A where M is an
A-bimodule. An ungraded pair algebra is also termed a “crossed bimodule”, see
[Lod98, E.1.5.1].

Remark 2.5. Given any ring A and any A-bimodule M consider the category con-
sisting of pair algebrasB together with a ring isomorphism h0B ∼= A and a bimodule
isomorphism h1B ∼= M . Morphisms are pair algebra morphisms over A and under
M . Then the set of connected components of this category is in natural bijection
with 3-dimensional Shukla cohomology

SH3(A,M),

see [BP]. Shukla cohomology is derived Hochschild cohomology. If the inclusions
h1B ⊂ B1 and ∂(B1) ⊂ B0 split additively then the Shukla cohomology class
associated to a pair algebra B is in the image of the natural homomorphism from
Hochschild cohomology

HH3(A,M) −→ SH3(A,M),

see [BP] and [Lod98, Exercise E.1.5.1].

There is a notion of Massey product for pair algebras which is defined as follows.

Definition 2.6. Let B be a pair algebra. Given elements a, b, c ∈ h0B of degree
p, q, r ∈ N with ab = 0 and bc = 0 the Massey product is the subset

〈a, b, c〉 ⊂ h1Bp+q+r

which is a coset of the subgroup

(h1Bp+q)c+ a(h1Bq+r)

defined as follows. Given ā ∈ Bp,0, b̄ ∈ Bq,0, c̄ ∈ Br,0 representing a, b, c, there
exist e ∈ Bp+q,1, f ∈ Bq+r,1 such that ∂(e) = ā · b̄, ∂(f) = b̄ · c̄. Then one can easily
check that

−e · c̄+ ā · f ∈ h1Bp+q+r ⊂ Bp+q+r,1.

The coset 〈a, b, c〉 ⊂ h1Bp+q+r coincides with the set of elements obtained in this
way for all different choices of ā, b̄, c̄, e and f .

We say that a ring spectrum R neglects the Hopf map if the stable Hopf map
η ∈ π1S is in the kernel of the ring homomorphism π∗S → π∗R induced on stable
homotopy groups by the unit S → R.

Recall that the desuspension Σ−1A of an N-graded ring A is (Σ−1A)n = An+1,
n ≥ 0, with the N-graded A-bimodule structure defined by the formula

a · (Σ−1b) · c = (−1)|a|Σ−1(a · b · c).

Here |a| is the degree of a ∈ A and for any x ∈ An+1, n ≥ 0, we denote by
Σ−1x ∈ (Σ−1A)n the corresponding element in the desuspension. One of our main
results is the following.
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Theorem 2.7. There is a functor

πadd
∗,∗ :

(
connective ring

spectra neglecting η

)
−→ (pair algebras)

together with natural isomorphisms

h0π
add
∗,∗ R

∼= π∗R, of rings,

h1π
add
∗,∗ R

∼= Σ−1π∗R, of bimodules,

such that the Massey products in πadd
∗,∗ R coincide with the Toda brackets in π∗R.

Proof. The functor πadd
∗,∗ is defined by the formula πadd

∗,∗ R = (π∗,∗R)add where π∗,∗ is

the functor in Theorem 6.4 and (−)add is the additivization functor in (5.6). Now
the theorem follows from Theorem 6.4 and Proposition 5.7. �

Example 2.8. Common examples of connective ring spectra neglecting the Hopf
map are the spectra associated to multiplicative cohomology theories concentrated
in even non-negative dimensions, such as connective complex K-theory ku, complex
cobordism MU , Brown-Peterson theory BP . . . If R denotes any of these ring
spectra then the pair algebra πadd

∗,∗ R is quasi-isomorphic to

0 : Σ−1π∗R −→ π∗R.

In fact if B is any pair algebra such that h0B is concentrated in even degrees and
h1B is concentrated in odd degrees then we have a diagram of quasi-isomorphisms

h1B

0

��

Beven,1 ⊕ h1B
(0,1)
oooo � � //

(∂even,0)

��

B∗,1

∂

��

h0B Beven,0
oooo � � // B∗,0

Algebras over the Eilenberg-Mac Lane spectrum HZ also neglect the Hopf map.
Any connective HZ-algebra is weakly equivalent to the HZ-algebra HD∗ of a differ-
ential graded algebra D∗ concentrated in non-negative dimensions, see [Shi06]. The
theory developed in this paper allows one to compute a small model of πadd

∗,∗ HD∗.
Indeed this pair algebra is quasi-isomorphic to

d̄ : Σ−1(D∗/d(D∗)) −→ Z∗.

Here Z∗ ⊂ D∗ is the subring of cycles and d̄ is induced by the differential in D∗,
compare [BM02, 3.6].

The algebra of secondary mod p cohomology operations B, for p a fixed prime,
computed in [Bau06], is a pair algebra. This pair algebra has proved to be useful
for computations of d2 differentials in the classical Adams spectral sequence, see
[BJ04]. The pair algebra B corresponds to the coconnective version of π∗,∗R for
R = End(HZ/p) the endomorphism spectrum of the mod p Eilenberg-Mac Lane
spectrum. The coconnective theory, however, is not considered in this paper.

Remark 2.9. Given an ungraded ring A and an ungraded A-bimodule M , the
Shukla cohomology SH3(A,M) is naturally included in Mac Lane cohomology,
see [JP86, BP], which is isomorphic to the topological Hochschild cohomology of
the corresponding Eilenberg-Mac Lane ring spectrum, compare [PW92],

(2.10) SH3(A,M) →֒ HML3(A,M) ∼= THH3(HA,HM).

If R is a connective ring spectrum neglecting η we can consider the ungraded pair
algebra πadd

0,∗ R in the bottom degree of πadd
∗,∗ R in Theorem 2.7 yielding the associated

Shukla cohomology class

〈πadd
0,∗ R〉 ∈ SH

3(π0R, π1R).
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On the other hand Lazarev [Laz01] introduced the “first k-invariant”

k1
R ∈ THH

3(H(π0R), H(π1R))

of the ring spectrum R. We claim that the image under (2.10) of the class 〈πadd
0,∗ R〉

in topological Hochschild cohomology can be identified with the first Postnikov
invariant k1

R of the ring spectrum R.

3. E∞-pair algebras associated to commutative ring spectra

A commutative pair algebra is a commutative monoid in pmN. We need a weaker
notion given by a pair algebra which is commutative up to a coherent homotopy as
follows.

Definition 3.1. An E∞-pair algebra C = (C,⌣1) is a pair algebra C = C∗,∗

together with a homomorphism

⌣1 : C∗,0 ⊗ C∗,0 −→ C∗,1

also called cup-one product such that given xi ∈ Cni,0 and s ∈ Cm,1,

(−1)n1·n2x2 · x1 + ∂(x1 ⌣1 x2) = x1 · x2,

(−1)m·n2x2 · s+ ∂(s) ⌣1 x2 = s · x2,

(−1)n1·n2x2 ⌣1 x1 + x1 ⌣1 x2 = 0,

(x1 · x2) ⌣1 x3 = (−1)n2·n3(x1 ⌣1 x3) · x2 + x1 · (x2 ⌣1 x3).

The ring h0C is commutative and h1C is an h0C-module in a natural way.

Remark 3.2. If µ : C⊗C → C denotes the multiplication on the E∞-pair algebra
C then the cup-one product consists exactly of a chain homotopy ⌣1 : µτ⊗ ⇒ µ
which is idempotent

µ
⌣1τ⊗+3

CC
CC

CC
CC

CC
CC

CC
CC

µτ⊗

⌣1

��
µ

and such that the hexagon

µ(1⊗ (µτ⊗))(τ⊗ ⊗ 1)

lllllllllllll

lllllllllllll
µ(1⊗⌣1)(τ⊗⊗1)

%-SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

µτ⊗(1⊗ µ)

⌣1(1⊗µ)

��

µ(1⊗ µ)(τ⊗ ⊗ 1)

µ(1⊗ µ)

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
µ((µτ⊗)⊗ 1)

µ(⌣1⊗1)qy kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

µ(µ⊗ 1)

commutes. These are the usual axioms in a symmetric monoidal category, see
[Bor94]. Indeed there is an additional diagram, called the pentagon, which should
commute. In this case it commutes automatically since the product in C is strictly
associative.

Pair algebras carry a notion of Massey product as we saw in Definition 2.6.
E∞-pair algebras carry in addition a notion of cup-one square.
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Definition 3.3. Let C be an E∞-pair algebra. Given an element a ∈ h0C2n,∗ we
define the cup-one square Sq1(a) of a in the following way. Choose a representative
ā ∈ C2n,0 of a. Then we have

∂(ā ⌣1 ā) = 0,

so we can set

Sq1(a) = ā ⌣1 ā ∈ h1C4n,∗.

One readily checks that the cup-one square construction Sq1(a) does not depend
on the choice of a representative ā made for its definition.

Theorem 3.4. There is a diagram of functors

(
connective commutative
ring spectra neglecting η

)

inclusion

��

πadc
∗,∗

// (E∞-pair algebras)

forget ⌣1

��
(

connective ring
spectra neglecting η

)
πadd
∗,∗

// (pair algebras)

Here the lower horizontal arrow is the functor in Theorem 2.7. This diagram com-
mutes up to natural quasi-isomorphisms as in (17.4) below. Moreover, given a
connective commutative ring spectrum Q the algebraic cup-one squares in πadc

∗,∗ Q
coincide with the topologically-defined cup-one squares in π∗Q.

We prove this theorem in Section 17. It follows from Theorems 3.4 and 2.7 that
Massey products in πadc

∗,∗ R coincide with Toda brackets in R.

Example 3.5. Let D∗ be a differential graded algebra concentrated in non-negative
dimensions endowed with a ⌣1 operation consisting of a degree 1 homomorphism

(3.6) ⌣1 : D∗ ⊗D∗ −→ D∗

satisfying the Hirsch formulas

d(x1 ⌣1 x2) = x1 · x2 − (−1)n1·n2x2 · x1 − d(x1) ⌣1 x2 − (−1)n1x1 ⌣1 d(x2),

(x1 · x2) ⌣1 x3 = (−1)n1x1 · (x2 ⌣1 x3) + (−1)n2·n3(x1 ⌣1 x3) · x2,

compare [McC85, page 267]. Then the pair algebra

d̄ : Σ−1(D∗/d(D∗)) −→ Z∗

in Example 2.8 is an E∞-pair algebra with cup-one product induced by ⌣1 in (3.6).

Example 3.7. Let S(3) be the 3-local sphere spectrum, which is a commutative ring
spectrum, and let Z(3) be the 3-local integers. The computations in this example are
based on classical results which can be found for instance in [Tod62] and [Rav86].
Up to dimension 13 the abelian group πnS(3) is given by

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
πnS(3) Z(3) 0 0 Z/3 0 0 0 Z/3 0 0 Z/3 Z/9 0 Z/3

generators 1 − − α1 − − − α2 − − β1 α′
3 0 α1 · β1

The stable homotopy ring π∗S(3) is a commutative Z(3)-algebra. The only product
in degrees ≤ 13 which is not indicated above is

α1 · α2 = 0.
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Moreover, the non-vanishing secondary homotopy operations in this range are the
Toda brackets

〈α1, 3, α1〉 = α2,

〈α1, α1, α1〉 = β1,

〈α1, 3, α2〉 = 3 · α′
3.

We are going to show in this example that the knowledge of the secondary ho-
motopy operations gives us some information about the E∞-pair algebra πadc

∗,∗ S(3)

in degrees ≤ 12, but it does not determine the whole structure. This proves that
the algebraic object πadc

∗,∗ S(3) contains more information than just the collection of
classical secondary homotopy operations.

The natural morphism πadc
∗,∗ S(3) → πadc

∗,∗ S(3) ⊗ Z(3) is a quasi-isomorphism since
π∗S(3) is 3-local. Let us choose a1, a2, b1, a

′
3 ∈ π∗,0S(3)⊗Z(3) representing α1, α2, β1,

α′
3, respectively. Taking pull-backs, as in Section 14, we can define a quasi-

isomorphic E∞-pair algebra C → πadc
∗,∗ S(3)⊗Z(3) such that C∗,0 coincides in dimen-

sions ≤ 12 with the free Z(3)-algebra generated by a1, a2, b1, a
′
3. Any submodule

of a free Z(3)-module is free since Z(3) is a principal ideal domain, therefore, since

h0C ∼= π∗S(3) and h1C ∼= Σ−1π∗S(3), the pair modules Cn,∗ are given for n ≤ 12
by

n Cn,0 generators Cn,1 generators
0 Z(3) 1 0 −
1 0 − 0 −
2 0 − Z/3 Σ−1α1

3 Z(3) a1 Z(3) ā1

4 0 − 0 −
5 0 − 0 −

6 Z(3) a2
1 Z(3) ⊕ Z/3 ā

(2)
1 ,Σ−1α2

7 Z(3) a2 Z(3) ā2

8 0 − 0 −

9 Z(3) a3
1 Z(3) ⊕ Z/3 ā

(3)
1 ,Σ−1β1

10 Z(3) ⊕ Z(3) ⊕ Z(3) a1 · a2, a2 · a1, b1 Z(3) ⊕ Z(3) ⊕ Z(3) ⊕ Z/9 ā1,2, ā2,1, b̄1,Σ
−1α′

3

11 Z(3) a′3 Z(3) ā′3
12 Z(3) a4

1 Z(3) ⊕ Z/3 ā
(4)
1 ,Σ−1(α1 · β1)

where ā1, ā
(2)
1 , ā2, ā

(3)
1 , ā1,2, ā2,1, b̄1, ā

′
3, ā

(4)
1 are arbitrarily chosen elements satisfying

∂(āi) = 3 · ai, i = 1, 2,

∂(ā
(i)
1 ) = ai

1, i = 2, 3, 4,

∂(āi,j) = ai · aj , {i, j} = {1, 2} ,

∂(b̄1) = 3 · b1,

∂(ā′3) = 9 · a′3.

The desuspended elements are in h1C = Ker ∂. Since ∂ is a C∗,0-bimodule homo-
morphism

a1 · ā1 = 3 · ā
(2)
1 +m · (Σ−1α2),

a1 · ā2 = 3 · ā1,2 +m′ · (Σ−1α′
3),

ā1 · a2 = 3 · ā1,2 +m′′ · (Σ−1α′
3),

for some m ∈ Z/3 and m′,m′′ ∈ Z/9, and we can choose ā
(3)
1 and ā

(4)
1 so that

ai
1 · ā

(2)
1 = ā

(i+2)
1 , i = 1, 2.
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Moreover,

ā
(2)
1 · a

2
1 = ā

(2)
1 · ∂(ā

(2)
1 )

= ∂(ā
(2)
1 ) · ā

(2)
1

= a2
1 · ā

(2)
1

= ā
(4)
1 .

By the laws of an E∞-pair algebra we see that we can choose a
(2)
1 , ā1,2, ā2,1 in

such a way that

a1 ⌣1 a1 = 2 · ā
(2)
1 ,

a1 ⌣1 a2 = ā2,1 + ā1,2,

and moreover

ā1 · a1 = −a1 · ā1 + a1 ⌣1 (3 · a1)

= −3 · ā
(2)
1 −m · (Σ

−1α2) + 6 · ā
(2)
1

= 3 · ā
(2)
1 −m · (Σ

−1α2),

ā2 · a1 = −a1 · ā2 + a1 ⌣1 (3 · a2)

= −3 · ā1,2 −m
′ · (Σ−1α′

3) + 3 · ā2,1 + 3 · ā1,2

= 3 · ā2,1 −m
′ · (Σ−1α′

3),

a2 · ā1 = −ā1 · a2 + a2 ⌣1 (3 · a1)

= −3 · ā1,2 −m
′′ · (Σ−1α′

3) + 3 · ā2,1 + 3 · ā1,2

= 3 · ā2,1 −m
′′ · (Σ−1α′

3).

The action of a1 on Σ−1α1,Σ
−1α2, yields 0 from the left and from the right, as

well as the action of a2 on Σ−1α1, and

a1 · (Σ
−1β1) = −Σ−1(α1 · β1)

= −Σ−1(β1 · α1)

= −(Σ−1β1) · a1.

Finally the known Toda brackets yield the equalities

Σ−1α2 = −ā1 · a1 + a1 · ā1

= −m · (Σ−1α2),

Σ−1β1 = −ā
(2)
1 · a1 + a1 · ā

(2)
1

= −ā
(2)
1 · a1 + ā

(3)
1 ,

3 · (Σ−1α′
3) = −ā1 · a2 + a1 · ā2

= (m′ −m′′) · (Σ−1α′
3).

In particular

m = −1 ∈ Z/3,

m′′ = m′ − 3 ∈ Z/9.

The equations above determine, up to dimension 9, the structure of C, and
hence the structure of πadc

∗,∗ S(3) up to quasi-isomorphism. In dimensions ≤ 12 the
structure is determined up to the unknown constant m′ ∈ Z/9, which can not be
deduced from the secondary homotopy operations in π∗S(3). The reader who wants
to familiarize himself with the new algebraic invariants introduced in this paper
can try to compute more about πadc

∗,∗ S(3) with the help of the classical calculations
available in the literature. One can also try with primes p > 3.
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We remark that the elements Σ−1α1, a1, ā1, a2, ā2, b1, ā1,2, b̄1,Σ
−1α′

3, a
′
3, ā

′
3, gen-

erate C as an E∞-pair algebra in dimensions ≤ 12 since the rest of elements ā
(i)
1 ,

Σ−1α2, ā2,1, Σ−1β1,Σ
−1(α1 · β1), i = 2, 3, 4, can be written in terms of these

generators, the product and the cup-one product in C.

Remark 3.8. The coherence conditions in Remark 3.2 are related to the Barratt-
Eccles operad introduced in [BE74]. Indeed, one can check that E∞-pair algebras
are algebras over the following operad in pm. Let BE be the simplicial Barratt-
Eccles operad and let C∗BE be the operad of chain complexes obtained by taking
normalized cochains on BE. If we truncate this operad by dividing out the subcom-
plexes generated by the elements in dimensions ≥ 2 we obtain an operad t≤2C∗BE
in pm whose associated algebras are exactly the E∞-pair algebras.

Now let A be an ungraded commutative ring and let M be an ungraded A-
module. We consider the category consisting of ungraded E∞-pair algebras C∗ with
specified isomorphisms h0C∗

∼= A and h1C∗
∼= M and E∞-pair algebra morphisms

over A and under M . Then the set of components of this category is in natural
bijection with the operadic cohomology group

H3
t≤2C∗BE(A,M)

defined in [BMR04], which in dimension 3 is the “commutative analogue” of Shukla
cohomology, see Remark 2.5. This cohomology is likely to be related to the Γ-
cohomology of Robinson and Whitehouse, compare [BMR04, 7]. Moreover, this
operadic cohomology group should map to the third topological Andre-Quillen co-
homology group, where the first Postnikov invariant of a connective commutative
ring spectrum R lives, see [Bas99]. In fact, if R neglects the Hopf map the class
of the ungraded E∞-pair algebra πadc

0,∗ R should be mapped this way to the first
Postnikov invariant of R as in the non-commutative case, see Remark 2.9.

4. Algebras over commutative ring spectra neglecting the Hopf map

In stable homotopy theory we have the notion of a connective algebra over a
connective commutative ring spectrum Q, which is a connective ring spectrum R
with a two-sided action of Q. If Q neglects the Hopf map then so R does and by
Theorems 2.7 and 3.4 the ring spectra R and Q give rise to a pair algebra πadd

∗,∗ R and

to an E∞-pair algebra πadc
∗,∗Q. In this section we study the algebraic properties of

the induced action of πadc
∗,∗ Q on πadd

∗,∗ R, obtaining Theorem 1.5 for spectra neglecting
the Hopf map as an application.

Definition 4.1. Let C be an E∞-pair algebra. A C-algebra is a pair algebra B
together with a pair algebra morphism u : C → B, called the unit, and two external
cup-one product operations,

⌣1 : B∗,0 ⊗ C∗,0 −→ C∗,1,
⌣1 : C∗,0 ⊗B∗,0 −→ C∗,1,
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such that given xi ∈ Bni,0, s ∈ Bm,1, x̃i ∈ Cni,0, s̃ ∈ Cm,1, the following equations
hold, compare Definition 3.1.

u1(x̃1 ⌣1 x̃2) = u0(x̃1) ⌣1 x̃2(4.2)

= x̃1 ⌣1 u0(x̃2),

(−1)n1·n2x2 · u0(x̃1) + ∂(x̃1 ⌣1 x2) = u0(x̃1) · x2,(4.3)

(−1)m·n2u0(x̃2) · s+ ∂(s) ⌣1 x̃2 = s · u0(x̃2),(4.4)

(−1)m·n2x2 · u1(s̃) + ∂(s̃) ⌣1 x2 = u1(s̃) · x2,(4.5)

(−1)n1·n2x2 ⌣1 x̃1 + x̃1 ⌣1 x2 = 0,(4.6)

(−1)n2·n3(x̃1 ⌣1 x3) · u0(x̃2) + u0(x̃1) · (x̃2 ⌣1 x3) = (x̃1 · x̃2) ⌣1 x3,(4.7)

(−1)n2·n3(x1 ⌣1 x̃3) · x2 + x1 · (x2 ⌣1 x̃3) = (x1 · x2) ⌣1 x̃3.(4.8)

The ring h0B is an h0C-algebra in such a way that the h0B-bimodule h1B
restricts to an h0C-module.

Remark 4.9. Any E∞-pair algebra is an algebra over itself. Moreover, given a
morphism of E∞-pair algebras f : C̄ → C and a C-algebra B then B has a C̄-
algebra structure, denoted by f∗B, with unit uf : C̄ → B and external cup-one
products obtained by precomposing with f .

The main new secondary homotopy operation on algebras over E∞-pair algebras
is introduced in the next definition. We need to recall first some basics facts on the
1-dimensional Hochschild cohomology of graded algebras.

Recall that given a commutative algebra K, a K-algebra A, an A-bimodule
M which is also a K-module, and n ∈ Z, a degree n derivation is a degree n
homomorphism ofK-modules d : A→M such that d(a·b) = d(a)·b+(−1)n|a|a·d(b).
Any m ∈ M gives rise to a degree |m| derivation dm(a) = m · a − (−1)|m||a|a ·
m. These derivations are called inner derivations and they form a submodule
InnK(A,M) ⊂ DerK(A,M) of the K-module of all derivations. The 1-dimensional
Hochschild cohomology group of A with coefficients inM coincides with the quotient
K-module

HH1
K(A,M) = DerK(A,M)/InnK(A,M).

Definition 4.10. Let C be an E∞-pair algebra and let B be a C-algebra. We
associate to any pair (x, y) with x ∈ C0,n and y ∈ Bn,1 such that ∂(y) = u0(x) the
degree n derivation

θ(x,y) : h0B −→ h1B

defined by

θ(x,y)(a) = −y · ā+ (−1)n|a|ā · y + x ⌣1 ā.

Here ā ∈ B∗,0 is a representative of a ∈ h0B. This is indeed an element in h1B by
(4.3). Moreover, θ(x,y) = 0 provided B is an E∞-pair algebra and u is a morphism
of E∞-pair algebras. It follows from equations (4.4) and (4.6) that θ(x,y)(a) does
not depend on the choice of ā. In order to check the derivation property for θ(x,y)

one uses equations (4.8) and (4.6). It is h0C-linear since θ(x,y) vanishes in the image
of h0u. This follows from equations (4.2) and (4.5).

Proposition 4.11. Given an E∞-pair algebra C and a C-algebra B let IC(B) be
the kernel of the ring homomorphism h0u : h0C → h0B. There is an h0C-module
homomorphism

θ : IC(B)/IC(B)2 −→ HH1
h0C(h0B, h1B)

which sends an element in IC(B)/IC(B)2 represented by x ∈ Cn,0 to the element
in Hochschild cohomology represented by a derivation θ(x,y) as in Definition 10.4
for any y ∈ Bn,1 with ∂(y) = u0(x). The homomorphism θ is natural in B and in
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C in the obvious way. In particular θ = 0 when B is an E∞-pair algebra and u is
a morphism of E∞-pair algebras.

Proof. Using equation (4.5) one can check that the cohomology class of the deriva-
tion θ(x,y) only depends on the projection of x to IC(B). In this way one obtains a
homomorphism θ from IC(B). Given z ∈ Cm,0 representing c ∈ h0C

θ(z·x,u0(z)·y)(a) = −u0(z) · y · ā+ (−1)(m+n)|a|ā · u0(z) · y + (z · x) ⌣1 ā

(4.3) = −u0(z) · y · ā+ (−1)n|a|u0(z) · ā · y

−(−1)n|a|∂(z ⌣1 ā) · y + (z · x) ⌣1 ā

= −u0(z) · y · ā+ (−1)n|a|u0(z) · ā · y

−(−1)n|a|(z ⌣1 ā) · u0(x) + (z · x) ⌣1 ā

(4.7) = −u0(z) · y · ā+ (−1)n|a|u0(z) · ā · y + u0(z) · (x ⌣1 ā)

= u0(z) · (−y · ā+ (−1)n|a|ā · y + x ⌣1 ā)

= (h0u)(c) · θ(x,y)(a).

This formula shows that θ is h0C-linear and also that θ(IC(B)2) = 0. �

Algebras over commutative ring spectra neglecting the Hopf map are a source of
algebras over E∞-pair algebras as the following theorem shows.

Theorem 4.12. Let Q be a connective commutative ring spectrum neglecting the
Hopf map and let πadc

∗,∗ Q be the E∞-pair algebra given by Theorem 3.4. There is a
diagram of functors

(connective Q-algebras)

forget
��

πada
∗,∗

//
(
πadc
∗,∗ Q-algebras

)

forget

��
(

connective ring
spectra neglecting η

)
πadd
∗,∗

// (pair algebras)

which commutes up to natural quasi-isomorphisms. Here the lower arrow is the
functor in Theorem 2.7. Moreover, if f : Q′ → Q is a morphism of connective
commutative ring spectra neglecting the Hopf map then the square

(connective Q-algebras)

f∗

��

πada
∗,∗

//
(
πadc
∗,∗ Q-algebras

)

(πadc
∗,∗ f)∗

��

(connective Q′-algebras)
πada
∗,∗

//
(
πadc
∗,∗Q

′-algebras
)

commutes up to natural quasi-isomorphisms. Furthermore, if R is a connective Q-
algebra, a ∈ πmR, and b ∈ πnQ is in IQ(R) = Ker[π∗Q → π∗R] ∼= Iπadc

∗,∗ Q(πada
∗,∗ R),

then the element θ(x,y)(a) ∈ πn+m+1R ∼= (h1π
ada
∗,∗ R)n+m defined in (1.4) can be

identified with θ(x,y)(a) in the sense of Definition 4.10.

This theorem can be derived from Theorem 10.6 in the same way as we derive
Theorem 3.4 from Theorem 9.12 in Section 17, see Remark 17.5 for details.

5. Square groups and quadratic pair modules

We now describe quadratic generalizations of pair modules, pair algebras and
E∞-pair algebras. The quadratic concepts are needed to achieve results as above
on general ring spectra not neglecting the Hopf map. In fact, the Hopf map requires
the use of quadratic structure as developed in [BP99, BJP05]. In this section we
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quickly recall the basic quadratic algebra which is needed in this paper. We do not
recall, for example, the definition of the quadratic tensor product, but we later give
explicit definitions of monoids and modules in the monoidal category of quadratic
pair modules, see Definitions 6.1 and 7.1. We relate the quadratic concepts to the
additive (non-quadratic) situation which was used in the previous sections.

A square group X is a diagram

X = (Xe

P

⇆
H

Xee)

where Xe is a group with an additively written group law, Xee is an abelian group,
P is a homomorphism, H is a quadratic map, i.e. a function such that the cross
effect

(a|b)H = H(a+ b)−H(b)−H(a), a, b ∈ Xe,

is bilinear, and the following relations are satisfied, x, y ∈ Xee,

(Px|b)H = (a|Py) = 0,

P (a|b)H = −a− b+ a+ b,

PHP (x) = P (x) + P (x).

In particularXe is a group of nilpotency class 2 and P mapsXee to the center ofXe,
so its image is a normal subgroup. Let SG be the category of square groups where
a morphism of square groups f : X → Y is given by homomorphisms fe : Xe → Ye,
fee : Xee → Yee, commuting with P and H . An abelian group is identified with a
square group X with Xee = 0. In this way we have a full inclusion Ab ⊂ SG of
the category of abelian groups into a category of square groups.

For any square group X the function

T = HP − 1: Xee −→ Xee

is an involution, i.e. a homomorphism with T 2 = 1. Moreover,

∆: Xe −→ Xee : x 7→ (x|x)H −H(x) + TH(x)

is a homomorphism which satisfies T∆ = −∆. The cross effect induces a homo-
morphism

(−|−)H : ⊗2 CokerP −→ Xee,

where ⊗2A = A ⊗ A is the tensor square of an abelian group. We say that X is
good if this homomorphism is an isomorphism.

As an example of square group we can consider

Znil = (Z
P

⇆
H

Z)

with P = 0 and H(n) =
(
n
2

)
= n(n−1)

2 .
For a pointed set E with base-point ∗ ∈ E let Z[E] be the free abelian group

with basis E − {∗}, and let 〈E〉nil be the quotient of the free group 〈E〉 with basis
E−{∗} by triple commutators. Both Z[−] and 〈−〉nil are functors on the category of
pointed sets and we have the natural abelianization homomorphism 〈E〉nil ։ Z[E]
which is supressed from notation.

There is a square group

(5.1) Znil[E] = (〈E〉nil

P

⇆
H

⊗2Z[E]),

where P (a⊗ b) = −b− a+ b+ a, H(e) = 0 for any e ∈ E and (s|t)H = t⊗ s so that
Znil[S

0] = Znil. These are canonical examples of good square groups.
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A quadratic pair module C is a morphism ∂ : C(1) → C(0) between square groups

C(0) = (C0

P0

⇆
H

Cee),

C(1) = (C1

P

⇆
H1

Cee),

such that ∂ee = 1: Cee → Cee is the identity homomorphism. Hence C is completely
determined by the diagram

(5.2) Cee

P

}}{{
{{

{{
{{

C1
∂

// C0

H

aaCCCCCCCC

where ∂ = ∂e, H1 = H∂ and P0 = ∂P . We say that C is 0-good if C(0) is a good
square group. Moreover, C is 0-free if C(0) is of the form (5.1).

Morphisms of quadratic pair modules f : C → D are given by group homomor-
phisms f0 : C0 → D0, f1 : C1 → D1, fee : Cee → Dee, commuting with H , P and
∂ in (5.2). They form a category denoted by qpm. A quadratic pair module with
Cee = 0 is the same as a pair module. In this way the category pm of pair mod-
ules is regarded as a full subcategory pm ⊂ qpm. We write qpmH for the full
subcategory of 0-good quadratic pair modules.

We have functors

h0, h1 : qpm −→ Ab

defined by h0C = Coker∂ and h1C = Ker ∂ as in (2.1). A quasi-isomorphism of
quadratic pair modules is a morphism inducing isomorphisms on h0 and h1.

Remark 5.3. As shown in [BJP05], the category SG is a symmetric monoidal cat-
egory with the tensor product X ⊙ Y of square groups and with unit object Znil.
Moreover, there is a symmetric monoidal structure ⊙ on qpm defined by using the
tensor product of square groups, see [BM07]. The unit object for the monoidal
structure in qpm is

Znil =




Z

P

~~~~}}
}}

}}
}}

Z/2
0

// Z

H

^^>>>>>>>>




where P is the non-trivial homomorphism and H(n) =
(
n
2

)
as in (5.1).

The functors h0 and h1 also admit pairings as in (2.2) and (2.3), so they assemble
to a lax symmetric monoidal functor from qpm to the category ofN-graded abelian
groups. This implies, since h1Znil = Z/2, that the unit isomorphism C ⊙Znil

∼= C
induces a natural homomorphism

(5.4) k : h0C ⊗ Z/2 −→ h1C

which, in fact, is given by the formula k(x) = P (x|x)H . This homomorphism,
termed the k-invariant of C, corresponds to the action of the Hopf map in homotopy
groups, see Propositions 13.9 and 15.4 below.

The full inclusion Ab ⊂ SG above admits a reflection given by

(5.5) (−)add : SG −→ Ab, Xadd = CokerP.

The full inclusion pm ⊂ qpm also admits a reflection functor

(5.6) (−)add : qpm −→ pm : C 7→ Cadd
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which sends ∂ : C(1) → C(0) to the abelian group homomorphism

∂add : Cadd
(1) = CokerP −→ Coker∂P = Cadd

(0)

induced by ∂ : C1 → C0.
The natural projection C → Cadd, which is the unit of the reflection (5.6),

induces an isomorphism on h1 but not necessarily on h0. For h0 we have the
following result.

Proposition 5.7. Let C be a 0-free quadratic pair module. The natural projection
C → Cadd is a quasi-isomorphism if and only if the k-invariant of C, as defined in
(5.4), is trivial.

Proof. The k-invariant is invariant under quasi-isomorphisms, and pair modules
have obviously trivial k-invariant, therefore the “only if” part follows.

Suppose now that C is a 0-free quadratic pair module with trivial k-invariant
and C(0) = Znil[E]. Then the homomorphism

P : ⊗2 Z[E] −→ C1

factors through the exterior square by

P̃ : ∧2 Z[E] −→ C1.

The composite ∂P̃ : ∧2 Z[E] → 〈E〉nil is known to be an injection with cokernel

Z[E], therefore P̃ is also injective. This implies that we have a commutative diagram
with exact rows

∧2Z[E]
� � P̃ // C1

∂

��

// // Cadd
1

∂add

��

∧2Z[E]
� � // C0

// // Cadd
0

hence the proposition follows from the “snake lemma”. �

Remark 5.8. The inclusion Ab ⊂ SG strictly preserves the tensor product. More-
over, Ab ⊂ SG is a lax symmetric monoidal functor with lax symmetric monoidal
structure given on units by the square group morphism Znil → Z which is the
identity on the e-level. The reflection (5.5) is strict symmetric monoidal since it
preserves the tensor product and the unit Zadd

nil = Z.
Similarly the inclusion pm ⊂ qpm is lax symmetric monoidal. It is strictly

compatible with the tensor product, and the structure morphism Znil → Z between
the units is the identity on the 0-level. As in the case of square groups the reflection
functor (5.6) is strict symmetric monoidal.

Remark 5.9. A permutative category is a small category P with a symmetric
monoidal structure ⊕ with unit object 0 which is strictly associative

(A⊕B)⊕ C = A⊕ (B ⊕ C),

and strictly unital

A⊕ 0 = A

= 0⊕A,

but not necessarily strictly commutative, i.e. the isomorphism

τ⊕ : A⊕B ∼= B ⊕A.

needs not be the indentity.
A quadratic pair module C yields a permutative category PC with object set

C0. The morphism set is the semidirect product C0 ⋉ C1, where C0 acts on the
right of C1 by the formula cc0

1 = c1 + P (∂(c1)|c0)H . An element (c0, c1) ∈ C0 ⋉ C1
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is a morphism (c0, c1) : c0 → c0 + ∂(c1).The composition in PC is determined by
the sum in C0 ⋉C1. Moreover, the monoidal structure ⊕ is also defined by the sum
in C0 and C0 ⋉ C1, that is A⊕B = A+ B. The symmetry isomorphism is

τ⊕ = (A+B,P (B|A)H) : A⊕B ∼= B ⊕A

Notice that PC is indeed a groupoid.

6. Quadratic pair algebras associated to ring spectra

In this section we give an explicit description of quadratic pair algebras. We also
define Massey products for quadratic pair algebras and show that they correspond
to Toda brackets.

Definition 6.1. A quadratic pair algebra B is an N-graded quadratic pair module
{Bn,∗, n ∈ N}, together with multiplications, n,m ∈ N,

Bn,0 ×Bm,0
·
−→ Bn+m,0,

Bn,0 ×Bm,1
·
−→ Bn+m,1,

Bn,1 ×Bm,0
·
−→ Bn+m,1,

Bn,ee ×Bm,ee
·
−→ Bn+m,ee,

and an element 1 ∈ B0,0 with H(1) = 0 which is a (two-sided) unit for the first
three multiplications and such that (1|1)H ∈ B0,ee is a (two-sided) unit for the
fourth multiplication. These multiplications are associative in all possible ways.
Moreover, the following lists of equations are satisfied for x, xi ∈ B∗,0, s, si ∈ B∗,1

and ai ∈ B∗,ee. The multiplications · are always right linear

x1 · (x2 + x3) = x1 · x2 + x1 · x3,

x · (s1 + s2) = x · s1 + x · s2,

s · (x1 + x2) = s · x1 + s · x2,

a1 · (a2 + a3) = a1 · a2 + a1 · a3.

The multiplications · satisfy the following left distributivity laws

(x1 + x2) · x3 = x1 · x3 + x2 · x3 + ∂P ((x2|x1)H ·H(x3)),

(x1 + x2) · s = x1 · s+ x2 · s+ P ((x2|x1)H ·H∂(s)),

(s1 + s2) · x = s1 · x+ s2 · x+ P ((∂(s2)|∂(s1))H ·H(x)),

(a1 + a2) · a3 = a1 · a3 + a2 · a3.

The homomorphisms ∂ are compatible with the multiplications · in the following
sense

∂(x · s) = x · ∂(s),

∂(s · x) = ∂(s) · x,

∂(s1) · s2 = s1 · ∂(s2).

And finally, we have compatibility conditions for the multiplications · and the maps
P , H , ∆, and (−|−)H ,

P ((x|x)H · a) = x · P (a),

P (a ·∆(x)) = P (a) · x,

H(x1 · x2) = (x1|x1)H ·H(x2) +H(x1) ·∆(x2),

H∂P (a1 · a2) = H∂P (a1) · a2 + a1 ·H∂P (a2)−H∂P (a1) ·H∂P (a2),

(x1 · x2|x3 · x4)H = (x1|x3)H · (x2|x4)H .
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Remark 6.2. In [BM07] we define the monoidal category qpmN

H ofN-graded 0-good
quadratic pair modules. A quadratic pair algebra B which is 0-good is the same as
a monoid in qpmN

H . The product ai · bj of two elements in levels i, j ∈ {0, 1} with
i + j ≤ 1 is given by the image of the right linear generator ai⊚bj in the tensor
product of square groups under the structure morphism B⊙B → B of the monoid
B. If i = j = ee then ai · bj is the image of ai ⊗ bj ∈ (B ⊙ B)ee = B∗,ee ⊗ B∗,ee.
To see this requires a technical computation which only uses the formulas for the
tensor products of square groups and quadratic pair modules in [BJP06, BM07].
We leave it to the reader.

If B is a quadratic pair algebra then h0B is an N-graded ring and h1B is an
h0B-bimodule in a natural way. Massey products are defined for quadratic pair
algebras as in Definition 2.6 above.

Definition 6.3. Let B be a quadratic pair algebra. Given elements a, b, c ∈ h0B,
of degree p, q, r ∈ N with ab = 0 and bc = 0 the Massey product is the subset

〈a, b, c〉 ⊂ h1Bp+q+r ,

which is a coset of the subgroup

(h1Bp+q)c+ a(h1Bq+r),

defined as follows. Given ā ∈ Bp,0, b̄ ∈ Bq,0, c̄ ∈ Br,0 representing a, b, c, there
exist e ∈ Bp+q,1, f ∈ Bq+r,1 such that ∂(e) = ā · b̄, ∂(f) = b̄ · c̄ and one can easily
check that

−e · c̄+ ā · f ∈ h1Bp+q+r ⊂ Bp+q+r,1.

The coset 〈a, b, c〉 ⊂ h1Bp+q+r coincides with the set of elements obtained in this
way for all different choices of ā, b̄, c̄, e and f .

The next result identifies Toda brackets for ring spectra with Massey products
for quadratic pair algebras.

Theorem 6.4. There is a functor

π∗,∗ : (connective ring spectra) −→ (quadratic pair algebras)

together with natural isomorphisms

h0π∗,∗R ∼= π∗R, of rings,

h1π∗,∗R ∼= Σ−1π∗R, of bimodules,

such that the Massey products in π∗,∗R coincide with the Toda brackets in π∗R.
Moreover, using the isomorphisms as identifications the algebraically-defined k-
invariant of the quadratic pair algebra π∗,∗R in (5.4),

k : π∗R⊗ Z/2 −→ Σ−1π∗R,

coincides with the multiplication by η where η is the stable Hopf map.

We prove this theorem in Section 16.

Example 6.5. Waldhausen defined in [Wal78] the K-theory spectrum KW of a
category W with cofibrations and weak equivalences. This spectrum is a symmetric
spectrum, see [GH99]. Moreover, if W is a strict monoidal category with biexact
tensor product then KW is a ring spectrum. In [MT06] we give a small algebraic
model for the quadratic pair algebra π0,∗KW which is generated just by the objects,
weak equivalences, and cofiber sequences in W.

The next result is an illustrating example for computations in a quadratic pair
algebra.
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Proposition 6.6. Let B be a quadratic pair algebra. Given α ∈ h0Bn,∗ with 2α = 0
the Massey product 〈2, α, 2〉 is defined and the k-invariant satisfies

k(α) = P (α|α)H ∈ 〈2, α, 2〉.

Proof. Let a ∈ Bn,0 be a representative of α. We choose 1 + 1 ∈ B0,0 as a repre-
sentative of 2 ∈ h0B0,∗. In order to construct an element in the Massey product
〈2, α, 2〉 we choose b ∈ Bn,1 such that ∂(b) = a(1 + 1) = a+ a. Notice that

∂(b+ PH(a)) = a+ a+ ∂PH(a)

= 1 · a+ 1 · a+ ∂P ((1|1)HH(a))

= (1 + 1)a.

Here we use the axioms of a quadratic pair algebra. These equations show that the
following element is in the Massey product 〈2, α, 2〉

−(b+ PH(a))(1 + 1) + (1 + 1)b = −(b+ PH(a) + b+ PH(a))

+b+ b+ PH(a+ a)

= −PH(a)− b− PH(a)− b

+b+ b+ PH(a+ a)

= −PH(a)− PH(a) + PH(a+ a)

= P (a|a)H .

Here we use the laws of a quadratic pair algebra together with the fact that P is
central in any quadratic pair module. �

It is a result of Toda that for the sphere spectrum S and α ∈ π∗S with 2α = 0 one
has αη ∈ 〈2, α, 2〉 for η the stable Hopf map. The same result for some cobordism
spectra can be found in [Ale72]. In fact Proposition 6.6 together with Theorem 6.4
generalizes this result for all connective ring spectra and shows:

Corollary 6.7. For any connective ring spectrum and α ∈ π∗R with 2α = 0 we
have αη ∈ 〈2, α, 2〉.

Remark 6.8. Given an ungraded ring A and an ungraded A-bimodule M consider
the category consisting of ungraded quadratic pair algebras B with specified iso-
morphisms h0B ∼= A and h1B ∼= M such that any element in A is the image of
some x ∈ B0 with H(x) = 0. Morphisms are quadratic pair algebra morphisms over
A and under M . It is proved in [BJP06] that the set of connected components of
this category is in natural bijection with the 3-dimensional Mac Lane cohomology
group

HML3(A,M).

As we mention in Remark 2.9 this cohomology group coincides with topological
Hochschild cohomology of the corresponding Eilenberg-Mac Lane ring spectrum

THH3(HA,HM).

For R a connective ring spectrum the Mac Lane cohomology class of the ungraded
quadratic pair algebra π0,∗R

〈π0,∗R〉 ∈ HML3(π0R, π1R)

corresponds in THH to the first Postnikov invariant of the ring spectrum R, as
studied in [Laz01]. Compare Remarks 2.5 and 2.9.

Remark 6.9. Given an ungraded quadratic pair algebra B the permutative category
PB is actually a ring category, i.e. it has an additional monoidal structure ⊗
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satisfying the axioms of [EM05, 3.3]. The additional monoidal structure ⊗ is given
by the product · on the set of objects, which is B0. On morphisms it is given by

(x0, s0)⊗ (x1, s1) = (x0 · x1, s0 · ∂(s1))

= (x0 · x1, ∂(s0) · s1).

The monoidal structure ⊗ is strictly right distributive

(x1 ⊕ x2)⊗ (x1 ⊕ x3) = x1 ⊗ (x2 ⊕ x3),

and there is a natural left distributivity isomorphism

(x1 · x3 + x2 · x3, P ((x2|x1)H ·H(x3))) : (x1 ⊗ x3)⊕ (x2 ⊗ x3) −→ (x1 ⊕ x2)⊗ x3.

7. Modules over quadratic pair algebras and module spectra

In this section we explicitly describe modules over quadratic pair algebras and
we show their connection with modules over ring spectra.

Definition 7.1. Let B be a quadratic pair algebra. A right B-module M is an
N-graded quadratic pair module together with multiplications, n,m ≥ 0,

Mn,0 ×Bm,0
·
−→Mn+m,0,

Mn,0 ×Bm,1
·
−→Mn+m,1,

Mn,1 ×Bm,0
·
−→Mn+m,1,

Mn,ee ×Bm,ee
·
−→Mn+m,ee.

These multiplications are associative with respect to the multiplications inB. More-
over, 1 ∈ B0,0 acts trivially on M∗,0 and M∗,1, and (1|1)H ∈ B0,ee acts trivially on
M∗,ee. Furthermore, all equations in Definition 6.1 hold if we replace the elements
on the left of any multiplication · by elements in M .

Notice that h0M and h1M are naturally right h0B-modules, and there is a
natural right h0B-module morphism

(7.2) · : h0M ⊗h0B h1B → h1M.

This morphism extends the k-invariant of M since k(x) = x ·P (1|1)H for x ∈ h0M .
Moreover, given a ∈ h0M and b, c ∈ h0B of degree p, q, r, such that ab = 0 and
bc = 0 there is defined as in Definition 6.3 a Massey product

〈a, b, c〉 ⊂ h1Mp+q+r

which is a coset of

(h1Mp+q)c+ a(h1Bq+r).

Remark 7.3. In [BM07] we define the monoidal category qpmN

H ofN-graded 0-good
quadratic pair modules. For B a 0-good quadratic pair algebra the 0-good right
B-modules are exactly the right modules over the monoid B in qpmN

H , compare
Remark 6.2.

Recall that for an N-graded ring A the desuspension Σ−1M of a right A-module
M is (Σ−1M)n = Mn+1, n ≥ 0, with the right A-module structure defined by the
formula (Σ−1m) · a = Σ−1(m · a).

In the following theorem we consider modules over quadratic pair algebras asso-
ciated to right modules over a ring spectrum.

Theorem 7.4. Let R be a connective ring spectrum. There is a functor

π∗,∗ : (connective right R-modules) −→ (right (π∗,∗R)-modules) .
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Here the quadratic pair algebra π∗,∗R is obtained by using the functor in Theorem
6.4. Moreover, if we use the first isomorphism in Theorem 6.4 as an identification
then for any right R-moduleM there are natural isomorphisms of right π∗R-modules

h0π∗,∗M ∼= π∗M,

h1π∗,∗M ∼= Σ−1π∗M.

Using these isomorphisms and the isomorphisms in Theorem 6.4 as identifications
the algebraically-defined homomorphism (7.2) associated to π∗,∗M

· : π∗M ⊗π∗R Σ−1π∗R −→ Σ−1π∗M

is defined by the right right π∗R-module structure of π∗M according to the formula

m · (Σ−1a) = (−1)|m|Σ−1(ma).

In particular the k-invariant of π∗,∗M coincides with the multiplication by the stable
Hopf map η. Furthermore, Massey products in π∗,∗M coincide with Toda brackets
in π∗M .

We prove this theorem in Section 16.

8. Sign group actions on quadratic pair modules

For the definition of an E∞-quadratic pair algebra below we need an action of
the symmetric track groups Sym�(n) on a quadratic pair module. For this we recall
the notion of sign group and action of a sign group from [BM06c, BM07].

Definition 8.1. A sign group is a diagram in the category of groups

{±1}
ı
→֒ G�

δ
։ G

ε
−→ {±1}

where the first two morphisms form an extension. By abuse of notation we denote
this sign group just by G�. The group law of the groups defining a sign group is
denoted multiplicatively.

Sign groups as above were introduced in [BM06c]. The main examples are the
symmetric track groups Sym�(n) associated to the sign homomorphism of the sym-
metric groups

sign: Sym(n)→ {±1} .

The group Sym�(n) has a presentation with generators ω, ti, 1 ≤ i ≤ n − 1, and
relations

t21 = 1 for 1 ≤ i ≤ n− 1,

(titi+1)
3 = 1 for 1 ≤ i ≤ n− 2,

ω2 = 1,

tiω = ωti for 1 ≤ i ≤ n− 1,

titj = ωtjti for 1 ≤ i < j − 1 ≤ n− 1.

Moreover, the structure of sign groups is given by ı(−1) = ω, δ(ω) = 0, and
δ(ti) = (i i+ 1), the permutation exchanging i and i+ 1 in {1, . . . , n}.

Definition 8.2. A sign group G� acts on the right of a quadratic pair module C
if G acts on the right of C by morphisms g∗ : C → C, g ∈ G, in qpm, and there is
a bracket

〈−,−〉 = 〈−,−〉G : C0 ×G� −→ C1

satisfying the following properties, x, y ∈ C0, z ∈ C1, s, t ∈ G�.

(1) 〈x+ y, t〉 = 〈x, t〉 + 〈y, t〉+ P (−δ(t)∗(x) + εδ(t)x|δ(t)∗(y))H ,

(2) εδ(t)x+
(
εδ(t)

2

)
∂PH(x) = δ(t)∗(x) + ∂〈x, t〉,
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(3) εδ(t)z +
(
εδ(t)

2

)
PH∂(x) = δ(t)∗(z) + 〈∂(z), t〉,

(4) 〈x, s · t〉 = 〈δ(s)∗(x), t〉 + 〈εδ(t)x+
(
εδ(t)

2

)
∂PH(x), s〉,

(5) for the element ω = ı(−1) ∈ G� we have the ω-formula:

〈x, ω〉 = P (x|x)H .

Notice that the ω-formula corresponds to the k-invariant in (5.4).

Here εδ(t) can take the value −1. In this case (−1)x means −x ∈ C0, and (−1)z =
−z ∈ C1.

Given a sign group G� the “group ring” A(G�) is the ungraded quadratic pair
algebra with generators

• [g] for any g ∈ G on the 0-level,
• [t] for any t ∈ G� on the 1-level,
• no generators on the ee-level,

and relations

• H [g] = 0 for g ∈ G,
• [1] = 1 the unit element,
• [gh] = [g] · [h] for g, h ∈ G,
• ∂[t] = −[δ(t)] + εδ(t),

• [st] = [δ(s)] · [t] + εδ(t) · [s] +
(
εδ(s)

2

)(
εδ(t)

2

)
P (1|1)H for s, t ∈ G�,

• [ω] = P (1|1)H where ω = ı(−1).

The relations above show that A(0)(G�) = Znil[G+] where G+ is the group G
together with an outer base point, so A(G�) is 0-free and hence 0-good.

If C is a 0-good quadratic pair module then an action of G� on C is the same
as a right ungraded A(G�)-module structure on C. The correspondence is given
by the following equations, see [BM07]. Given g ∈ G, t ∈ G�, x ∈ C0, y ∈ C1,
z ∈ Cee,

g∗x = x · [g],

g∗y = y · [g],

g∗z = z ·∆[g],

〈x, t〉 = x · [t] +

(
εδ(t)

2

)
PH(x).

Definition 8.3. A morphism f� : G� → K� in the category Gr± of sign groups
is given by two group homomorphisms f : G → K, f� : G� → K� with f�ı = ı,
fδ = δf�, and ε = εf . In this situation we say that the homomorphism f� covers
f . A twisted bilinear morphism of sign groups

(f�, g�) : G� × L� −→ K�

is given by a pair of sign group morphisms f� : G� → K�, g� : L� → K�, such
that given a ∈ G and b ∈ L the equality

f(a)g(b) = g(b)f(a)

holds in K, and therefore the group homomorphism

(f, g) : G× L −→ K : (a, b) 7→ f(a)g(b)

is defined, and given x ∈ G�, y ∈ L� the following equality is satisfied in K�

f�(x)g�(y) = g�(y)f�(x)ı
(
(−1)(

εδ(x)
2 )(εδ(y)

2 )
)
.
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There is a universal twisted bilinear morphism

(iG�
, iL�

) : G� × L� −→ G�×̃L�.

Here G�×̃L� is the twisted product of sign groups defined in [BM07] which is a
sign group

{±1}
ı
→֒ G�×̃L� ։ G× L

ε
։ {±1} .

The twisted product defines a non-symmetric monoidal structure in Gr±. We show
in [BM07] that the “group ring” A(G�) is a strict monoidal functor, i.e. the “group
ring” of a twisted product of sign groups is the tensor product of the “group rings”
of the factors and the “group ring” of the trivial sign group is Znil.

Remark 8.4. The isomorphism class of a sign group G� is determined by two group
cohomology classes

εG�
∈ H1(G,Z/2), {G�} ∈ H

2(G,Z/2),

corresponding to the homomorphism ε and the extension in Definition 8.1, respec-
tively. For the symmetric track groups Sym�(n) these cohomology classes are the
first two Stiefel-Whitney classes associated to the usual inclusion of the symmetric
group into the orthogonal group Sym(n) ⊂ O(n). The cohomological invariants of
G�×̃L� are given by

εG�×̃L�
= p∗1εG�

+ p∗2εL�
∈ H1(G× L,Z/2),

{
G�×̃L�

}
= p∗1 {G�}+ p∗1εG�

⌣ p∗2εL�
+ p∗2 {L�} ∈ H

2(G× L,Z/2).

Here p1 and p2 are the projections of the factors of the product G × K and ⌣
denotes the cup-product.

We define in [BM07] sign group morphisms

(8.5) ×� : Sym�(n)×̃ Sym�(m) −→ Sym�(n+m)

covering the usual cross product homomorphisms

(8.6) Sym(n)× Sym(m) −→ Sym(n+m) : (σ, τ) 7→ σ × τ.

Recall that the block permutation σ × τ permutes the first n elements {1, . . . , n}
of {1, . . . , n, n+ 1, . . . , n+m} according to σ and the last m elements of this set
{n+ 1, . . . , n+m} according to τ . The sign group morphism (8.5) corresponds to
the twisted bilinear morphism

(− ∧ Sm, Sn ∧ −) : Sym�(n)× Sym�(m) −→ Sym�(n+m)

defined on generators by

ti ∧ S
m = ti, 1 ≤ i ≤ n,

ω ∧ Sm = ω,

Sn ∧ ti = tn+i, 1 ≤ i ≤ m,

Sn ∧ ω = ω.

The sign group morphism (8.5) was defined in [BM07] in a geometric way. We
obtained this description in terms of generators by using the positive pin represen-
tations in [BM06c] and the computations in [BM07, Section 17], see [BM06b] for
further details.
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9. E∞-quadratic pair algebras associated to commutative ring

spectra

In order to deal with secondary operations in the homotopy groups of a connec-
tive commutative ring spectrum in general we need the following algebraic structure.

Definition 9.1. An E∞-quadratic pair algebra is a quadratic pair algebra C as in
Definition 6.1 together with a cup-one product operation

⌣1 : Cn,0 × Cm,0 −→ Cn+m,1, n,m ≥ 0,

such that the quadratic pair module Cn,∗ is endowed with a right action of the
symmetric track group Sym�(n) and the following compatibility conditions hold.
Let xi ∈ Cni,0, si ∈ Cni,1, ai ∈ Cni,ee, gi, g

′
i ∈ Sym(ni), and ri ∈ Sym�(ni). The

product in the quadratic pair algebra C is compatible with the sign group actions
and the sign group morphisms ×� in (8.5),

(x1 · [g1]) · (x2 · [g2]) = (x1 · x2) · [g1 × g2],(9.2)

(s1 · [g1]) · (x2 · [g2]) = (s1 · x2) · [g1 × g2],

(a1 · ([g1]|[g
′
1])H) · (a2 · ([g2]|[g

′
2])H) = (a1 · a2) · ([g1 × g2]|[g

′
1 × g

′
2])H ,

x1 · (x2 · [r2]) = (x1 · x2) · [S
n1 ∧ r2].

The cup-one product measures the lack of commutativity, i.e. if τp,q ∈ Sym(p+ q)
denotes the permutation exchanging the blocks {1, . . . , p} and {p+ 1, . . . , p+ q},
p, q ≥ 0, then

(9.3)

(x2 · x1) · [τn1,n2 ] + ∂(x1 ⌣1 x2) = x1 · x2 + ∂P (H(x2) · TH(x1)) · [τn1,n2 ],

(x2 · s1) · [τn1,n2 ] + ∂(s1) ⌣1 x2 = s1 · x2 + P (H(x2) · TH∂(s1)) · [τn1,n2 ].

The cup-one product is itself commutative in the following sense

(x2 ⌣1 x1) · [τn1,n2 ] + x1 ⌣1 x2 = −P (TH(x1) ·H(x2))(9.4)

+P (H(x2) · TH(x1)) · [τn1,n2 ].

Let 1n ∈ Sym(n) be the unit element. The cup-one product also satisfies the
following rules with respect to addition

x1 ⌣1 (x2 + x3) = x1 ⌣1 x2 + x1 ⌣1 x3(9.5)

+P (∂(x1 ⌣1 x2)|(x3 · x1) · [τn1,n3 ])H ,

multiplication

(9.6)

(x1 · x2) ⌣1 x3 = ((x1 ⌣1 x3) · x2) · [1n1 × τn2,n3 ] + x1 · (x2 ⌣1 x3)

+P ((∂(x1 ⌣1 x3)|(x3 · x1) · [τn1,n3 ])H ·H(x2)) · [1n1 × τn2,n3 ]

+P (H(x3) · (x1|x1)H · TH(x2)) · [τn1+n2,n3 ]

−P ((x1|x1)H ·H(x3) · TH(x2)) · [1n1 × τn2,n3 ],

and symmetric group action

(x1 · [g1]) ⌣1 (x2 · [g2]) = (x1 ⌣1 x2) · [g1 × g2].(9.7)

Remark 9.8. One can check that an E∞-pair algebra C as defined in Definition
3.1 is the same as an E∞-quadratic pair algebra such that C∗,ee = 0 and for any
x ∈ Cn,0 and t ∈ Sym�(n) the equation x·[t] = 0 holds. This defines a full inclusion
of categories

(E∞-pair algebras) ⊂ (E∞-quadratic pair algebras) .
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Lemma 9.9. Given an E∞-quadratic pair algebra C the ring h0C is commutative
and h1C is an h0C-module in a natural way.

Proof. Let xi ∈ Cni,0. By the laws of an E∞-quadratic pair algebra the class of
x1 · x2 in h0C coincides with the class of (x2 · x1) · [τn1,n2 ]. It is easy to see that
sign τn1,n2 = (−1)n1n2 . Let τ̂ ∈ Sym�(n1 + n2) be an element with δ(τ̂ ) = τn1,n2 .
By the laws of a module over a quadratic pair algebra and the definition of the
“group ring” of a sign group

∂((x2 · x1) · [τ̂ ]) = (x2 · x1) · ∂[τ̂ ]

= (x2 · x1) · (−[τn1,n2 ] + (−1)n1n2)

= −(x2 · x1) · [τn1,n2 ] + (−1)n1n2(x2 · x1),

therefore (x2 ·x1) · [τn1,n2 ] represents the same class as (−1)n1n2(x2 ·x1) in h0C, so
h0C is commutative.

Let now s1 ∈ Cn1,1 be an element with ∂(s1) = 0. By the laws of an E∞-
quadratic pair algebra (x2 ·s1) · [τn1,n2 ] = s1 ·x2. Moreover, by the laws of quadratic
pair algebras, modules over a quadratic pair algebra, and the definition of the
“group ring” of a sign group

0 = x2 · ∂(s1) · [τ̂ ]

= x2 · s1 · ∂[τ̂ ]

= x2 · s1 · (−[τn1,n2 ] + (−1)n1n2)

= −(x2 · s1) · [τn1,n2 ] + (−1)n1n2(x2 · s1),

hence we are done. �

As in the non-quadratic case E∞-quadratic pair algebras carry a notion of cup-
one square.

Definition 9.10. Let C be an E∞-quadratic pair algebra. Given an element
a ∈ h0C2n,∗ we define the cup-one square of a

Sq1(a) ∈ h1C4n,∗

in the following way. Choose a representative ā ∈ C2n,0 of a and an element in the
symmetric track group τ̂ ∈ Sym�(4n) whose boundary is the shuffle permutation
δ(τ̂ ) = τ2n,2n. Then we have

∂(−(ā · ā) · [τ̂ ] + ā ⌣1 ā− P (H(ā) · TH(ā)) · [τ2n,2n]) = 0.

so we can set

Sq1(a) = −(ā · ā) · [τ̂ ] + ā ⌣1 ā− P (H(ā) · TH(ā)) · [τ2n,2n] ∈ h1C4n,∗.

We leave it to the reader to check that this element does not depend on the choice
of ā. However it does depend on the choice of τ̂ . There are two possible choices,
namely τ̂ and ωτ̂ . The next result determines the difference between the two
possible cup-one squares.

Lemma 9.11. Let Sq1 be cup-one square in an E∞-quadratic pair algebra C as-
sociated to the lift τ̂ of the shuffle permutation and let Sqω

1 be the cup-one square
associated to ωτ̂ . Then given a ∈ h0C2n,∗

Sqω
1 (a) = Sq1(a) + k(a · a).

Here k is the k-invariant defined in (5.4).
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Proof. Let ā ∈ C2n,0 be a representative of a. The laws of a quadratic pair algebra,
of a module over it, and the definition of the “group ring” of a sign group yield
equations

(ā · ā) · [ωτ̂ ] = (ā · ā) · ([τ̂ ] + [ω])

= (ā · ā) · [τ̂ ] + (ā · ā) · [ω]

= (ā · ā) · [τ̂ ] + (ā · ā) · P (1|1)H

= (ā · ā) · [τ̂ ] + P (ā · ā|ā · ā)H ,

hence the lemma follows from the very definition of the cup-one product and the
k-invariant of a quadratic pair module. �

One of the main results in this paper is the following theorem.

Theorem 9.12. There is a commutative diagram of functors
(

connective commutative
ring spectra

)

inclusion

��

π∗,∗
// (E∞-quadratic pair algebras)

forget

��

(connective ring spectra)
π∗,∗

// (quadratic pair algebras)

Here the lower arrow is the functor in Theorem 6.4. Moreover, for a commu-
tative ring spectrum Q the algebraic cup-one squares in π∗,∗Q correspond to the
topologically-defined cup-one squares in π∗Q.

We prove this theorem in Section 16.

Remark 9.13. E∞-quadratic pair algebras can also be described as coherently ho-
motopy commutative monoids as in the additive case, see Remark 3.2. For this one

uses the symmetric monoidal category qpm
Sym�

H of enhanced symmetric sequences
of 0-good quadratic pair modules introduced in [BM07]. In fact, this is the way in
which we obtain the equations in Definition 9.1. The cup-one product x1 ⌣1 x2 of
two level 0 elements corresponds to the image of the right linear generator x1⊚x2

in the tensor product of square groups C∗,(0)⊙C∗,(0) = (C⊙C)∗,(0) under the track
⌣1. The definition of tracks for quadratic pair modules is recalled in Definition
11.4 below.

As we recall in Remark 3.8 the coherence conditions in Remark 3.2 (i.e. the
hexagon and the idempotence) are encoded by the Barratt-Eccles operad in the
simplicial setting. Indeed, E∞-quadratic pair algebras are also the algebras over an
operad in qpmH which can be obtained from the simplicial Barratt-Eccles operad,
i.e. the additive situation described in Remark 3.8 extends to the quadratic world.

Remark 9.14. If C is an ungraded E∞-quadratic pair algebra then the permutative
category PC in Remark 5.9 is actually a bipermutative category in the sense of
[EM05, 3.6]. The monoidal structures ⊕ and ⊗ are given by Remarks 5.9 and 6.9,
and the symmetry isomorphism for ⊗ is

(x1 · x2, P (H(x2) · TH(x1))− x1 ⌣1 x2) : x1 ⊗ x2 −→ x2 ⊗ x1.

10. Algebras over commutative ring spectra

Given a connective commutative ring spectrum Q and a Q-algebra R we study
in this section the algebraic properties of the induced action of the E∞-quadratic
pair algebra π∗,∗Q defined by Theorem 9.12 on the quadratic pair algebra π∗,∗R
given by Theorem 6.4, obtaining Theorem 1.5 as an application. This generalizes
the results of Section 4 to spectra which do not neglect the Hopf map.
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Definition 10.1. Let C be an E∞-quadratic pair algebra. A C-algebra is a qua-
dratic pair algebra B as in Definition 6.1 together with a quadratic pair algebra
morphism u : C → B, called the unit, and two external cup-one product operations,
n,m ≥ 0,

(10.2)
⌣1 : Bn,0 × Cm,0 −→ Cn+m,1,
⌣1 : Cn,0 ×Bm,0 −→ Cn+m,1,

such that the quadratic pair module Bn,∗ is endowed with a right action of the
symmetric track group Sym�(n) and the following compatibility conditions hold.
Let xi ∈ Bni,0, si ∈ Bni,1, ai ∈ Bni,ee, x̃i ∈ Cni,0, s̃i ∈ Cni,1, ãi ∈ Cni,ee,
gi, g

′
i ∈ Sym(ni), and ri ∈ Sym�(ni). The product in B is equivariant, i.e. it

satisfies equations (9.2) and

(x1 · [r1]) · x2 = (x1 · x2) · [r1 ∧ S
n2 ].

The morphism u is also equivariant,

u0(x̃1 · [g1]) = u0(x̃1) · [g1],

u1(s̃1 · [g1]) = u1(s̃1) · [g1],

u1(x̃1 · [r1]) = u0(x̃1) · [r1],

and compatible with the cup-one products in C and B

u1(x̃1 ⌣1 x̃2) = u0(x̃1) ⌣1 x̃2,

= x̃1 ⌣1 u0(x̃2).

The external cup-one products satisfy the following analogue of (9.3),

(x2 · u0(x̃1)) · [τn1,n2 ] + ∂(x̃1 ⌣1 x2) = u0(x̃1) · x2 + ∂P (H(x2) · THu0(x̃1)) · [τn1,n2 ],

(x2 · u1(s̃1)) · [τn1,n2 ] + ∂(s̃1) ⌣1 x2 = u1(s̃1) · x2 + P (H(x2) · TH∂u1(s̃1)) · [τn1,n2 ],

(u0(x̃2) · s1) · [τn1,n2 ] + ∂(s1) ⌣1 x̃2 = s1 · u0(x̃2) + P (Hu0(x̃2) · TH∂(s1)) · [τn1,n2 ].

The two external cup-one products are related by the following formula, which is
similar to (9.4),

(x̃2 ⌣1 x1) · [τn1,n2 ] + x1 ⌣1 x̃2 = −P (TH(x1) ·Hu0(x̃2))

+P (Hu0(x̃2) · TH(x1)) · [τn1,n2 ].

in particular it is redundant to give the two external cup-one products in (10.2) since
any of them determines the other, but having two makes the equations shorter. The
external cup-one products also satisfy the following rules with respect to addition

x1 ⌣1 (x̃2 + x̃3) = x1 ⌣1 x̃2 + x1 ⌣1 x̃3 + P (∂(x1 ⌣1 x̃2)|(u0(x̃3) · x1) · [τn1,n3 ])H ,

x̃1 ⌣1 (x2 + x3) = x̃1 ⌣1 x2 + x̃1 ⌣1 x3 + P (∂(x̃1 ⌣1 x2)|(x3 · u0(x̃1)) · [τn1,n3 ])H ,

compare (9.5), multiplication

(x̃1 · x̃2) ⌣1 x3 = ((x̃1 ⌣1 x3) · u0(x̃2)) · [1n1 × τn2,n3 ] + u0(x̃1) · (x̃2 ⌣1 x3)

+P ((∂(x̃1 ⌣1 x3)|(x3 · u0(x̃1)) · [τn1,n3 ])H ·Hu0(x̃2)) · [1n1 × τn2,n3 ]

+P (H(x3) · uee(x̃1|x̃1)H · THu0(x̃2)) · [τn1+n2,n3 ]

−P (uee(x̃1|x̃1)H ·H(x3) · THu0(x̃2)) · [1n1 × τn2,n3 ],

(x1 · x2) ⌣1 x̃3 = ((x1 ⌣1 x̃3) · x2) · [1n1 × τn2,n3 ] + x1 · (x2 ⌣1 x̃3)

+P ((∂(x1 ⌣1 x̃3)|(u0(x̃3) · x1) · [τn1,n3 ])H ·H(x2)) · [1n1 × τn2,n3 ]

+P (Hu0(x̃3) · (x1|x1)H · TH(x2)) · [τn1+n2,n3 ]

−P ((x1|x1)H ·Hu0(x̃3) · TH(x2)) · [1n1 × τn2,n3 ],
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compare (9.6), and symmetric group action

(x1 · [g1]) ⌣1 (x̃2 · [g2]) = (x1 ⌣1 x̃2) · [g1 × g2],

(x̃1 · [g1]) ⌣1 (x2 · [g2]) = (x̃1 ⌣1 x2) · [g1 × g2],

compare (9.7).
The ring h0B is an h0C-algebra in such a way that the h0B-bimodule h1B

restricts to an h0C-module.

Remark 10.3. Any E∞-quadratic pair algebra is an algebra over itself. Moreover,
given a morphism of E∞-quadratic pair algebras f : C̄ → C and a C-algebra B then
B has a C̄-algebra structure, denoted by f∗B, with unit uf : C̄ → B and external
cup-one products obtained by precomposing with f .

The main new secondary homotopy operation on algebras over E∞-quadratic
pair algebras is introduced in the next definition, analogous to Definition 4.10.

Definition 10.4. Let C be an E∞-quadratic pair algebra and let B be a C-algebra.
We associate to any pair (x, y) with x ∈ C0,n and y ∈ Bn,1 such that ∂(y) = u0(x)
the degree n derivation

θ(x,y) : h0B −→ h1B

defined by

θ(x,y)(a) = −y · ā+ (ā · y) · [τn,|a|] + x ⌣1 ā− P (H(ā) · THu0(x)).

Here ā ∈ B∗,0 is a representative of a ∈ h0B. This is indeed an element in h1B by
the equations defining a C-algebra which are analogue to (9.3), see Definition 10.1.
Moreover, by (9.3) θ(x,y) = 0 provided B is an E∞-quadratic pair algebra and u is
a morphism of E∞-quadratic pair algebras. One readily checks that θ(x,y) is indeed
a derivation and that θ(x,y)(a) does not depend on the choice of ā.

Proposition 10.5. Given an E∞-quadratic pair algebra C and a C-algebra B let
IC(B) be the kernel of the ring homomorphism h0u : h0C → h0B. There is an
h0C-module homomorphism

θ : IC(B)/IC(B)2 −→ HH1
h0C(h0B, h1B)

which sends an element in IC(B)/IC(B)2 represented by x ∈ Cn,0 to the element
in Hochschild cohomology represented by a derivation θ(x,y) as in Definition 10.4
for any y ∈ Bn,1 with ∂(y) = u0(x). The homomorphism θ is natural in B and in
C in the obvious way. In particular θ = 0 when B is an E∞-quadratic pair algebra
and u is a morphism of E∞-quadratic pair algebras.

The proof of this proposition is tedious but straightforward. It only uses the
equations defining algebras over E∞-quadratic pair algebras, compare the proof of
the additive analogue, Proposition 4.11.

Algebras over commutative ring spectra yield examples of algebras over E∞-
quadratic pair algebras as the following theorem shows.

Theorem 10.6. Let Q be a connective commutative ring spectrum and let π∗,∗Q
be the E∞-quadratic pair algebra given by Theorem 9.12. There is a diagram of
functors

(connective Q-algebras)

forget

��

π∗,∗
// (π∗,∗Q-algebras)

forget

��

(connective ring spectra)
π∗,∗

// (quadratic pair algebras)
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which commutes up to quasi-isomorphisms. Here the lower arrow is the functor in
Theorem 6.4. Moreover, if f : Q′ → Q is a morphism of connective commutative
ring spectra then the square

(connective Q-algebras)

f∗

��

π∗,∗
// (π∗,∗Q-algebras)

(π∗,∗f)∗

��

(connective Q′-algebras)
π∗,∗

// (π∗,∗Q
′-algebras)

commutes up to quasi-isomorphisms. Furthermore, if R is a connective Q-algebra,
a ∈ πmR, and b ∈ πnQ is in IQ(R) = Ker[π∗Q → π∗R] ∼= Iπ∗,∗Q(π∗,∗R), then the
element θ(x,y)(a) ∈ πn+m+1R ∼= (h1π∗,∗R)n+m defined in (1.4) can be identified
with θ(x,y)(a) in the sense of Definition 10.4.

The proof of this theorem goes along the same lines as the proof of Theorem
9.12. The reader can find the crucial hints in the following remark.

Remark 10.7. Suppose that Q is a connective commutative ring spectrum, R is
a connective Q-algebra, and L̄ is a functorial fibrant replacement in the category
of Q-algebras. We assume without loss of generality that L̄Q concides with the
fibrant relplacement chosen for the definition of π∗,∗Q in the proof of Theorem
9.12 (otherwise we would have to work with a quasi-isomorphic E∞-quadratic pair
algebra). Then π∗,∗R is defined by the secondary homotopy groups of the spectrum
L̄R, as defined in Section 15. The unit ū : Q → R of the Q-algebra R and the
product in L̄R induce maps

µ1 : L̄Q ∧Q L̄R
L̄ū∧Q1
−→ L̄R ∧Q L̄R

mult.
−→ L̄R,

µ2 : L̄R ∧Q L̄Q
1∧QL̄ū
−→ L̄R ∧Q L̄R

mult.
−→ L̄R,

such that there is a track α1 : µ1τ∧Q
⇒ µ2 which can be constructed as in Lemma

16.2 below. The external cup-one product

⌣1 : π∗,0R× π∗,0Q −→ π∗,1R

corresponds to the track α1, and the other external cup-one product corresponds
to α1τ∧Q

, compare the proof of Theorem 9.12.
If L is the fibrant replacement functor in the category of ring spectra used to

define π∗,∗ in Theorems 6.4 and 9.12 then the natural quasi-isomorphisms making
commutative the first square in Theorem 10.6 are obtained by taking secondary
homotopy groups on

L̄R  LL̄R← LR.

For the second square one can argue in a similar way.
With the notation used for the definition of θ(x,y)(a) in (1.4), the elements x

and y lie in πn,0Q and πn,1R, respectively, and satisfy ∂(y) = u0(x) as required
in Definition 10.4, therefore the last part of the statement of Theorem 10.6 makes
sense.

11. Universal Toda brackets of ring spectra

Given a ring spectrum R the category mod(R) of right R-modules is a Quillen
model category, see [MMSS01, Theorem 12.1]. By [Bau89] the full subcategory

mod
fc(R) of fibrant-cofibrant right R-modules is a groupoid-enriched category

whose morphisms are homotopy classes of homotopies, also termed tracks.
A free right R-module is a right R-module of the form

R(n1,...,nk) = (Sn1 ∨ · · · ∨ Snk) ∧R, k ≥ 0, n1, . . . , nk ≥ 0.
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Here ∨ denotes the coproduct. Free right R-modules are cofibrant objects in
mod(R) by [MMSS01, Theorem 12.1 (vi)] since sphere spectra Sm are cofibrant in
the category of symmetric spectra.

We denote by modf (R) the full groupoid-enriched subcategory of modfc(R) con-
sisting of fibrant replacements of free right R-modules. An object X in modf (R) is

a trivial cofibrationR(n1,...,nk)
∼
 X in mod(R) with fibrant target. This groupoid-

enriched category has a further structure described in the following definition.

Definition 11.1. Let A be a category and D : Aop × A → Ab a functor, also
called A-bimodule. A linear track extension of A by D consists of

(1) a groupoid-enriched category B.
(2) A functor p : B→ A from the underlying ordinary category of B such that

p is the identity on objects and p(f) = p(g) if and only if there exists a
track f ⇒ g, i.e. A is the homotopy category of B.

(3) Isomorphisms

σf : D(X,Y ) ∼= AutB(f)

for all morphisms f : X → Y in B such that given a track α : f ⇒ g in B,

α�σf (x) = σg(x)�α;

and given composable morphisms •
h
→ •

g
→ •

f
→ • in B

fσg(x) = σfg(D(1, p(f))x) and σg(x)h = σgh(D(p(h), 1)x).

For any category A and any functor D : Aop × A → Ab the third Baues-
Wirsching cohomology group H3(A, D) (which in this case is isomorphic to a
Hochschild-Mitchell cohomology) classifies linear track extensions of A by D, see
[BD89]. Indeed any such linear track extension B determines a characterisic coho-
mology class

〈B〉 ∈ H3(A, D)

also termed universal Toda bracket, and all cohomology classes are represented by
linear track extensions.

Given an N-graded ring A a free right A-module is a right A-module of the form

A(n1,...,nk) = ((Z, n1)⊕ · · · ⊕ (Z, nk))⊗A, k ≥ 0, n1, . . . , nk ≥ 0.

Here (Z,m) denotes the N-graded abelian group consisting of Z concentrated in
degree m. The category of free right A-modules is denoted by modf (A).

Given an A-bimodule M we define the graded version of Mac Lane cohomology
by

HML∗(A,M) = H∗(modf (A),HomA(−,−⊗A M)).

For an ungraded ring A if modf (A) denotes the usual category of finitely generated
free ungraded rightA-modules this equality corresponds to the natural isomorphism
established in [PW92] in homology.

Lemma 11.2. Let R be a connective spectrum. The category modf (R) is a linear
track extension of modf (π∗R) by Homπ∗R(−,−⊗π∗R Σ−1π∗R).

Proof. For any right R-module Y the right R-module morphisms

R(n1,...,nk) −→ Y

coincide with the symmetric spectra morphisms

Sn1 ∨ · · · ∨ Snk −→ Y

hence it becomes obvious that modf (π∗R) is the homotopy category of modf (R)
and the projection functor is given by taking homotopy groups p = π∗.
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The group of self-tracks of a map X → Y between fibrant-cofibrant right R-
modules coincides with the abelian group of homotopy classes [ΣX,Y ]R in the
category of right R-modules, compare [BD89]. If X and Y are weakly equiva-
lent to free right R-modules then this abelian group is canonically isomorphic to
Homπ∗R(π∗X,π∗Y ⊗π∗R Σ−1π∗R) by the same argument as before. The axioms of
a linear track extension are checked in [BD89] in a more general setting. �

The lemma above yields a universal Toda bracket associated to a connective ring
spectrum R

〈modf (R)〉 ∈ HML∗(π∗R,Σ
−1π∗R).

This universal Toda bracket determines all Toda brackets in modf (R), see [BD89],
i.e. all matric Toda brackets in R, compare [May69]. It has also been studied by
Sagave from a different perspective, see [Sag06]. The goal of this section is the
construction of a small algebraic model for this universal Toda bracket. For this
we will consider universal Toda brackets associated to quadratic pair algebras.

Given a quadratic pair algebra B, in order to obtain a convenient groupoid-
enriched category of right B-modules we need to consider weak morphisms.

Definition 11.3. A weak morphism f : C → D between quadratic pair modules
consists of group homomorphisms

f0 : C0 −→ C0,
f1 : C1 −→ D1,
fee : Cee −→ Dee,

such that

f0∂ = ∂f1,

f1P = Pfee,

fee(−|−)H = (f0|f0)H ,

feeT = Tfee.

Weak morphisms were introduced in [BM06c]. The functors h0 and h1 in (2.1)
obviously extend to the category wqpm of quadratic pair modules and weak mor-
phisms.

A weak morphism f : M → N between right B-modules is a collection of weak
morphisms fn : Mn,∗ → Nn,∗, n ≥ 0, which are strictly compatible with the action
of B, i.e. given mi ∈Mp,i and bi ∈ Bq,i for i = 0, 1, ee,

fp+q,0(m0 · b0) = fp,0(m0) · b0,

fp+q,1(m0 · b1) = fp,0(m0) · b1,

fp+q,1(m1 · b0) = fp,1(m1) · b0,

fp+q,ee(mee · bee) = fp,ee(mee) · bee.

The reader can easily check that right B-modules together with weak morphisms
form a category that we denote by wmod(B). The ordinary category of right B-
modules mod(B) is a subcategory of wmod(B) with the same objects.

The category wmod(B) is also a groupoid-enriched category with the tracks
(i.e. 2-morphisms) defined as follows.

Definition 11.4. Let f, g : C → D be weak morphisms between quadratic pair
modules. A track α : f ⇒ g is a function α : C0 → D1 satisfying the equations,
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x, y ∈ C0, z ∈ C1,

α(x + y) = α(x) + α(y) + P (−f0(x) + g0(x)|f0(y))H ,

g0(x) = f0(x) + ∂α(x),

g1(z) = f1(z) + α∂(z).

This definition of track was given in [BM06c], where we show that the category
wqpm of quadratic pair modules and weak morphisms is a groupoid-enriched cat-
egory. The subcategory qpm is also groupoid-enriched. Tracks in qpm are just
tracks in wqpm between morphisms in qpm.

The vertical composition of tracks

•
α

=⇒ •
β

=⇒ •

is defined by addition (β�α)(x) = α(x) + β(x). The horizontal composition of
tracks and maps as in

•
g

// •
��

CC•
f

// •α
��

is defined as (fα)(x) = f1α(x) and (αg)(x) = αg0(x). The identity track 0�
f : f ⇒ f

(also called trivial track) is always defined as (0�
f )(x) = 0.

Let B be a quadratic pair algebra and let f, g : M → N be weak right B-module
morphisms. A track α : f ⇒ g in mod(B) is collection of tracks αn : fn ⇒ gn

between the quadratic pair module morphisms fn, gn : Mn → Nn such that for any
x ∈Mn,0 and a ∈ Bm,0

αn+m(x · a) = αn(x) · a+ P ((−fn,0(x) + gn,0(x)|fn,0(x))H ·H(a)).

We leave it to the reader to check that these tracks with vertical and horizontal
composition defined as above endow wmod(B) with a groupoid-enriched category
structure.

Remark 11.5. The groupoid-enriched category qpm was studied in [BM06c, BM07].
The enrichment extends in the obvious way to the category of N-graded objects
qpmN and restricts to the subcategory of 0-good objects X in qpmN

H which is
monoidal. In this monoidal category tracks can be interpreted as morphisms from
the cylinder object I⊙X defined by the interval quadratic pair module I, see [BM07,
Lemma 5.3]. If B is a 0-good quadratic pair algebra the cylinder of a 0-good right
B-module is again a right B-module in a natural way, so we can define tracks as
right B-module morphisms from the cylinder. In this way we obtained the formulas
for tracks in Definition 11.4 above. This also works for weak morphisms.

Let B be a quadratic pair algebra. A free right B-module is a B module of the
form

B(n1,...,nk) = ((Znil, n1) ∨ · · · ∨ (Znil, nk))⊙B, k ≥ 0, n1, . . . , nk ≥ 0.

Here (Znil,m) denotes the N-graded quadratic pair module given by Znil concen-
trated in degree m and ∨ is the coproduct. We denote by wmodf (B) the full
groupoid-enriched subcategory of wmod(B) consisting of free right B-modules.

Lemma 11.6. Let B be a quadratic pair algebra. Then the category wmodf (B)
is a linear track extension of modf (h0B) by Homh0B(−,−⊗h0B h1B).

The proof of this lemma will be given below.
Lemma 11.6 yields a universal Toda bracket in Mac Lane cohomology for any

quadratic pair algebra B

〈wmodf (B)〉 ∈ HML∗(h0B, h1B).

The following theorem is the main result of this section.
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Theorem 11.7. Let R be a connective ring spectrum. If we use the isomorphisms
in Theorem 6.4 as identifications then the universal Toda brackets associated to the
ring spectrum R and to the quadratic pair algebra π∗,∗R coincide, that is:

〈modf (R)〉 = 〈wmodf (π∗,∗R)〉.

We prove Theorem 11.7 at the end of this section.

Remark 11.8. In [BJP06, Theorem 2.2.1] it is proved in the ungraded setting that
any element in Mac Lane cohomology HML3(A,M) is represented by a quadratic
pair algebra B with h0B ∼= A and h1B ∼= M . Such a quadratic pair algebra is
also termed a “crossed extension of A by M in the symmetric monoidal category
of square groups”, see the Addendum of [BJP06, Theorem 2.2.1]. Since for a
connective ring spectrum R the topologically defined category modf (R) represents
an element in HML3(π∗R,Σ

−1π∗R) the result in [BJP06] makes it plausible that,
in fact, the element 〈modf (R)〉 should also be represented by a quadratic pair
algebra. By Theorem 11.7 above we construct such a quadratic pair algebra, given
by π∗,∗R, even in a functorial way.

In order to prove Lemma 11.6 we need the following results.

Lemma 11.9. There are natural isomorphisms

h0(B
(n1,...,nk)) ∼= (h0B)(n1,...,nk),

h1(B
(n1,...,nk)) ∼= (h0B)(n1,...,nk) ⊗h0B h1B.

Lemma 11.9 follows easily from the following one.

Lemma 11.10. For any quadratic pair module C there are natural isomorphisms

h0((Znil∨
k
· · · ∨Znil)⊙ C) ∼= h0C⊕

k
· · · ⊕h0C,

h1((Znil∨
k
· · · ∨Znil)⊙ C) ∼= h1C⊕

k
· · · ⊕h1C.

Proof. There is an exact sequence of square groups in the sense of [BJP05]

h1C →֒ C(1)
∂
−→ C(0) ։ h0C.

Given a pointed set E the square group Znil[E] in (5.1) is the coproduct of
copies of the unit element Znil for the tensor product of square groups indexed
by E excluding the base-point. Therefore by using the definition in [BM07] of the
tensor product in qpm we see that the quadratic pair module

(Znil∨
k
· · · ∨Znil)⊙ C

coincides with

Znil[k]⊙ C(1)
Znil[k]⊙∂
−→ Znil[k]⊙ C(0)

where k = {0, 1, . . . , k} pointed at 0.
The square groups in (5.1) are flat for the tensor product of square groups. This

follows easily from [BJP05, Corollary 39] since the unit object Znil is obviously flat.
Moreover, it is easy to check by using the generatos and relations for the tensor
product of square groups in [BJP05] that for any abelian group A there is a natural
isomorphism Znil[k]⊙A ∼= Z[k]⊗A, and hence the lemma follows. �

The following lemma is a simple exercise.

Lemma 11.11. Let C be any quadratic pair module. Weak morphisms f : Znil → C
are in bijective correspondence with the elements of C0. The correspondence sends
f to f0(1) for 1 ∈ Z = (Znil)0. Moreover, given two morphisms f, g : Znil → C the
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set of tracks α : f ⇒ g is in bijection with the subset ∂−1(−f0(1) + g0(1)) ⊂ C1.
The bijection sends α to α(1).

Now we are ready to prove Lemma 11.6.

Proof of Lemma 11.6. Weak right B-module morphisms

B(n1,...,nk) −→ B(m1,...,ml)

and tracks between them are in bijection with weak morphisms between graded
quadratic pair modules

(Znil, n1) ∨ · · · ∨ (Znil, nk) −→ B(m1,...,ml)

and tracks between them. Hence Lemma 11.6 follows from Lemmas 11.9 and 11.11.
The projection onto the homotopy category is h0 : wmodf (B)→modf (h0B). �

We finally need the following result.

Lemma 11.12. Let R be a connective ring spectrum. The restriction of the functor
π∗,∗ in Theorem 7.4 to the full subcategory of connective fibrant-cofibrant right R-
modules can be extended to a groupoid-enriched functor.

Proof. The functor π∗,∗ in Theorem 7.4 is constructued in Section 16 by using
secondary homotopy groups of spectra. Secondary homotopy groups of spectra
are defined as colimits of additive secondary homotopy groups of spaces which are
groupoid-enriched functors, see [BM06a, BM06c]. Therefore secondary homotopy
groups of spectra take homotopies to tracks between quadratic pair modules, and
in particular the functor π∗,∗ in Theorem 7.4 becomes a groupoid-enriched functor
on connective fibrant-cofibrant right R-modules. �

Now we are ready to prove Theorem 11.7.

Proof of Theorem 11.7. Recall that a pseudofunctor between groupoid-enriched cat-
egories ϕ : C → B is an assignment of objects, maps and tracks which preserves
horizontal composition and identity morphisms only up to certain given tracks

ϕf,g : ϕ(f)ϕ(g)⇒ ϕ(fg) and ϕX : ϕ(1X)⇒ 1ϕ(X).

These tracks must satisfy well-known coherence and naturality properties. Track
functors are pseudofunctors where these tracks are trivial. Similarly there is a defini-
tion of pseudonatural transformation α : ϕ⇒ ψ between pseudofunctors ϕ, ψ : C→
B given by maps αX : ϕ(X)→ ψ(X) such that the usual square does not commute,
but for any map f : X → Y there is a track αf : ψ(f)αX ⇒ αY ϕ(f) satisfying co-
herence and naturality properties.

Two linear track extensions B, C of A by D have the same universal Toda
bracket if and only if there is a pseudofunctor ϕ : C→ B such that for any morphism
f : X → Y in C the equality pBϕ(f) = pC(f) holds, and for any x ∈ D(X,Y ) the
equation σϕ(f)(x) = ϕσf (x) is satisfied, compare [BM05].

We now prove Theorem 11.7 by constructing an appropriate pseudofunctor

ϕ : modf (R) −→ wmodf (π∗,∗R).

The functor sending a fibrant replacement of a free right R-module X to π∗,∗X , see
Theorem 7.4, takes values in the category of right π∗,∗R-modules, but not on the full

subcategory wmodf (π∗,∗R). However, the fixed trivial cofibration R(n1,...,nk)
∼
 X

together with Theorem 15.17 and Remark 15.2 give rise to a right π∗,∗R-module
morphism

(11.13) αX : ϕ(X) = (π∗,∗R)(n1,...,nk) −→ π∗,∗X,
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see Remark 16.1 for details, which induces isomorphisms in h0 and h1, compare
Lemma 11.9. Now it is easy to check that for any map f : X → Y between free
right R-modules we can choose a morphism ϕ(f) and a track αf as in diagram

ϕ(X)
αX //

ϕ(f)

��

π∗,∗X

π∗,∗f

��

ϕ(Y )
αY // π∗,∗Y

αfw� vvv
vvvv
v

Since π∗,∗ is groupoid-enriched functor by Lemma 11.12 and αX and αY induce
isomorphisms on h0 and h1 then by categorical nonsense there is a unique pseud-
ofunctor ϕ defined on objects and maps as above such that α : ϕ ⇒ π∗,∗ is a
pseudonatural transformation. This pseudofunctor proves the theorem. �

12. Symmetric spectra

We work in the symmetric monoidal model category Top∗ of pointed (compactly
generated) spaces, see [Hov99, 4.2.12].

A spectrum X is a sequence of pointed spaces X0, X1, . . . , Xn, . . . together with
pointed maps σn : S1 ∧Xn → X1+n called structure maps. A morphism of spectra
f : X → Y is a sequence of pointed maps fn : Xn → Yn with σnfn = f1+nσn. The

category of spectra will be denoted by SpN.
An Ω-spectrum X is a spectrum such that the adjoints ad(σn) : Xn → ΩX1+n of

the structure maps σn are weak equivalences for all n ≥ 0.
A symmetric spectrum is a more structured notion of spectrum defined in the

following way. An object X in the category (Top∗)
Sym

of symmetric sequences in
Top∗ is a sequence of spaces X0, X1, . . . , Xn,. . . such that Xn carries a left action
of the symmetric group Sym(n). A morphism X → Y of symmetric sequences is a
sequence of equivariant maps Xn → Yn. The category of symmetric sequences has
a symmetric monoidal structure with the tensor product X ⊗ Y characterized by
the existence of a natural isomorphism

Hom(Top∗)Sym(X ⊗ Y, Z) ∼=
∏

p,q≥0

Hom×(Xp ∧ Yq, Zp+q) : f 7→ fp,q.

Here Hom× is the set of equivariant morphisms with respect to the cross product
homomorphism × in (8.6). The symmeytry isomorphism X ⊗ Y ∼= Y ⊗X is given
by the maps

Xp ∧ Yq
∼= Yq ∧Xp

(1Y ⊗X)q,p

−→ (Y ∧X)q+p

τq,p

−→ (Y ∧X)p+q.

The shuffle permutation τq,p was already considered in Definition 9.1.
The sphere spectrum S is the symmetric sequence S given by the spheres S0,

S1, . . . , Sn, . . . , where Sym(n) acts on Sn = S1 ∧ · · · ∧ S1 by permutation of
coordinates. This symmetric sequence is a commutative monoid with multiplication
µ : S ⊗ S → S given by µp,q : Sp ∧ Sq = Sp+q. The category SpΣ of symmetric
spectra is the category of left S-modules. The structure maps σ1,n : S1∧Xn → X1+n

of the underlying spectrum of a symmetric spectrumX are defined by the left action
σ : S ⊗X → X .

Since the monoid S is commutative the category SpΣ is symmetric monoidal for
the tensor product ⊗S also called smash product and denoted by ∧. The smash
product of symmetric spectra X ∧ Y is the coequalizer of the two multiplications
X ⊗ S ⊗ Y ⇉ X ⊗ Y . The smash product X ∧ Y comes equipped with natural
maps, p, q ≥ 0,

(12.1) p,q : Xp ∧ Yq −→ (X ∧ Y )p+q
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satisfying a universal property which characterizesX∧Y as a symmetric spectrum,
see [Sch04].

The category SpN of spectra is a stable model category, see [MMSS01, 4.1 and 9],

while SpΣ is in addition a symmetric monoidal model category, see [MMSS01, 4.2
and 9]. We wish to emphasize that among the possible model category structures

on SpN and SpΣ we have chosen to work with the stable model structure defined
in [MMSS01, 9] since with this structure fibrant objects coincide in both cases with
the Ω-spectra.

Symmetric sequences and symmetric spectra defined in this way are available
over monoidal categories more general than Top∗, see [Hov01]. They can also be
defined by using right actions of symmetric groups instead of left actions.

13. Secondary homotopy groups of spaces

A groupoid-enriched category, also termed track category, is a 2-category where
all 2-morphisms are invertible with respect to vertical composition. We also call
tracks to the 2-morphisms in track categories. Horizontal composition is denoted by
juxtaposition, and we use the symbol � for the vertical composition. The vertical
inverse of a track α is α⊟. Identity morphisms are denoted by 1, and the symbol 0�

is used for identity tracks. Track functors are 2-functors between track categories.
The category Top∗ is a track category where a track between two maps is a relative
homotopy class of homotopies between them. Similarly for the category of fibrant-
cofibrant spectra or symmetric spectra, compare [Bau89]. For the convenience of
the reader we recall from [BM06a], [BM06c] the following definition.

Definition 13.1. Let n ≥ 3. For a pointed space X we define the additive
secondary homotopy group, Πn,∗X which is a 0-free quadratic pair module with
Πn,(0)X = Znil[Ω

nX ] where ΩnX is the discrete pointed set of maps Sn → X in
Top∗.

We describe the group Πn,1X and the homomorphisms P and ∂ as follows. Given
a pointed set E we denote by ∨ES

n to the n-fold suspension of E in Top∗. It is a
one-point union of n-spheres indexed by the set E−{∗}. The group Πn,1X is given
by the set of equivalence classes [f, F ] represented by a map f : S1 → ∨ΩnXS

1 and
a track in Top∗ of the form:

Sn

Σn−1f

//

0

""

∨ΩnXS
n

ev
// X.

F

KS
���
���

Here the map ev : ∨ΩnX Sn → X is the obvious evaluation map.
The equivalence relation [f, F ] = [g,G] holds provided there is a track

N : Σn−1f ⇒ Σn−1g

with trivial Hopf invariant Hopf (N) = 0 in the sense of (13.3) below such that the
composite track in the following diagram is the trivial track.

(13.2) Sn

0

  

0

>>

Σn−1f
&&

Σn−1g

88
∨ΩnXSn ev // X

F ⊟


� �
� �
��

� �
� �
�

N
��

G

��
!!
!!
!

!!
!!
!
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The element ∂[f, F ] ∈ 〈ΩnX〉nil is given by the image of the generator 1 ∈ Z ∼= π1S
1

under the homomorphism

π1f : π1S
1 −→ π1(∨ΩnXS

1) ∼= 〈ΩnX〉.

Let I+ be the unit interval I = [0, 1] with an outer base-point and let IX =
I+ ∧ X be the reduced cylinder of X in Top∗. The Hopf invariant Hopf (N) of a
track N : Σn−1f ⇒ Σn−1g with f, g : S1 → ∨ES

1 is defined in [BM06a] 3.3 by the
homomorphism

(13.3) H2(IS
1, S1 ∨ S1)

ad(N)∗
−→ H2(Ω

n−1(∨ES
n),∨ES

1) ∼= ⊗̂
2
Z[E],

which carries the generator 1 ∈ Z ∼= H2(IS
1, S1 ∨ S1) to Hopf (N). Here the iso-

morphism is induced by the Pontrjagin product and ad(N)∗ is the homomorphism
induced in homology by the adjoint of

Sn−1 ∧ I+ ∧ S
1 ∼= I+ ∧ S

n N
→ ∨ES

n.

The reduced tensor square ⊗̂
2

in (13.3) is defined for any abelian group A as the
quotient

⊗̂
2
A =

A⊗A

a⊗ b+ b⊗ a ∼ 0

and σ̄ : ⊗2 A ։ ⊗̂
2
A denotes the natural projection. If f, g : ∨E′ S1 → ∨ES

1

are maps from a coproduct the Hopf invariant Hopf (N) : Z[E′] → ⊗̂
2
Z[E] is a

homomorphism defined on the basis E′ by the Hopf invariants of the restriction
of N to the components of ∨E′Sn. We refer the reader to [BM06a, 3] for the
elementary properties of the invariant Hopf .

The equivalence classes [f, F ] define Πn,1X as a set. The group structure of
Πn,1X is induced by the comultiplication µ : S1 → S1 ∨ S1, compare [BM06a] 4.4.

We now define the homomorphism P . Consider the diagram

Sn

Σn−1β

//

0

��

Sn ∨ Sn

B

KS

where β : S1 → S1∨S1 is given such that (π1β)(1) = −a−b+a+b is the commutator
of the canonical generators of π1(S

1∨S1), i.e. a corresponds to the inclusion of the
first sphere and b to the inclusion of the second one. The track B is any track with
Hopf (B) = −σ̄(a⊗ b). Given x⊗ y ∈ ⊗2Z[ΩnX ] let x̃, ỹ : S1 → ∨ΩnXS

1 be maps
such that the images of (π1x̃)(1) and (π1ỹ)(1) in Z[ΩnX ] are x and y, respectively.
Then the diagram

(13.4) Sn

Σn−1β

//

0

��

Sn ∨ Sn

B

KS

Σn−1(ỹ,x̃)

// Sn
X ev

// X

represents P (x ⊗ y) ∈ Πn,1X . This completes the definition of the quadratic pair
module Πn,∗X for n ≥ 3.

Additive secondary homotopy groups are defined in [BM06c] also for n = 0, 1, 2.
In this way we get for n ≥ 0 a functor

Πn,∗ : Top∗ −→ qpm

which is actually a track functor. Moreover, Πn,(0)X = Znil[Ω
nX ] so that Πn,∗

takes values in the full subcategory qpmH of 0-free, and hence 0-good, quadratic
pair modules.
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Remark 13.5. By [BM06a, 4.16] Πn,∗S
n is quasi-isomorphic to Znil. The quasi-

isomorphism ın,0 : Znil → Πn,∗S
n is defined by ın,0(1) = 1Sn ∈ 〈ΩnSn〉nil for

1 ∈ Z = (Znil)0. This quasi-isomorphism is an isomorphism for n = 0.

The secondary homotopy group Πn,∗X is endowed with a natural action of the
symmetric track group Sym�(n), see [BM06c]. The underlying action of Sym(n)
on Πn,(0)X = Znil[Ω

nX ] is given by the right action of Sym(n) on the pointed set
ΩnX of maps Sn → X determined by the left action of Sym(n) on the n-sphere
Sn = S1 ∧ · · · ∧ S1 by permutation of coordinates.

One of the results in [BM07] states that the functor

(13.6) Π∗,∗ : Top∗ −→ qpmN

H

to the category of N-graded 0-good quadratic pair modules is lax monoidal with
multiplication given by the smash product operation for secondary homotopy groups

Πn,∗X ⊙Πm,∗Y
∧
−→ Πn+m,∗(X ∧ Y ).

This morphism is equivariant with respect to the sign group morphism (8.5). The
functor Π∗,∗ in (13.6) is however non-symmetric. In order to obtain a symmetric

version we have to regard Π∗,∗ as a functor to the category qpm
Sym�

H of enhanced
symmetric sequences of 0-good quadratic pair modules defined in [BM07, 8.14].
The properties of the smash product for secondary homotopy groups yield a lax
symmetric monoidal functor

(13.7) Π∗,∗ : Top∗ −→ qpm
Sym�

H .

This is the main result in [BM07].
There are natural isomorphisms, n ≥ 3,

h0Πn,∗X ∼= πnX,(13.8)

h1Πn,∗X ∼= πn+1X.

Here we use [BM06a] 5.1. Furthermore, the following property is crucial.

Proposition 13.9. For all n ≥ 3 the k-invariant of Πn,∗X defined in (5.4) coin-
cides via (13.8) with the homomorphism η∗ : πnX → πn+1X induced by precompo-
sition with Σn−2η where η : S3 → S2 is the Hopf map.

This follows from [BM06a, 8.2].

14. The pull-back construction

Let C be any quadratic pair module. Given a pointed set E and a pointed map
E → KerH ⊂ C0, or equivalently a group homomorphism ϕ : 〈E〉nil → C0 such
that Hϕ(e) = 0 for any e ∈ E then the 0-free quadratic pair module ϕ∗C is defined
as follows.

(14.1) (ϕ∗C)ee = ⊗2Z[E]

P

��
�
�
�

(ϕab|ϕab)H
//

P in (5.1)

%%

Cee

P

��

(ϕ∗C)1

∂

��

//

pull

C1

∂

��

(ϕ∗C)0 = 〈E〉nil ϕ
// C0

This quadratic pair module comes equipped with a morphism ϕ# : ϕ∗C → C in
qpm which is given by the horizontal arrows in diagram (14.1). This construction
can be straightforwardly extended to the graded setting degreewise.
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Lemma 14.2. In the conditions above the morphism ϕ# : ϕ∗C → C induces always
an isomorphism on h1. It also induces an isomorphism on h0 provided the set of
elements in h0C comming from E generate the group h0C.

Lemma 14.3. Suppose that G� is a sign group acting on a quadratic pair module
C and that the group G acts on E in such a way that ϕ is G-equivariant. Then
there is a unique action of G� on ϕ∗C such that the induced G-action on level 0 is
given by the action of G on E and the natural morphism ϕ# : ϕ∗C → C is a right
A(G�)-module morphism.

This follows easily from the universal property of a pull-back.

Lemma 14.4. If C is a quadratic pair algebra, E is a pointed graded monoid, and
E → KerH ⊂ C0 is a graded monoid morphism then there is a unique quadratic pair
algebra structure on ϕ∗C such that the monoid structure of (ϕ∗C)∗,(0) = Znil[E] in
SG is induced by the monoid structure on E in the sense of [BJP05, Section 12.1]
and the natural morphism ϕ# : ϕ∗C → C is a morphism of quadratic pair algebras.

This is also a consequence of the universal property of a pull-back. In can be
extended to the E∞-case.

Lemma 14.5. Suppose that C is an E∞-quadratic pair algebra, E is a pointed
graded monoid such that the symmetric group Sym(n) acts on En in such a way that
the multiplications En ∧Em → En,m are equivariant with respect to the cross prod-
uct homomorphisms in (8.6), and E → KerH is a degreewise equivariant graded
monoid morphism. Then there is a unique E∞-quadratic pair algebra structure on
ϕ∗C such that the monoid structure of (ϕ∗C)∗,(0) = Znil[E] in SG is induced by the
monoid structure on E in the sense of [BJP05, Section 12.1], the action of Sym(n)
on (ϕ∗C)n,(0) = Znil[En] is given by the action on En, and the natural morphism
ϕ# : ϕ∗C → C is a morphism of E∞-quadratic pair algebras.

15. Secondary homotopy groups of spectra

Secondary homotopy groups of spaces introduced in the previous section can be
used to define secondary homotopy groups of spectra which are the crucial tools in
this paper.

Given a space X and a pointed map E → ΩnX inducing a homomorphism
ϕ : 〈E〉nil → 〈Ω

nX〉nil, we write

Πn,∗(X |E) = ϕ∗Πn,∗X

for the pull-back construction defined in (14.1).

Definition 15.1. LetX be now a spectrum. The secondary homotopy group πn,∗X ,
n ≥ 0, is defined as the colimit in qpm

πn,∗X = colim
k≥0

Πk+n,∗(Xk|Ω
nX0).

Here the map ΩnX0 → Ωk+nXk is obtained by taking Ωn on the adjoint of the
structure map σk,0 : Sk ∧ X0 → Xk, i.e. it sends an n-loop f : Sn → X0 to the
composite

Sk+n Sk∧f
−→ Sk ∧X0

σk,0
−→ Xk.

The bonding morphisms of the directed system

Πk+n,∗(Xk|Ω
nX0) −→ Π1+k+n,∗(X1+k|Ω

nX0)

are defined to be the identity on levels 0 and ee, so πn,(0)X = Znil[Ω
nX0] and

πn,∗X is 0-free, and hence 0-good. On the 1-level the bonding morphism is defined
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by the composite in qpm

Πk+n,∗(Xk)

∼=
��

Znil ⊙Πk+n,∗(Xk)

ı1,0⊙1

��

Π1,∗S
1 ⊙Πk+n,∗(Xk)

∧
��

Π1+k+n,∗(S
1 ∧Xk)

Π1+k+n,∗σ1,k

��

Π1+k+n,∗X1+k

Here the first isomorphism is the unit isomorphism for the symmetric monoidal
structure ⊙ in qpm. In the second arrow we use the morphism ı1,0 in Remark
13.5. The morphism ∧ is the smash product for secondary homotopy groups of
spaces constructed in [BM07].

Remark 15.2. The quadratic pair module πn,∗S
n is quasi-isomorphic to Znil. The

quasi-isomorphism ın,0 : Znil → πn,∗S
n is defined by ın,0(1) = 1Sn ∈ 〈ΩnSn〉nil, as

in Remark 13.5. This quasi-isomorphism is an isomorphism for n = 0. This remark
follows for instance from Proposition 15.4 below.

The symmetric track group Sym�(n) acts on Πk+n,∗(Xk|Ω
nX0), see Lemma

14.3. The induced action of the symmetric group Sym(n) at level 0 is given by the
action on ΩnX0 considered in the previous section. The bonding morphisms of the
directed system are right A(Sym�(n))-module morphisms, therefore πn,∗X carries
a natural action of Sym�(n).

For any Ω-spectrum X we derive from (13.8) and Lemma 14.2 the natural iso-
morphisms, n ≥ 0,

h0πn,∗X ∼= πnX,(15.3)

h1πn,∗X ∼= πn+1X.

The following proposition follows from Proposition 13.9.

Proposition 15.4. Let X be an Ω-spectrum. The k-invariant of πn,∗X coincides
via the isomorphisms (15.3) with the homomorphism η : πnX → πn+1X induced by
multiplication with the stable Hopf map η ∈ π1S.

The projection to the colimit yields a natural morphism in qpm

φn : Πn,∗X0 −→ πn,∗X.

In case X is an Ω-spectrum φn is levelwise surjective for n = 0, 1 and an isomor-
phism for n ≥ 2. The next result is a crucial ingredient for the main theorems in
this paper.

Theorem 15.5. Let X,Y, Z be symmetric spectra which are Ω-spectra and let
f : X ∧ Y → Z be a morphism in SpΣ. Then for all n,m ≥ 0 there is a unique
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morphism f̃n,m in qpm for which the following diagram commutes.

Πn,∗X0 ⊙Πm,∗Y0
∧ //

φn⊗φm

����

Πn+m,∗(X0 ∧ Y0)
f∗ // Πn+mZ0

φn+m

����

πn,∗X ⊙ πm,∗Y
f̃n,m

//___________________ πn+m,∗Z

The filler f̃n,m will be constructed in Theorem 15.17. In order to define it we
consider the morphisms

(15.6) Πk+n,∗(Xk|Ω
nX0)⊙Πl+m,∗(Yl|Ω

mY0)

��

Πk+l+n+m,∗((X ∧ Y )k+l|Ω
n+m(X ∧ Y )0)

defined on the (0)-level by

(15.7) Znil[Ω
nX0]⊙ Znil[Ω

mY0]

∼=

��

Znil[(Ω
nX0) ∧ (ΩmY0)]

Znil[∧]

��

Znil[Ω
n+m(X0 ∧ Y0)]

Znil[Ω
n+m0,0]

��

Znil[Ω
n+m(X ∧ Y )0]

Here the first arrow is the isomorphism in [BM07, 3,7] and ∧ : (ΩnX0)∧ (ΩmY0)→
Ωn+m(X0 ∧ Y0) is the map defined by (f : Sn → X0) ∧ (g : Sm → Y0) = f ∧
g : Sn+m → X0 ∧ Y0. Moreover, the morphism (15.6) is induced on the 1-level by

(15.8) Πk+n,∗(Xk)⊙Πl+m,∗(Yl)

∧

��

Πk+n+l+m,∗(Xk ∧ Yl)

Πk+n+l+m,∗k,l

��

Πk+n+l+m,∗(X ∧ Y )k+l

(1k×τl,n×1m)∗

��

Πk+l+n+m,∗(X ∧ Y )k+l

Here the last arrow is given by the right action of the sign group Sym�(k+l+n+m).

Lemma 15.9. The morphism (15.6) is well defined.

Proof. We have to check that the composite (15.7) is compatible with (15.8) so that
(15.6) is indeed defined. This follows from the fact that given maps f : Sn → X0,
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g : Sm → Y0 the following diagram commutes

Sk ∧ Sl ∧ Sn ∧ Sm
1k×τl,n×1m

//

Sk+l∧f∧g

��

Sk ∧ Sn ∧ Sl ∧ Sm
Sk∧f∧Sl∧g

// Sk ∧X0 ∧ S
l ∧ Y0

σk,0∧σl,0

��

Sk+l ∧X0 ∧ Y0

0,0

��

Xk ∧ Yl

k,l

��

Sk+l ∧ (X ∧ Y )0 σk+l,0

// (X ∧ Y )k+l

�

Theorem 15.10. Suppose that E is a pointed space, ϕ : E → Ωn+mX is a pointed
weak equivalence and the symmetric group Sym(n) acts from the left on X in such
a way that the adjoint

ψ : Sn ∧ Sm ∧ E −→ X

of ϕ is equivariant with respect to the left action of Sym(n) on the sphere Sn.
Suppose also that m ≥ 1. Then for any τ ∈ Sym(n) the two possible composites in
the diagram

Πn+m,∗(X |E)
ϕ#

// Πn+m,∗X
(τ×1m)∗

//

Πn+m,∗τ
// Πn+m,∗X

coincide.

Proof. The theorem is obvious in degrees 0 and ee. Let us check the degree 1 case.
Obviously the statement of Theorem 15.10 is non-trivial just in case n ≥ 2 so we
can suppose that we are within this range, and hence n+m ≥ 3.

Let [f, F ] ∈ Πn+m,1(X,E). This element is represented by a map

f : S1 −→ ∨ES
1,

such that the image of (π1f)(1) ∈ 〈E〉 in the quotient 〈E〉nil is ∂[f, F ], and a track

Sn+m

Σn+m−1f

//

0

&&
∨ES

n+m

Σn+mϕ

// ∨Ωn+mXS
n+m

ev
// X.

F

JR
�����

�����

Here ϕ is the underlying map of ϕ above between pointed discrete sets.
On the one hand the element (Πn+m,∗τ)ϕ#[f, F ] is represented by

(15.11)

X
τ

��

Sn+m

0 ..

Σn+m−1f

// ∨ES
n+m

Σnϕ
// ∨Ωn+mXS

n+m

ev

55kkkkkkkkkkkkkkkk

Σn+mΩn+mτ

// ∨Ωn+mXS
n+m

ev
// X

F

iq [[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[

Here Ωn+mτ is also regarded as a map between pointed discrete sets.
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On the other hand (τ × 1m)∗ϕ#[f, F ] is given by
(15.12)

Sn+m

0

��

Σn+m−1f

// ∨ES
n+m Σn+mϕ // ∨Ωn+mXS

n+m

ev
99

99
99

99
9

��
99

99
99

99
9

Sn+m

Σn+m−1f

//

(·)
sign(τ)
n+m

OO

∨ES
n+m

Σn+mϕ

// ∨Ωn+mXS
n+m

Σn+m(τ×1)∗
//

(·)
sign(τ)
n+m ∧Ωn+mX

55

τ∧Ωn+mX

II

∨Ωn+mXS
n+m

ev
// X

τ̂∧Ωn+mX9999

X`9999
Q

KS���������������

���������������

F

BJ
����������

����������

Here Ωn+mX is regarded as a discrete pointed set, (τ × 1)∗ : Ωn+mX → Ωn+mX
is the pointed map induced by precomposition with τ × 1m = τ ∧ Sm : Sn+m →

Sn+m, (·)
sign(τ)
n+m : Sn+m → Sn+m is the (n + m − 1)-fold suspension of the map

(·)sign(τ) : S1 → S1 where we use the multiplicative topological abelian group struc-

ture of S1, τ̂ : τ × 1m ⇒ (·)
sign(τ)
n+m is any track, and Q is the unique track with Hopf

invariant

Hopf (Q) = −(⊗̂
2
Z[ϕ])

(
sign(τ)

2

)
H∂[f, F ].

Since ψ is Sym(n)-equivariant we have the equation

(15.13) (Ωnτ)ϕ = (τ × 1m)∗ϕ.

We use this equation in order to simplify diagram (15.12) by using Lemma 15.16
below.

The hypothesis m ≥ 1 is also needed in order to apply Lemma 15.16 below. By
Lemma 15.16 the track (15.12) coincides with
(15.14)

Sn+m

0

��

Σn+m−1f

// ∨ES
n+m

Σn+mϕ

// ∨Ωn+mXS
n+m

ev
<<

<<
<<

<<

��
<<

<<
<<

<<

Sn+m

Σn+m−1f

//

τ×1m

OO

(·)
sign(τ)
n+m

;;

∨ES
n+m

Σn+mϕ

// ∨Ωn+mXS
n+m

Σn+m(τ×1)∗
// ∨Ωn+mXS

n+m
ev

// X

τ̂ks

F

DL
����������

����������

Any track horizontally composed with a trivial map becomes a trivial track, there-
fore in order to complete the proof it is enough to check that

(15.15) τF = F (τ × 1).
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The track F can be regarded as the relative homotopy class of a path in Ωn+mX
between two points comming from E. Since ϕ is a weak equivalence the whole path
comes from E up to homotopy. Moreover, by (15.13) the two possible composites
in the diagram

E
ϕ

// Ωn+mX
(τ×1m)∗

//

Ωn+mτ

// Ωn+mX

coincide. Hence (d) follows. �

The following lemma is used in the proof of Theorem 15.10 above. The map

(·)
sign(τ)
n+m and the track τ̂ in the statement of the lemma can also be found in the

proof of Theorem 15.10.

Lemma 15.16. Let m ≥ 1. Given two pointed sets A, B and a map f : ∨A S1 →
∨BS

1 the Hopf invariant of the composite track M(f)

∨AS
n+m

Σn+m−1f
//

τ∧Sm∧A

��

(·)
sign(τ)
n+m ∧A

''

∨BS
n+m

τ∧Sm∧B

��

(·)
sign(τ)
n+m ∧B

ww

∨AS
n+m

Σn+m−1f

// ∨BS
n+m

τ̂⊟∧A +3 τ̂∧B +3

is defined by the equation, a ∈ A,

Hopf (M(f))(a) =

(
sign(τ)

2

)
H((π1f)nil(a)) ∈ ⊗

2Z[B],

where (π1f)nil(a) denotes the image under π1f of the generator a ∈ 〈A〉 ∼= π1(∨AS
1)

projected to 〈B〉nil.

Proof. By using similar techniques to [BM07, 16] one can check that it is enough to
prove the statement for f = (·)−1 : S1 → S1 the complex inversion. We have that

(
sign(τ)

2

)
H(−1) =

(
sign(τ)

2

)
∈ Z/2.

This coincides with Hopf (M((·)−1)) provided the following identity holds in the
positive pin group Pin+(n+m) as defined in [BM06c, 6.6]

en+mτ̂ = (−1)(
sign(τ)

2 )τ̂ en+m.

The positive pin group is defined in [BM06c, 6.6] as a subgroup of units in the
Clifford algebra C+(n+m) with generators e1, . . . , en+m associated to the Euclidean
scalar product in Rn+m. See also [BM06c, 6.11] to see how τ̂ defines an element in
Pin+(n+m). Now the equation can be checked by using the defining relations of
C+(n +m), see [BM06c, 6.6], and the fact that τ̂ does not depend on en+m as an
element in C+(n+m). �

We use Theorem 15.10 to prove the following result.

Theorem 15.17. For any morphism of symmetric spectra f : X ∧ Y → U with U
fibrant the composite of (15.6) with the morphism

(a) Πk+l+n+m,∗((X ∧ Y )k+l|Ω
n+m(X ∧ Y )0)

��

Πk+l+n+m,∗(Uk+l|Ω
n+mU0)
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induced by f defines a morphism in qpm

(b) f̃n,m : πn,∗X ⊙ πm,∗Y −→ πn+m,∗U

by taking colimits over k, l ≥ 0.

Proof. The map f clearly induces a morphism (a) which is Znil[Ω
n+mf0] on the

(0)-level and which is induced by Πk+l+n+m,∗f on the 1-level.
In order to check that the morphism (b) is defined in the colimit it is enough to

check that

(c) f∗σ∗(1S1∧(1k × τl,m × 1n)∗(k,l)∗(a∧b))

is equal to both

(d) f∗(11+k × τl,m × 1n)∗(1+k,l)∗(σ∗(1S1∧a)∧b)),

(e) f∗(1k × τ1+l,m × 1n)∗(k,1+l)∗(a∧σ∗(1S1∧b)),

at least for k, l sufficiently large. We will see that equality (c) = (d) holds for any
k and l, while we have to require l ≥ 1 to check that (c) = (e).

In order to check (c) = (d) we consider the following equations

(c) = f∗(11+k × τl,m × 1n)∗σ∗(1S1∧(k,l)∗(a∧b))

= f∗(11+k × τl,m × 1n)∗σ∗(S
1 ∧ k,l)∗(1S1∧(a∧b))

= (d).

For the first equality we use the fact that the sign group action on secondary
homotopy groups of spaces is natural and that the smash product operation is
equivariant, see [BM07] 7.1 and 8.13. For the second one we use again the naturality
of the smash product operation. For the last one we use the fact that the following
diagram commutes

S1 ∧Xk ∧ Yl

S1∧k,l
//

σ∧Yl

��

S1 ∧ (X ∧ Y )k+l

σ

��

X1+k ∧ Yl 1+k,l

// (X ∧ Y )1+k+l

Let us now check (c) = (e) under the assumption l ≥ 1. Here we need to
assume that U is fibrant in order to apply Theorem 15.10. Let τ∧ : Xk ∧ S

1 ∼=
S1 ∧ Xk be the symmetry isomorphism for the smash product of pointed spaces.
The commutativity rule for the smash product operation on secondary homotopy
groups, see [BM07] 7.3., and the fact that H(1S1) = 0 show that

(τ∧)∗(a∧1S1) = τ∗1,k(1S1 ∧ a)

= τ∗1,k(1S1∧a).

Using this equality together with the commutativity of

Xk ∧ S
1 ∧ Yl

τ∧ //

Xk∧σ

��

S1 ∧Xk ∧ Yl

S1∧k,l
// S1 ∧ (X ∧ Y )k+l

σ

��

Xk ∧ Y1+l k,1+l

// (X ∧ Y )k+1+l (X ∧ Y )1+k+l
τ1,k×1l

oo
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and the arguments used to check (c) = (d) one can obtain the first equality in the
following chain of equations.

(e) = f∗(1k × τ1+l,n × 1m)∗

(τk+n,1 × 1l+m)∗(τ1,k × 1l)∗σ∗(1S1∧(k,l)∗(a∧b))

= (1k × τ1+l,n × 1m)∗

(τk+n,1 × 1l+m)∗(τ1,k × 1l)∗

(11+k × τn,l × 1m)∗

f∗σ∗(1S1∧(1k × τl,n × 1m)∗(k,l)∗(a∧b))

= (1k × τ1+l,n × 1m)∗

(τk+n,1 × 1l+m)∗(τ1,k × 1l)∗(11+k × τn,l × 1m)∗

(τk,1 × 1l)∗(τ1,k × 1l)∗

f∗σ∗(1S1∧(1k × τl,n × 1m)∗(k,l)∗(a∧b))

(f)
= (1k × τ1+l,n × 1m)∗

(τk+n,1 × 1l+m)∗(τ1,k × 1l)∗

(11+k × τn,l × 1m)∗

(τk,1 × 1l)∗(τ1,k × 1l+n+m)∗

f∗σ∗(1S1∧(1k × τl,n × 1m)∗(k,l)∗(a∧b))

= (c)

In the second and the third steps we introduce permutations which cancel each
other. For the last equality we use the identities

(τ1,k × 1l+n+m)(11+k × τn,l × 1m)(τk+n,1 × 1l+m)(1k × τ1+l,n × 1m) = 1,

(τ1,k × 1l)(τk,1 × 1l) = 1.

For (f) we use the hypothesis l ≥ 1 and Theorem 15.10 applied to the map

ϕ : Ωn+mU0 → Ω1+k+l+n+mU1+k+l

obtained by taking Ωn+m on the adjoint of σ1+k+l : S1+k+l ∧ U0 → U1+k+l. The
map ϕ is a weak equivalence since U is fibrant. Moreover, the adjoint of ϕ is the
composite

ψ : S1+k ∧ Sl ∧ Sn+m ∧ Ωn+mU0 −→ S1+k ∧ Sl ∧ U0
σ1+k+l
−→ U1+k+l,

where the first arrow is obtained by taking S1+k ∧ Sl ∧ − on the adjoint Sn+m ∧
Ωn+mU0 → U0 of the identity map on Ωn+mU0, therefore ψ is Sym(1+k)-equivariant
with respect to, the action of Sym(1 + k) on S1+k by permutation of corrdi-
nates, and the pull-back action of Sym(1 + k + l) on U1+k+l along the inclusion
−× 1l : Sym(1 + k)→ Sym(1 + k + l). �

One now readily checks that the homomorphism f̃n,m given by Theorem 15.17
proves Theorem 15.5.

16. Proof of Theorems 6.4, 7.4, and 9.12

Since the notation π∗,∗ is also used in the statement of Theorems 6.4, 7.4, and
9.12 we denote in this section the secondary homotopy groups of spectra defined in
the previous section by π̄∗,∗.

Proof of Theorem 6.4. Let L be a fibrant replacement functor in the model category
of ring spectra. We define the functor π∗,∗ in the statement of Theorem 6.4 as the
composite π̄∗,∗L. Given a ring spectrum R the ring multiplication µ : LR ∧ LR →
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LR and Theorem 15.5 induce a quadratic pair algebra structure on π̄∗,∗LR with
multiplication

µ∗,∗ : π̄∗,∗LR⊙ π̄∗,∗LR −→ π̄∗,∗LR.

Moreover, π̄0,∗S
0 ∼= Znil, and the unit ν : S0 → LR of the ring spectrum LR induces

the unit of the quadratic pair algebra π̄∗,∗LR, which is the image of 1 ∈ Z = (Znil)0
by the morphism

Znil
∼= π̄0,∗S

0 →֒ π̄∗,∗S
0 π̄∗,∗ν
−→ π̄∗,∗LR.

The axioms of a quadratic pair algebra are satisfied since π̄∗,∗LR is a monoid in the
symmetric monoidal category qpmN

H of N-graded 0-good quadratic pair algebras.
This follows from Theorem 6.4 and the fact that secondary homotopy groups of
pointed spaces form a lax monoidal functor to qpmN

H , as we show in [BM07].
Let us check the statement about Toda brackets and Massey products. For the

definition of Toda brackets in (1.2) we assumed R to be fibrant. In this proof
we do not make this assumption, therefore we replace R in (1.2) by the fibrant
replacement LR.

The right LR-module maps ā, b̄, c̄ in (1.2) are the same as maps of pointed spaces
ā : Sp → LR0, b̄ : S

q → LR0, c̄ : S
r → LR0. These pointed maps are basis elements

in the level 0 of π∗,∗R representing a, b, c, as in Definition 6.3. Moreover, the tracks
e and f in (1.2) can be regarded as tracks between pointed maps e : µ0(ā ∧ b̄)⇒ 0,
f : µ0(b̄ ∧ c̄) ⇒ 0. These tracks in Top∗ represent elements in Πp+q,1LR0 and
Πq+r,1LR0, respectively, which project to level 1 elements in the colimit π∗,∗R
also denoted by e and f . These elements satisfy ∂(e) = µ0(ā ∧ b̄) = ā · b̄ and
∂(f) = µ0(b̄ ∧ c̄) = b̄ · c̄ as required in Definition 6.3. Finally we notice that the
element −e · c̄+ ā ·f defining the Massey product corresponds exactly to the pasting
of diagram (1.2), which defines the Toda bracket, hence they coincide.

The statement about the k-invariant follows from Proposition 15.4. �

Proof of Theorem 7.4. Let L be a fibrant replacement functor in the model category
of ring spectra and let L′ be a fibrant replacement in the model category of right
LR-modules. We define the functor π∗,∗ in the statement of Theorem 7.4 as the
composite π̄∗,∗L

′(−∧R LR). See [MMSS01, 22.2] for the definition of ∧R. Given a
rightR-moduleM the right action of the ring spectrum LR on the module spectrum
L′(M ∧R LR),

γ : L′(M ∧R LR) ∧ LR→ L′(M ∧R LR),

and Theorem 15.5 induce a right π̄∗,∗LR-module structure on π̄∗,∗L
′(M ∧R LR)

with multiplication

γ∗,∗ : π̄∗,∗L
′(M ∧R LR)⊙ π̄∗,∗LR −→ π̄∗,∗LR,

compare the proof of Theorem 6.4 above. The axioms of a right π̄∗,∗LR-module are
satisfied since π̄∗,∗L

′(M ∧R LR) is right module over the monoid monoid π̄∗,∗LR
in the symmetric monoidal category qpmN

H of N-graded 0-good quadratic pair
algebras. This follows from Theorem 6.4 and the fact that secondary homotopy
groups of pointed spaces form a lax monoidal functor to qpmN

H , as we show in
[BM07].

The statements about Massey products and Toda brackets follow as in the proof
of Theorem 6.4. The identification of the product morphism (7.2) is an easy exercise.

�

Remark 16.1. Once defined the functor π∗,∗ in Theorem 7.4 we explicitly indicate
how to construct the morphism (11.13) in the proof of Theorem 11.7 from a trivial
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cofibration f : R(n1,...,nk) = (Sn1 ∨ · · · ∨ Snk) ∧R
∼
 X .

(π∗,∗R)(n1,...,nk)

((Znil, n1) ∨ · · · ∨ (Znil, nk))⊙ π̄∗,∗LR
using ınj,0 in Remark 15.2
��

(π̄n1,∗S
n1 ∨ · · · ∨ π̄nk,∗S

nk)⊙ π̄∗,∗LR� _

��

(π̄∗,∗S
n1 ∨ · · · ∨ π̄∗,∗S

nk)⊙ π̄∗,∗LR

����

π̄∗,∗(S
n1 ∨ · · · ∨ Snk)⊙ π̄∗,∗LR

�� induced by (Sn1∨···∨Snk )∧LR
∼
L′((Sn1∨···∨Snk)∧LR) and Thm. 15.17��

π̄∗,∗L
′((Sn1 ∨ · · · ∨ Snk) ∧ LR)

π∗,∗((S
n1 ∨ · · · ∨ Snk) ∧R)

π∗,∗f
��

π∗,∗X

In the statement of the following lemma we consider the interval 1-cell complex
K1, and the 2-cell complexes with the shape of a triangle K2, a hexagon K3, and
a disc K4.

•
K1

•

•

??
??

??
??

??
??

??
? •

•

K2

•

~~
~~

~~
~

@@
@@

@@
@

•

K3

•

•

@@
@@

@@
@ •

~~
~~

~~
~

•

• K4 •

Moreover, given space K we write K+ for the disjoint union of K with an outer
base-point. The smash product of a pointed space K and a symmetric spectrum
X is the symmetric spectrum defined by (K ∧X)n = K ∧Xn. We denote by τ∧ to
the symmetry isomorphism for the smash product of spectra.

Lemma 16.2. Let L be a fibrant replacement functor in the category of ring spectra.
Given a commutative ring spectrum Q the multiplication µ : LQ∧LQ→ LQ in LQ
needs not be commutative, but there is a commuting homotopy α1 : K1

+∧LQ∧LQ→

LQ which is coherent in the following sense: there are maps α2 : K2
+ ∧LQ∧LQ→

LQ and α3 : K3
+∧LQ∧LQ∧LQ→ LQ defined over the boundary of K1 and K2 as

indicated in the diagram below. Moreover, the commuting homotopy is natural in
the following sense: given a map of commutative ring spectra f : Q→ Q′ if α1 and
α′

1 denote respective commuting homotopies then there is a map α4 : K4
+ ∧ LQ ∧

LQ → LQ′ defined over the boundary of K4 as indicated in the diagram below.
Furthermore, the map αi can be chosen so that the restriction to Q along the trivial

cofibration Q
∼
 LQ is constant over Ki, i = 1, 2, 3, 4.

• α1

µτ∧ µ
•

•
α1τ∧

µ

??
??

??
??

??
??

??
? •

α1

•

α2
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•
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•

α1(1∧µ) α3

•
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•
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•

•

α′
1((Lf)∧(Lf))
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•

Here the edges labelled with a map which only depends on µ and τ∧ are constant
homotopies on the indicated map.

Proof. Let P be the push-out

{0, 1}+ ∧Q ∧Q // //

��

∼

��

push

K1
+ ∧Q ∧Q

��

∼

��
{0, 1}+ ∧ LQ ∧ LQ // // P

The inclusion of the boundary {0, 1} K1 and Q
∼
 LQ induce a trivial cofibra-

tion

j : P
∼
 K1

+ ∧ LQ ∧ LQ.

Consider the composite map

a : K1
+ ∧Q ∧Q −→ Q ∧Q

mult.
−→ Q

∼
 LQ

where the first arrow is given by the map collapsing the interval K1 to a point.
Consider also the map

b : {0, 1}+ ∧ LQ ∧ LQ −→ LQ

which restricted to {1} is µ and restricted to {0} is µτ∧. The maps a and b induce
a map

a ∪ b : P −→ LQ

The map α1 is defined as a lift of the following diagram

P
a∪b //

��

∼ j

��

LQ

��
K1

+ ∧ LQ ∧ LQ //

α1q
q

88qqq

∗

Notice that the procedure for the construction of α1 consists of defining it over
the restriction to Q and on the boundary of K1 according to the statement. Then
α1 is given by the usual lifting diagram in a model category. The same procedure
can be used for the definition of α2, α3, and α4. �

Proof of Theorem 9.12. Let L be a fibrant replacement functor in the category of
ring spectra. Given a commutative ring spectrum Q we have to promote the qua-
dratic pair algebra π̄∗,∗LQ in the proof of Theorem 6.4 to an E∞-quadratic pair
algebra. As we showed in the previous section the quadratic pair module π̄n,∗LQ
carries an action of the symmetric track group Sym�(n). The multiplication, de-
fined by Theorem 15.5, is equivariant with respect to the sign group homomorphism

(8.5), i.e. π̄∗,∗LQ is a monoid in the category qpm
Sym�

H of enhanced symmetric
sequences of 0-good quadratic pair modules. Now consider the map α1 in the state-
ment of Lemma 16.2. By Theorem 15.17, and using that the sphere spectrum S is
the unit of the smash product, the map α1 yields a morphism

π̄0,∗(K
1
+ ∧ S)⊙ π̄∗,∗LQ⊙ π̄∗,∗LQ −→ π̄∗,∗LQ.
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The “interval” quadratic pair module I in [BM07, 5] is 0-free. The basis at level
0 is the set of vertices of K1, i.e. {0, 1}. On level 1 it is generated by the edge
e of K1 and ∂(e) = −(0) + (1). This correspondence between the generators of I

and K1 yields a morphism υ : I→ Π0,∗K
1
+, see [BM07, 19]. Conposing υ with the

projection to the colimit φ0 : Π0,∗K
1
+ → π̄0,∗(K

1
+ ∧ S) we obtain a new morphism

I⊙ π̄∗,∗LQ⊙ π̄∗,∗LQ −→ π̄∗,∗LQ.

Such a morphism is the same as a track to the multiplication of π̄∗,∗LQ from the
opposite multiplication. The maps α2 and α3 in Lemma 16.2 show that this track
satisfies the idempotence and the hexagon conditions, therefore π̄∗,∗LQ is an E∞-
quadratic pair algebra, see Remark 9.13. The map α4 in Lemma 16.2 shows the
naturaluty of ⌣1 with respect to morphisms between commutative ring spectra.

For the statement about the smash product we notice that ā in diagram (1.3) is
the same as a pointed map ā : S2n → LQ0 which, regarded as a basis element in
π̄2n,0LQ, represents a ∈ π2nQ = Coker∂. Since ā is in the basis H(ā) = 0. This
simplifies the definition of the algebraic cup-one square

(a) Sq1(a) = −(ā · ā) · [τ̂ ] + ā ⌣1 ā,

see Definition 9.10. Let us recall how these summands are explicitly defined.
An element τ̂ ∈ Sym�(n) as in Definition 9.10 is the same as a track τ̂ as in

diagram (1.3). Moreover, ā · ā = µ0(ā∧ ā). The element (ā · ā) · [τ̂ ] is the projection
to the colimit of 〈µ0(ā ∧ ā), τ̂〉 ∈ Π4n,1LQ0 in the sense of [BM06c, 4.5].

The map α1 in Lemma 16.2 is given on degree 0 by a homotopy (α1)0 to the
product on LQ0 from the opposite product. Such a homotopy induces a track of
quadratic pair modules, which is a function ((α1)0)∗ : Π4n,0LQ0 → Π4n,1LQ0. The
construction of ((α1)0)∗(µ0(ā ∧ ā)) can be found in [BM06a, 7.3]. The projection
to the colimit of this element is ā ⌣1 ā.

With this description of the summands in (a) one can check that (a) is the same
as the pasting of diagram (1.3). �

17. Proof of Theorem 3.4

In order to derive Theorem 3.4 from Theorem 9.12 we need some technical results.
In Remark 9.8 we indicated how the category of E∞-pair algebras can be re-

garded as a full subcategory of the category of E∞-quadratic pair algebras. This
inclusion admits a reflection

(−)adc : (E∞-quadratic pair algebras) −→ (E∞-pair algebras)

defined as follows.
Let C be an E∞-quadratic pair algebra. The quadratic pair module Cn,∗ is a

right A(Sym�(n))-module for all n ≥ 0, therefore the additivization Cadd
n,∗ in the

sense of (5.6) is a right A(Sym�(n))add-module. The pair algebra A(Sym�(n))add

is the inclusion of the two-sided ideal Isign ⊂ Z Sym(n) in the group-ring of the
symmetric group which is the kernel of the ring homomorphism Z Sym(n) → Z

induced by the sign homomorphism sign: Sym(n)→ {±1}. The pair module Cadc
n,∗

is defined by the following diagram with exact rows

(17.1) Cadd
n,0 ⊗Z Sym(n) Isign

· // Cadd
n,1

∂add

��

// // Cadc
n,1

∂adc

��

Cadd
n,0 ⊗Z Sym(n) Isign // Cadd

n,0
// // Cadc

n,0

Here the arrow labeled with a dot · is defined by one of the multiplications given
by the right A(Sym�(n))add-module structure of Cadd

n,∗ . The natural projections
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Cn,∗ ։ Cadd
n,∗ ։ Cadc

n,∗ define an E∞-quadratic pair algebra morphismC ։ Cadc, the

unit of the reflection. The product and the cup-one product in Cadc are determined
by this fact.

Lemma 17.2. Let C be an E∞-quadratic pair algebra with trivial k-invariants such
that Cadd

n,0 is a flat right Sym(n)-module for all n ≥ 0. Then the natural projection

C ։ Cadc is a quasi-isomorphism.

Proof. Since Cn,∗ has trivial k-invariant the natural projection Cn,∗ ։ Cadd
n,∗ is

a quasi-isomorphism by Proposition 5.7. Moreover, since Cadd
n,0 is flat as a right

Sym(n)-module then the lower horizontal arrow in the left of diagram (17.1) is
injective. This implies that the upper one, labeled ·, is also injective, hence the
“snake lemma” applied to diagram (17.1) implies that Cadd

n,∗ ։ Cadc
n,∗ is also a quasi-

isomorphism, and the lemma follows. �

The technical condition on Cadd
n,0 in the statement of Lemma 17.2 is satisfied,

up to a blow-up, by any E∞-quadratic pair algebra, as we show in the following
lemma.

Lemma 17.3. Let C be a 0-free E∞-quadratic pair algebra. There is a 0-free

quadratic pair algebra C̃ with C̃add
n,0 a flat right Sym(n)-module for all n ≥ 0 and a

natural projection C̃ ։ C which is a quasi-isomorphism.

Proof. Since C is 0-free there are pointed sets En such that Cn,(0) = Znil[En],
n ≥ 0. The laws of a module over a quadratic pair algebra show that for any
e ∈ En and g ∈ Sym(n) we have H(e · [g]) = 0. The unique elements of 〈En〉nil

in the kernel of H are the elements of the basis En, compare the proof of [BJP05,
Lemma 12]. Therefore the action of Sym(n) on 〈En〉nil is induced by an action of
Sym(n) on the pointed set En.

The right Sym(n)-module Cadd
n,0 = Z[En] needs not be flat. It would be flat if En

were a free pointed Sym(n)-set. We are going to construct C̃ by replacing En by a
free Sym(n)-set without changing h0 and h1. Let

ϕn : E′
n = En ∧ (Sym(n)+) −→ En

be the pointed map induced by the action of Sym(n) on En. This map is Sym(n)-
equivariant with respect to the action of Sym(n) on E′

n given by multiplication on
the second coordinate of the smash product. Moreover, E′

∗ is a graded monoid with
multiplication given coordinatewise by the product in E∗ and the cross product
homomorphisms in (8.6). This multiplication is equivariant with respect to the
cross product homomorphisms. Let ϕ : E′ → E be the graded map given by ϕn.

Since E′
n is a free Sym(n)-set for all n ≥ 0 the E∞-quadratic pair algebra C̃ =

ϕ∗C in Lemma 14.5 and the natural projection ϕ# : C̃ ։ C satisfy the properties
stated in the lemma. �

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. The E∞-quadratic pair algebra π∗,∗Q in Theorem 9.12 is
0-free, therefore by Lemmas 17.2 and 17.3 the functorial E∞-pair algebra

πadc
∗,∗ Q = (π̃∗,∗Q)adc

proves Theorem 3.4. The natural zig-zag of quasi-isomorphisms between the pair
algebras πadc

∗,∗ Q and πadd
∗,∗ Q is obtained by applying the additivization functor (5.6)

to the diagram

(π̃∗,∗Q)adc
և π̃∗,∗Q ։ π∗,∗Q,
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i.e. it is

(17.4) πadc
∗,∗Q և (π̃∗,∗Q)add

։ πadd
∗,∗ Q.

For this we recall that we have defined πadd
∗,∗ Q as (π∗,∗Q)add in the proof of Theorem

2.7. �

Remark 17.5. In order to deduce Theorem 4.12 from Theorem 10.6 one extends
the results of this section to algebras over an E∞-quadratic pair algebra C. More
precisely, the natural projection C ։ Cadc induces an inclusion

(
Cadc-algebras

)
⊂ (C-algebras) .

This inclusion admits a reflection

(−)ada : (C-algebras) −→
(
Cadc-algebras

)

sending a C-algebra B to the Cadc-algebra Bada obtained from the additivization
Badd by killing the action of the symmetric groups as in (17.1). Lemmas 17.2 and
17.3 admit a generalized version for C-algebras. By using this one can check as in
the proof of Theorem 3.4 that the functor πada

∗,∗ in Theorem 4.12 can be obtained

taking first π∗,∗ in Theorem 10.6 and then applying (−)ada to a blow-up of the
resulting E∞-quadratic pair algebra.
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