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THE 1-TYPE OF A WALDHAUSEN K-THEORY SPECTRUM

FERNANDO MURO AND ANDREW TONKS

Abstract. We give a small functorial algebraic model for the 2-stage Post-
nikov section of the K-theory spectrum of a Waldhausen category and use our
presentation to describe the multiplicative structure with respect to biexact
functors.

Introduction

Waldhausen’s K-theory of a category C with cofibrations and weak equivalences
[Wal85] extends the classical notions of K-theory, such as the K-theory of rings,
additive categories and exact categories.

In this paper we give an algebraic model D∗C for the 1-type P1KC of the K-
theory spectrum KC. This model consists of a diagram of groups

(D0C)ab ⊗ (D0C)ab

〈·,·〉

��

K1C
�

�

// D1C
∂ // D0C // //

H

ii

3

;
F

P

K0C.

in which the bottom row is exact.
The important features of our model are the following:

• It is small, as it has generators given by the objects, weak equivalences and
cofiber sequences of the category C.
• It has minimal nilpotency degree, since both groups D0C and D1C have

nilpotency class 2.
• It encodes the 1-type in a functorial way, and the homotopy classes of

morphisms D∗C→ D∗D and P1KC→ P1KD are in bijection.

From this structure we can recover the homomorphism ·η : K0C⊗ Z/2→ K1C,
which gives the action of the Hopf map in the stable homotopy groups of spheres,
in the following way

a · η = 〈a, a〉, a ∈ K0C.

The extra structure given by the quadratic map H is used to describe the be-
haviour of D∗ with respect to biexact functors between Waldhausen categories

1991 Mathematics Subject Classification. 19B99, 16E20, 18G50, 18G55.
Key words and phrases. K-theory, Waldhausen category, Postnikov invariant, stable quadratic

module, crossed complex, categorical group.
The first author was partially supported by the project MTM2004-01865 and the MEC post-

doctoral fellowship EX2004-0616, and the second by the MEC-FEDER grant MTM2004-03629.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51404517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/math/0603544v3


2 FERNANDO MURO AND ANDREW TONKS

C×D→ E. In particular the classical homomorphisms

K0C⊗K0D −→ K0E,

K0C⊗K1D −→ K1E,

K1C⊗K0D −→ K1E,

may be obtained from our model D∗.
The object D∗C is a stable quadratic module in the sense of [Bau91]. This object

is defined below by a presentation in terms of generators and relations in the spirit
of Nenashev, who gave a model for K1 of an exact category in [Nen98]. A stable
quadratic module is a particular case of a strict symmetric categorical group, or
more generally of a commutative monoid in the category of crossed complexes,
which were first introduced by Whitehead in [Whi49]. The monoidal structure for
crossed complexes was defined in [BH87].

To obtain our presentation of D∗ we introduce the total crossed complex ΠX of a
bisimplicial set X , and show that there is an Eilenberg–Zilber–Cartier equivalence

πDiag(X)++ // Π(X)oo

generalizing [DP61, Section 2] and [Ton03]. This is then applied to the bisimplicial
set given by the nerve of Waldhausen’s wS. construction [Wal78]. An explicit step-
by-step translation from the total complex ΠX to our model D∗ is presented.

1. The algebraic 1-type D∗C of the K-theory spectrum KC

We begin by defining the algebraic structure which the model D∗C will have.

Definition 1.1. A stable quadratic module C∗ is a diagram of group homomor-
phisms

Cab
0 ⊗ C

ab
0

ω
−→ C1

∂
−→ C0

such that given ci, di ∈ Ci, i = 0, 1,

• ∂ω({c0} ⊗ {d0}) = [d0, c0],
• ω({∂(c1)} ⊗ {∂(d1)}) = [d1, c1],
• ω({c0} ⊗ {d0}+ {d0} ⊗ {c0}) = 0.

Here [x, y] = −x − y + x + y is the commutator of two elements x, y ∈ K in any
group K, Kab is the abelianization of K, and {x} ∈ Kab is the element represented
by x ∈ K. In order to simplify the notation we will use the following convention
throughout the whole paper

〈c0, d0〉 = ω({c0} ⊗ {d0}).

We will also write ∂C∗
, ωC∗

and 〈·, ·〉C∗
for the structure maps of C∗ if we want to

distinguish between different stable quadratic modules.

Stable quadratic modules were introduced in [Bau91, Definition IV.C.1]. Notice,
however, that we adopt the opposite convention for the homomorphism ω.

Remark 1.2. The laws of a stable quadratic module imply that C0 and C1 are
groups of nilpotency class 2. Indeed, given x, y, z ∈ C0 we have

[x, [y, z]] = ∂ω({[y, z]} ⊗ {x}) = ∂ω(0⊗ {x}) = 0.

Moreover, given a, b, c ∈ C1

[a, [b, c]] = ω({∂([b, c])}⊗{∂(a)}) = ω({[∂(b), ∂(c)]}⊗{∂(a)}) = ω(0⊗{∂(a)}) = 0.
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The homomorphism ω is central since

[a, ω({y} ⊗ {z})] = ω({∂ω({y} ⊗ {z})} ⊗ {∂(a)}) = ω({[z, y]} ⊗ {∂(a)})
= ω(0⊗ {∂(a)}) = 0.

Furthermore, Ker ∂ ⊂ C1 is a central subgroup since given d ∈ C1 with ∂(d) = 0

[a, d] = ω({∂(d)} ⊗ {∂(a)}) = ω(0⊗ {∂(a)}) = 0.

As usual, one can define stable quadratic modules in terms of generators and
relations. In this way we define the algebraic model D∗C in Definition 1.4 below.
Free stable quadratic modules, and also stable quadratic modules defined by gener-
ators and relations in degrees zero and one, can be characterized up to isomorphism
by obvious universal properties. In Appendix A we give explicit constructions of
the groups and the structure homomorphisms of a stable quadratic module defined
by generators and relations.

Example 1.3. We give an easy example of a presentation of a stable quadratic
module which serves to highlight the difference with group presentations, and also
the suitability for stable homotopy theory. Let C∗ be the stable quadratic module
with just one generator γ, in degree zero. In this case C0 is clearly the infinite cyclic
group generated by γ, whereas C1 is isomorphic to Z/2, generated by the element
〈γ, γ〉.

We assume the reader has certain familiarity with Waldhausen categories and
related concepts. We refer to [Wei] for the basics, see also [Wal85].

Definition 1.4. Let C be a Waldhausen category with distinguished zero object
∗. Cofibrations and weak equivalences are denoted by  and

∼
→, respectively. A

generic cofiber sequence is denoted by

A  B ։ B/A.

We define D∗C as the stable quadratic module generated in dimension zero by
the symbols

• [A] for any object in C,

and in dimension one by

• [A
∼
→ A′] for any weak equivalence,

• [A  B ։ B/A] for any cofiber sequence,

such that the following relations hold.

(1) ∂[A
∼
→ A′] = −[A′] + [A].

(2) ∂[A  B ։ B/A] = −[B] + [B/A] + [A].
(3) [∗] = 0.

(4) [A
1A→ A] = 0.

(5) [A
1A→ A ։ ∗] = 0, [∗ A

1A→ A] = 0.

(6) For any pair of composable weak equivalences A
∼
→ B

∼
→ C,

[A
∼
→ C] = [B

∼
→ C] + [A

∼
→ B].
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(7) For any commutative diagram in C as follows

A // //

∼

��

B // //

∼

��

B/A

∼

��

A′ // // B′ // // B′/A′

we have

[A
∼
→ A′] + [B/A

∼
→ B′/A′]

+〈[A],−[B′/A′] + [B/A]〉 = −[A′
 B′

։ B′/A′]

+[B
∼
→ B′]

+[A  B ։ B/A].

(8) For any commutative diagram consisting of four obvious cofiber sequences
in C as follows

C/B

B/A // // C/A

OOOO

A // // B // //

OOOO

C

OOOO

we have

[B  C ։ C/B]

+[A  B ։ B/A] = [A  C ։ C/A]

+[B/A  C/A ։ C/B]

+〈[A],−[C/A] + [C/B] + [B/A]〉.

(9) For any pair of objects A,B in C

〈[A], [B]〉 = − [B
i2
 A ∨B

p1

։ A] + [A
i1
 A ∨B

p2

։ B].

Here

A
i1 //

A ∨B
p1

oo
p2

// B
i2oo

are the natural inclusions and projections of a coproduct in C.

Remark 1.5. Notice that relations (4) and (7) imply that if (9) holds for a particular
choice of the coproduct A ∨B then it holds for any other choice A ∨′ B, since any
two coproducts are canonically isomorphic by an isomorphism which preserves the
natural inclusions and projections of the factors.

Definition 1.6. A morphism f : C∗ → D∗ in the category squad of stable qua-
dratic modules is given by group homomorphisms fi : Ci → Di, i = 0, 1, such that
given ci, di ∈ Ci

• ∂D∗
f1(c1) = f0∂C∗

(c1),
• 〈f0(c0), f0(d0)〉D∗

= f1〈c0, d0〉C∗
.
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The homotopy groups of C∗ are

π1C∗ = Ker ∂ and π0C∗ = Coker∂.

A weak equivalence in squad is a morphism which induces isomorphisms in homo-
topy groups. The homotopy category

Ho squad

is obtained from squad by inverting weak equivalences.

Let WCat be the category of Waldhausen categories as above and exact functors.
The construction D∗ defines a functor

D∗ : WCat −→ squad.

For an exact functor F : C→ D the stable quadratic module morphism D∗F : D∗C→
D∗D is given on generators by

(D0F )([A]) = [F (A)],

(D1F )([A
∼
→ A′]) = [F (A)

∼
→ F (A′)],

(D1F )([A  B ։ B/A]) = [F (A)  F (B) ։ F (B/A)].

Let HoSpec0 be the homotopy category of connective spectra. In Lemma 4.22
below we define a functor

λ0 : HoSpec0 −→ Ho squad

together with natural isomorphisms

πiλ0X ∼= πiX, i = 0, 1.

This functor induces an equivalence of categories

λ0 : HoSpec1
0

∼
−→ Ho squad,

where HoSpec1
0 is the homotopy category of spectra with trivial homotopy groups

in dimensions other than 0 and 1.
The naive algebraic model for the 1-type of the algebraic K-theory spectrum

KC of a Waldhausen category C would be λ0KC. However this stable quadratic
module is much bigger than D∗C and it is not directly defined in terms of the basic
structure of the Waldhausen category C. This makes meaningful the following
theorem, which is the main result of this paper.

Theorem 1.7. Let C be a Waldhausen category. There is a natural isomorphism
in Ho squad

D∗C
∼=
−→ λ0KC.

This theorem shows that the model D∗C satisfies the functoriality properties
claimed in the introduction. It also shows that the exact sequence of the introduc-
tion is available. The theorem will be proved in section four.

From a local point of view the 1-type of a connective spectrum is determined
up to non-natural isomorphism by the first k-invariant. We now establish the
connection between this k-invariant and the algebraic model D∗C.

Definition 1.8. The k-invariant of a stable quadratic module C∗ is the homomor-
phism

k : π0C∗ ⊗ Z/2 −→ π1C∗, k(x⊗ 1) = 〈x, x〉.
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Given a connective spectrum X the k-invariant of λ0X coincides with the action
of the Hopf map 0 6= η ∈ πs

1
∼= Z/2 in the stable stem of the sphere.

π0X ⊗ π
s
1

//

∼=

��

π1X

∼=

��

π0λ0X ⊗ Z/2
k // π1λ0X

See Lemma 4.22 below. We recall that the action of η coincides with the first
Postnikov invariant of X . This is used to derive the following corollary of Theorem
1.7.

Corollary 1.9. The first Postnikov invariant of the spectrum KC

·η : K0C⊗ Z/2 −→ K1C

is defined by

[A] · η = [τA,A : A ∨A
∼=
→ A ∨A],

where τA,A is the automorphism which exchanges the factors of a coproduct A ∨A
in C.

Proof. Consider the following commutative diagram

A //
i2 // A ∨A

p1
// //

τA,A∼=

��

A

A //
i1 // A ∨A

p2 // // A

where ij and pj are the natural inclusions and projections of the two factors of the
coproduct A ∨A, j = 1, 2. By relations (4) and (7) in Definition 1.4

0 = −[A
i1
 A ∨A

p2

։ A] + [τA,A : A ∨A
∼=
→ A ∨A] + [A

i2
 A ∨A

p1

։ A].

By relation (1) in Definition 1.4 we have ∂[τA,A] = 0, so [τA,A] is central in D1C

by Remark 1.2, therefore

0 = [τA,A : A ∨A
∼=
→ A ∨A]− [A

i1
 A ∨A

p2

։ A] + [A
i2
 A ∨A

p1

։ A]

= [τA,A : A ∨A
∼=
→ A ∨A]− 〈[A], [A]〉.

Here we use relation (9) in Definition 1.4 for the last equality. This proves the
corollary. �

The next corollary can be easily obtained from the previous one by using again
the relations defining D∗ and matrix arguments as for example in the proof of
[Ran85, Proposition 2.1 (iv)].

Corollary 1.10. Let A be a Waldhausen category which is additive. Then the first
Postnikov invariant of the spectrum KA

·η : K0A⊗ Z/2 −→ K1A

is defined by

[A] · η = [−1A : A
∼=
→ A].
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2. The multiplicative properties of D∗

In order to describe the multiplicative properties of D∗C with respect to biexact
functors we would need a symmetric monoidal structure on squad which models
the smash product of spectra. Unfortunately such a monoidal structure does not
exist and we need to enrich D∗C with an extra structure map H ,

(D0C)ab ⊗ (D0C)ab

〈·,·〉

��

D1C
∂ // D0C,

H

ii

so that the diagrams

D
sg
0 C =

(

D0C
H //

(D0C)ab ⊗ (D0C)ab

〈∂,∂〉
oo

)

,

D
sg
1 C =

(

D1C
H∂ //

(D0C)ab ⊗ (D0C)ab

〈·,·〉
oo

)

,

are square groups in the sense of [BP99].

Definition 2.1. A square group M is a diagram

Me

H

⇄
P
Mee

where Me is a group, Mee is an abelian group, P is a homomorphism, H is a
quadratic map, i.e. the symbol

(x|y)H = H(x+ y)−H(y)−H(x), x, y ∈Me,

is bilinear, and the following identities hold, a ∈Mee,

(P (a)|x)H = 0,

(x|P (a))H = 0,

P (x|y)H = [x, y],

PHP (a) = P (a) + P (a).

Note that (·|·)H induces a homomorphism

(2.2) (·|·)H : CokerP ⊗ CokerP −→Mee.

Moreover

T = HP − 1: Mee −→Mee

is an involution, i.e. a homomorphism with T 2 = 1, and

∆: CokerP −→ Xee : x 7→ (x|x)H −H(x) + TH(x)

defines a homomorphism.
A morphism f : M → N in the category of square groups is given by group

homomorphisms fe : Me → Ne, fee : Mee → Nee commuting with H and P .
A quadratic pair module f : M → N is a square group morphism such that

Mee = Nee and fee is the identity.
Morphisms in the category qpm of quadratic pair modules are defined again by

homomorphisms commuting with all operators.
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A stable quadratic module C∗ is termed 0-free if C0 = 〈E〉nil is a free group of
nilpotency class 2, see the appendix. Here E is the basis.

Lemma 2.3. Let C∗ be a 0-free stable quadratic module with C0 = 〈E〉nil and let
H : C0 → Z[E] ⊗ Z[E] be the unique quadratic map such that H(e) = 0 for any
e ∈ E and (x|y)H = y ⊗ x for x, y ∈ C0. Then

Csg
0 =

(

C0

H //
Cab

0 ⊗ C
ab
0

〈∂,∂〉
oo

)

,

Csg
1 =

(

C1

H∂ //
Cab

0 ⊗ C
ab
0ω

oo

)

,

are square groups. Moreover, the homomorphism ∂ : C1 → C0 defines a quadratic
pair module

Csg
1 −→ Csg

0 .

The square group Csg
0 in this lemma will also be denoted by Znil[E] or just Znil

if E is a singleton, as in [BJP05].
The stable quadratic module D∗C defined in the previous section is 0-free. The

basis of D0C is the set of objects in C, excluding the zero object ∗. In particular
D

sg
0 C and D

sg
1 C above are square groups and D∗C is endowed with the structure

of a quadratic pair module. Moreover, the morphisms induced by exact functors
are compatible with H , so that D∗ lifts to a functor

D∗ : WCat −→ qpm.

The category of square groups is a symmetric monoidal category with the tensor
product ⊚ defined in [BJP05] that we now recall.

Definition 2.4. The tensor product M ⊚ N of square groups M,N is defined as
follows. The group (M ⊚N)e is generated by the symbols x⊚ y, a⊗̄b for x ∈ Me,
y ∈ Ne, a ∈Mee and b ∈ Nee, subject to the following relations

(1) the symbol a⊗̄b is bilinear and central,
(2) x⊚ (y1 + y2) = x⊚ y1 + x⊚ y2 +H(x)⊗̄(y2|y1)H ,
(3) the symbol x⊚ y is left linear, (x1 + x2) ⊚ y = x1 ⊚ y + x2 ⊚ y,
(4) P (a) ⊚ y = a⊗̄(y|y)H .
(5) T (a)⊗̄T (b) = −a⊗̄b,
(6) x⊚ P (b) = ∆(x)⊗̄b.

The abelian group (M ⊚ N)ee is defined as the tensor product Mee ⊗ Nee. The
homomorphism

P : (M ⊚N)ee −→ (M ⊚N)e

is P (a⊗ b) = a⊗̄b, and

H : (M ⊚N)e −→ (M ⊚N)ee

is the unique quadratic map satisfying

H(x⊚ y) = ∆(x) ⊗H(y) +H(x) ⊗ (y|y)H ,

H(a⊗̄b) = a⊗ b− T (a)⊗ T (b),

(a⊗̄b|−)H = 0,

(−|a⊗̄b)H = 0,

(a⊚ b|c⊚ d)H = (a|c)H ⊗ (b|d)H .
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The unit for the tensor product is the square group Znil.

Theorem 2.5. Let C × D → E : (A,B) 7→ A ∧ B be a biexact functor between
Waldhausen categories. Then there are morphisms of square groups

ϕij : D
sg
i C ⊚ D

sg
j D→ D

sg
i+jE,

for i, j, i+ j ∈ {0, 1}, defined by

ϕ00
e ([A] ⊚ [C]) = [A ∧ C],

ϕ01
e ([A] ⊚ [C

∼
→ C′]) = [A ∧ C

∼
→ A ∧ C′],

ϕ01
e ([A] ⊚ [C  D ։ D/C]) = [A ∧ C  A ∧D ։ A ∧ (D/C)],

ϕ10
e ([A

∼
→ A′] ⊚ [C]) = [A ∧ C

∼
→ A′ ∧ C],

ϕ10
e ([A  B ։ B/A] ⊚ [C]) = [A ∧ C  B ∧ C ։ (B/A) ∧C],

ϕij
ee([A]⊗ [A′]⊗ [C]⊗ [C′]) = [A ∧ C]⊗ [A′ ∧ C′].

such that the following diagram of square groups commutes

D
sg
1 C ⊚ D

sg
1 D

1⊚∂

((QQQQQQQQQQQQQ
∂⊚1

vvmmmmmmmmmmmmm

D
sg
0 C ⊚ D

sg
1 D

ϕ01

((QQQQQQQQQQQQQ

1⊚∂

&&

D
sg
1 C ⊚ D

sg
0 D

ϕ10

vvmmmmmmmmmmmmm

∂⊚1

xx

D
sg
1 E

∂

��

D
sg
0 E

D
sg
0 C ⊚ D

sg
0 D

ϕ00

OO

Now given a biexact functor C×D→ E : (A,B) 7→ A∧B we recover the classical
homomorphisms

ϕ̄00 : K0C⊗K0D −→ K0E,

ϕ̄01 : K0C⊗K1D −→ K1E,

ϕ̄10 : K1C⊗K0D −→ K1E,

from ϕij in Theorem 2.5 as follows. Given i, j, i+ j ∈ {0, 1},

ϕ̄ij(a⊗ b) = ϕij
e (a⊚ b).(2.6)

Here we use the natural exact sequence

K1C →֒ D1C
∂
−→ D0C ։ K0C

available for any Waldhausen category C to identify K1C with its image in D1C,
and we use the same notation for an element in D0C and for its image in K0C.
One can use the relations defining the tensor product ⊚ of square groups to check
that the homomorphisms ϕ̄ij are well defined by the formula (2.6) above.

In the proof of Theorem 2.5 we use a technical lemma about square groups,
which measures the failure of ⊚ to preserve certain coproducts.
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Let M ·E be the E-fold coproduct of a square group M , for any indexing set E.
We know from [BJP05] that Znil[E] = Znil · E, so we have canonical morphisms
M ⊚ ιx : M →M ⊚ Znil[E] for x ∈ E. However, the natural comparison morphism

ι = (M ⊚ ιx)x∈E : M ·E −→M ⊚ Znil[E]

is not an isomorphism.
Consider the homomorphisms

∆: Z[E]⊗ Z[E] ։ Z[E],

H : ∧2
Z[E] → Ker∆,

q : Ker∆ ։ ∧2
Z[E],

where ∆(e⊗e) = e for e ∈ E and ∆(e⊗e′) = 0 if e 6= e′ ∈ E. Moreover, ∧2A is the
exterior square of an abelian group A, i.e. the quotient of A ⊗ A by the relations
a⊗a = 0, a ∈ A, H(x∧y) = y⊗x−x⊗y and q is induced by the natural projection
A⊗A ։ ∧2A : a⊗ b 7→ a ∧ b. For any abelian group A we consider

(A⊗ ∧2
Z[E])⊗ =

(

A⊗ ∧2
Z[E]

A⊗H

⇄
A⊗q

A⊗Ker∆

)

.

This is isomorphic to the square group defined in [BJP05, Section 1]. The construc-
tion is obviously functorial in A.

Lemma 2.7. For any square group M and any set E there is a pushout diagram
in the category of square groups

(CokerP ⊗ CokerP ⊗ ∧2
Z[E])⊗ //

��

push

M ·E

ι

��

(Mee ⊗ ∧
2
Z[E])⊗ // M ⊚ Znil[E]

which is natural in M and E.

Proof. One can check inductively by using [BJP05, Proposition 5] and [BJP05,
Section 5.6 (6)] that there is a map of central extensions of square groups in the
sense of [BJP05, Section 5.5] as follows.

(CokerP ⊗ CokerP ⊗ ∧2
Z[E])⊗

�

� µ
//

��

M ·E

ι

��

// //
∏

E M

(Mee ⊗ ∧
2
Z[E])⊗

�

� ν // M ⊚ Znil[E] // //
∏

E M

Here the left-hand morphism is induced by (2.2). The morphism µ is completely
determined by the homomorphism

µee : CokerP ⊗ CokerP ⊗Ker∆ −→ (M · E)ee

defined by µee(a⊗ b ⊗ x⊗ y) = P (ιx(a)|ιy(b))H for a, b ∈ CokerP and x 6= y ∈ E.
Similarly ν is determined by the homomorphism

νee : Mee ⊗Ker∆ −→Mee ⊗ Z[E]⊗ Z[E]

induced by the inclusion Ker∆ ⊂ Z[E]⊗ Z[E]. It is straightforward to check that
the square on the left is the desired pushout. �
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Proof of Theorem 2.5. It is obvious that ϕij
ee is a well-defined abelian group ho-

momorphism in all cases. The square group morphism ϕ00 is well-defined as a
consequence of [BJP05, Proposition 34].

Let E be the set of objects of D, excluding ∗, so that Znil[E] = D
sg
0 D, and

let M = D
sg
1 C. To see that ϕ10 is well defined by the formulas in the statement

we note that it is just the morphism determined, using Lemma 2.7, by the square
group morphisms

(Mee ⊗ ∧
2
Z[E])⊗

ξ
−→ D

sg
1 E

ζ
←−M ·E

defined as follows. The square group morphism ξ is completely determined by

ξee = ϕ10
ee : (D0C)ab ⊗ (D0C)ab ⊗Ker∆ −→ (D0E)ab ⊗ (D0E)ab.

For each A ∈ E, the component ζ ◦ ιA : D
sg
1 C → D

sg
1 C · E → D

sg
1 E is the unique

square group morphism such that

D
sg
1 C

ιA //

∂

��

D
sg
1 C · E

ζ
// D

sg
1 E

∂

��

D
sg
0 C

ιA // D
sg
0 C · E

ϕ00

// D
sg
1 E

coincides with the morphism of quadratic pair modules

D∗( · ∧A) : D∗C→ D∗E

induced by the exact functor · ∧A : D→ E.
By using this alternative definition of ϕ10 in terms of Lemma 2.7 it is also

immediate that the lower right cell in the diagram of the statement is commutative.
To see that ϕ01 is well-defined and that the lower left cell of the diagram in the

statement commutes one proceeds similarly, using the fact that ⊚ is symmetric.
Now we just need to check that the upper cell is commutative. For this it is

enough to show that the following equalities hold

ϕ01((∂[A
∼

→ A′]) ⊚ [C
∼

→ C′]) = ϕ10([A
∼

→ A′] ⊚ (∂[C
∼

→ C′])),

ϕ
01

((∂[A
∼

→ A
′

]) ⊚ [C  D ։ D/C]) = ϕ
10

([A
∼

→ A
′

] ⊚ (∂[C  D ։ D/C])),

ϕ01((∂[A  B ։ B/A]) ⊚ [C
∼

→ C′]) = ϕ10([A  B ։ B/A] ⊚ (∂[C
∼

→ C′])),

ϕ01((∂[A  B ։ B/A]) ⊚ [C  D ։ D/C]) = ϕ10([A  B ։ B/A] ⊚ (∂[C  D ։ D/C])).

This is a tedious but straightforward task which makes use of the laws of stable
quadratic modules and the tensor product of square groups, the elementary prop-
erties of a biexact functor, and the relations (1), (2), (6), (7) and (8) in Definition
1.4. �

3. Natural transformations and induced homotopies on D∗

In this section we define induced homotopies along the functor D∗ from section 1.

Definition 3.1. Two morphisms f, g : C∗ → D∗ are homotopic f ≃ g if there exists
a function α : C0 → D1 satisfying

• α(c0 + d0) = α(c0) + α(d0) + 〈f0(d0),−f0(c0) + g0(c0)〉D∗
,

• g0(c0) = f0(c0) + ∂D∗
α(c0),

• g1(c1) = f1(c1) + α∂C∗
(c1).
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Such a function is called a homotopy α : f ⇒ g, also denoted by

C∗

f
((

g

66
D∗.α��

The category squad of stable quadratic modules is a 2-category with 2-morphisms
given by homotopies. It is indeed a category enriched over groupoids, see [BM06,
Proposition 7.2]. The vertical composition of 2-morphisms

C∗

f

��
g //

h

@@
D∗

α
��

β��

denoted by β�α : f ⇒ h, is defined as (β�α)(x) = α(x) + β(x) for x ∈ C0. The
identity 2-morphism

C∗

f
((

f

66
C∗.1f��

is clearly given by the function C0 → C1 : x 7→ 0. The horizontal compositions
hα : hf ⇒ hg and αk : fk ⇒ gk in the diagram

C∗
k // D∗

g

<<

f

""

E∗
h // K∗,α

��

are defined by the functions h1α : D0 → K1 and αk0 : C0 → E1, respectively.
The homotopy category obtained by imposing the homotopy relation on the full

subcategory squadf ⊂ squad given by 0-free objects is equivalent to the homotopy
category of stable quadratic modules

squadf/≃
∼
−→ Ho squad,

compare [BM06, Proposition 7.7].
The category WCat of Waldhausen categories and exact functors is also a 2-

category, where a 2-morphism ε : F ⇒ G between two exact functors F,G : C→ D

is a natural transformation ε given by weak equivalences ε(A) : F (A)
∼
→ G(A) in D

for any object A in C.

Theorem 3.2. The construction D∗ : WCat→ squad defines a 2-functor.

Proof. The homotopy D∗ε : D0C → D1D induced by a 2-morphism ε : F ⇒ G in
WCat is defined on generators [A] ∈ D0C by the formula

(D∗ε)([A]) = − [ε(A) : F (A)
∼
→ G(A)],

and then extended to the whole group D0C by using the first equation in Def-
inition 3.1. This is a well-defined homotopy, compare [Bau91, IV.4.5]. Now we
have to check that D∗, defined in this way, preserves the vertical composition of
2-morphisms, the identity 2-morphisms, and the horizontal composition of a 1-
morphism and a 2-morphism.
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Let

C

F

��

G //

H

BBD

ε
��

δ��

be a diagram of vertically composable 2-morphisms in WCat. Given an object A
in C we have

((D∗δ)�(D∗ε))([A]) = (D∗ε)([A]) + (D∗δ)([A])

= −[ε(A) : F (A)
∼
→ G(A)]− [δ(A) : G(A)

∼
→ H(A)]

by Definition 1.4 (6) = −[(δ�ε)(A) = δ(A)ε(A) : F (A)
∼
→ G(A)]

= (D∗(δ�ε))([A]),

so vertical composition is preserved.
By Definition 1.4 (4) D∗ takes the identity natural transformation to the identity

homotopy.
Finally given a diagram in WCat and objects A in D and B in C

C
K // D

G

>>

F

  

E
H // Kε

��

we have

(D1H)(D∗ε)([A]) = (D1H)(−[ε(A) : F (A)
∼
→ G(A)])

= −[(Hε)(A) = H(ε(A)) : HF (A)
∼
→ HG(A)]

= (D∗(Hε))([A]),

(D∗ε)(D0K)([B]) = (D∗ε)([K(B)])

= −[(εK)(B) = ε(K(B)) : FK(B)
∼
→ GK(B)]

= (D∗(εK))([B]).

Now the proof is finished. �

Remark 3.3. The homotopies defined in Theorem 3.2 are constructed by using just
one kind of degree 1 generators of D∗, namely those given by weak equivalences. In
case we have a cofiber sequence F  G ։ H of exact functors F,G,H : C→ D one
can define a homotopy using the other class of degree 1 generators, given by cofiber
sequences, to give a direct proof of the additivity theorem [Wal85, Proposition 1.3.2
(4)] for the algebraic model of the 1-type D∗.

4. Proof of Theorem 1.7

In this section we use the notions of crossed module and crossed complex in
the category of groups and in the category of groupoids. There are different but
equivalent ways of presenting these objects depending on a series of conventions
such as using left or right actions, choice of basepoint of an n-simplex, etc. In this
paper we adopt the conventions which are compatible with [Ton03]. As examples
of a crossed complex we can mention the fundamental crossed complex πCWY of
a CW -complex Y and the fundamental crossed complex πX of a simplicial set X ;
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these are related by the natural identification πX = πCW |X | where | · | denotes the
geometric realization functor from simplicial sets to CW -complexes. See [Ton03]
for further details and references. The reader who is unfamiliar with simplicial
techniques is referred to the texts [Cur71, May67].

Definition 4.1. A crossed module (of groups) is a group homomorphism ∂ : M →
N such that N acts (on the right) on M and the following equations are satisfied
for m,m′ ∈M and n ∈ N .

∂(mn) = −n+ ∂(m) + n,(4.2)

m∂(m′) = −m′ +m+m′.(4.3)

Morphisms of crossed modules are defined by commutative squares of group
homomorphisms which are compatible with the actions in the obvious way. Such a
morphism is a weak equivalence if it induces isomorphisms between the kernels and
cokernels of the homomorphisms ∂.

A crossed complex (of groups) (C, ∂) is given by groups and homomorphisms

· · · → Cn
∂n−→ Cn−1 → · · · → C3

∂3−→ C2
∂2−→ C1, ∂2 = 0,

where ∂2 : C2 → C1 is a crossed module as above, {Cn, n ≥ 3} is a chain complex
of modules over Coker[∂2 : C2 → C1], and the homomorphism ∂3 : C3 → C2 is
compatible with the actions of C1. Note that the kernel of ∂2 (and in particular
the image of ∂3) is central in C2 by (4.3).

We sometimes adopt the convention C0 = {∗} for crossed complexes of groups,
since they are the ‘one object’ cases of the more general crossed complexes of
groupoids. In the general case the groupoid C1 has source and target functions
s, t : C1 → C0, while for n ≥ 2 the groupoids Cn are totally disconnected, that is,
s = t : Cn → C0. The action of C1 is now only partially defined, given by functions
Cn(y, y)× C1(x, y)→ Cn(x, x) for objects x, y ∈ C0.

If Y is a CW -complex the crossed complex of groupoids πCWY is defined by the
relative homotopy groupoids of the skeletons Y n of Y based at the set of points Y 0

· · · → πn(Y n, Y n−1, Y 0)
∂n−→ πn−1(Y

n−1, Y n−2, Y 0)→ · · ·

· · · → π2(Y
2, Y 1, Y 0)

∂2−→ π1(Y
1, Y 0).

This is a crossed complex of groups if and only if Y is a reduced CW -complex, i.e.
Y 0 = {∗}.

If X is a simplicial set, then the crossed complex of groupoids πX has object set
X0 and an explicit presentation by generators x ∈ (πX)k for each k-simplex x of X ,

with source d1
kx (and target d0x if k = 1), and relations given by the boundaries

∂2x = − d1x+ d0x+ d2x(4.4)

∂3x = d2x+ d0x
d2

2x − d3x− d1x

∂kx = d0x
d2

k−1x +

r
∑

i=1

(−1)idix

together with the relation x = 0 in πX whenever x is a degenerate simplex of X ;
compare [Ton03, Example 1.2].

The category ccplx of crossed complexes is symmetric monoidal with respect to
a tensor product ⊗, introduced in [BH87]. Suppose C and D are crossed complexes
of groupoids. Then, using the conventions of [Ton03, Definition 1.4], the tensor



THE 1-TYPE OF A WALDHAUSEN K-THEORY SPECTRUM 15

product C ⊗ D has a presentation with generators c ⊗ d ∈ (C ⊗ D)m+n for each
c ∈ Cm and d ∈ Dn, where c⊗ d has source sc⊗ sd ∈ (C ⊗D)0 (and target tc⊗ d
or c⊗ td if (m,n) = (1, 0) or (0, 1)). The relations are

(c⊗ d)a⊗b =

{

ca ⊗ d if b = sd and m ≥ 2,
c ⊗ db if a = sc and n ≥ 2,

(4.5)

c⊗ (d+ d′) =

{

c⊗ d + c⊗ d′ if n ≥ 2 or m = 0,

(c⊗ d)sc⊗d′

+ c⊗ d′ if n = 1 and m ≥ 1,

(c+ c′)⊗ d =

{

c⊗ d + c′ ⊗ d if m ≥ 2 or n = 0,

c′ ⊗ d + (c⊗ d)c′⊗sd if m = 1 and n ≥ 1,

∂m+n(c⊗ d) =

{

−sc⊗ d− c⊗ td+ tc⊗ d+ c⊗ sd if m,n = 1,
∂I

m(c⊗ d) + (−1)m ∂II
n(c⊗ d) otherwise.

The symbols ∂I
k(c⊗ d) and ∂II

k (c⊗ d) are defined for k ≥ 2 by ∂kc⊗ d and c⊗ ∂kd
respectively, for k = 1 by −sc⊗ d + (tc ⊗ d)c⊗sd and −c⊗ sd + (c ⊗ td)sc⊗d, and
vanish for k = 0.

This tensor product satisfies the following crucial property: given two CW -
complexes Y , Z there is a natural isomorphism πCWY ⊗ πCWZ ∼= πCW (Y × Z)
[BH91, Theorem 3.1 (iv)] satisfying the usual coherence properties. For products of
simplicial sets there is an Eilenberg-Zilber theorem proved in [Ton03]. As examples
of monoids in the category of crossed complexes we can cite the fundamental crossed
complex πCWM of a CW -monoid M , and the crossed cobar construction ΩCrsX
on a 1-reduced simplicial set X , see [BT97]. As a consequence of [Ton03] the
fundamental crossed complex πN of a simplicial monoid N is also a monoid in
ccplx.

For our purposes it will be convenient to have a small model for the fundamental
crossed complex of the diagonal of a bisimplicial set. This is achieved by the
following definition.

Definition 4.6. The total crossed complex Π(X) of a bisimplicial set X is the
coend

Π(X) =

∫ m,n

π(∆[m]) ⊗ π(∆[n]) · Xm,n .(4.7)

Here ∆[k] is the k-simplex, k ≥ 0, and C · E is the E-fold coproduct of a crossed
complex C over an indexing set E; see [Mac71, IX.6] for more details on coend
calculus.

The following lemma gives an explicit presentation in terms of generators and
relations.

Lemma 4.8. Suppose X is a horizontally-reduced bisimplicial set, in the sense that
X0,∗ = ∆[0]. Then Π(X) is the crossed complex of groups with one generator xm,n
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in Π(X)m+n for each xm,n ∈ Xm,n and subject to the following relations:

xm,n = 0 if xm,n is degenerate in Xm,n ,

∂2x1,1 = − dv
0x1,1 + dv

1x1,1 ,

∂2x2,0 = − dh
1x2,0 + dh

0x2,0 + dh
2x2,0 ,

∂3x1,2 = − dv
2x1,2 − d

v
0x1,2 + dv

1x1,2 ,

∂3x2,1 = dh
2x2,1 + dh

0x2,1
dh
2
dv
1
x2,1
− dv

1x2,1 − d
h
1x2,1 + dv

0x2,1 ,

∂3x3,0 = dh
2x3,0 + dh

0x3,0
(dh

2
)2x3,0

− dh
3x3,0 − d

h
1x3,0 .

For m ≥ 1 and m+ n ≥ 4, the boundary relations are abelian:

∂m+nxm,n = dh
0xm,n

(dh
2
)m−1(dv

1
)nxm,n

+

m
∑

i=1

(−1)idh
i xm,n +

n
∑

j=0

(−1)m+jdv
jxm,n.

The last summation is trivial if n = 0; all the other terms are trivial if m = 1.

Proof. The proof follows from the abstract coend definition by using the presenta-
tions for π∆[k] and for the tensor product of crossed complexes given above, and
simplifying via some straightforward calculations in crossed complexes. We give
the full details.

The total crossed complex Π(X) has generators in dimension m+ n given by

(cm ⊗ dn; xm′,n′), for cm ∈ (π∆[m′])m, dn ∈ (π∆[n′])n, xm′,n′ ∈ Xm′,n′ ,

subject to the relations listed in (4.5) and the coend identifications

(σ∗cm⊗τ∗dn; xm′′,n′′) = (cm⊗dn; (σ, τ)∗xm′′,n′′), for (σ, τ) ∈ ∆(m′,m′′)×∆(n′, n′′).

By the first three relations of (4.5) we need only consider those generators for which
cm is a generator of π∆[m′], given by an m-simplex of ∆[m′], and similarly for d.
Since ∆[m′]m = ∆(m,m′) we have the coend identification

(cm ⊗ dn; xm′,n′) = (δm ⊗ δn; (cm, dn)∗xm′,n′)

and we can assume m = m′, n = n′ and c, d are top-dimensional simplices δ given
by the ‘identity’ simplicial operators 1.

Generators of Π(X) are thus identified simply with elements xm,n ∈ Xm,n, and
Π(X) is a crossed complex of groups, (Π(X))0 = X0,0 = {∗}. The horizontally or
vertically degenerate elements xm,n are zero, since the degeneracy may be trans-
ferred to the generator of π∆[m] or π∆[n] respectively. In particular we have
x0,n = 0 whenever n > 0, since X is horizontally reduced.

The boundary maps on π∆[m] and π∆[n] are specified by the relations (4.4).
Transferring them to horizontal and vertical face maps on xm,n, the fourth relation
of (4.5) gives the following when m+ n ≤ 3

(∂1+1(δ1 ⊗ δ1); x1,1) = (−d1δ1 ⊗ δ1 − δ1 ⊗ d0δ1 + d0δ1 ⊗ δ1 + δ1 ⊗ d1δ1; x1,1)

= − 0 − (δ1 ⊗ δ1; d
v
0x1,1) + 0 + (δ1 ⊗ δ1; d

v
1x1,1) ,

(∂2+0(δ2 ⊗ δ0); x2,0) = ((−d1δ2 + d0δ2 + d2δ2)⊗ δ0; x2,0)

= −(δ2 ⊗ δ0; d
h
1x2,0) + (δ2 ⊗ δ0; d

h
0x2,0) + (δ2 ⊗ δ0; d

h
2x2,0) ,
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(∂1+2(δ1 ⊗ δ2); x1,2) = (∂I
1(δ1 ⊗ δ2)− ∂

II
2 (δ1 ⊗ δ2); x1,2)

= (−d1δ1 ⊗ δ2 + (d0δ1 ⊗ δ2)
δ1⊗d1δ2 − δ1 ⊗ (−d1δ2 + d0δ2 + d2δ2); x1,2)

= − 0 + 0− (δ1 ⊗ δ2; d
v
2x1,2)− (δ1 ⊗ δ2; d

v
0x1,2) + (δ1 ⊗ δ2; d

v
1x1,2) ,

(∂2+1(δ2 ⊗ δ1); x2,1) = (∂I
2(δ2 ⊗ δ1) + ∂II

1 (δ2 ⊗ δ1); x2,1)

= ((−d1δ2 + d0δ2 + d2δ2)⊗ δ1 − δ2 ⊗ d1δ1 + δ2 ⊗ d0δ1; x2,1)

= (d2δ2 ⊗ δ1 + (d0δ2 ⊗ δ1)
d2δ2⊗d1δ1

− (d1δ2 ⊗ δ1)
∂2δ2⊗d1δ1 − δ2 ⊗ d1δ1 + δ2 ⊗ d0δ1; x2,1)

= (δ2 ⊗ δ1; d
h
2x2,1) + (δ2 ⊗ δ1; d

h
0x2,1)

(δ2⊗δ1; dh
2
dv
1
x2,1)

− (δ2 ⊗ δ1; d
v
1x2,1)− (δ2 ⊗ δ1; d1h

x
2,1) + (δ2 ⊗ δ1; d

v
0x2,1) ,

(∂3+0(δ3 ⊗ δ0); x3,0) = ((d2δ3 + (d0δ3)
d2

2δ3 − d3δ3 − d1δ3)⊗ δ0; x2,0)

= (δ3 ⊗ δ0; d
h
2x3,0) + (δ3 ⊗ δ0; d

h
0x3,0)

(δ3⊗δ0; dh
2

2
x3,0)

− (δ3 ⊗ δ0; d
h
3x3,0)− (δ3 ⊗ δ0; d

h
1x3,0).

These correspond exactly to the first five boundary relations claimed in the state-
ment of this Lemma. Note that in the penultimate relation we used the fact that
X is horizontally reduced, so the action disappears in the expansion of ∂II

1 , and
we also used the third relation of (4.5) and the crossed module axiom (4.3) in the
expansion of ∂I

2.
The remaining relation to prove, in the chain complex (Π(X))≥3, is a combina-

tion of the following cases:

(∂m+0(δm ⊗ δ0); xm,0) =

(

(d0δm ⊗ δ0)
d2

m−1δm⊗δ0 +
m
∑

i=1

(−1)i diδm ⊗ δ0; xm,0

)

= (δm ⊗ δ0; d
h
0xm,0)

(δm⊗δ0; (d
h
2
)m−1xm,0) +

m
∑

i=1

(−1)i(δm ⊗ δ0; d
h
i xm,0) ,

(∂m+1(δm ⊗ δ1); xm,1) = (∂I
m(δm ⊗ δ1) + (−1)m∂II

1 (δm ⊗ δ1); xm,1)

=

(

(d0δm ⊗ δ1)
d2

m−1δm⊗d1δ1 +

m
∑

i=1

(−1)i diδm ⊗ δ1

+ (−1)m(−δm ⊗ d1δ1 + δm ⊗ d0δ1); xm,1

)

= (δm ⊗ δ1; d
h
0xm,1)

(δm⊗δ1; dh
2

m−1
dv
1
xm,1) +

m
∑

i=1

(−1)i (δm ⊗ δ1; d
h
i xm,1)

+ (−1)m
(

−(δm ⊗ δ1; d
v
1xm,1) + (δm ⊗ δ1; d

v
0xm,1)

)

,

(∂1+n(δ1 ⊗ δn); x1,n) =
(

0− ∂II
n(δ1 ⊗ δn); x1,n

)

= −

( n
∑

j=0

(−1)jδ1 ⊗ djδn; x1,n

)

=

n
∑

j=0

(−1)1+j(δ1 ⊗ δn; dv
jx1,n) ,
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(∂m+n(δm ⊗ δn); xm,n) = (∂I
m(δm ⊗ δn) + (−1)m∂II

1 (δm ⊗ δn); xm,n)

=

(

(d0δm ⊗ δn)d2
m−1δm⊗dn

1
δn +

m
∑

i=1

(−1)i diδm ⊗ δn

+ (−1)m
n
∑

j=0

(−1)jδm ⊗ djδn; xm,n

)

= (δm ⊗ δn; dn
0xm,n)(δm⊗δn; dh

2

m−1
dv
1

nxm,n) +

m
∑

i=1

(−1)i(δm ⊗ δn; dh
i xm,n)

+
n
∑

j=0

(−1)m+j(δm ⊗ δn; dv
jxm,n).

�

The following results are natural generalizations of the Eilenberg–Zilber theorem
for crossed complexes given in [Ton03].

Theorem 4.9. There is a natural homotopy equivalence (in fact, a strong de-
formation retraction) of crossed complexes between the total crossed complex of a
bisimplicial set X and the fundamental crossed complex of its diagonal,

πDiag(X)
φ′

++
a′

// Π(X).
b′

oo

Proof. As observed for example in [BF78, Proposition B.1], the diagonal of a bisim-
plicial set X may be expressed as a coend

Diag(X) ∼=

∫ m

∆[m]×Xm,∗.

Since each Xm,∗ is the coend of ∆[n] ·Xm,n, and π preserves colimits,

πDiag(X) ∼= π

∫ m,n

∆[m]×∆[n] · Xm,n

∼=

∫ m,n

π(∆[m]×∆[n]) · Xm,n .

The result therefore follows from the Eilenberg–Zilber equivalence

π(∆[m]×∆[n])
φ

++
a // π∆[m]⊗ π∆[n]
b

oo

given in [Ton03, Theorem 3.1] (see also [BGPT97, Section 3]). �

Theorem 4.10. Given two bisimplicial sets X, Y , there is a natural deformation
retraction

(4.11) Π(X × Y )
φ′′

++
a′′

// Π(X)⊗Π(Y ).
b′′

oo
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Moreover, the following diagram of ‘shuffle maps’ commutes:

(4.12) ΠX ⊗ΠY
b′⊗b′

//

b′′

��

πDiagX ⊗ πDiag Y

b

��

Π(X × Y )
b′ // πDiag(X × Y )

∼= // π(DiagX ×Diag Y )

Proof. The natural homotopy equivalence of the objects

Π(X × Y ) ∼=

∫ p,p′,q,q′

π(∆[p]×∆[p′])⊗ π(∆[q]×∆[q′]) ·Xp,q × Yp′,q′ ,

Π(X)⊗Π(Y ) ∼=

∫ p,p′,q,q′

π∆[p]⊗ π∆[q] ⊗ π∆[p′]⊗ π∆[q′] ·Xp,q × Yp′,q′ ,

is defined using the symmetry π∆[q]⊗ π∆[p′] ∼= π∆[p′]⊗ π∆[q] and the Eilenberg–
Zilber equivalence, see [Ton03]. The commutativity of the diagram (4.12) follows
from standard properties of the shuffle map. �

Example 4.13. Suppose X , Y are bisimplicial sets, with x ∈ X1,0 and y ∈ Y1,0

corresponding to generators in degree one of ΠX and ΠY respectively. Then by
[Ton03, 2.6] we have b′′(x⊗ y) ∈ Π(X × Y )2 given by

b′′(x⊗ y) = −(sh
0x, s

h
1y) + (sh

1x, s
h
0y).

The category cross of crossed modules inherits a monoidal structure ⊗ from the
category of crossed complexes, since it may be regarded as the full reflective sub-
category of crossed complexes concentrated in degrees one and two. The reflection
ψ : ccplx→ cross sends a crossed complex

(C, ∂) =
(

· · · → Cn
∂
−→ Cn−1 → · · · → C3

∂
−→ C2

∂
−→ C1

)

to the crossed module

(4.14) ψ(C, ∂) =
(

· · · → 0
∂
−→ 0→ · · · → 0

∂
−→ C2/∂(C3)

∂
−→ C1

)

.

The unit of the reflection (C, ∂) → ψ(C, ∂) is the identity in degree 1, the natural
projection C2 ։ C2/∂(C3) in degree 2, and the trivial map in higher degrees.
Obviously any morphism from (C, ∂) to a crossed module factors uniquely through
(C, ∂)→ ψ(C, ∂), so ψ is indeed a reflection.

The following lemma illustrates the rigidity of monoids in the category of crossed
modules of groups.

Lemma 4.15. (1) Let C be a crossed complex of groups and µ : C ⊗ C → C a
unital morphism. Then the induced morphism ψµ : ψC ⊗ ψC → ψC is a monoid
structure.

(2) Let f : C → C′ be a morphism of crossed complexes of groups which preserves
given unital morphisms µ : C⊗C → C and µ′ : C′⊗C′ → C′ up to some homotopy.
Then ψf : ψC → ψC′ is a strict monoid homomorphism.

Proof. (1) Since the only degree 0 element of C is the unit, and µ is unital, the
associativity relation µ(µ(a⊗ b)⊗ c) = µ(a⊗ µ(b⊗ c)) holds if the degree of a, b or
c is 0. If not, the total degree is at least 3 and the relation is trivial on ψC.
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(2) Write ai, bi, a
′
i, b

′
i for elements of Ci and C′

i, i ≥ 0. Since all the maps are
unital, µ′(fai ⊗ fbj) = fµ(ai ⊗ bj) if i or j = 0. It remains to show that this
relation holds in the crossed module ψC′ for i = j = 1 also.

The homotopy will be given by a degree one function h : C ⊗C → C′ satisfying
a certain derivation formula and an analogue of ∂h + h∂ = µ′(f ⊗ f) − fµ, see
e.g. [Whi49, BH87].

Clearly ∂h(ai ⊗ bj) = 0 for {i, j} = {0, 1}, and furthermore the tensor product

relations in C′ say that ∂′(a′2⊗ b
′
1) = ∂′a′2⊗ b

′
1−a

′
2 +a′2

b′
1 . In ψC′ we can therefore

deduce that C′
1 acts trivially on the elements a′2 = h(ai⊗ bj) for {i, j} = {0, 1}. By

the derivation property it now follows that in fact h∂(a1 ⊗ b1) = 0 in ψC′, and so
µ′(fa1 ⊗ fb1) = fµ(a1 ⊗ b1) here also. �

Corollary 4.16. (1) Let M ×M →M be a strictly unital multiplication, where M
is one of the following:

• a reduced simplicial set,
• a reduced CW -complex,
• a bisimplicial set with M0,0 = {point}.

Then ψπM , ψπCWM or ψΠM respectively is a monoid in the category of crossed
modules.

(2) Let N×N → N be another such structure and f : M → N a morphism which
preserves multiplication up to a homotopy. Then f induces a strictly multiplicative
homomorphism between the respective monoids in the category of crossed modules.

Monoids in the category of crossed modules of groups are also termed reduced
2-modules, reduced 2-crossed modules and strict braided categorical groups, see
[Con84, BC97, BC91, JS93]. Commutative monoids are similarly termed stable
crossed modules, stable 2-modules and strict symmetric categorical groups, see
[Con84, BC97, BCC93].

We recall now the usual definition of these concepts, following [BC91] and
[BCC93] up to a change of conventions.

Definition 4.17. A reduced 2-module is a crossed module ∂ : M → N together
with a map

〈·, ·〉 : N ×N −→M

satisfying the following identities for any m,m′ ∈M and n, n′, n′′ ∈ N .

(1) ∂〈n, n′〉 = [n′, n],
(2) mn = m+ 〈n, ∂(m)〉,
(3) 〈n, ∂(m)〉+ 〈∂(m), n〉 = 0,

(4) 〈n, n′ + n′′〉 = 〈n, n′〉n
′′

+ 〈n, n′′〉,

(5) 〈n+ n′, n′′〉 = 〈n′, n′′〉+ 〈n, n′′〉n
′

.

Moreover, (∂, 〈·, ·〉) is a stable 2-module if (1), (2), (4) and

(6) 〈n, n′〉+ 〈n′, n〉 = 0

are satisfied.
By (2), the action of N on M is completely determined by the bracket 〈·, ·〉. The

first crossed module axiom (4.2) is now redundant, and (4.3) is equivalent to

(7) 〈∂(m), ∂(m′)〉 = [m′,m],
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If we take (2) as a definition it is straightforward to check that it does define a group
action. Therefore we do not need to require that ∂ is a crossed module, but just a
homomorphism of groups. Moreover, in the stable case (3) and (5) are redundant.

Lemma 4.18. The category of stable quadratic modules is a full reflective subcat-
egory of the category of stable 2-modules, given by those objects

C0 × C0
〈·,·〉
−→ C1

∂
−→ C0

which satisfy

(4.19) 〈c, [c′, c′′]〉 = 0; c, c′, c′′ ∈ C0.

Proof. This proof has two steps. We first identify the category of stable quadratic
modules with the full subcategory of 2-modules satisfying (4.19) and afterwards we
show that this subcategory is reflective.

We claim that a stable quadratic module C∗ yields a stable 2-module

(a) C0 × C0

(c,d) 7→{c}⊗{d}
//

〈·,·〉

66Cab
0 ⊗ C

ab
0

ω // C1
∂ // C0.

This bracket satisfies (4.19) since

〈c, [c′, c′′]〉 = ω({c} ⊗ {[c′, c′′]}) = ω({c} ⊗ 0) = 0.

Axioms (1), (6) and (7) in Definition 4.17 follow immediately from Definition 1.1,
and axiom (4) is a consequence of the following equations.

〈c, c′ + c′′〉 = ω({c} ⊗ ({c′}+ {c′′}))

= ω({c} ⊗ {c′}) + ω({c} ⊗ {c′′})

= 〈c, c′〉+ 〈c, c′′〉

by (4.19) = 〈c, c′〉+ 〈c′′, [c′, c]〉+ 〈c, c′′〉

by Definition 4.17 (1) = 〈c, c′〉+ 〈c′′, ∂〈c, c′〉〉+ 〈c, c′′〉

by Definition 4.17 (2) = 〈c, c′〉c
′′

+ 〈c, c′′〉.

Therefore (a) is actually a stable 2-module.
Conversely, let us see that a stable 2-module

C0 × C0
〈·,·〉
−→ C1

∂
−→ C0

satisfying (4.19) can be obtained from a stable quadratic module as in (a). Indeed
(4.19) and Definition 4.17 (6) imply that 〈·, ·〉 factors through Cab

0 ×C
ab
0 . Moreover,

by (4.19) and Definition 4.17 (1) and (2) the elements of C0 act trivially on the
image of 〈·, ·〉, therefore 〈·, ·〉 is bilinear by (4) and (5) in Definition 4.17, so 〈·, ·〉
factors through Cab

0 ⊗ C
ab
0 . The factorization ω : Cab

0 ⊗ C
ab
0 → C1 of 〈·, ·〉 together

with ∂ : C1 → C0 define a stable quadratic module by Definition 4.17 (1), (6) and
(7), see Definition 1.1.

We now prove that the subcategory of stable 2-modules satisfying (4.19) is re-
flective. Let

(b) N ×N
〈·,·〉
−→M

∂
−→ N

be now an arbitrary stable 2-module, let Nnil = N/[[N,N ], N ], and let P ⊂ M
be the normal subgroup generated by the subset 〈N, [N,N ]〉 ⊂ M . We denote by



22 FERNANDO MURO AND ANDREW TONKS

q : N ։ Nnil and q′ : M ։ M/P the natural projections. By Definition 4.17 (1)
and (6) the following diagram of solid arrows can be completed to a commutative
diagram in a unique way

(c) N ×N
〈·,·〉

//

q×q
����

M
∂ //

q′

����

N

q

����

Nnil ×Nnil
〈·,·〉

//___ M/P
∂

//___ Nnil

The subdiagram with dashed arrows is a stable 2-module (the axioms follow from
the fact that (b) is a stable 2-module and that the vertical arrows in (c) are sur-
jective), and this stable 2-module satisfies (4.19) by the way in which P has been
defined. Moreover, it is immediate to check that any morphism from (b) to a stable
2-module factors through the projection (c) in a unique way. This shows that the
subcategory of stable 2-modules satisfying (4.19) is reflective and (c) is the unit of
the reflection. �

The reflection functor from stable 2-modules to stable quadratic modules con-
structed in the proof of Lemma 4.18 will be denoted by φ : s2mod→ squad.

Another nice feature of monoids in the category of crossed modules of groups is
that the property of being commutative is preserved by weak equivalences.

Lemma 4.20. Let C
∼
→ D be a morphism of reduced 2-modules which is a weak

equivalence. Then C is stable if and only if D is.

Proof. The operation 〈·, ·〉 induces a natural quadratic function

Coker ∂ −→ Ker ∂ : x 7→ 〈x, x〉,

the k-invariant of C. By using the properties of 〈·, ·〉 it is easy to see that C is stable
if and only if this quadratic function is indeed a group homomorphism. Therefore
the property of being stable is preserved under weak equivalences between reduced
2-modules. �

Remark 4.21. One can obtain a stable 2-module from an (n−1)-reduced simplicial
group G, n ≥ 2, by using the following truncation of the Moore complex N∗G

Nn+1G/d0(Nn+2G)
d0−→ NnG = Gn.

The bracket is defined by

〈x, y〉 = [s1(x), s0(y)] + [s0(y), s0(x)], x, y ∈ Gn.

This stable quadratic module will be denoted by µn+1G. If G is only 0-reduced
this formula defines a reduced 2-module µ2G. Compare [Con84, BC91, BCC93].

If C ∼= µn+1G for an (n − 1)-reduced free simplicial group G, n ≥ 2, then
the natural morphism C → φC (i.e. the unit of the reflection φ given by dia-
gram (c) in the proof of Lemma 4.18) is a weak equivalence. This is a conse-
quence of Curtis’s connectivity result in [Cur65] (which implies that we can divide
out weight three commutators in G and still obtain the same πn and πn+1) since
µn+1(G/[[G,G], G]) ∼= φC and the natural morphism C → φC is given by taking
µn+1 on the natural projection G ։ G/[[G,G], G], compare [Bau91, IV.B]. In
order for C to be such a truncation it is enough that the lower-dimensional group
of C is free. Indeed suppose that E is the basis of the lower-dimensional group of
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C. By [Con84] there exists an (n − 1)-reduced simplicial group G whose Moore
complex is given by C concentrated in dimensions n and n + 1. In particular,
Gn = 〈E〉 is the free group with basis E. By “attaching cells” one can construct
a free resolution of G (i.e. a cofibrant replacement) given by a weak equivalence

G′ ∼
→ G in the category of simplicial groups which is the identity in dimensions

≤ n. Then µn+1G
′ ∼= µn+1G ∼= C. As a consequence we observe that the reflection

φ preserves weak equivalences between objects with a free low-dimensional group.

Let HoSpec0 be the homotopy category of connective spectra of simplicial sets,
and let HoSpec1

0 be the full subcategory of spectra with trivial homotopy groups
in dimensions other than 0 and 1.

Lemma 4.22. There is a functor

λ0 : HoSpec0 −→ Ho squad

together with natural isomorphisms

πiλ0X ∼= πiX, i = 0, 1,

which induces an equivalence of categories

λ0 : HoSpec1
0

∼
−→ Ho squad.

Moreover, for any connective spectrum the first Postnikov invariant of X coincides
with the k-invariant of λ0X.

Proof. Stable quadratic modules, stable crossed modules and stable 2-modules are
known to be algebraic models of the (n + 1)-type of an (n − 1)-reduced simplicial
set X for n ≥ 3, see [Bau91, Con84, BC97, BCC93]. All these approaches are
essentially equivalent, and they encode the first k-invariant as stated above. For
example, if X is an (n − 1)-reduced simplicial set, n ≥ 3, then µnG(X) is such
a model for the (n + 1)-type of X . Here we use the Kan loop group G(X). Its
projection to stable quadratic modules φµnG(X) is also a model for the (n+1)-type
of X since G(X) is free, see Remark 4.21 above.

The 1-type of a connective spectrumX of simplicial sets is completely determined
by the 4-type of the third simplicial set Y3 of a fibrant replacement (in particular
an Ω-spectrum) Y of X . We can always assume that Y3 is 2-reduced. Therefore
we can define the functor λ0 above as follows. Each spectrum X is sent by λ0 to
φµ3G(Y3). �

Lemma 4.23. Given a 1-reduced simplicial set X there is a natural isomorphism
of monoids in crossed modules ψΩCrsX

∼= µ2G(X).

Proof. Both ψΩCrsX and µ2G(X) are models for the 2-type of the loop space of X ,
and moreover they have the same low-dimensional group 〈X2 − ∗〉, the free group
with basis X2 − ∗.

Using the presentation of ΩCrsX as a monoid in the category of crossed com-
plexes given in [BT97, Theorem 2.8] and the convention followed by May [May67,
Definition 2.6.3] for the definition of G(X), a natural isomorphism χ : ψΩCrsX

∼=
µ2G(X) can be described on the monoid generators as follows. Given x2 ∈ X2, let
χ(x2) = x2, and given x3 ∈ X3,

χ(x3) = −s1d2(x3) + x3 − s2d3(x3) + s1d3(x3).
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This is the identity in low-dimensional groups. In order to check that it indeed
defines an isomorphism in the upper groups one can use the presentation of ΩCrsX
in [BT97], and a computation of the Moore complex of G(X) in low dimensions by
using the Reidemeister-Schreier method, see [Kan58, 18] and [MKS66]. �

In the statement of the following lemma we use the Moore loop complex functor
Ω on the category of fibrant simplicial sets. Given a 1-reduced Kan complex X ,
define ΩX by

(ΩX)n = Ker[dn+1 : Xn+1 → Xn]

in the category of pointed sets; compare [Cur71, 2.9], [May67, Definition 23.3].
The face and degeneracy operators are restrictions of the operators in X . If X is a
simplicial group then so is ΩX .

Recall that the natural simplicial map

τX : ΩX → GX

given by (ΩX)n ⊂ Xn+1 → 〈Xn+1〉 ։ 〈Xn+1 − s0Xn〉 is a homotopy equivalence
when X is a 1-reduced Kan complex. The composite of πnτX with πn+1X ∼= πnΩX
coincides with the connecting map δ : πn+1X ∼= πnGX in the path–loop group
fibration GX → EX → X .

Lemma 4.24. For any 2-reduced Kan complex X there is a natural weak equiva-
lence of simplicial groups σ : G(ΩX)

∼
→ ΩG(X).

Proof. For all n ≥ 0 we have

Gn(ΩX) ∼= 〈(ΩX)n+1 − s0(ΩX)n〉,

(ΩG(X))n ⊂ Gn+1(X) ∼= 〈Xn+2 − s0Xn+1〉.

The homomorphisms σn : Gn(ΩX) → (ΩG(X))n are the unique possible homo-
morphisms compatible with the inclusions (ΩX)k ⊂ Xk+1, k ≥ 0, in the obvious
way. Since σ ◦ τΩX = ΩτX : ΩΩX → ΩGX , the map σ is a weak equivalence. �

Now we are ready for the proof of the main theorem of this paper.

Proof of Theorem 1.7. The coproduct in C gives rise to a Γ-space A in the sense of
Segal [Seg74] with A(1) = |Diag NerwS.C|, see [Wal78, Section 4, Corollary]. See
also the proof of Lemma 4.25 below for further details on NerwS.C. The spectrum
of topological spaces A(1), BA(1), B2A(1),. . . associated to A is an Ω-spectrum
since Diag NerwS.C is reduced. The Ω-spectrum defining KC is obtained from the
spectrum of A by shifting the dimensions by +1, i.e. KC is given by

ΩA(1), A(1), BA(1), B2A(1), . . . .

A particular choice of the coproduct A ∨ B of any pair of objects A,B in C

induces a product in NerwS.C. We choose A∨ ∗ = A = ∗ ∨A so that this product
is strictly unital as in Corollary 4.16. The structure weak equivalence

(a) |Diag NerwS.C|
∼
−→ ΩBA(1)

is a morphism of H-spaces up to homotopy.
We can replace BA(1) and B2A(1) by homotopy equivalent spaces |Y2|, |Y3|

which are realizations of a 1-reduced fibrant simplicial set Y2 and a 2-reduced fibrant



THE 1-TYPE OF A WALDHAUSEN K-THEORY SPECTRUM 25

simplicial set Y3, respectively. As a consequence we obtain a replacement for (a)
consisting of a homotopy equivalence of pointed CW -complexes

(b) |Diag NerwS.C|
∼
−→ ΩFTopY2.

Here ΩFTopY2 is the model for Ω |Y2| in [BT97, Theorem 2.7]. The CW -complex
ΩFTopY2 is a monoid and the map (b) satisfies the hypotheses of Corollary 4.16.

In order to define λ0KC as φµ3G(Y3) we choose an Ω-spectrum Y in the category
of simplicial sets representing KC with Y2 and Y3 the simplicial sets chosen above.

Combining the results above we obtain the following weak equivalences of stable
2-modules.

ψΠNerwS.C
∼
→ ψπDiag NerwS.C (Theorems 4.9 and 4.10)
= ψπCW |Diag NerwS.C|
∼
→ ψπCW ΩFTopY2 (b)
∼= ψΩCrsY2 [BT97, proof of Proposition 2.11]
∼= µ2G(Y2) (Lemma 4.23)
∼
→ µ2G(ΩY3) (Induced by Y2

∼
→ ΩY3)

∼
→ µ2ΩG(Y3) (Lemma 4.24)
= µ3G(Y3).

Here we use Lemma 4.20 to derive that not only µ3G(Y3) but all these reduced
2-modules are indeed stable.

By Remark 4.21 we know that φ preserves weak equivalences between these
stable 2-modules, since they have free lower-dimensional group, so that

φψΠNerwS.C
∼
−→ λ0KC.

Now Theorem 1.7 follows from Lemma 4.25 below. �

Lemma 4.25. Let C be a Waldhausen category and let X = NerwS.C, the bisim-
plicial set given by the nerve of the simplicial category wS.C. Then there is an
identification of stable quadratic modules

D∗C = φψΠX

which arises from an identification of the generators and relations on both sides.

Proof. We will give a presentation for the crossed module ψΠ(X)2
∂
−→ ψΠ(X)1,

and write down the commutative monoid structure

〈·, ·〉 : ψΠ(X)⊗ ψΠ(X)→ ψΠ(X)

arising from the coproduct on C. This will give a presentation for the associated
stable quadratic module φψΠX which coincides with the presentation for our model
D∗C, and we will recover explicitly the relations (1)–(9) of Definition 1.4.

Recall from [Wal78] that Waldhausen’s construction wS.C is given by the sim-
plicial object

{∗} = wS0C

s0

$$

wS1C
d0oo

d1

oo

s0

((s1 ((

wS2C
oooo

d0,d1,d2

oo

s0,s1,s2

((

wS3C
d0,d1,d2,d3

oo
&&
· · ·oo

where each wSmC is a category whose objects a are the sequences of cofibrations

A1  A2  A3  · · · Am−1  Am
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and associated cofiber sequences Aj/Ai  Ak/Ai ։ Ak/Aj for 0 ≤ i < j < k ≤ m,
with A0 = ∗. For i 6= 0 the (horizontal) degeneracy operator si inserts an identity
map Ai → Ai and the face operator di omits the object Ai, while s0 inserts ∗ A1

and d0 replaces each Ai by Ai/A1, omitting A1.

Morphisms a
∼
→ a′ in wSmC are commutative diagrams which are (levelwise)

weak equivalences. Thus in the nerve X we have sets of (m,n)-simplices,

Xm,n = Ner(wSmC)n ,

which consist of all composable strings of weak equivalences,

xm,n =
(

a
∼
−→ a′

∼
−→ a′′

∼
−→ · · ·

∼
−→ a(n)

)

,

between objects a(i) in wSmC. We refer to [GJ99, 1.4] for further details on the
nerve of a category.

Since X is a horizontally reduced bisimplicial set, with X0,n
∼= {∗} for all n,

Lemma 4.8 will give a presentation of the total crossed complex Π(X). In partic-
ular, the generators of Π(X) in degree k are the (m,n)-simplices of X with total
dimension m+ n = k. We need only consider degrees k = 1, 2, 3, since the crossed

module ψΠ(X) is the quotient of Π(X)2
∂2−→ Π(X)1 by the extra relation

(4.26) ∂3(x) = 0

in Π(X)2, for each generator x in Π(X)3, see (4.14). Note that degree k = 1 will
correspond to D0C, and k = 2 to D1C.

For k = 1 we must consider the sets X0,1 and X1,0 but we can ignore the former
since X is horizontally reduced and the first relation of Lemma 4.8 says x0,1 = 0.
Elements x1,0 ∈ X1,0 are just objects A in C, and so we can identify generators in
this degree with the symbols [A].

For k = 2 we consider the sets X1,1 and X2,0, since again X0,2 is degenerate.
Elements x1,1 ∈ X1,1 are the weak equivalences between objects in C, and elements
x2,0 ∈ X2,0 are objects of the category wS2C as above. Thus we can identify gener-

ators in this degree with the symbols [A
∼
→ A′] and [A  B ։ B/A] respectively.

A

A′

A

∼

OO

A

B
�������

�������
B/A

OO

OO
// //

Figure 1. Each 1-cell x1,0 or 2-cell x1,1 or x2,0 corresponds to a generator.
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The second and third relations of Lemma 4.8 give the map ∂ on the degree 2
generators, in terms of the horizontal and vertical simplicial face operators in X :

∂([A
∼
→ A′]) = − [dv

0(A
∼
→ A′)] + [dv

1(A
∼
→ A′)](1)

= − [A′] + [A] ,

∂([A  B ։ B/A]) = − [dh
1 (A  B ։ B/A)] + [dh

0 (A  B ։ B/A)](2)

+ [dh
2 (A  B ։ B/A)]

= − [B] + [B/A] + [A] .

Some of the above generators are trivial, again by the first relation of Lemma 4.8.
Explicitly, x1,0 = 0 if it is sh

0 -degenerate, x1,1 = 0 if it is sv
0-degenerate, and x2,0 = 0

if it is sh
0 - or sh

1 -degenerate:

[∗] = [sh
0 (∗)] = 0 ,(3)

[A
1A→ A] = [sv

0(A)] = 0 ,(4)

[∗ A
1A

։ A] = [sh
0 (A)] = 0 ,(5)

[A
1A

 A ։ ∗] = [sh
1 (A)] = 0 .

For k = 3 we consider elements xm,n ∈ Xm,n for (m,n) = (1, 2), (2, 1) and (3, 0).
An element x1,2 is a composable pair of weak equivalences in C, an element x2,1 is
a weak equivalence in wS2C, and an element x3,0 is an object of wS3C.

C ????????

A

��������

B

∼

??

∼

__

∼

OO x1,2 x2,1 B′

A′

??
??

??
??

B′/A′

ooooo

ooooo

B

A

??
??

??
??

B/A
oooooo

oooooo

77

77ooooo

77

77

�� ��
??

�� ��

∼

OO

∼

OO

∼

OO

x3,0

A
TTTTTTTTTT

TTTTTTTTTT

C
ttttttttttt

ttttttttttt

B/A
oooooo

oooooo

C/A

C/B
????????

????????

B

** **

// //

77

77

OO

OO

__

__

__

__???????

** **TTTTTTTT
77 77oooo

Figure 2. Each 3-cell in X gives a relation ∂3(x) = 0 (equation 4.26).
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Thus by the fourth, fifth and sixth relations of Lemma 4.8 we have

0 = ∂3(x1,2) = − dv
2x1,2 − d

v
0x1,2 + dv

1x1,2(6)

= − [A
∼
→ B]− [B

∼
→ C] + [A

∼
→ C] ,

0 = ∂3(x2,1) = dh
2x2,1 + dh

0x2,1
dh
2
dv
1
x2,1
− dv

1x2,1 − d
h
1x2,1 + dv

0x2,1(7)

= [A
∼
→ A′] + [B/A

∼
→ B′/A′] + 〈[A],−[B′/A′] + [B/A]〉

− [A  B ։ B/A]− [B
∼
→ B′] + [A′

 B′
։ B′/A′] ,

0 = ∂3(x3,0) = dh
2x3,0 + dh

0x3,0
(dh

2
)2x3,0

− dh
3x3,0 − d

h
1x3,0(8)

= [A  C ։ C/A] + [B/A  C/A ։ C/B]

+ 〈[A],−[C/A] + [C/B] + [B/A]〉 − [A  B ։ B/A]− [B  C ։ C/B]

using Definition 4.17 (2) to rewrite the actions.
Finally, recall that by Corollary 4.16 the operation ∨ : X ×X → X given by the

coproduct in C induces a monoid structure on ψΠ(X),

〈·, ·〉 : ψΠ(X)⊗ ψΠ(X)
b′′
−→ ψΠ(X ×X)

∨
−→ ψΠ(X) .

By the formula for the shuffle map b′′ in Example 4.13 we have

〈[A], [B]〉 = − [sh
0 (A) ∨ sh

1 (B)] + [sh
1 (A) ∨ sh

0 (B)](9)

= −[(∗ A
1
→ A) ∨ (B

1
→ B ։ ∗)] + [(A

1
→ A ։ ∗) ∨ (∗ B

1
→ B)]

= −[B
i2
 A ∨B

p1

։ A] + [A
i1
 A ∨B

p2

։ B].

Here ij and pj denote respectively the natural inclusions and the projections of the
two factors of the coproduct A ∨B, j = 1, 2. �

Appendix A. Free stable quadratic modules and presentations

Let

U : squad −→ Set× Set

be the forgetful functor from stable quadratic modules to pairs of sets defined by
U(C∗) = (C0, C1). The functor U has a left adjoint F , and a stable quadratic
module F (E0, E1) is called a free stable quadratic module on the sets E0 and E1.
In order to give an explicit description of F (E0, E1) we fix some notation.

Given a set E we denote by 〈E〉 the free group with basis E, and by 〈E〉ab the
free abelian group with basis E. The free group of nilpotency class 2 with basis E,
denoted by 〈E〉nil, is the quotient of 〈E〉 by triple commutators.

For any abelian group A let ⊗̂
2
A be the quotient of the tensor square A⊗A by

the relations a⊗ b+ b⊗ a = 0, a, b ∈ A. The projection of a⊗ b ∈ A⊗A to ⊗̂
2
A is

denoted by a⊗̂b.
Given a pair of sets E0 and E1, we write E0 ∪ ∂E1 for the set whose elements

are the symbols e0 and ∂e1 for each e0 ∈ E0, e1 ∈ E1.
To define F (E0, E1), consider the groups

F (E0, E1)0 = 〈E0 ∪ ∂E1〉
nil,

F (E0, E1)1 = ⊗̂
2
〈E0〉

ab × 〈E0 × E1〉
ab × 〈E1〉

nil.
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The structure homomorphisms of F (E0, E1) are defined as follows. Given ei, e
′
i, e

′′
i ∈

Ei,

∂(e0⊗̂e
′
0, (e

′′
0 , e1), e

′
1) = [e′0, e0] + [∂e1, e

′′
0 ] + ∂e′1,

〈e0, e
′
0〉 = (e0⊗̂e

′
0, 0, 0),

〈e0, ∂e1〉 = (0, e0 ⊗ e1, 0) = −〈∂e1, e0〉,

〈∂e1, ∂e
′
1〉 = (0, 0, [e′1, e1]).

In the language of [Bau91, IV.C] F (E0, E1) is the totally free stable quadratic
module with basis given by the function E1 → 〈E0 ∪ ∂E1〉

nil : e1 7→ ∂e1. There-
fore F (E0, E1) is indeed a stable quadratic module and, moreover, it satisfies the
required universal property, i.e. given a stable quadratic module C∗ any pair of
maps Ei → Ci, i = 0, 1, can be uniquely extended to a morphism F (E0, E1)→ C∗

in squad.
It is now straightforward to define explicitly the stable quadratic module C∗

presented by generators Ei and relations Ri ⊂ F (E0, E1)i in degrees i = 0, 1, by

C0 = F (E0, E1)0/N0,

C1 = F (E0, E1)1/N1.

Here N0 ⊂ F (E0, E1)0 is the normal subgroup generated by the elements of R0 and
∂(R1), and N1 ⊂ F (E0, E1)1 is the normal subgroup generated by the elements
of R1 and 〈F (E0, E1)0, N0〉. The structure homomorphisms of F (E0, E1) induce
a stable quadratic module structure on C∗ which satisfies the following universal
property: given a stable quadratic module C′

∗, any pair of functions Ei → C′
i

(i = 0, 1) such that the induced morphism F (E0, E1)→ C′
∗ annihilates R0 and R1

induces a unique morphism C∗ → C′
∗.

In [Bau91, IV.C] Baues also considers the totally free stable quadratic module
C∗ with basis given by a function g : E1 → 〈E0〉

nil. In the language of this paper
C∗ is the stable quadratic module with generators Ei in degree i = 0, 1 and degree
0 relations ∂(e1) = g(e1) for all e1 ∈ E1.
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