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BRUNN-MINKOWSKI AND ZHANG INEQUALITIES FOR

CONVOLUTION BODIES

DAVID ALONSO-GUTIÉRREZ∗, C. HUGO JIMÉNEZ†‡, AND RAFAEL VILLA†

Abstract. A quantitative version of Minkowski sum, extending the
definition of θ-convolution of convex bodies, is studied to obtain exten-
sions of the Brunn-Minkowski and Zhang inequalities, as well as, other
interesting properties on Convex Geometry involving convolution bodies
or polar projection bodies. The extension of this new version to more
than two sets is also given.

Zhang inequality, Brunn-Minkowski inequality, Convolution Body.

1. Introduction and motivation

The Minkowski sum of two sets A,B ⊆ R
n is defined as the set

A+B = {x ∈ R
n : A ∩ (x−B) 6= ∅}.

The essential sum in terms of measure is defined as

A+e B = {x ∈ R
n : |A ∩ (x−B)| > 0},

for A,B ⊆ R
n measurable sets, when | · | denotes the Lebesgue measure

in R
n. A quantitative version of this definition, involving the proportional

measure of the intersections, gives the following subset of A+B

A+θ B = {x ∈ A+B : |A ∩ (x−B)| ≥ θM(A,B)}

for θ ∈ [0, 1], whenever M(A,B) := sup
x∈A+B

|A ∩ (x−B)| is finite. This set

is called the θ-convolution set of A and B. Note that A +0 B is the usual
Minkowski sum A+B. This set is studied for symmetric convex bodies1 in [1,
2, 3, 4] and [5], where the term convolution body is first introduced. However,
our notation differs from the one used there, in order to emphasize the
connection with the standard Minkowski sum. Properties of θ-convolution
bodies are given in Section 2.
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grant MTM2012-30748 and by the Junta de Andalućıa, grant P08-FQM-03543.

‡ Author partially supported by CONACyT.
∗ Spanish grant MTM2010-16679 and ”Programa de Ayudas a Grupos de Excelencia
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1A convex body is a compact convex subset of Rn with non-empty interior.
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Recently, there is an increasing interest in finding extensions of the classical
integral geometry of the motion group in Euclidean spaces to the group
of translations (see [6] and the references therein), motivated by possible
applications to the stochastic geometry of homogeneous random geometric
structures.

Our purpose is to find volume estimates, from above and below, of the θ-
convolution of two sets. In what follows we will motivate our interest in
studying the volume of this family of sets.

The celebrated Brunn-Minkowski inequality states that

|K + L|
1
n ≥ |K|

1
n + |L|

1
n

for two convex bodies K,L ⊂ R
n, with equality if and only if K and L are

homothetic. Recall that K and L are called homothetic if L = z + λK for
some z ∈ R

n and λ > 0. Two classical references in this topic are [7] and
[8].

Brunn-Minkowski inequility has been widely applied to solve a large number
of problems involving geometrical quantities such as volume, surface area,
and mean width. In the last thirty years the Brunn-Minkowski inequality
has become an essential analytical tool to develop the so-called Local Theory
of Normed Spaces and Convex Geometric Analysis [9, 8, 7, 10]. Extensions
of this inequality for non convex sets, even for non-measurable sets, have
been also studied. We refer only to [11] for details and references.

In Section 3 a generalization of the Brunn-Minkowski inequality is studied.
Even though extensive work with this inequality as backbone has emerged
both within the class of convex bodies [12, 13, 14] and under other settings
[15, 16, 17, 18], we pursuit something closer in spirit to [19, 20]. See [21]
for a comprehensive survey on the Brunn-Minkowski inequality including
extensions, applications and its relation to other analytical inequalities.
Namely, we pose the problem of finding the best function ϕn(θ) such that

(1.1) |K +θ L|
1
n ≥ ϕn(θ)

1
n (|K|

1
n + |L|

1
n )

for any convex bodies K,L ⊂ R
n. It is proved that ϕn(θ) = (1 − θ

1
n )n

satisfies (1.1). Some particular cases are also studied.

Following the work of Kiener [1], Schmuckensläger [2] proved that for any
convex body K of volume 1,

(1.2) (1− θ)Π∗(K) ⊆ K +θ (−K) ⊆ log
1

θ
Π∗(K)

where Π∗(K) is the polar projection body of K, the unit ball of the norm
‖x‖Π∗(K) = |x||Px⊥K|. Here Px⊥ denotes the orthogonal projection on the
hyperplane orthogonal to x.

These inclusions imply |K|Π∗(K) = lim
θ→1−

K +θ (−K)

1− θ
in the Haussdorff met-

ric for any convex body K.
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In Section 4 we modify the argument to improve the estimate (1.2) (see
Proposition 4.1)

(1− θ)|K|Π∗(K) ⊆ K +θ (−K) ⊆ n(1− θ
1
n )|K|Π∗(K).

The most famous inequality concerning the volume of the polar projection
body of a convex body K ⊂ R

n is Petty projection inequality,

|K|n−1|Π∗(K)| ≤

(

ωn

ωn−1

)n

where ωn denotes the volume of the n-dimensional Euclidean ball. The
equality is attained provided K is an ellipsoid (See [22]). A different proof
using convolutions can be found in [4].

In [23], Zhang proved a reverse form of this inequality

(1.3) |K|n−1|Π∗(K)| ≥
1

nn

(

2n

n

)

for any convex body, with equality if and only if K is a simplex. Zhang
inequality can be written as

(1.4)

∣

∣

∣

∣

lim
θ→1−

K +θ (−K)

1− θ

∣

∣

∣

∣

≥
1

nn

(

2n

n

)

|K|.

It is worth mentioning that Tsolomitis studies in [5] the behavior of limiting
convolution bodies

(1.5) lim
θ→1−

K +θ L

(1− θ)α

for symmetric convex bodies K and L, and some exponent α, giving some
regularity conditions under which (for some specific α) the limit (1.5) is
non-degenerated, denoted by C(K,L).

In [24], Rogers and Shephard obtained the inequality

(1.6) |K −K| ≤

(

2n

n

)

|K|

for any convex bodyK, with equality if and only if K is a simplex. Through-
out the proof it is showed that

(1.7) K +θ (−K) ⊇ (1− θ
1
n )(K −K)

with equality if and only if K is a simplex. They also showed in [25] the
extension for two different convex bodies

(1.8) |K − L||K ∩ L| ≤

(

2n

n

)

|K||L|.

The last part of Section 4 is devoted to generalize the inclusions stated in
(1.2) and Zhang inequality (1.3) for limiting convolutions of different convex
bodies. This generalization is a consequence of Corollary 2.5, from which
(1.8) can be obtained (see Proposition 4.7).
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Given that some classical geometric inequalities are recovered and extended
through the use of convolution bodies, it would be natural to consider the
extension of the convolution body of more than two bodies in order to gen-
eralize these inequalities. In Section 5 we study such an extension obtaining
similar inequalities when we consider more than two bodies. Surprisingly, it
turns out when studying the equality cases, that these inequalities can only
be sharp when convoluting two convex bodies and not when considering
three or more bodies.

2. Properties of the θ-convolution of convex bodies

In this section we give some properties of the θ-convolution of two con-
vex bodies, from which the Brunn-Minkowski-type inequality for the θ-

convolution of convex bodies |K+θL|
1
n ≥ (1−θ

1
n )
(

|K|
1
n + |L|

1
n

)

will follow.

However, this bound is not sharp, as we will see below.

We now list some basic properties of M(K,L) and the θ-convolution in the
following

Proposition 2.1. Let K,L ⊂ R
n be compact sets, λ ≥ 0, x ∈ R

n and
T ∈ GLn(R) = {T : Rn → R

n : T is linear}.

(a1) M(K,L) =M(L,K).
(a2) M(x+K,L) =M(K,L).
(a3) M(λK, λL) = λnM(K,L).
(a4) M(TK, TL) = |detT |M(K,L).
(a5) If K = −L or K,L are symmetric, then M(K,L) = |K ∩ (−L)|.

Let θ ∈ [0, 1].

(b1) (λK) +θ (λL) = λ(K +θ L).
(b2) K +θ L = L+θ K.
(b3) (x+K) +θ L = x+ (K +θ L).
(b4) TK +θ TL = T (K +θ L).

A first question about this θ-convolution is its convexity, provided that K
and L are both convex. The affirmative answer is a consequence of the
following result. In what follows, using (b3) in Proposition 2.1 above, we
will assume without loss of generality, that

(2.1) M(K,L) = |K ∩ (−L)|.

Proposition 2.2. Let K,L ⊂ R
n be convex bodies satisfying (2.1). Then

for every θ1, θ2, λ1, λ2 ∈ [0, 1] such that λ1 + λ2 ≤ 1 we have that

(2.2) λ1(K +θ1 L) + λ2(K +θ2 L) ⊆ K +θ L,

where 1− θ
1
n = λ1(1− θ

1
n

1 ) + λ2(1− θ
1
n

2 ).
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Proof. Let x1 ∈ K +θ1 L and x2 ∈ K +θ2 L. From the general inclusion

K ∩ (λ0A0 + λ1A1 + λ2A2) ⊃ λ0K ∩A0 + λ1K ∩A1 + λ2K ∩A2

where K is convex and λ0 + λ1 + λ2 = 1, and using the convexity of L, we
have
(2.3)
K∩(λ1x1+λ2x2−L) ⊇ (1−λ1−λ2)[K∩(−L)]+λ1[K∩(x1−L)]+λ2[K∩(x2−L)].

Taking volumes, using the classical Brunn-Minkowski inequality and the fact
that xi ∈ K +θi L we have

(2.4) |K ∩ (λ1x1 + λ2x2 − L)| ≥ [1− λ1(1− θ
1
n

1 )− λ2(1− θ
1
n

2 )]
nM(K,L),

which proves that λ1x1 + λ2x2 ∈ K +θ L for θ = [1 − λ1(1 − θ
1
n

1 ) − λ2(1 −

θ
1
n

2 )]
n. �

Taking θ1 = θ2 and λ2 = 1− λ1 we have

Corollary 2.3. Let K,L ⊂ R
n be convex bodies and θ ∈ [0, 1]. Then K+θL

is convex.

The following result on K+1L will be used later on, and it is a consequence
of Proposition 2.2.

Corollary 2.4. Let K,L ⊂ R
n be convex bodies. For any x ∈ K +1 L,

K ∩ (x− L) is a translation of K ∩ (−L).

Proof. Taking θ1 = θ2 = 1 in Proposition 2.2, we get θ = 1, and then
Brunn-Minkowski inequality (2.4), obtained from (2.3), holds with equality.
Then (see equality cases in Brunn-Minkowski inequality in [26]) the four sets
involved in (2.3),

K ∩ (λ1x1 + λ2x2 − L), K ∩ (−L), K ∩ (x1 − L), K ∩ (x2 − L),

are all homothetic. As they all have the same volume (equals to M(K,L)),
homotheties are indeed translations. �

Taking θ1 = θ2 leads us to the following

Corollary 2.5. Let K,L ⊂ R
n be convex bodies satisfying (2.1). Then, for

every 0 ≤ θ0 ≤ θ < 1 we have

K +θ0 L

1− θ0
1
n

⊆
K +θ L

1− θ
1
n

.

Proof. Taking θ1 = θ2 = θ0 in the above proposition, for any λ1, λ2 ∈ [0, 1]
such that λ1 + λ2 ≤ 1

λ1(K +θ0 L) + λ2(K +θ0 L) ⊆ (λ1 + λ2)(K +θ0 L) ⊆ K +θ L,
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with 1− θ
1
n = (λ1 + λ2)(1 − θ0

1
n ). Since λ1 + λ2 =

1− θ
1
n

1− θ
1
n

0

,

1− θ
1
n

1− θ
1
n

0

(K +θ0 L) ⊆ K +θ L

whenever λ1 + λ2 ≤ 1, which means 0 ≤ θ0 ≤ θ ≤ 1. �

The following extension of (1.7) from Rogers and Shephard’s work will be
used to get a first Brunn-Minkowski-type inequality.

Corollary 2.6. Let K,L ⊂ R
n be convex bodies. Then

(2.5) θ
1
n (K +1 L) + (1− θ

1
n )(K + L) ⊆ K +θ L.

Proof. Take θ1 = 1, θ2 = 0, λ1 = θ
1
n , and λ2 = (1 − θ

1
n ) in Proposition 2.2

to obtain the desired result. �

Note that the condition 0 ∈ K +1 L is equivalent to M(K,L) = |K ∩ (−L)|,
and that is verified under the assumptions of Proposition 2.1 (a5).

We will use the following description of the boundary of K +θ L.

Lemma 2.7. Let K,L ⊂ R
n be convex bodies, and θ ∈ [0, 1). Then

∂(K +θ L) = {x ∈ K + L : |K ∩ (x− L)| = θM(K,L)}.

In particular, for θ = 0,

∂(K + L) = {x ∈ K + L : |K ∩ (x− L)| = 0}.

Consequently, for any x ∈ K+L, x 6∈ K+1L, there exists a unique θ ∈ [0, 1)
such that x ∈ ∂(K +θ L).

Proof. Let f : Rn → [0,+∞) be given by f(x) = |K ∩ (x − L)|
1
n . Using

properties of the Lebesgue measure and Brunn-Minkowski inequality, it can
be deduced that f is continuous on R

n and concave on K + L. It is then
clear that K +θ L is closed.

The first assertion is equivalent to int(K +θ L) = {x ∈ K + L : f(x)n >
θM(K,L)}. Since the right-hand set is open and it is contained in K +θ L,
it remains to be shown the inclusion int(K +θ L) ⊆ {x ∈ K + L : f(x)n >
θM(K,L)}.

Let us take any x ∈ K + L, with f(x)n = θM(K,L). It is left to show that
x 6∈ int(K +θ L).

We will assume without loss of generality that (2.1) is satisfied. For any
λ ∈ (0, 1), write x = λ(λ−1x) + (1 − λ) · 0. If λ−1x ∈ K + L, using the
concavity of f on K + L,

(θM(K,L))
1
n = f(x) ≥ λf(λ−1x)+(1−λ−1)f(0) = λf(λ−1x)+(1−λ−1)M(K,L)

1
n
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and therefore

f(λ−1x)n ≤
θ

1
n − (1− λ−1)

λ
M(K,L)

1
n < (θM(K,L))

1
n .

Then λ−1x 6∈ K +θ L for any λ < 1 (for λ−1x /∈ K + L it is trivial). Hence
x 6∈ int(K +θ L).

To obtain the last assertion, just take θ =
|K ∩ (x− L)|

M(K,L)
∈ [0, 1). �

Equality cases in Proposition 2.2 and Corollary 2.6 are stated in the following
result.

Proposition 2.8. Let K,L ⊂ R
n be convex bodies. The following conditions

are equivalent.

(i) For every θ1, θ2, λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1, we have

λ1(K +θ1 L) + λ2(K +θ2 L) = K +θ L,

where θ
1
n = λ1θ

1
n

1 + λ2θ
1
n

2 .

(ii) For every θ ∈ [0, 1], θ
1
n (K +1 L) + (1− θ

1
n )(K + L) = K +θ L.

(iii) K and −L are homothetic n-simplices.

For the proof, we will use the following result from [27] (we state it here in
the form it will be used in this paper).

Theorem 2.9. (Soltan) Let K,L ⊂ R
n be convex bodies. The following

conditions are equivalent:

(i) K and L are homothetic n-simplices.
(ii) The n-dimensional intersections K∩(z−L), z ∈ R

n, are all homothetic
to K ∩ (−L).

Proof of Proposition 2.8. Using a translation we may assume that (2.1) is
satisfied.

Conditions (i) and (ii) are equivalent. Indeed, (i) trivially implies (ii).

Suppose (ii) holds. Then, using the equality for θ1, θ2 and θ successively,
and the convexity of the convolution sets,

λ1(K +θ1 L) + λ2(K +θ2 L)

= λ1

(

θ1
1
n (K +1 L) + (1− θ1

1
n )(K + L)

)

+ λ2

(

θ2
1
n (K +1 L) + (1− θ2

1
n )(K + L)

)

= (λ1θ
1
n

1 + λ2θ
1
n

2 )(K +1 L) + (λ1(1− θ
1
n

1 ) + λ2(1− θ
1
n

2 ))(K + L)

= K +θ L,

and (i) follows.
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Suppose (ii) holds, and take x ∈ K + L, x 6∈ ∂(K + L). If x ∈ K +1 L,
Corollary 2.4 shows that K ∩ (x− L) is a translation of (so homothetic to)
K ∩ (−L).

If x 6∈ K +1 L, by Lemma 2.7, there is a θ ∈ (0, 1) such that x ∈ ∂(K +θ L).

Using (ii), x = θ
1
nx1 + (1− θ

1
n )x2, for some x1 ∈ K +1 L, x2 ∈ K + L.

Now, inclusion (2.3) and inequality (2.4) are both equalities (since |K∩ (x−
L)| = θM(K,L)), and then K ∩ (x−L), K ∩ (x1 −L) and K ∩ (x2 −L) are
all homothetic (see equality cases in Brunn-Minkowski inequality in [26]).
Since x1 ∈ K +1 L, they are all homothetic to K ∩ (−L).

Then, all the n-dimensional intersections K ∩ (x−L) are homothetic to the
same body K ∩ (−L). Now it follows from Theorem 2.9 that K, −L and
K ∩ (−L) are homothetic simplices.

Now suppose condition (iii) holds. After an affine transformation we may
assume that

K =

{

t ∈ R
n : ti ≥ 0,

n
∑

i=1

ti ≤ 1

}

and −L = λK with 0 < λ ≤ 1. For any x ∈ R
n,

K ∩ (x− L) =

{

t ∈ R
n : tj ≥ x+j ,

n
∑

i=1

ti ≤ min{1, λ+

n
∑

i=1

xi}

}

,

where r+ = max{r, 0}. Then,K∩(x−L) = z(x)+λ(x)K, where zj(x) = x+j ,
and

λ(x) = min{1, λ +

n
∑

i=1

xi} −
n
∑

i=1

x+i

whenever λ(x) ≥ 0. For those x ∈ R
n, we have |K ∩ (x−L)| = λ(x)n|K|. It

is easy to see that λ(x) ≤ λ, and equality holds if and only if xj ≥ 0 for all
j and λ+

∑n
i=1 xi ≤ 1. Then M(K,L) = λn|K|, and K +1 L = (1− λ)K.

Using absolute values, λ(x) can be rewritten as

λ(x) =
1

2

(

1 + λ−

∣

∣

∣

∣

∣

1− λ−
n
∑

i=1

xi

∣

∣

∣

∣

∣

−
n
∑

i=1

|xi|

)

.

Then

K +θ L =

{

x ∈ R
n :

∣

∣

∣

∣

∣

1− λ−
n
∑

i=1

xi

∣

∣

∣

∣

∣

+

n
∑

i=1

|xi| ≤ 1 + λ(1− 2θ
1
n )

}

.

In particular, letting θ = 0, we obtain an expression for K + L. In order

to prove (ii), it is enough to prove the inclusion K +θ L ⊆ θ
1
n (K +1 L) +

(1− θ
1
n )(K + L) for every θ ∈ (0, 1). Any x ∈ K +θ L satisfies

(2.6)

∣

∣

∣

∣

∣

1− λ−
n
∑

i=1

xi

∣

∣

∣

∣

∣

+

n
∑

i=1

|xi| ≤ θ
1
n (1− λ) + (1− θ

1
n )(1 + λ).
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Recall that

∣

∣

∣

∣

∣

1− λ−
n
∑

i=1

ai

∣

∣

∣

∣

∣

+
n
∑

i=1

|ai| = 1 − λ for any a ∈ K +1 L. Conse-

quently, if

(2.7) x = θ
1
na+ (1− θ

1
n )b,

with a ∈ K +1 L, then b ∈ K + L provided that the left hand side in (2.6)
∣

∣

∣

∣

∣

θ
1
n (1− λ−

n
∑

i=1

ai) + (1− θ
1
n )(1 − λ−

n
∑

i=1

bi)

∣

∣

∣

∣

∣

+
n
∑

i=1

|θ
1
n ai + (1− θ

1
n )bi|

equals

θ
1
n

∣

∣

∣

∣

∣

1− λ−
n
∑

i=1

ai

∣

∣

∣

∣

∣

+(1− θ
1
n )

∣

∣

∣

∣

∣

1− λ−
n
∑

i=1

bi

∣

∣

∣

∣

∣

+ θ
1
n

n
∑

i=1

|ai|+(1− θ
1
n )

n
∑

i=1

|bi|.

Considering equality cases in triangle inequality, this happens provided that
1− λ−

∑n
i=1 ai has the same sign as 1− λ−

∑n
i=1 bi, and for any j, aj has

the same sign as bj (here r, s have the same sign iff r · s ≥ 0).

If
∑n

i=1 x
+
i ≤ 1 − λ, it is enough to consider a ∈ K +1 L in (2.7), so that

aj = x+j . Then bj = (1− θ
1
n )−1xj if xj < 0 and bj = xj if xj ≥ 0. In any

case, bj has the same sign as aj, and therefore b ∈ K + L.

If
∑n

i=1 x
+
i > 1 − λ, it is enough to take a ∈ K +1 L in (2.7), so that

aj = (1 − λ)
x+
j∑n

i=1 x
+
i

. Then b ∈ K + L provided that bj ≥ 0 for those j so

that xj > 0. But in that case

xj = θ
1
n

(1 − λ)
∑n

i=1 x
+
i

xj + (1− θ
1
n )bj

Then bj ≥ 0 provided that

θ
1
n

(1− λ)
∑n

i=1 x
+
i

≤ 1,

which is assumed to be true. In any case, we can find a decomposition as
(2.7), which proves (ii). �

Now we can deduce equality cases in Corollary 2.5.

Proposition 2.10. Let K,L ⊂ R
n be convex bodies satisfying (2.1). The

following conditions are equivalent.

(i) For any 0 ≤ θ0 ≤ θ ≤ 1, (1− θ
1
n )(K +θ0 L) = (1− θ

1
n

0 )(K +θ L).

(ii) For every θ ∈ [0, 1], (1− θ
1
n )(K + L) = K +θ L.

(iii) K = −L is an n-simplex.

Proof. Again, conditions (i) and (ii) are easily seen to be equivalent.
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Now, suppose (ii) holds; then K+1L = {0}, and consequently (ii) in Propo-
sition 2.8 holds. Then K and −L are homothetic n-simplices.

As in the proof of Proposition 2.8, we have K+1L = (1−λ)K, which implies
λ = 1, since K +1 L = {0}. Consequently, K = −L.

Condition (iii) implies (ii) in Proposition 2.8, and since K +1 L = {0}, we
get (ii). �

3. Brunn-Minkowski type inequality for θ-convolution bodies

From the previous study on convolution of two sets, the following natu-
ral question arises: what kind of Brunn-Minkowski-type inequality for θ-
convolutions

(3.1) |K +θ L|
1
n ≥ ϕn(θ)

1
n (|K|

1
n + |L|

1
n ).

does it hold?

As in the classical case, the homogeneity allows one to formulate the in-
equality in different equivalent forms.

Proposition 3.1. The following statements are all equivalent:

(i) For K,L measurable sets in R
n

|K +θ L|
1
n ≥ ϕn(θ)

1
n (|K|

1
n + |L|

1
n ).

(ii) For K,L measurable sets in R
n and 0 < λ < 1

|λK +θ (1− λ)L|
1
n ≥ ϕn(θ)

1
n (λ|K|

1
n + (1− λ)|L|

1
n ).

(iii) For K,L measurable sets in R
n and 0 < λ < 1

|λK +θ (1− λ)L| ≥ ϕn(θ)(|K|λ · |L|1−λ).

(iv) For K,L measurable sets in R
n and 0 < λ < 1

|λK +θ (1− λ)L| ≥ ϕn(θ)min{|K|, |L|}.

(v) For K,L measurable sets in R
n such that |K| = |L| = 1 and 0 < λ < 1

|λK +θ (1− λ)L| ≥ ϕn(θ).

Proof. (i) → (ii) and (iii) → (iv) → (v) are immediate. The proof of
(ii) → (iii) is obtained by taking logarithm and using its concavity.

Finally, apply (v) with K = |K|−
1
nK, L = |L|−

1
nL and λ = s|K|

1
n

s|K|
1
n+t|L|

1
n

,

and use the homogeneity of the convolution (Proposition 2.1 (b1)) to get
(i). �

A first inequality in this direction for convex bodies is obtained from Corol-
lary 2.6.
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Corollary 3.2. Let K, L ⊂ R
n be convex bodies. Then

|K +θ L|
1
n ≥ (1− θ

1
n )(|K|

1
n + |L|

1
n ).

Equivalently, ϕn(θ) ≥ (1− θ
1
n )n in (3.1).

Proof. Taking volumes in (2.5)

(3.2) |K +θ L|
1
n ≥ (1− θ

1
n )|K + L|

1
n

and applying Brunn-Minkowski inequality

(3.3) (1− θ
1
n )|K + L|

1
n ≥ (1− θ

1
n )(|K|

1
n + |L|

1
n )

we obtain the desired result. �

In order to have equality in Corollary 3.2, we need to have equality in (3.2)
and in Brunn-Minkowski inequality (3.3). However, by Proposition 2.10,
equality in (3.2) holds if and only if K = −L is an n-dimensional simplex,
and in that case there is not equality in Brunn-Minkowski inequality (unless
n = 1). See examples at the end of the section for details.

The following result improves the inclusion

(3.4) (1− θ
1
n )(K + L) ⊆ K +θ L

providing a new set between them. A good estimate for the volume of this
new set would lead to a better estimate for |K +θ L|.

Theorem 3.3. LetK,L ⊂ R
n be convex bodies such thatM(K,L) = |K ∩ (−L)|.

Then for all θ ∈ [0, 1],

K +θ L ⊇

{

a+ b : a ∈ K, b ∈ L,
|(1 − ||a||K)K ∩ (1− ||b||L)(−L)|

|K ∩ (−L)|
≥ θ

}

⊇ (1− θ
1
n )(K + L).

Proof. Let x ∈ K + L, then x = a + b with a ∈ K and b ∈ L. From the
convexity of K

(1− ||a||K)K + ||a||K
a

||a||K
⊆ K.

Also, since || − b||−L = ||b||L and L is convex

(1− ||b||L)(−L) + ||b||L
−b

||b||L
+ x ⊆ x− L.

Since x−b = a, we have (1−||a||K)K+a ⊆ K and (1−||b||L)(−L)+a ⊆ x−L.
Thus,

a+ (1− ||a||K)K ∩ (1− ||b||L)(−L) ⊆ K ∩ (x− L)

and then |K ∩ (x− L)| ≥ |(1− ||a||K)K ∩ (1− ||b||L)(−L)|. Consequently,

K +θ L ⊇ {a+ b : a ∈ K, b ∈ L,
|(1− ||a||K)K ∩ (1− ||b||L)(−L)|

|K ∩ (−L)|
≥ θ}.
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This set trivially contains the set

{a+ b : inf{(1 − ||a||K)n, (1 − ||b||L)
n} ≥ θ} = (1− θ

1
n )(K + L).

�

In order to get a more accurate idea of how good the bound in Corollary

3.2 is, we estimate the quotient
|K +θ L|

1
n

|K|
1
n + |L|

1
n

for some particular pairs of

bodies.

Examples:

1) For K, L cubes whose sides are parallel to the coordinate hyper-
planes, it is not hard to see that the quotient is minimized when
K = L = [−1/2, 1/2]n, and its value equals

[

1− θ

n−1
∑

k=0

(− log θ)k

k!

]

1
n

.

2) For K = L the unit Euclidean ball, the quotient equals Rn(θ) given
by the equality

2ωn−1

∫ 1

Rn(θ)

(

1− s2
)

n−1
2 ds = θωn

where ωn denotes the volume of the n-dimensional unit Euclidean
ball.

3) As it was mentioned above, in [24] it was proved that, for K = L
the simplex, the quotient equals

(1− θ
1
n )

(2n
n

)

1
n

2
∼ 2(1 − θ

1
n ).

Comparing these three cases, it seems that the minimum value for the quo-
tient is attained in a different case depending on θ. This fact makes difficult
to find a family of bodies in which the minimum is attained.

4. A connection with projection bodies and Zhang inequality

This section is devoted to generalize the inclusions (1.2) and Zhang inequal-
ity for convolution of different convex bodies.

The following result generalizes the right hand side inclusion in (1.2). We
extend the ideas used in [2]

Proposition 4.1. Let K, L ⊂ R
n be convex bodies satisfying (2.1). Then,

for every θ ∈ (0, 1)

K +θ L ⊆

{

x ∈ R
n : |x|

∣

∣

∣

∣

d+

dt

∣

∣

∣

∣

K ∩

(

t
x

|x|
− L

)
∣

∣

∣

∣

t=0

∣

∣

∣

∣

≤ n(1− θ
1
n )M(K,L)

}

.



B-M AND ZHANG INEQUALITIES FOR CONVOLUTION BODIES 13

Proof. The concavity of the function x 7→ |K ∩ (x− L)|
1
n implies

|K ∩ (λx− L)| ≥
(

(1− λ)M(K,L)
1
n + λ|K ∩ (x− L)|

1
n

)n

= M(K,L)

[

1 + λ

(

|K ∩ (x− L)|
1
n

M(K,L)
1
n

− 1

)]n

≥ M(K,L)

[

1 + λn

(

|K ∩ (x− L)|
1
n

M(K,L)
1
n

− 1

)]

for λ ∈ [0, 1] and x ∈ K + L. On the other hand,

|K ∩ (λx− L)| = M(K,L) +

∫ λ|x|

0

d+

dt

∣

∣

∣

∣

K ∩

(

t
x

|x|
− L

)∣

∣

∣

∣

dt

≤ M(K,L) + λ|x| max
t∈[0,λ|x|]

d+

dt

∣

∣

∣

∣

K ∩

(

t
x

|x|
− L

)
∣

∣

∣

∣

again using the concavity of x 7→ |K ∩ (x − L)|
1
n . Comparing these two

inequalities, and letting λ→ 0+, we obtain

nM(K,L)

(

|K ∩ (x− L)|
1
n

M(K,L)
1
n

− 1

)

≤ |x|
d+

dt

∣

∣

∣

∣

K ∩

(

t
x

|x|
− L

)
∣

∣

∣

∣

t=0

.

Since the lateral derivative is non positive, we get the desired inclusion. �

Remark 4.2.

1) If L = −K, then the right-hand side set is exactly n(1−θ
1
n )|K|Π∗K which

improves the right hand side inclusion in (1.2).

2) From Corollary 2.5, the family of sets
K +θ L

1− θ
1
n

is increasing with respect to

θ, and using the equivalence 1− θ ∼ n(1− θ
1
n ), the existence of the limiting

convolution set with α = 1,

C1(K,L) = lim
θ→1−

K +θ L

1− θ

follows. However, there are cases in which this set is unbounded. We refer
to Example 3.15 in [5] for a detailed construction of an example where the
limiting convolution is Rn. In that paper sufficient conditions for C1(K,L)
to be bounded are also given.

3) The righten set in Proposition 4.1 is n(1 − θ
1
n )C1(K,L). The previous

result can be deduced from Corollary 2.5 letting θ0 → 1− (see the proof of
Theorem 4.6 below).

4) Nevertheless, a general inclusion K +θ L ⊆ n(1− θ
1
n )C, for some body C

independent from θ can not be proved, since it was shown in [5] that the
limiting convolution body with α = 1 could be non compact.
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The left-hand side inclusion in (1.2) is generalized with the following Propo-
sition. Recall that conv(A) denotes the convex hull of a set A.

Proposition 4.3. Let K, L ⊂ R
n be convex bodies satisfying (2.1). Then,

for every θ ∈ (0, 1)

K +θ L ⊇ (1− θ)M(K,L) conv(Π∗K ∪Π∗L).

Proof. In [3] it is proved that, given two convex bodies K, L, and u ∈ Sn−1,

the function f(r) = |K ∩ (ru + L)| verifies f
′
(0) = |C+

u (1, 2)| − |C−
u (2, 1)|,

where

C+
u (1, 2) = Pu(K ∩ L) ∩ {ψ+

K > ψ+
L ≥ ψ−

K > ψ−
L }

C+
u (2, 1) = Pu(K ∩ L) ∩ {ψ+

L ≥ ψ+
K > ψ−

L ≥ ψ−
K}

with

ψ+
K(y) = max{t : tu+ y ∈ K}

and

ψ−
K(y) = min{t : tu+ y ∈ K}.

Thus d
d−→v

|K ∩ (x− L)| ≥ −|P+
v K ∩ (x− L)| ≥ −min{|P+

v K|, |P+
v L|}. Con-

sequently,

|K ∩ (x− L)| =

M(K,L) +

∫ |x|

0

d

dt

∣

∣

∣

∣

K ∩

(

t
x

|x|
− L

)
∣

∣

∣

∣

≥M(K,L) − |x|min{|P+
v K|, |P+

v L|}.

Hence, if M(K,L) − |x|min{|P+
v K|, |P+

v L|} ≥ θM(K,L) then x ∈ K +θ L
and this holds if and only if min{||x||Π∗K , ||x||Π∗L} ≤ (1− θ)M(K,L).

So, (1−θ)M(K,L)(Π∗K ∪Π∗L) ⊆ K+θL. The convexity of the set K+θL
yields the desired result. �

Remark 4.4. Taking L = −K and |K| = 1, we recover the left hand side
inclusion in (1.2).

Remark 4.5. Applying Zhang inequality we deduce that

min{|K|n−1, |L|n−1}

∣

∣

∣

∣

C1(K,L)

M(K,L)

∣

∣

∣

∣

≥

(

2n

n

)

1

nn

which extends Zhang inequality (1.4). Nevertheless, a stronger extension of
Zhang inequality can be proved using Corollary 2.5.

Theorem 4.6. LetK,L ⊂ R
n be convex bodies such thatM(K,L) = |K ∩ (−L)|.

Then

(4.1) |C1(K,L)| ≥

(

2n

n

)

1

nn
|K||L|

M(K,L)

Equality holds if and only if K = −L is a simplex.
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Proof. From Corollary 2.5 we have that for every 0 ≤ θ0 ≤ θ < 1

(4.2)
K +θ0 L

1− θ
1
n

0

⊆
K +θ L

1− θ
1
n

.

Thus, letting θ → 1− we obtain that for every θ0 ∈ [0, 1)

K +θ0 L

1− θ
1
n

0

⊆ lim
θ→1−

1− θ

1− θ
1
n

K +θ L

1− θ
= nC1(K,L),

and taking volumes

|K +θ0 L| ≤ nn(1− θ
1
n

0 )
n|C1(K,L)|

for θ0 ∈ [0, 1). Integrating over [0, 1] yields
∫ 1

0
|K +θ0 L| dθ0 ≤ nn|C1(K,L)|

∫ 1

0
(1− θ

1
n

0 )
n dθ0 = nn|C1(K,L)|

(

2n

n

)−1

.

Integrating by parts and using Fubini’s Theorem, the first integral equals
∫ 1

0
|K +θ0 L| dθ0 =

∫ 1

0

∣

∣

∣

∣

{

x ∈ K + L :
|K ∩ (x− L)|

M(K,L)
≥ θ0

}
∣

∣

∣

∣

dθ0

=

∫

K+L

|K ∩ (x− L)|

M(K,L)
dx =

|K||L|

M(K,L)

from which the desired inequality follows.

If equality holds in (4.1), then (4.2) holds also with equality for any 0 ≤
θ0 ≤ θ < 1. Letting θ0 = 0,

(4.3) (1− θ
1
n )(K + L) = K +θ L

for any θ ∈ [0, 1). Now Corollary 2.6 implies

θ
1
n (K +1 L) + (1− θ

1
n )(K + L) ⊆ K +θ L = (1− θ

1
n )(K + L).

A compactness argument shows that K +1 L = {0}, so equality (4.3) holds
for every 0 ≤ θ ≤ 1, and then (ii) in Proposition 2.10 implies that K = −L
is a simplex. �

Finally, Corollary 2.5 allows us to recover Rogers-Shephard inequality (1.8).
We also solve the problem of characterizing equality cases posed in [25].

Proposition 4.7. Let K,L ⊂ R
n be convex bodies. Then

|K + L|M(K,L) ≤

(

2n

n

)

|K||L|.

Equality holds if and only if K = −L is a simplex.

Proof. By a translation we may assume that (2.1) is satisfied. A similar
argument to that used in Theorem 4.6, taking θ0 = 0 in Corollary 2.5,
applying volumes and integrating in θ, shows the desired result.
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If equality holds, then (ii) in Proposition 2.10 is satisfied, and therefore
K = −L is a simplex. �

5. Convolution of m bodies

In this section we will extend the definition of θ-convolution bodies to more
than two sets. The θ-convolution is not associative (as a simple computation
with Euclidean balls of different radius shows) so a definition of an m-fold
convolution can not be made inductively. Nevertheless, since |K∩(x− L) | =
χK ∗ χL(x) and the convolution is associative, it seems natural to make the
following extension of θ-convolution bodies:

Definition 5.1. Let K1, . . . ,Km be m measurable sets in R
n and let θ ∈

[0, 1]. We define their θ-convolution as the set

K1+θ· · ·+θKm = {x ∈ K1+· · ·+Km : χK1∗· · ·∗χKm
(x) ≥ θM(K1, . . . ,Km)}

when M(K1, . . . ,Km) = maxx∈Rn χK1 ∗ · · · ∗ χKm
(x) is finite.

For θ = 0 the set K1 +0 · · · +0 Km is just the support of the function
χK1 ∗ · · · ∗ χKm

, the usual Minkowski sum K1 + · · · +Km.

The commutative and associative properties of the convolution imply triv-
ially that

(a1) χK1 ∗ · · · ∗ χKm
= χKσ(1)

∗ · · · ∗ χKσ(m)
for any σ permutation of

{1, ...,m}.
(a2) χz+K1 ∗ · · · ∗ χKm

(x) = χK1 ∗ · · · ∗ χKm
(x− z)

(a3) χTK1 ∗ · · · ∗ χTKm
(x) = |detT |m−1χK1 ∗ · · · ∗ χKm

(T−1x) for any
T ∈ GLn(R).

Consequently we have the following result, analogous to Proposition 2.1.

Proposition 5.2. Let K1, . . . ,Km be compact sets in R
n, λ ∈ R, θ ∈ [0, 1],

x ∈ R
n and T ∈ GLn(R). Then:

(b1) (λK1) +θ · · ·+θ (λKm) = λ(K1 +θ · · ·+θ Km)
(b2) K1 +θ · · ·+θ Km = Kσ(1) +θ · · ·+θ Kσ(m) for any σ permutation of

{1, ...,m}.
(b3) (x+K1) +θ K2 +θ · · ·+θ Km = x+ (K1 +θ · · · +θ Km)
(b4) TK1 +θ · · ·+θ TKm = T (K1 +θ · · ·+θ Km)

The convexity is transmitted to the θ-convolution of m convex bodies.

Proposition 5.3. Let K1, . . . ,Km be convex bodies in R
n. Then K1 +θ

· · ·+θ Km is a convex body.

Proof. The characteristic function of each convex body Ki is log-concave.
The convolution of log-concave functions is log-concave, and the level sets
of log-concave functions are convex. �
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Corollary 2.5 is proved by using that χK1 ∗ χK2 is 1
n
-concave in its support.

In order to generalize this result, we have to prove that the convolution of
more than two characteristic functions is s-concave for some s. We get this
result for s−1 = (m− 1)n by considering sets in dimension (m− 1)n. As in
the case m = 2, we may assume, without loss of generality, that

(5.1) M(K1, . . . ,Km) = χK1 ∗ · · · ∗ χKm
(0).

Proposition 5.4. Let K1, . . . ,Km ⊂ R
n be convex bodies satisfying (5.1).

Then, for any θ1, θ2, λ1, λ2 ∈ [0, 1] such that λ1 + λ2 ≤ 1 we have

(5.2) λ1(K1 +θ1 · · ·+θ1 Km) + λ2(K1 +θ2 · · ·+θ2 Km) ⊆ K1 +θ · · ·+θ Km,

where 1− θ
1

(m−1)n = λ1(1− θ
1

(m−1)n

1 ) + λ2(1− θ
1

(m−1)n

2 ).

Proof. First at all, notice that for any x ∈ R
n,

χK1 ∗ · · · ∗ χKm
(x)

=

∫

Rn

χK1 ∗ · · · ∗ χKm−1(tm−1)χKm
(x− tm−1) dtm−1

=

∫

Rn

∫

Rn

χK1 ∗ . . .

· · · ∗ χKm−2(tm−2)χKm−1(tm−1 − tm−2)χKm
(x− tm−1) dtm−2 dtm−1

= · · ·

=

∫

Rn

· · ·

∫

Rn

χK1(t1)χK2(t2 − t1) . . .

. . . χKm−1(tm−1 − tm−2)χKm
(x− tm−1) dt1 . . . dtm−1

= |Ωm−1(x)|

where

Ωm−1(x) = {(t1, . . . tm−1) ∈ R
(m−1)n : t1 ∈ K1, t2 − t1 ∈ K2, . . .

. . . tm−1 − tm−2 ∈ Km−1, x− tm−1 ∈ Km}.

The convexity of K1, . . . ,Km gives
(5.3)
Ωm−1(λ1x1 + λ2x2) ⊇ (1− λ1 − λ2)Ωm−1(0) + λ1Ωm−1(x1) + λ2Ωm−1(x2)

for any x1, x2 ∈ R
n and λ1, λ2 ≥ 0 such that λ1 + λ2 ≤ 1. In particular,

if x1 ∈ K1 +θ1 · · · +θ1 Km and x2 ∈ K1 +θ2 · · · +θ2 Km, Brunn-Minkowski

inequality in R
(m−1)n implies

(5.4)

|Ωm−1(λ1x1+λ2x2)| ≥ ((1−λ1−λ2)+λ1θ
1

(m−1)n

1 +λ2θ
1

(m−1)n

2 )(m−1)n|Ωm−1(0)|,

which shows that λ1x1 + λ2x2 ∈ K1 +θ · · ·+θ Km with

1− θ
1

(m−1)n = λ1(1− θ
1

(m−1)n

1 ) + λ2(1− θ
1

(m−1)n

2 ).
�
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Remark 5.5. The concavity of the function

x ∈ K1 + · · ·+ Km 7→ χK1 ∗ · · · ∗ χKm
(x)

1
(m−1)n

allows us to write, for any θ ∈ [0, 1), the boundary of K1 +θ · · ·+θ Km as

∂(K1+θ· · ·+θKm) = {x ∈ K1+· · ·+Km : χK1∗· · ·∗χKm
(x) = θM(K1, . . . ,Km)}.

In particular, for θ = 0,

∂(K1 + · · ·+ Km) = {x ∈ K1 + · · ·+ Km : χK1 ∗ · · · ∗ χKm
(x) = 0}.

That implies that for any x ∈ K1 + · · · + Km, x 6∈ K1 +1 · · · +1 Km, there
exists a (unique) θ ∈ [0, 1) such that x ∈ ∂(K1 +θ · · ·+θ Km).

Remark 5.6. Taking θ1 = θ2 = 1, and following the proof of Proposition
5.4, we get equality in the inclusion (5.3) and in the Brunn-Minkowski in-
equality (5.4). Consequently, Ωm−1(x) are all homothetic to Ωm−1(0) for
any x ∈ K1+1 · · ·+1Km. Using that they all have the same volume, we get
that they are translations of Ωm−1(0).

In particular, taking θ1 = θ2 and λ2 = 1− λ1 in Proposition 5.4, we get the
convexity of K1 +θ · · ·+θKm. Also, taking θ1 = θ2 = θ0, we get the version
of Corollary 2.5 to m bodies.

Corollary 5.7. Let K1, . . . ,Km ⊂ R
n be convex bodies such that (5.1) is

satisfied. Then for any 0 < θ0 ≤ θ < 1

K1 +θ0 · · ·+θ0 Km

1− θ
1

(m−1)n

0

⊆
K1 +θ · · · +θ Km

1− θ
1

(m−1)n

.

We can easily get the Brunn-Minkowski type inequality for m bodies, a
generalization of Corollary 3.2.

Corollary 5.8. Let K1, . . . ,Km ⊂ R
n be convex bodies. Then

|K1 +θ · · ·+θ Km|
1
n ≥

(

1− θ
1

(m−1)n

)

(|K1|
1
n + · · ·+ |Km|

1
n ).

Finally, we get Zhang and Roger-Shephard type inequalities for m bodies.
For K1, . . . ,Km ⊆ R

n, let

C1(K1, . . . ,Km) = lim
θ→1

K1 +θ · · ·+θ Km

1− θ
.

As in the case m = 2, the existence of the previous limit follows from
Corollary 5.7.

Corollary 5.9. Let K1, . . . ,Km ⊆ R
n be convex bodies. Then

|K1 + · · ·+ Km| ≤

(

mn

n

)

|K1| · · · |Km|

M(K1, . . . ,Km)
≤ (m− 1)nnn|C1(K1, . . . ,Km)|

Proof. The proof runs as in Theorem 4.6 and Proposition 4.7 resp., using
Corollary 5.7, instead of Corollary 2.5. �
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Regarding the study of equality cases, we will show that equality never occur
in (5.2) for all λ1, λ2 such that λ1 + λ2 = 1 unless m = 2 or n = 1. That
implies that extensions of Zhang, Roger-Shephard and Brunn-Minkowski
type inequalities are not sharp for m > 2 and n > 1.

The following result can be proved as in Proposition 2.8.

Proposition 5.10. Let K1, . . . ,Km ⊂ R
n be convex bodies satisfying (5.1)

and such that for any θ1, θ2, λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1 we have

(5.5) λ1(K1 +θ1 · · ·+θ1 Km) + λ2(K1 +θ2 · · ·+θ2 Km) = K1 +θ · · ·+θ Km,

where θ
1

(m−1)n = λ1θ
1

(m−1)n

1 + λ2θ
1

(m−1)n

2 . Then for every x ∈ K1 + · · ·+ Km

Ωm−1(x) is homothetic to Ωm−1(0) .

Then we will show that this consequence can not occur for m ≥ 3.

Proposition 5.11. Let m ≥ 3 and K1, . . . ,Km ⊂ R
n be convex bodies sat-

isfying (5.1). Then it is not possible that Ωm−1(x) is homothetic to Ωm−1(0)
for every x ∈ K1 + · · ·+ Km.

For the proof, we will use the following fact on sum of simplices, which is of
independent interest.

Lemma 5.12. Let K,L ⊂ R
n be n-dimensional convex bodies. If K + L is

an n-dimensional simplex, then K and L are both n-dimensional homothetic
simplices.

Proof. Denote by hC(x) = max{〈x, y〉 : y ∈ C} the support function of a
compact set C ⊂ R

n.

Let us write K + L = conv{w0, . . . wn}. We will show that L is a simplex.

Each wi is an extreme point of K +L. Then wi = ui + vi where ui ∈ K and
vi ∈ L are extreme points of K and L resp. In particular, vi = wi − ui ∈ L
and so conv{w0 − u0, . . . wn − un} ⊆ L. Also

hK(x) + hL(x) = hK+L(x) = max
0≤i≤n

〈x,wi〉

= max
0≤i≤n

(〈x, ui〉+ 〈x,wi − ui〉)

≤ max
0≤i≤n

〈x, ui〉+ max
0≤i≤n

〈x,wi − ui〉

≤ hK(x) + max
0≤i≤n

〈x,wi − ui〉

Thus hL(x) ≤ max
0≤i≤n

〈x,wi − ui〉, so L ⊆ conv{w0 − u0, . . . wn − un}, and L

is a simplex.

Now, write K = conv{u0, . . . , un} and L = conv{v0, . . . vn}. We will prove
that they are homothetic simplices.
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Let Ai = {s ∈ Sn−1 : hK(s) = 〈x, ui〉} and Bi = {s ∈ Sn−1 : hL(s) =
〈x, vi〉}. K and L are homothetic if and only if both partitions of Sn−1

Sn−1 =
n
⋃

i=0

Ai =
n
⋃

i=0

Bi

are identical. Assume they are not the same, then the partition Sn−1 =
n
⋃

i,j=0

Ci,j where Ci,j = {s ∈ Sn−1 : hK+L(s) = 〈x, ui + vj〉} has more than

n+ 1 elements, since

hK+L(s) = hK(s)+hL(s) = max
0≤i≤n

〈x, ui〉+ max
0≤j≤n

〈x, vj〉 = max
0≤i,j≤n

〈x, ui + vj〉.

Then K + L is not a simplex. �

Remark 5.13. An argument similar to that used in the remark before
Theorem 3.2.3 in [8] leads to the same claim. However, we have included a
direct proof of it for the sake of completeness.

Proof of Proposition 5.11. Notice that

Ωm−1(x) = {(t1, . . . tm−1) ∈ R
(m−1)n : (t1, . . . tm−2) ∈ Ωm−2(tm−1),

tm−1 ∈ (x−Km) ∩ (K1 + · · ·+Km−1)}.

and that Ωm−2(tm−1) is non-empty if and only if tm−1 ∈ K1 + · · ·Km−1.
Then the projection onto the tm−1 coordinate is

Pm−1(Ωm−1(x)) = (x−Km) ∩ (K1 + · · ·+Km−1).

Suppose that Ωm−1(x) is homothetic to Ωm−1(0) for every x ∈ K1+· · ·+Km.
Then their projections are also homothetic. Then (x −Km) ∩ (K1 + · · · +
Km−1) is homothetic to (−Km)∩ (K1 + · · ·+Km−1) for any x ∈ K1 + · · ·+
Km and Soltan’s Theorem 2.9 implies that K1 + · · ·Km−1 and −Km are
homothetic simplices.

On the other hand, the projection onto the tm−2 coordinate is

Pm−2(Ωm−1(x)) =
⋃

tm−1∈x−Km

Pm−2 (Ωm−2(tm−1))

=
⋃

tm−1∈x−Km

(tm−1 −Km−1) ∩ (K1 + · · ·+Km−2)

= (x− (Km−1 +Km)) ∩ (K1 + · · · +Km−2)

and so we have that for every x ∈ K1 + · · · + Km, (x − (Km−1 + Km)) ∩
(K1 + · · ·+Km−2) is homothetic to (−(Km−1 +Km))∩ (K1 + · · ·+Km−2).
Soltan’s Theorem 2.9 shows again that K1+ · · ·+Km−2 and −(Km−1+Km)
are homothetic simplices.

If Km and Km−1 +Km are both simplices, by Lemma 5.12, Km−1 is also a
simplex homothetic to Km. But (K1 + · · · +Km−1) +Km is a simplex, so
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Lemma 5.12 shows that K1+ · · ·+Km−1 and Km are homothetic. But then
Km is a simplex homothetic to −Km, a contradiction, unless n = 1. �
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C. Hugo Jiménez and Rafael Villa, Dept. de Análisis Matemático, Facultad
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