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1. Introduction. The main focus of the present investigation is to obtain the con-
vergence rates in the form of a Baum–Katz, Erdös, Hsu–Robbins, Spitzer type complete
convergence result for the dependent bootstrapped means from a sequence of random vari-
ables.

The work on the consistency of bootstrap estimators has received much attention in
recent years due to a growing demand for the procedure in both theoretical and practical
applications. It is important to note that exponential inequalities are of practical use in
establishing the strong asymptotic validity of the bootstrapped mean.

We begin with a brief discussion of results in the literature pertaining to a sequence of
independent and identically distributed (i.i.d.) random variables and classical (independent)
bootstrap of the mean. Let {X,Xn, n � 1} be a sequence of i.i.d. random variables defined
on a probability space (Ω,F ,P). For ω ∈ Ω and n � 1, let Pn(ω) = n−1 ∑n

i=1 δXi(ω) de-

note the empirical measure and let {X̂(ω)
n,j , 1 � j � m(n)} be i.i.d. random variables with

law Pn(ω), where {m(n), n � 1} is a sequence of positive integers. In other words, the ran-

dom variables {X̂(ω)
n,j , 1 � j � m(n)} result by sampling m(n) times with replacement from

the n observations X1(ω), . . . , Xn(ω) such that for each of the m(n) selections, each Xj(ω)
has probability n−1 of being chosen.

For each n � 1, {X̂(ω)
n,j , 1 � j � m(n)} is the so-called [7] bootstrap sample from

X1, . . . , Xn with bootstrap sample size m(n). Let Xn(ω) = n−1 ∑n
j=1 Xj(ω) denote the

sample mean of {Xj(ω), 1 � j � n}, n � 1.
Bickel and Freedman [4] showed that when X is nondegenerate and EX2 < ∞, for

almost every ω ∈ Ω the central limit theorem (CLT)

n1/2

(
1

n

n∑
j=1

X̂
(ω)
n,j −Xn(ω)

)
d−→ N(0, σ2)
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is valid. Here and in what follows, σ2 = VarX. Note that by the Glivenko–Cantelli theorem,
Pn(ω) is close to L(X) for almost every ω ∈ Ω and all large n, and by the classical Lévy CLT,

n1/2

(
1

n

n∑
j=1

Xj − EX

)
d→ N(0, σ2).

It follows that for almost every ω ∈ Ω, the bootstrap statistic

n1/2

(
1

n

n∑
j=1

X̂
(ω)
n,j −Xn(ω)

)

is close in distribution to that of

n1/2

(
1

n

n∑
j=1

Xj − EX

)
d−→ N(0, σ2)

for all large n. This is the basic idea behind the bootstrap. See the pioneering work of
Efron [7], where this nice idea is made explicit and where it is substantiated with several
important examples.

Strong laws of large numbers were proved by Athreya [2] and Csörgő [6] for bootstrapped
means. Arenal-Gutiérrez, Matrán, and Cuesta-Albertos [1] analyzed the results of [2] and [6].
Then, by taking into account the different growth rates for the resampling size m(n), they
gave new and simple proofs of those results. They also provided examples that show that
the sizes of resampling required by their results to ensure almost sure (a.s.) convergence are
not far from optimal.

Another reference which is important to this paper is the work of Mikosch [10]. He
established a series of useful exponential inequalities that are an important tool for deriving
results on the consistency of the bootstrapped mean. Based on these exponential inequal-
ities, the Baum–Katz, Erdös, Hsu–Robbins, Spitzer type complete convergence result for
the bootstrapped means and a moment result for the supremum of normed bootstrapped
sums were established in [9]. It is important to note that in [9] no assumptions were made
concerning either the marginal or the joint distributions of the random variables from which
bootstrap resamples are withdrawn. We follow the same approach in this paper.

The notion of the dependent bootstrap procedure was introduced in [12], where some
important properties were also established.

The main goal of the present paper is to extend and generalize the results of [9] on
the strong law of large numbers for the case of the dependent bootstrap procedure. The
main tools are the extensions and generalizations of the result of [10] (section 4) and [12]
(section 2).

2. Dependent bootstrap. The results from this section are modifications, general-
izations, and extensions of the results of [12] and [13] for the dependent bootstrap from the
sequence of unnecessary i.i.d. random variables. We mention that Smith and Taylor [12], [13]
consider only the i.i.d. case. We present this case as a simple reference since it plays a role
in the following.

Let {Xn, n � 1} be a sequence of random variables (which are not necessarily indepen-
dent or identically distributed) defined on a probability space (Ω,F ,P). Let {m(n), n � 1}
and {k(n), n � 1} be two sequences of positive integers such that for all n � 1, m(n) �
nk(n).For ω ∈ Ω and n � 1, the dependent bootstrap is defined as the sample of size m(n),
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denoted {X̂(ω)
n,j , 1 � j � m(n)}, drawn without replacement from the collection of nk(n)

items made up of k(n) copies, each of the sample observations X1(ω), . . . , Xn(ω).
This dependent bootstrap procedure is proposed as a procedure to reduce variation of

estimators and to obtain better confidence intervals. The dependent bootstrap procedure is
proposed as a procedure to reduce variation of estimators and to obtain better confidence
intervals. We refer to [13], where this fact is proven and simulated confidence intervals are
used to examine possible gains in coverage probabilities and interval lengths.

The first proposition gives us the joint distribution of the dependent bootstrap random
variables. We need the following notation.

For ω ∈ Ω, n � 1, and a real number x, denote

τ(x) =
n∑

j=1

I
{
Xj(ω) � x

}
,

where I(·) is the indicator function. Hence, τ(x) is the random variable that counts the
number of observations less than or equal to x.

For a finite sequence {x1, x2, . . . , xm} of real numbers, denote by {x(1), x(2), . . . , x(m)}
its nondecreasing rearrangement, that is, x(1) � x(2) � · · · � x(m), and for any 1 � j � m
there exists 1 � i � m such that xi = x(j).

Proposition 1. For ω ∈ Ω, n � 1, and a sequence {x1, x2, . . . , xm} of real numbers we
have the following:

1) If k(n) τ(x(j)) � j for all 1 � j � m(n), then

P
{
X̂

(ω)
n,1 � x1, . . . , X̂

(ω)
n,m(n) � xm(n)

}
=

m(n)∏
j=1

k(n) τ(x(j)) − (j − 1)

k(n)n− (j − 1)
.

2) If k(n) τ(x(j)) < j for at least one 1 � j � m(n), then the above probability is zero.
Proof. Let π be the reordering of {1, 2, . . . ,m(n)} such that π(j) = i for xi = x(j).

Then

P
{
X̂

(ω)
n,1 � x1, . . . , X̂

(ω)
n,m(n) � xm(n)

}
= P

{
X̂

(ω)
n,π(1) � x(1), . . . , X̂

(ω)
n,π(m(n)) � x(m(n))

}
= P

{
X̂

(ω)
n,π(1) � x(1)

}
P
{
X̂

(ω)
n,π(2) � x(2) | X̂(ω)

n,π(1) � x(1)

}
× · · ·

×P
{
X̂

(ω)
n,π(m(n)) � x(m(n)) | X̂(ω)

n,π(1) � x(1), . . . , X̂
(ω)
n,π(m(n)−1) � x(m(n)−1)

}
=

m(n)∏
j=1

k(n) τ(x(j)) − (j − 1)

k(n)n− (j − 1)

if k(n) τ(x(j)) � j for all 1 � j � m(n).
The second part of the proposition is obvious.
Of course, the dependent bootstrap random variables {X̂(ω)

n,j , 1 � j � m(n)} are de-
pendent. They obey the so-called negatively dependent property; this property will be
established in Proposition 2. The concept of negatively dependent random variables was
introduced by Lehmann [8] as follows.
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The random variables Y1, Y2, . . . are said to be negatively dependent if for each n � 2
the following two inequalities hold:

P{Y1 � y1, . . . , Yn � yn} �
n∏

i=1

P{Yi � yi}

and

P{Y1 > y1, . . . , Yn > yn} �
n∏

i=1

P{Yi > yi},

for any sequence {y1, . . . , yn} of real numbers.

Proposition 2. For ω ∈ Ω and n � 1 the dependent bootstrap random variables {X̂(ω)
n,j ,

1 � j � m(n)} are negatively dependent and exchangeable.
Proof. For the negative dependence property we will prove only the first inequality. The

proof of the second one is completely the same.
Let {x1, x2, . . . , xm(n)} be a sequence of real numbers. It is interesting to consider only

the case k(n) τ(x(j)) � j for all 1 � j � m(n). By Proposition 1

P
{
X̂

(ω)
n,1 � x1, . . . , X̂

(ω)
n,m(n) � xm(n)

}
=

m(n)∏
j=1

k(n) τ(x(j)) − (j − 1)

k(n)n− (j − 1)

�
m(n)∏
j=1

k(n) τ(x(j))

k(n)n
=

m(n)∏
j=1

P
{
X̂

(ω)
n,j � xj

}
.

The exchangeability is obvious by Proposition 1.

3. A few technical lemmas. In this section we present a few technical results
that we will use in proofs of the main results of the paper. Some of the lemmas are only
generalizations and extensions of well-known results. For expository purposes we outline
their proofs.

For simplicity, by the log-function in this section we mean the natural logarithm function.
The results can be easily generalized on any other logarithm function with base greater
than one.

The first lemma is well known (cf., for example, [5]) and trivial. So, we omit the proof.
Lemma 1. Let {Yn, n � 1} be a sequence of negatively dependent random variables.
1) If {fn, n � 1} is a sequence of measurable real functions all of which are monotone

increasing (or all monotone decreasing), then {fn(Yn), n � 1} is a sequence of negatively
dependent random variables.

2) For any n � 1, E
∏n

1 Yj �
∏n

1 EYj , provided the expectations are finite.
Unfortunately, it is not possible to find the inverse function to the function φ(t) =

t1/β/ log t, t > 0, 0 < β < e, in the closed form. But the following lemma gives a good
“approximation” to the inverse function.

Lemma 2. Let φ(t) = t1/β/ log t and ψ(t) = tβ logβ t, t � e, 0 < β < e. Then

(
1

β

(
1 − β

e

))β

t � ψ
(
φ(t)

)
�

(
1

β

)β

t.

Proof. Note that

ψ(φ(t)) =
t

ββ

(
1 − β log log t

log t

)β

and 1 − β

e
� 1 − β log log t

log t
� 1

for t � e, which can be established by differentiation.
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The main idea of Lemma 2 is that for a positive random variable Y , the assumptions
Eφ−1(Y ) < ∞ and Eψ(Y ) < ∞ are equivalent.

The following lemma can be found in [11, Theorem 2]. Note that there is no indepen-
dence assumption.

Lemma 3. Let φ(t), t > 0, be a continuous function that is positive, strictly increasing,
and satisfying the condition φ(t) → ∞ as t → ∞. Put bn = φ(n), n � 1. Moreover, let
{Yn, n � 1} be a sequence of identically distributed random variables. If

∞∑
j=n

1

bj
= O

(
n

bn

)
and Eφ−1(Y1) < ∞,

where φ−1 is the inverse of φ, then

1

bn

n∑
j=1

Yj = 0 a.s.

In the following lemma it is also important to note that there is no independence con-
dition.

Lemma 4. Let {Xn, n � 1} be a sequence of identically distributed random variables
such that

E|X1|α
∣∣ log |X1|

∣∣α/2
< ∞

for some 0 < α < 2. Then

logn

n2/α

n∑
j=1

X2
j −→ 0 a.s.

Proof. In order to apply Lemma 3, put Yn = Xn2 , bn = n2/α/ logn, n � 1, and β = α/2
(then 0 < β < 1). If we consider φ(t) = t1/β/ log t, t � e, then bn = φ(n) and according
to Lemma 2 with ψ(t) = tβ(log t)β , the conditions Eφ−1(Y1) < ∞ and Eψ(Y1) < ∞ are
equivalent. Note that

Eψ(Y1) = 2α/2E|X1|α
∣∣ log |X1|

∣∣α/2
< ∞.

The last thing we need to prove is that
∑∞

j=n 1/bj = O(n/bn). We have

∞∑
j=n

1

bj
=

∞∑
j=n

log j

j1/β
=

∞∑
m=1

n(m+1)−1∑
k=nm

log k

k1/β
�

∞∑
m=1

n log(mn)

(nm)1/β
.

Since the sequence {log k/k1/β , k � e1/β} is strictly decreasing the last sum is not greater
than

n logn

n1/β

∞∑
m=1

1 + logm/ log 2

m1/β
= C

n logn

n1/β
= C

n

bn
.

By Lemma 3,

logn

n2/α

n∑
j=1

X2
j → 0 a.s.

Lemma 4 is proved.
The following two lemmas deal with the convergence of maximums of random variables.

Again, no assumption of independence is made.
Lemma 5. Let {Xn, n � 1} be a sequence of positive random variables and let {bn,

n � 1} be a nondecreasing sequence of positive constants such that bn → ∞. Then the
assumptions Xn/bn → 0 a.s. and max1�j�n Xj/bn → 0 a.s. are equivalent.
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Proof. Let Xn/bn → 0 a.s. For arbitrary n � k � 2,

1

bn
max

1�j�n
Xj � 1

bn
max

1�j�k−1
Xj +

1

bn
max
k�j�n

Xj � 1

bn
max

1�j�k−1
Xj + max

k�j�n

Xj

bj
.

Since {bn, n � 1} is nondecreasing the last expression is not greater than

1

bn
max

1�j�k−1
Xj + sup

j�k

Xj

bj
−→ 0,

where first n → ∞ and then k → ∞. The reverse implication is obvious.
The following lemma in this section is a generalization of the corollary to Theorem 3

of [3].
Lemma 6. Let ψ(t), t � 0, be a strictly increasing function and let {bn, n � 1}

be a nondecreasing sequence of positive numbers such that ψ(bn) � Cn, n � 1, where the
constant C does not depend on n. Moreover, let {Xn, n � 1} be a sequence of positive
identically distributed random variables such that Eψ(X1/ε) < ∞ for all ε > 0. Then

1

bn
max

1�j�n
Xj → 0 a.s.

Proof. For any ε > 0

∞∑
n=1

P{Xn > εbn} �
∞∑

n=1

P

{
C−1ψ

(
X1

ε

)
> n

}
� C−1Eψ

(
X1

ε

)
< ∞.

Then by the Borel–Cantelli lemma Xn/bn → 0 a.s. By Lemma 5 we obtain that

1

bn
max

1�j�n
Xj → 0 a.s.

The next exponential inequality in this section is a key tool used in the proof of the
law of large numbers for the dependent bootstrap of the mean presented in the theorem.
It is an analogue of the Mikosch exponential inequality [10, Lemma 5.1] for the case of the
dependent bootstrap.

We need to add two more notations to the notations from section 2. Let {Xn, n � 1}
be a sequence of (not necessarily independent or identically distributed) random variables.
For ω ∈ Ω and n � 1 denote

Mn(ω) =
1

m(n)
max

1�j�n

∣∣Xj(ω) −Xn(ω)
∣∣ and Bn(ω) =

1

n m(n)

n∑
j=1

(
Xj(ω) −Xn(ω)

)2
,

where

Xn(ω) =
1

n

n∑
j=1

Xj(ω)

denote the sample mean of {Xj(ω), 1 � j � n}, n � 1.
Lemma 7. Let {an, n � 1} and {hn, n � 1} be two sequences of positive reals. Then

for ω ∈ Ω and n � 1 such that hnMn(ω) < 1 and all ε > 0, the following inequality holds:

P

{∣∣∣∣∣ 1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

∣∣∣∣∣ � εan

}
� 2 exp

{
− εhnan +

h2
nBn(ω)

2(1 − hnMn(ω))

}
.
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Proof. By Markov’s inequality

P

{∣∣∣∣∣ 1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

∣∣∣∣∣ � εan

}

� exp{−εhnan}E exp

{
hn

∣∣∣∣∣ 1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

∣∣∣∣∣
}

� exp{−εhnan}E exp

{
hn

(
1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

)}

+ exp{−εhnan}E exp

{
− hn

(
1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

)}
.

We will estimate only the expectation in the first item of the last expression; the same
bound is valid for the second expectation.

Note that by Proposition 2 the dependent bootstrap random variables {X̂(ω)
n,j , 1 � j �

m(n)}, n � 1, are negatively dependent and exchangeable. Hence, by Lemma 1(1) the
random variables {

exp

{
hn

m(n)

(
X̂

(ω)
n,j −Xn(ω)

)}
, 1 � j � m(n)

}
are negatively dependent and identically distributed.

Therefore,

E exp

{
hn

(
1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

)}
= E

[
m(n)∏
j=1

exp

{
hn

m(n)

(
X̂

(ω)
n,j −Xn(ω)

)}]

�
m(n)∏
j=1

E exp

{
hn

m(n)

(
X̂

(ω)
n,j −Xn(ω)

)}
by Lemma 1(2). By identical distribution this expression is equal to

[
E exp

{
hn

m(n)

(
X̂

(ω)
n,1 −Xn(ω)

)}]m(n)

=

[
1

n

n∑
i=1

exp

{
hn

m(n)

(
Xi(ω) −Xn(ω)

)}]m(n)

=

[
1 +

1

n

n∑
i=1

(
h2
n

2!m(n)2
(
Xi(ω) −Xn(ω)

)2
+

h3
n

3!m(n)3
(
Xi(ω) −Xn(ω)

)3
+

h4
n

4!m(n)4
(
Xi(ω) −Xn(ω)

)4
+ · · ·

)]m(n)

=

[
1 +

h2
n

m(n)

n∑
i=1

(Xi(ω) −Xn(ω))2

nm(n)

×
(

1

2!
+

hn

3!

Xi(ω) −Xn(ω)

m(n)
+

h2
n

4!

(
Xi(ω) −Xn(ω)

m(n)

)2

+ · · ·
)]m(n)

�
[
1 +

h2
n

m(n)

Bn(ω)

2

(
1 + hnMn(ω) +

(
hnMn(ω)

)2
+ · · ·

)]m(n)

=

[
1 +

h2
n

2m(n)

Bn(ω)

1 − hnMn(ω)

]m(n)

� exp

{
h2
n

2m(n)

Bn(ω)

1 − hnMn(ω)

}m(n)

= exp

{
h2
nBn(ω)

2(1 − hnMn(ω))

}
.
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Hence,

P

{∣∣∣∣∣ 1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

∣∣∣∣∣ � εan

}
� 2 exp

{
− εhnan +

h2
nBn(ω)

2(1 − hnMn(ω))

}
.

4. Complete convergence rates for the dependent bootstrap of the
mean. With the preliminaries accounted for, the law of large numbers for the dependent
bootstrap of the mean may now be established. The theorem is an analogue of Theorem 2.1
of [9] for the case of the dependent bootstrap.

Theorem. Let {Xn, n � 1} be a sequence of (not necessarily independent or identically
distributed) random variables and let {an, n � 1} be a sequence of positive real numbers. If

(i)
logn

m(n) an
max
1�i�n

|Xi| −→ 0 a.s.

and

(ii)
logn

nm(n) a2
n

n∑
i=1

X2
i −→ 0 a.s.,

then for any real r, every ε > 0, and almost every ω ∈ Ω

∞∑
n=1

nrP

{∣∣∣∣∣ 1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

∣∣∣∣∣ � εan

}
< ∞.

We make several remarks concerning the theorem before proving it.
Remarks. 1. The conclusion of the theorem is of course stronger the larger r is taken. In

contrast with the Baum–Katz, Erdös, Hsu–Robbins, Spitzer complete convergence theorem,
the constant r does not play a role in any condition of the theorem and it can be taken
arbitrarily large.

2. Taking r = 0, it follows from the Borel–Cantelli lemma and the conclusion of the
theorem that for almost every ω ∈ Ω

1

an

(
1

m(n)

m(n)∑
j=1

X̂
(ω)
n,j −Xn(ω)

)
−→ 0 a.s.

3. According to Lemma 5, if (log n)/(m(n) an) ↓ 0 monotonically, then assumption (i)
from the theorem is equivalent to the apparently weaker and strictly simpler condition

logn

m(n) an
Xn → 0 a.s.

4. Careful analysis of the proof of the theorem shows that assumptions (i) and (ii) can
be slightly weakened:

(i′)
logn

m(n) an
max
1�i�n

|Xi −Xn| −→ 0 a.s.,

(ii′)
logn

nm(n) a2
n

n∑
i=1

(Xi −Xn)2 −→ 0 a.s.

Ignoring the fact that assumptions (i′) and (ii′) are obviously weaker than assump-
tions (i) and (ii), it is worth mentioning that they are cumbersome and more difficult to
check.

Proof of the theorem. The conclusion of the theorem obviously holds for r < −1, so it
will be assumed that r � −1. Using the notation of Lemma 7 denote

Ω0 =

{
ω :

logn

an
Mn(ω)−→ 0 and

logn

a2
n

Bn(ω) → 0

}
.

It is easy to check that conditions (i) and (ii) imply P(Ω0) = 1.
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For fixed r � −1, ε > 0, and ω ∈ Ω0, let

hn =
3 + r

εan
logn, n � 1.

Since ω ∈ Ω0, we have

hnMn(ω) =
3 + r

ε

logn

an
Mn(ω)−→ 0 and

h2
n

logn
Bn(ω) =

(
3 + r

ε

)2
logn

a2
n

Bn(ω)−→ 0.

Let n be sufficiently large such that

h2
nBn(ω) � logn and hnMn(ω) � 1

2
.

Applying Lemma 7 we obtain

nrP

{∣∣∣∣∣
∑m(n)

j=1 X̂
(ω)
n,j

m(n)
−Xn(ω)

∣∣∣∣∣ � εn

}
� 2nr exp

{
− εhnan +

h2
nBn(ω)

2(1 − hnMn(ω))

}
� 2nr exp

{
− (3 + r) logn + log n

}
= 2nr exp

{
− (2 + r) logn

}
� 2n−2

since r � −1, and the conclusion follows.
Corollary. Let {Xn, n � 1} be a sequence of identically distributed (not necessarily

independent) random variables and 0 < α < 2. If E|X1|α| log |X1||α < ∞, then for every real
r, every ε > 0, and almost every ω ∈ Ω

∞∑
n=1

nrP

{∣∣∣∣∣ 1

n1/α

n∑
j=1

(
X̂

(ω)
n,j −Xn(ω)

)∣∣∣∣∣ � ε

}
< ∞.

Proof. Consider m(n) = n and an = n(1−α)/α, n � 1, in the theorem. We need to check
that assumptions (i) and (ii) are true.

For (i) we denote bn = n1/α/ logn and ψ(t) = tα(log t)α, t � 1. According to Lemma
2, ψ(bn) � Cn, where the constant C does not depend on n. Assumption (i) follows from
Lemma 6.

Assumption (ii) follows from Lemma 4 directly. We should mention that Lemma 4
requires an even slightly weaker moment assumption than we have.
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